CN112488744A - 一种交易驱动的虚拟电厂定制化构建方法 - Google Patents

一种交易驱动的虚拟电厂定制化构建方法 Download PDF

Info

Publication number
CN112488744A
CN112488744A CN202011104207.5A CN202011104207A CN112488744A CN 112488744 A CN112488744 A CN 112488744A CN 202011104207 A CN202011104207 A CN 202011104207A CN 112488744 A CN112488744 A CN 112488744A
Authority
CN
China
Prior art keywords
producer
price
consumer
electricity
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011104207.5A
Other languages
English (en)
Inventor
高赐威
马思思
陈涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Chunning Electric Power Technology Co ltd
Original Assignee
Nanjing Chunning Electric Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Chunning Electric Power Technology Co ltd filed Critical Nanjing Chunning Electric Power Technology Co ltd
Priority to CN202011104207.5A priority Critical patent/CN112488744A/zh
Publication of CN112488744A publication Critical patent/CN112488744A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/08Auctions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Mathematical Physics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Water Supply & Treatment (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Public Health (AREA)
  • Algebra (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种交易驱动的虚拟电厂定制化构建方法,(1)DSO根据虚拟电厂运营商上报的次日出力区间及报价进行日前市场出清,将出清结果形成日前交易合同下发至虚拟电厂运营商;(2)虚拟电厂运营商向产消者集群发布本地市场初始价格;(3)产消者集群基于本地市场价格进行最优竞标决策,向虚拟电厂运营商提交竞标;(4)虚拟电厂运营商以最大化运行收益为目标、以满足虚拟电厂定制出力要求为约束,根据产消者的竞标策略更新本地市场价格,并发布至各产消者;(5)若本地市场价格收敛,产消者根据双方最终决策结果与虚拟电厂运营商签订日前交易合同;否则返回(3)循环。本发明提供的方法有效促进电力系统功率供需平衡、促进能源消纳,通过组织本地市场交易为小规模分布式资源提供渠道。

Description

一种交易驱动的虚拟电厂定制化构建方法
技术领域
本发明涉及一种交易驱动的虚拟电厂定制化构建方法,属于电力系统及其自动化技术。
背景技术
随着屋顶光伏、园区风电、储能设备以及可控负荷等分布式资源的日益增加,电力用户的角色从传统的“消费者”转变为当前的“产消者”,在自身有用电需求的情况下,同时还具备发电能力,可根据发电能力和用电需求的相对大小、在对自身进行最优能量管理后,灵活转变“生产者”和“消费者”的角色;还可利用自身的发电能力以及柔性调节潜力为电网提供服务,其中分布式电源可为电网提供电能服务,储能设备及可控负荷可为电网提供辅助服务。
目前,产消者的余量电量只能以极低的并网电价被电网收购,不足电量却要以零售电价从售电商买入,对个体来说经济效益较低。随着分布式电源规模的扩大,在深化电力体制改革背景下,国家发改委、国家能源局于2017年11月发布了《关于开展分布式发电市场化交易试点的通知》,提出了包含直接交易、委托代售、按标杆电价收购三种指导性的分布式发电市场化交易模式,旨在通过分布式交易将分布式发电引入竞争性的市场交易,减少对分布式发电项目的政策性补贴,促使其提高自身竞争力实现持续性发展。
虚拟电厂通过先进的协调控制技术、智能计量技术以及信息通信技术将分布式电源、储能系统、需求响应资源等多种分布式资源聚合起来,对外形成统一出力,作为中间单元来参与市场交易和电网调度,可实现众多发用电设备的互联互通互动,是泛在电力物联网的典型范例,为众多体量小、位置分散的分布式资源提供了市场交易平台。
因此提出一种交易驱动的虚拟电厂定制化构建方法,将同一配电台区中的产消者集群聚合为虚拟电厂,以虚拟电厂参与日前合同交易为应用场景,根据合同规定的出力要求,以交易驱动的方式确定虚拟电厂内部产消者的次日发用电计划,实现虚拟电厂的定制化构建,不仅可以有效促进电力系统功率供需平衡、促进新能源的就地消纳,还可通过组织本地市场交易为小规模分布式资源提供获利渠道。
发明内容
发明目的:为了充分利用分布式资源的发电及功率调节能力,促进新能源的就地消纳,从市场交易环节保障电力系统功率的供需平衡,本发明提供一种交易驱动的虚拟电厂定制化构建方法,将同一配电台区中的产消者集群聚合为虚拟电厂,以虚拟电厂参与日前合同交易为应用场景,根据合同规定的出力要求,以交易驱动的方式确定虚拟电厂内部产消者的次日发用电计划,实现虚拟电厂的定制化构建。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种交易驱动的虚拟电厂定制化构建方法,包括如下步骤:
(1)DSO根据虚拟电厂运营商上报的次日出力区间及相应报价进行日前市场出清,将出清结果形成日前交易合同下发至虚拟电厂运营商;
(2)虚拟电厂运营商向产消者集群发布本地市场初始价格;
(3)产消者集群基于本地市场价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略;
(4)虚拟电厂运营商以最大化运行收益为目标、以满足虚拟电厂定制出力要求为约束,根据产消者的竞标策略更新本地市场价格,并发布至各产消者;
(5)若本地市场价格收敛,产消者根据双方最终决策结果与虚拟电厂运营商签订日前交易合同,完成虚拟电厂的定制化构建;否则返回(3)进行循环。
具体的,所述步骤(1)中,DSO根据虚拟电厂运营商上报的次日出力区间及相应报价进行日前市场出清,将出清结果形成日前交易合同下发至虚拟电厂运营商,具体为:
虚拟电厂运营商基于产消者集群上报的次日出力预测数据,分别计算虚拟电厂次日各时段的出力区间及相应报价:
Figure BDA0002726399750000021
Figure BDA0002726399750000022
其中:Pt N
Figure BDA0002726399750000023
分别为日前合同中的虚拟电厂功率及相应电价;gi,t表示产消者i的发电功率,di,t表示产消者i的用电功率;上标min和max分别表示相应项的最小值和最大值;
Figure BDA0002726399750000024
Figure BDA0002726399750000025
为虚拟电厂运营商对DSO的报价系数。
具体的,所述步骤(2)中,虚拟电厂运营商向产消者集群发布本地市场初始价格,具体为:
(2-1)本地市场初始购电价格
Figure BDA0002726399750000026
为介于电网统一收购电价和合同交易电价之间的随机数,如下式
Figure BDA0002726399750000027
其中:
Figure BDA0002726399750000028
为电网统一收购电价,
Figure BDA0002726399750000029
为合同交易电价。
(2-2)本地市场初始售电价格
Figure BDA00027263997500000210
为介于合同交易电价和零售市场电价之间的随机数,如下式
Figure BDA0002726399750000031
其中:
Figure BDA0002726399750000032
为零售市场电价。
具体的,所述步骤(3)中,产消者集群基于本地市场价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略,具体为:
(3-1)产消者根据下式计算发用电比率,据此确定自身身份——生产者或消费者
Figure BDA0002726399750000033
其中:当GDRt≥1时,产消者为生产者,反之则为消费者。由于各时段产消者的发电能力和用电需求不尽相同,所以产消者在不同时段的身份可能不同。
(3-2)产消者采用如下二次型效用函数计算消费不同电量时的自身效用
Figure BDA0002726399750000034
Figure BDA0002726399750000035
其中:μt是表征用户用电行为的用户偏好参数,ν是用户各自已定的参数,Pt con是产消者的用电功率,
Figure BDA0002726399750000036
Figure BDA0002726399750000037
分别是产消者用电需求的上下限。
(3-4)产消者基于本地市场购售电价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略
Figure BDA0002726399750000038
Figure BDA0002726399750000039
1)产消者作为生产者
以i作为生产型产消者编号,产消者作为生产者时可在满足自身用电需求的基础上向虚拟电厂运营商售电。产消者i提交的竞标策略包括价格敏感系数ai,t以及售电功率极限
Figure BDA00027263997500000310
形成竞标策略集
Figure BDA00027263997500000311
Ψ表示生产型产消者集合。
由于产消者内部具有中央空调、储能设备等功率可调的柔性负荷,所以其可供出售的电量对价格敏感,如下式所示。
Figure BDA00027263997500000312
Figure BDA00027263997500000313
其中:
Figure BDA00027263997500000314
为产消者i在本地市场的售电功率;
Figure BDA00027263997500000315
为产消者i在本地市场售电的价格弹性系数,可知本地市场的收购价格
Figure BDA00027263997500000316
越高,产消者i愿意在本地市场出售的电量越多;
Figure BDA00027263997500000317
表示产消者i在本地市场的售电意愿,产消者i选择在本地市场售电的前提是本地市场的收购价格
Figure BDA00027263997500000318
不低于电网统一收购价格
Figure BDA00027263997500000319
由此可得
Figure BDA00027263997500000320
Figure BDA00027263997500000321
为产消者i的最大售电功率,应在满足内部负荷最低功率需求
Figure BDA00027263997500000322
的基础上考虑对外售电;gi,t为产消者i发电功率日前预测值。
产消者i的效益包含以下几项:自身用电效用、在本地市场售电收益、电量余量并网收益以及自身发电成本,产消者i以最大化效用为目标进行日前优化,目标函数如下式所示。
Figure BDA0002726399750000041
其中:λi,t为单位发电成本,本文中的分布式电源为光伏发电系统,因此发电成本为设备投资成本分摊至日发电量的单位发电成本及设备运维成本之和,为定值;
Figure BDA0002726399750000042
为被电网统一收购功率值。
s.t.
a)功率平衡约束。产消者i自身消耗功率和在本地市场出售功率之和应等于总发电功率。
Figure BDA0002726399750000043
Figure BDA0002726399750000044
b)柔性负荷约束。产消者i自身消耗功率等于空调系统功率
Figure BDA0002726399750000045
以及不可控负荷功率
Figure BDA0002726399750000046
之和,考虑到柔性负荷资源的可调潜力,产消者i的中央空调用电功率应处于自身用电需求的上下限之间。
Figure BDA0002726399750000047
Figure BDA0002726399750000048
Figure BDA0002726399750000049
Figure BDA00027263997500000410
c)价格弹性约束。产消者i的价格弹性受用户自身用电意愿与售电意愿的约束,应不超过每个用户自身的最大价格弹性系数。
Figure BDA00027263997500000411
2)产消者作为消费者
以j作为消费型产消者编号,产消者作为消费者时,提交的竞标策略包括价格敏感系数
Figure BDA00027263997500000412
和购电功率极限
Figure BDA00027263997500000413
形成竞标策略集
Figure BDA00027263997500000414
Ω表示消费型产消者集合。
本文中,虚拟电厂运营商可以介于零售市场电价和合同电价之间的本地市场电价向产消者售电,通过调整本地市场售电电价来改变产消者的用电功率,从而使虚拟电厂对外出力满足定制需求。产消者的用电功率与本地售电电价之间的关系如下式。
Figure BDA00027263997500000415
Figure BDA00027263997500000416
其中:
Figure BDA00027263997500000417
为产消者j在本地市场的购电功率;
Figure BDA00027263997500000418
为产消者j在本地市场购电的价格弹性系数,可知本地市场的售电价格
Figure BDA00027263997500000419
越高,产消者j愿意在本地市场出售的电量越多;
Figure BDA00027263997500000420
表示产消者j在本地市场的购电意愿,产消者j选择在本地市场购电的前提是本地市场的售电价格
Figure BDA00027263997500000421
不高于零售市场售电价格
Figure BDA00027263997500000422
由此可得
Figure BDA00027263997500000423
Figure BDA00027263997500000424
为产消者j的最大购电功率,即其功率需求上限
Figure BDA0002726399750000051
产消者j的效益包含以下几项:自身用电效用、在本地市场购电成本、自身发电成本,产消者j以最大化效用为目标进行日前优化,目标函数如下式所示。
Figure BDA0002726399750000052
s.t.
a)功率平衡约束。产消者j在本地市场购电功率和自身发电功率之和应等于总用电功率。
Figure BDA0002726399750000053
b)柔性负荷约束。同产消者作为生产者时的约束。
c)价格弹性约束。产消者j的价格弹性受用户自身用电意愿与购电意愿的约束,应不低于每个用户自身的最小价格弹性系数。
Figure BDA0002726399750000054
(3-5)采用步长控制法对竞标系数的决策结果进行进一步约束,防止其发生大幅度改变,具体公式如下
max{ai,t(r)-Δ,ai * ,t(r+1)}≤ai,t(r+1)≤min{ai,t(r)+Δ,ai * ,t(r+1)} (23)
Δ=|RMPt(r+1)·ai,t(r)| (24)
其中:ai,t(r)为第r轮迭代过程中得到的竞标系数决策值,ai * ,t(r+1)为第r+1轮迭代过程中得到的竞标系数最优值,RMPt∈[0,1]为爬坡系数。本步相当于根据步长控制要求对本地优化得到的竞标系数进行修正,从而得到本轮的竞标系数决策值。
具体的,所述步骤(4)中,虚拟电厂运营商以最大化运行收益为目标、以满足虚拟电厂定制出力要求为约束,根据产消者的竞标策略更新本地市场价格,并发布至各产消者,具体为:
(4-1)采用多场景技术模拟实际运行过程中新能源出力、用户负荷需求及交易合同违约惩罚的不确定性,将随机优化问题转化为确定性优化问题。
(4-2)采用条件风险价值对虚拟电厂交易合同违约部分进行风险度量,合理权衡虚拟电厂的运营收益及潜在风险。
(4-3)虚拟电厂运营商根据产消者提交的竞标策略,以最小化虚拟电厂定制成本为目标进行日前优化决策,优化模型构建如下:
Figure BDA0002726399750000055
Figure BDA0002726399750000056
其中:ΓVPP为虚拟电厂定制成本;
Figure BDA0002726399750000057
为第x种产消者售电场景下虚拟电厂运营商的购电成本;
Figure BDA0002726399750000058
为第y种产消者购电场景下虚拟电厂运营商的售电收益;Rcon为虚拟电厂运营商签订电力合同获得的收益;ωx和ωy分别为第x种产消者售电场景和第y种产消者购电场景对应的场景概率,其中产消者售电场景共有X种,购电场景共有Y种;γ为虚拟电厂运营商的风险厌恶系数;Vrisk为虚拟电厂定制问题的条件风险价值;Ξ为优化模型的决策变量集;ξ为虚拟电厂定制问题的风险价值;δxyh为用于线性化Vrisk而引入的辅助变量。
目标函数中各部分计算如下:
Figure BDA0002726399750000061
其中:
Figure BDA0002726399750000062
为第x种产消者售电场景下虚拟电厂运营商从产消者i处购得的电量;
Figure BDA0002726399750000063
为第y种产消者购电场景下虚拟电厂运营商向产消者j出售的电量;
Figure BDA0002726399750000064
为合同规定的交易价格;Pt N为合同规定的虚拟电厂定制出力;Δt为单位交易时段时长;α为置信水平;ωh为第h种合同违约惩罚价格对应的场景概率,共有H中合同违约惩罚价格场景。
s.t.
a)功率平衡约束。虚拟电厂的对外净出力应不低于合同规定的定制出力值。
Figure BDA0002726399750000065
b)购售电价约束。虚拟电厂运营商对生产型产消者的购电电价应介于电网统一收购电价和合同交易电价之间,虚拟电厂运营商对消费型产消者的售电电价应介于批发市场电价和零售市场电价之间。
Figure BDA0002726399750000066
Figure BDA0002726399750000067
c)风险约束。本文认为若虚拟电厂运营商实际交付电量低于合同规定值或超过合同规定值且偏差量大于ΔPmax时,需要对偏差电量缴纳合同违约惩罚。其中条件风险价值Vrisk中的辅助变量δxyh应满足以下约束。
Figure BDA0002726399750000068
Figure BDA0002726399750000069
Figure BDA00027263997500000610
Figure BDA00027263997500000611
Figure BDA00027263997500000612
其中:
Figure BDA00027263997500000613
为第x种产消者售电场景、第y种产消者购电场景以及第h种合同违约惩罚价格场景下的虚拟电厂运营商合同违约惩罚;
Figure BDA0002726399750000071
Figure BDA0002726399750000072
分别为交付量不足或过量交付情况下第h种合同违约惩罚价格;ΔPmax表示过量交付所允许的最大偏差量;[v]+表示取v和0中的较大值。
(4-4)虚拟电厂运营商与产消者集群的实际交易值与计划值之间的偏差服从正态分布,如下式所示:
Figure BDA0002726399750000073
其中:μb和σb、μs和σs分别为虚拟电厂运营商与产消者集群进行购电与售电交易所获得的实际交付量的期望值和标准差。
(4-5)虚拟电厂运营商第r轮更新本地市场价格后,按照如下公式随机选取一定数量的产消者禁止其在下一轮迭代过程中改变竞标策略:
Figure BDA0002726399750000074
其中:
Figure BDA0002726399750000075
为禁止进行竞标策略更新的产消者数量;NPRS为参与虚拟电厂定制的产消者总数。
具体的,所述步骤(5)中,若本地市场价格收敛,产消者根据双方最终决策结果与虚拟电厂运营商签订日前交易合同,完成虚拟电厂的定制化构建,否则返回(3)进行循环,具体为:
以下式作为本地市场价格的收敛判据
Figure BDA0002726399750000076
其中:
Figure BDA0002726399750000077
为本地市场购售电价向量;επ为一极小正值。
附图说明
图1为本发明方法的实施流程图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示为一种交易驱动的虚拟电厂定制化构建方法,下面就整个实施过程加以具体说明。
步骤一:DSO根据虚拟电厂运营商上报的次日出力区间及相应报价进行日前市场出清,将出清结果形成日前交易合同下发至虚拟电厂运营商。
虚拟电厂运营商基于产消者集群上报的次日出力预测数据,分别计算虚拟电厂次日各时段的出力区间及相应报价:
Figure BDA0002726399750000081
Figure BDA0002726399750000082
其中:Pt N
Figure BDA0002726399750000083
分别为日前合同中的虚拟电厂功率及相应电价;gi,t表示产消者i的发电功率,di,t表示产消者i的用电功率;上标min和max分别表示相应项的最小值和最大值;
Figure BDA0002726399750000084
Figure BDA0002726399750000085
为虚拟电厂运营商对DSO的报价系数。
步骤二:虚拟电厂运营商向产消者集群发布本地市场初始价格。
(2-1)本地市场初始购电价格
Figure BDA0002726399750000086
为介于电网统一收购电价和合同交易电价之间的随机数,如下式
Figure BDA0002726399750000087
其中:
Figure BDA0002726399750000088
为电网统一收购电价,
Figure BDA0002726399750000089
为合同交易电价。
(2-2)本地市场初始售电价格
Figure BDA00027263997500000810
为介于合同交易电价和零售市场电价之间的随机数,如下式
Figure BDA00027263997500000811
其中:
Figure BDA00027263997500000812
为零售市场电价。
步骤三:产消者集群基于本地市场价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略。
(3-1)产消者根据下式计算发用电比率,据此确定自身身份——生产者或消费者
Figure BDA00027263997500000813
其中:当GDRt≥1时,产消者为生产者,反之则为消费者。由于各时段产消者的发电能力和用电需求不尽相同,所以产消者在不同时段的身份可能不同。
(3-2)产消者采用如下二次型效用函数计算消费不同电量时的自身效用
Figure BDA00027263997500000814
Figure BDA00027263997500000815
其中:μt是表征用户用电行为的用户偏好参数,ν是用户各自已定的参数,
Figure BDA00027263997500000816
是产消者的用电功率,
Figure BDA00027263997500000817
Figure BDA00027263997500000818
分别是产消者用电需求的上下限。
(3-4)产消者基于本地市场购售电价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略
Figure BDA0002726399750000091
Figure BDA0002726399750000092
1)产消者作为生产者
以i作为生产型产消者编号,产消者作为生产者时可在满足自身用电需求的基础上向虚拟电厂运营商售电。产消者i提交的竞标策略包括价格敏感系数ai,t以及售电功率极限
Figure BDA0002726399750000093
形成竞标策略集
Figure BDA0002726399750000094
Ψ表示生产型产消者集合。
由于产消者内部具有中央空调、储能设备等功率可调的柔性负荷,所以其可供出售的电量对价格敏感,如下式所示。
Figure BDA0002726399750000095
Figure BDA0002726399750000096
其中:
Figure BDA0002726399750000097
为产消者i在本地市场的售电功率;
Figure BDA0002726399750000098
为产消者i在本地市场售电的价格弹性系数,可知本地市场的收购价格
Figure BDA0002726399750000099
越高,产消者i愿意在本地市场出售的电量越多;
Figure BDA00027263997500000910
表示产消者i在本地市场的售电意愿,产消者i选择在本地市场售电的前提是本地市场的收购价格
Figure BDA00027263997500000911
不低于电网统一收购价格
Figure BDA00027263997500000912
由此可得
Figure BDA00027263997500000913
Figure BDA00027263997500000914
为产消者i的最大售电功率,应在满足内部负荷最低功率需求
Figure BDA00027263997500000915
的基础上考虑对外售电;gi,t为产消者i发电功率日前预测值。
产消者i的效益包含以下几项:自身用电效用、在本地市场售电收益、电量余量并网收益以及自身发电成本,产消者i以最大化效用为目标进行日前优化,目标函数如下式所示。
Figure BDA00027263997500000916
其中:λi,t为单位发电成本,本文中的分布式电源为光伏发电系统,因此发电成本为设备投资成本分摊至日发电量的单位发电成本及设备运维成本之和,为定值;
Figure BDA00027263997500000917
为被电网统一收购功率值。
s.t.
a)功率平衡约束。产消者i自身消耗功率和在本地市场出售功率之和应等于总发电功率。
Figure BDA00027263997500000918
Figure BDA00027263997500000919
b)柔性负荷约束。产消者i自身消耗功率等于空调系统功率
Figure BDA00027263997500000920
以及不可控负荷功率
Figure BDA00027263997500000921
之和,考虑到柔性负荷资源的可调潜力,产消者i的中央空调用电功率应处于自身用电需求的上下限之间。
Figure BDA00027263997500000922
Figure BDA00027263997500000923
Figure BDA00027263997500000924
Figure BDA00027263997500000925
c)价格弹性约束。产消者i的价格弹性受用户自身用电意愿与售电意愿的约束,应不超过每个用户自身的最大价格弹性系数。
Figure BDA0002726399750000101
2)产消者作为消费者
以j作为消费型产消者编号,产消者作为消费者时,提交的竞标策略包括价格敏感系数
Figure BDA0002726399750000102
和购电功率极限
Figure BDA0002726399750000103
形成竞标策略集
Figure BDA0002726399750000104
Ω表示消费型产消者集合。
本文中,虚拟电厂运营商可以介于零售市场电价和合同电价之间的本地市场电价向产消者售电,通过调整本地市场售电电价来改变产消者的用电功率,从而使虚拟电厂对外出力满足定制需求。产消者的用电功率与本地售电电价之间的关系如下式。
Figure BDA0002726399750000105
Figure BDA0002726399750000106
其中:
Figure BDA0002726399750000107
为产消者j在本地市场的购电功率;
Figure BDA0002726399750000108
为产消者j在本地市场购电的价格弹性系数,可知本地市场的售电价格
Figure BDA0002726399750000109
越高,产消者j愿意在本地市场出售的电量越多;
Figure BDA00027263997500001010
表示产消者j在本地市场的购电意愿,产消者j选择在本地市场购电的前提是本地市场的售电价格
Figure BDA00027263997500001011
不高于零售市场售电价格
Figure BDA00027263997500001012
由此可得
Figure BDA00027263997500001013
Figure BDA00027263997500001014
为产消者j的最大购电功率,即其功率需求上限
Figure BDA00027263997500001015
产消者j的效益包含以下几项:自身用电效用、在本地市场购电成本、自身发电成本,产消者j以最大化效用为目标进行日前优化,目标函数如下式所示。
Figure BDA00027263997500001016
s.t.
a)功率平衡约束。产消者j在本地市场购电功率和自身发电功率之和应等于总用电功率。
Figure BDA00027263997500001017
b)柔性负荷约束。同产消者作为生产者时的约束。
c)价格弹性约束。产消者j的价格弹性受用户自身用电意愿与购电意愿的约束,应不低于每个用户自身的最小价格弹性系数。
Figure BDA00027263997500001018
(3-5)采用步长控制法对竞标系数的决策结果进行进一步约束,防止其发生大幅度改变,具体公式如下
Figure BDA00027263997500001019
Δ=|RMPt(r+1)·ai,t(r)| (24)
其中:ai,t(r)为第r轮迭代过程中得到的竞标系数决策值,
Figure BDA00027263997500001020
为第r+1轮迭代过程中得到的竞标系数最优值,RMPt∈[0,1]为爬坡系数。本步相当于根据步长控制要求对本地优化得到的竞标系数进行修正,从而得到本轮的竞标系数决策值。
步骤四:虚拟电厂运营商以最大化运行收益为目标、以满足虚拟电厂定制出力要求为约束,根据产消者的竞标策略更新本地市场价格,并发布至各产消者。
(4-1)采用多场景技术模拟实际运行过程中新能源出力、用户负荷需求及交易合同违约惩罚的不确定性,将随机优化问题转化为确定性优化问题。
(4-2)采用条件风险价值对虚拟电厂交易合同违约部分进行风险度量,合理权衡虚拟电厂的运营收益及潜在风险。
(4-3)虚拟电厂运营商根据产消者提交的竞标策略,以最小化虚拟电厂定制成本为目标进行日前优化决策,优化模型构建如下:
Figure BDA0002726399750000111
Figure BDA0002726399750000112
其中:ΓVPP为虚拟电厂定制成本;
Figure BDA0002726399750000113
为第x种产消者售电场景下虚拟电厂运营商的购电成本;
Figure BDA0002726399750000114
为第y种产消者购电场景下虚拟电厂运营商的售电收益;Rcon为虚拟电厂运营商签订电力合同获得的收益;ωx和ωy分别为第x种产消者售电场景和第y种产消者购电场景对应的场景概率,其中产消者售电场景共有X种,购电场景共有Y种;γ为虚拟电厂运营商的风险厌恶系数;Vrisk为虚拟电厂定制问题的条件风险价值;Ξ为优化模型的决策变量集;ξ为虚拟电厂定制问题的风险价值;δxyh为用于线性化Vrisk而引入的辅助变量。
目标函数中各部分计算如下:
Figure BDA0002726399750000115
其中:
Figure BDA0002726399750000116
为第x种产消者售电场景下虚拟电厂运营商从产消者i处购得的电量;
Figure BDA0002726399750000117
为第y种产消者购电场景下虚拟电厂运营商向产消者j出售的电量;
Figure BDA0002726399750000118
为合同规定的交易价格;Pt N为合同规定的虚拟电厂定制出力;Δt为单位交易时段时长;α为置信水平;ωh为第h种合同违约惩罚价格对应的场景概率,共有H中合同违约惩罚价格场景。
s.t.
a)功率平衡约束。虚拟电厂的对外净出力应不低于合同规定的定制出力值。
Figure BDA0002726399750000121
b)购售电价约束。虚拟电厂运营商对生产型产消者的购电电价应介于电网统一收购电价和合同交易电价之间,虚拟电厂运营商对消费型产消者的售电电价应介于批发市场电价和零售市场电价之间。
Figure BDA0002726399750000122
Figure BDA0002726399750000123
c)风险约束。本文认为若虚拟电厂运营商实际交付电量低于合同规定值或超过合同规定值且偏差量大于ΔPmax时,需要对偏差电量缴纳合同违约惩罚。其中条件风险价值Vrisk中的辅助变量δxyh应满足以下约束。
Figure BDA0002726399750000124
Figure BDA0002726399750000125
Figure BDA0002726399750000126
Figure BDA0002726399750000127
Figure BDA0002726399750000128
其中:
Figure BDA0002726399750000129
为第x种产消者售电场景、第y种产消者购电场景以及第h种合同违约惩罚价格场景下的虚拟电厂运营商合同违约惩罚;
Figure BDA00027263997500001210
Figure BDA00027263997500001211
分别为交付量不足或过量交付情况下第h种合同违约惩罚价格;ΔPmax表示过量交付所允许的最大偏差量;[v]+表示取v和0中的较大值。
(3-4)虚拟电厂运营商与产消者集群的实际交易值与计划值之间的偏差服从正态分布,如下式所示:
Figure BDA00027263997500001212
其中:μb和σb、μs和σs分别为虚拟电厂运营商与产消者集群进行购电与售电交易所获得的实际交付量的期望值和标准差。
(4-5)虚拟电厂运营商第r轮更新本地市场价格后,按照如下公式随机选取一定数量的产消者禁止其在下一轮迭代过程中改变竞标策略:
Figure BDA00027263997500001213
其中:
Figure BDA00027263997500001214
为禁止进行竞标策略更新的产消者数量;NPRS为参与虚拟电厂定制的产消者总数。
步骤五:若本地市场价格收敛,产消者根据双方最终决策结果与虚拟电厂运营商签订日前交易合同,完成虚拟电厂的定制化构建,否则返回步骤三进行循环。
以下式作为本地市场价格的收敛判据
Figure BDA0002726399750000131
其中:
Figure BDA0002726399750000132
为本地市场购售电价向量;επ为一极小正值。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种交易驱动的虚拟电厂定制化构建方法,其特征在于:包括如下步骤:
(1)DSO根据虚拟电厂运营商上报的次日出力区间及相应报价进行日前市场出清,将出清结果形成日前交易合同下发至虚拟电厂运营商;
(2)虚拟电厂运营商向产消者集群发布本地市场初始价格;
(3)产消者集群基于本地市场价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略;
(4)虚拟电厂运营商以最大化运行收益为目标、以满足虚拟电厂定制出力要求为约束,根据产消者的竞标策略更新本地市场价格,并发布至各产消者;
(5)若本地市场价格收敛,产消者根据双方最终决策结果与虚拟电厂运营商签订日前交易合同,完成虚拟电厂的定制化构建;否则返回(3)进行循环。
2.根据权利要求1所述的交易驱动的虚拟电厂定制化构建方法,其特征在于:所述步骤(1)中,DSO根据虚拟电厂运营商上报的次日出力区间及相应报价进行日前市场出清,将出清结果形成日前交易合同下发至虚拟电厂运营商,具体为:
虚拟电厂运营商基于产消者集群上报的次日出力预测数据,分别计算虚拟电厂次日各时段的出力区间及相应报价:
Figure FDA0002726399740000011
Figure FDA0002726399740000012
其中:Pt N
Figure FDA0002726399740000013
分别为日前合同中的虚拟电厂功率及相应电价;gi,t表示产消者i的发电功率,di,t表示产消者i的用电功率;上标min和max分别表示相应项的最小值和最大值;
Figure FDA0002726399740000014
Figure FDA0002726399740000015
为虚拟电厂运营商对DSO的报价系数。
3.根据权利要求1所述的交易驱动的虚拟电厂定制化构建方法,其特征在于:所述步骤(2)中,虚拟电厂运营商向产消者集群发布本地市场初始价格,具体为:
(2-1)本地市场初始购电价格
Figure FDA0002726399740000016
为介于电网统一收购电价和合同交易电价之间的随机数,如下式
Figure FDA0002726399740000017
其中:
Figure FDA0002726399740000018
为电网统一收购电价,
Figure FDA0002726399740000019
为合同交易电价;
(2-2)本地市场初始售电价格
Figure FDA00027263997400000110
为介于合同交易电价和零售市场电价之间的随机数,如下式
Figure FDA00027263997400000111
其中:
Figure FDA0002726399740000021
为零售市场电价。
4.根据权利要求1所述的交易驱动的虚拟电厂定制化构建方法,其特征在于:所述步骤(3)中,产消者集群基于本地市场价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略,具体为:
(3-1)产消者根据下式计算发用电比率,据此确定自身身份——生产者或消费者
Figure FDA0002726399740000022
其中:当GDRt≥1时,产消者为生产者,反之则为消费者;由于各时段产消者的发电能力和用电需求不尽相同,所以产消者在不同时段的身份可能不同;
(3-2)产消者采用如下二次型效用函数计算消费不同电量时的自身效用
Figure FDA0002726399740000023
Figure FDA0002726399740000024
其中:μt是表征用户用电行为的用户偏好参数,ν是用户各自已定的参数,Pt con是产消者的用电功率,
Figure FDA0002726399740000025
Figure FDA0002726399740000026
分别是产消者用电需求的上下限;
(3-4)产消者基于本地市场购售电价格进行最优竞标决策,向虚拟电厂运营商提交竞标策略
Figure FDA0002726399740000027
Figure FDA0002726399740000028
1)产消者作为生产者
以i作为生产型产消者编号,产消者作为生产者时可在满足自身用电需求的基础上向虚拟电厂运营商售电;产消者i提交的竞标策略包括价格敏感系数ai,t以及售电功率极限
Figure FDA0002726399740000029
形成竞标策略集
Figure FDA00027263997400000210
Ψ表示生产型产消者集合;
由于产消者内部具有中央空调、储能设备等功率可调的柔性负荷,所以其可供出售的电量对价格敏感,如下式所示:
Figure FDA00027263997400000211
Figure FDA00027263997400000212
其中:
Figure FDA00027263997400000213
为产消者i在本地市场的售电功率;
Figure FDA00027263997400000214
为产消者i在本地市场售电的价格弹性系数,可知本地市场的收购价格
Figure FDA00027263997400000215
越高,产消者i愿意在本地市场出售的电量越多;
Figure FDA00027263997400000216
表示产消者i在本地市场的售电意愿,产消者i选择在本地市场售电的前提是本地市场的收购价格
Figure FDA00027263997400000217
不低于电网统一收购价格
Figure FDA00027263997400000218
由此可得
Figure FDA00027263997400000219
Figure FDA00027263997400000220
为产消者i的最大售电功率,应在满足内部负荷最低功率需求
Figure FDA00027263997400000221
的基础上考虑对外售电;gi,t为产消者i发电功率日前预测值;
产消者i的效益包含以下几项:自身用电效用、在本地市场售电收益、电量余量并网收益以及自身发电成本,产消者i以最大化效用为目标进行日前优化,目标函数如下式所示:
Figure FDA0002726399740000031
其中:λi,t为单位发电成本,本文中的分布式电源为光伏发电系统,因此发电成本为设备投资成本分摊至日发电量的单位发电成本及设备运维成本之和,为定值;
Figure FDA0002726399740000032
为被电网统一收购功率值;
s.t.
a)功率平衡约束:产消者i自身消耗功率和在本地市场出售功率之和应等于总发电功率:
Figure FDA0002726399740000033
Figure FDA0002726399740000034
b)柔性负荷约束:产消者i自身消耗功率等于空调系统功率
Figure FDA0002726399740000035
以及不可控负荷功率
Figure FDA0002726399740000036
之和,考虑到柔性负荷资源的可调潜力,产消者i的中央空调用电功率应处于自身用电需求的上下限之间:
Figure FDA0002726399740000037
Figure FDA0002726399740000038
Figure FDA0002726399740000039
Figure FDA00027263997400000310
c)价格弹性约束:产消者i的价格弹性受用户自身用电意愿与售电意愿的约束,应不超过每个用户自身的最大价格弹性系数:
Figure FDA00027263997400000311
2)产消者作为消费者
以j作为消费型产消者编号,产消者作为消费者时,提交的竞标策略包括价格敏感系数
Figure FDA00027263997400000312
和购电功率极限
Figure FDA00027263997400000313
形成竞标策略集
Figure FDA00027263997400000314
Ω表示消费型产消者集合;
虚拟电厂运营商可以介于零售市场电价和合同电价之间的本地市场电价向产消者售电,通过调整本地市场售电电价来改变产消者的用电功率,从而使虚拟电厂对外出力满足定制需求,产消者的用电功率与本地售电电价之间的关系如下式:
Figure FDA00027263997400000315
Figure FDA00027263997400000316
其中:
Figure FDA00027263997400000317
为产消者j在本地市场的购电功率;
Figure FDA00027263997400000318
为产消者j在本地市场购电的价格弹性系数,可知本地市场的售电价格
Figure FDA00027263997400000319
越高,产消者j愿意在本地市场出售的电量越多;
Figure FDA00027263997400000320
表示产消者j在本地市场的购电意愿,产消者j选择在本地市场购电的前提是本地市场的售电价格
Figure FDA00027263997400000321
不高于零售市场售电价格
Figure FDA00027263997400000322
由此可得
Figure FDA00027263997400000323
Figure FDA00027263997400000324
为产消者j的最大购电功率,即其功率需求上限
Figure FDA00027263997400000325
产消者j的效益包含以下几项:自身用电效用、在本地市场购电成本、自身发电成本,产消者j以最大化效用为目标进行日前优化,目标函数如下式所示:
Figure FDA0002726399740000041
s.t.
a)功率平衡约束:产消者j在本地市场购电功率和自身发电功率之和应等于总用电功率:
Figure FDA0002726399740000042
b)柔性负荷约束,同产消者作为生产者时的约束;
c)价格弹性约束,产消者j的价格弹性受用户自身用电意愿与购电意愿的约束,应不低于每个用户自身的最小价格弹性系数:
Figure FDA0002726399740000043
(3-5)采用步长控制法对竞标系数的决策结果进行进一步约束,防止其发生大幅度改变,具体公式如下
Figure FDA0002726399740000044
Δ=|RMPt(r+1)·ai,t(r)| (24)
其中:ai,t(r)为第r轮迭代过程中得到的竞标系数决策值,
Figure FDA0002726399740000045
为第r+1轮迭代过程中得到的竞标系数最优值,RMPt∈[0,1]为爬坡系数;本步相当于根据步长控制要求对本地优化得到的竞标系数进行修正,从而得到本轮的竞标系数决策值。
5.根据权利要求1所述的交易驱动的虚拟电厂定制化构建方法,其特征在于:所述步骤(4)中,虚拟电厂运营商以最大化运行收益为目标、以满足虚拟电厂定制出力要求为约束,根据产消者的竞标策略更新本地市场价格,并发布至各产消者,具体为:
(4-1)采用多场景技术模拟实际运行过程中新能源出力、用户负荷需求及交易合同违约惩罚的不确定性,将随机优化问题转化为确定性优化问题;
(4-2)采用条件风险价值对虚拟电厂交易合同违约部分进行风险度量,合理权衡虚拟电厂的运营收益及潜在风险;
(4-3)虚拟电厂运营商根据产消者提交的竞标策略,以最小化虚拟电厂定制成本为目标进行日前优化决策,优化模型构建如下:
Figure FDA0002726399740000046
Figure FDA0002726399740000047
其中:ΓVPP为虚拟电厂定制成本;
Figure FDA0002726399740000048
为第x种产消者售电场景下虚拟电厂运营商的购电成本;
Figure FDA0002726399740000049
为第y种产消者购电场景下虚拟电厂运营商的售电收益;Rcon为虚拟电厂运营商签订电力合同获得的收益;ωx和ωy分别为第x种产消者售电场景和第y种产消者购电场景对应的场景概率,其中产消者售电场景共有X种,购电场景共有Y种;γ为虚拟电厂运营商的风险厌恶系数;Vrisk为虚拟电厂定制问题的条件风险价值;Ξ为优化模型的决策变量集;ξ为虚拟电厂定制问题的风险价值;δxyh为用于线性化Vrisk而引入的辅助变量;
目标函数中各部分计算如下:
Figure FDA0002726399740000051
其中:
Figure FDA0002726399740000052
为第x种产消者售电场景下虚拟电厂运营商从产消者i处购得的电量;
Figure FDA0002726399740000053
为第y种产消者购电场景下虚拟电厂运营商向产消者j出售的电量;
Figure FDA0002726399740000054
为合同规定的交易价格;Pt N为合同规定的虚拟电厂定制出力;Δt为单位交易时段时长;α为置信水平;ωh为第h种合同违约惩罚价格对应的场景概率,共有H中合同违约惩罚价格场景;
s.t.
a)功率平衡约束,虚拟电厂的对外净出力应不低于合同规定的定制出力值:
Figure FDA0002726399740000055
b)购售电价约束,虚拟电厂运营商对生产型产消者的购电电价应介于电网统一收购电价和合同交易电价之间,虚拟电厂运营商对消费型产消者的售电电价应介于批发市场电价和零售市场电价之间;
Figure FDA0002726399740000056
Figure FDA0002726399740000057
c)风险约束,本虚拟电厂运营商实际交付电量低于合同规定值或超过合同规定值且偏差量大于ΔPmax时,需要对偏差电量缴纳合同违约惩罚,其中条件风险价值Vrisk中的辅助变量δxyh应满足以下约束:
Figure FDA0002726399740000058
Figure FDA0002726399740000059
Figure FDA00027263997400000510
Figure FDA00027263997400000511
Figure FDA00027263997400000512
其中:
Figure FDA00027263997400000513
为第x种产消者售电场景、第y种产消者购电场景以及第h种合同违约惩罚价格场景下的虚拟电厂运营商合同违约惩罚;
Figure FDA00027263997400000514
Figure FDA00027263997400000515
分别为交付量不足或过量交付情况下第h种合同违约惩罚价格;ΔPmax表示过量交付所允许的最大偏差量;[v]+表示取v和0中的较大值;
(4-4)虚拟电厂运营商与产消者集群的实际交易值与计划值之间的偏差服从正态分布,如下式所示:
Figure FDA0002726399740000061
其中:μb和σb、μs和σs分别为虚拟电厂运营商与产消者集群进行购电与售电交易所获得的实际交付量的期望值和标准差;
(4-5)虚拟电厂运营商第r轮更新本地市场价格后,按照如下公式随机选取一定数量的产消者禁止其在下一轮迭代过程中改变竞标策略:
Figure FDA0002726399740000062
其中:
Figure FDA0002726399740000063
为禁止进行竞标策略更新的产消者数量;NPRS为参与虚拟电厂定制的产消者总数。
6.根据权利要求1所述的可交易能源机制下虚拟电厂的构建及运行方法,其特征在于:所述步骤(5)中,若本地市场价格收敛,产消者根据双方最终决策结果与虚拟电厂运营商签订日前交易合同,完成虚拟电厂的定制化构建,否则返回(3)进行循环,具体为:
以下式作为本地市场价格的收敛判据
Figure FDA0002726399740000064
其中:
Figure FDA0002726399740000065
为本地市场购售电价向量;επ为一极小正值。
CN202011104207.5A 2020-10-15 2020-10-15 一种交易驱动的虚拟电厂定制化构建方法 Pending CN112488744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011104207.5A CN112488744A (zh) 2020-10-15 2020-10-15 一种交易驱动的虚拟电厂定制化构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011104207.5A CN112488744A (zh) 2020-10-15 2020-10-15 一种交易驱动的虚拟电厂定制化构建方法

Publications (1)

Publication Number Publication Date
CN112488744A true CN112488744A (zh) 2021-03-12

Family

ID=74926645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011104207.5A Pending CN112488744A (zh) 2020-10-15 2020-10-15 一种交易驱动的虚拟电厂定制化构建方法

Country Status (1)

Country Link
CN (1) CN112488744A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113642918A (zh) * 2021-08-27 2021-11-12 东南大学 一种基于主从博弈的虚拟电厂调控方法、存储介质和装置
CN113780620A (zh) * 2021-07-30 2021-12-10 河海大学 一种点对点平台与综合能源运营商协同运行调度方法
CN113890021A (zh) * 2021-09-29 2022-01-04 国网综合能源服务集团有限公司 一种考虑配电网络约束的多虚拟电厂分布式交易方法
CN115879983A (zh) * 2023-02-07 2023-03-31 长园飞轮物联网技术(杭州)有限公司 虚拟电厂调度方法及其系统
CN116050943A (zh) * 2023-03-23 2023-05-02 国网江苏省电力有限公司营销服务中心 多类型用户需求侧资源物理调节能力归一计算方法和系统
CN116384674A (zh) * 2023-03-31 2023-07-04 国网上海市电力公司 一种基于阻塞管理的虚拟电厂与配电网协同方法及系统
CN117592621A (zh) * 2024-01-19 2024-02-23 华北电力大学 一种虚拟电厂集群两阶段调度优化方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113780620A (zh) * 2021-07-30 2021-12-10 河海大学 一种点对点平台与综合能源运营商协同运行调度方法
CN113780620B (zh) * 2021-07-30 2023-09-22 河海大学 一种点对点平台与综合能源运营商协同运行调度方法
CN113642918A (zh) * 2021-08-27 2021-11-12 东南大学 一种基于主从博弈的虚拟电厂调控方法、存储介质和装置
CN113642918B (zh) * 2021-08-27 2024-05-10 东南大学 一种基于主从博弈的虚拟电厂调控方法、存储介质和装置
CN113890021A (zh) * 2021-09-29 2022-01-04 国网综合能源服务集团有限公司 一种考虑配电网络约束的多虚拟电厂分布式交易方法
CN113890021B (zh) * 2021-09-29 2023-09-01 国网综合能源服务集团有限公司 一种考虑配电网络约束的多虚拟电厂分布式交易方法
CN115879983A (zh) * 2023-02-07 2023-03-31 长园飞轮物联网技术(杭州)有限公司 虚拟电厂调度方法及其系统
CN116050943A (zh) * 2023-03-23 2023-05-02 国网江苏省电力有限公司营销服务中心 多类型用户需求侧资源物理调节能力归一计算方法和系统
CN116050943B (zh) * 2023-03-23 2023-07-11 国网江苏省电力有限公司营销服务中心 多类型用户需求侧资源物理调节能力归一计算方法和系统
CN116384674A (zh) * 2023-03-31 2023-07-04 国网上海市电力公司 一种基于阻塞管理的虚拟电厂与配电网协同方法及系统
CN117592621A (zh) * 2024-01-19 2024-02-23 华北电力大学 一种虚拟电厂集群两阶段调度优化方法
CN117592621B (zh) * 2024-01-19 2024-04-23 华北电力大学 一种虚拟电厂集群两阶段调度优化方法

Similar Documents

Publication Publication Date Title
CN112488744A (zh) 一种交易驱动的虚拟电厂定制化构建方法
Cui et al. A two-stage robust energy sharing management for prosumer microgrid
Foruzan et al. Reinforcement learning approach for optimal distributed energy management in a microgrid
Maity et al. Simulation and pricing mechanism analysis of a solar-powered electrical microgrid
Kong et al. A multi-agent optimal bidding strategy in microgrids based on artificial immune system
He et al. A day-ahead scheduling optimization model of multi-microgrid considering interactive power control
CN109389327B (zh) 基于风光不确定性的多虚拟电厂时前合作方法
CN110348619A (zh) 可交易能源机制下虚拟电厂的构建及出力优化方法
CN111815018A (zh) 一种虚拟电厂的优化调度方法及装置
Steriotis et al. Strategic and network-aware bidding policy for electric utilities through the optimal orchestration of a virtual and heterogeneous flexibility assets’ portfolio
Bedoya et al. Decentralized transactive energy for flexible resources in distribution systems
CN111311012A (zh) 基于多智能体的微电网电力市场双层竞价优化方法
Davoudi et al. Developing a new framework for transactive peer‐to‐peer thermal energy market
Konda et al. Impact of load profile on dynamic interactions between energy markets: a case study of power exchange and demand response exchange
CN114971899A (zh) 新能源参与下的日前、日内和实时市场电能交易优化方法
Ghaemi et al. Local energy communities with strategic behavior of multi-energy players for peer-to-peer trading: A techno-economic assessment
Yu et al. Continuous group-wise double auction for prosumers in distribution-level markets
An et al. Distributed Online Incentive Scheme for Energy Trading in Multi-Microgrid Systems
Sun et al. Decentralized frequency regulation service provision for virtual power plants: A best response potential game approach
Kong et al. Independence enhancement of distributed generation systems by integrating shared energy storage system and energy community with internal market
CN117114877A (zh) 一种基于虚拟电厂的中长期电力交易方法及系统
CN111402015A (zh) 一种基于购售风险的虚拟电厂双层竞标方法及系统
Rashidizadeh-Kermani et al. Strategic offering of a price maker wind power producer in distribution-level energy markets in presence of flexible prosumers
Lu et al. A priority decision making based bidding strategy for interactive aggregators
Zhu et al. Transmission loss-aware peer-to-peer energy trading in networked microgrids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination