CN112175056B - OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants - Google Patents

OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants Download PDF

Info

Publication number
CN112175056B
CN112175056B CN202010958900.2A CN202010958900A CN112175056B CN 112175056 B CN112175056 B CN 112175056B CN 202010958900 A CN202010958900 A CN 202010958900A CN 112175056 B CN112175056 B CN 112175056B
Authority
CN
China
Prior art keywords
leu
ala
osabcg48
ser
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010958900.2A
Other languages
Chinese (zh)
Other versions
CN112175056A (en
Inventor
王昌虎
蔡兴喆
区永祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Botanical Garden of CAS
Original Assignee
South China Botanical Garden of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Botanical Garden of CAS filed Critical South China Botanical Garden of CAS
Priority to CN202010958900.2A priority Critical patent/CN112175056B/en
Publication of CN112175056A publication Critical patent/CN112175056A/en
Application granted granted Critical
Publication of CN112175056B publication Critical patent/CN112175056B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses an OsABCG48 gene and application thereof in improving cadmium stress resistance of single-cell organisms and plants, wherein a rice OsABCG48 protein sequence is shown as SEQ ID NO.1 or a sequence which is subjected to substitution, deletion and/or addition of one or more amino acids and/or terminal modification and has the function of improving cadmium stress resistance of single-cell organisms and plants, and a gene coding the rice OsABCG48 protein is shown as SEQ ID NO. 2. According to the invention, the OsABCG48 gene is introduced into the unicellular organism and the plant, so that the overexpression of the OsABCG48 gene in the unicellular organism and the plant is found, and the cadmium stress resistance is improved. The OsABCG48 gene has extremely high development potential in the cultivation of new cadmium-resistant unicellular organism strains and new cadmium-resistant crop strains.

Description

OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to application of an OsABCG48 gene in improvement of cadmium resistance of unicellular organisms and higher plants including crops.
Background
Cadmium (Cd) is a toxic heavy metal and is one of the most environmentally threatening pollutants and the most toxic to living cells. As a biological non-essential metal, it can replace other essential metals, and causes the problems of imbalance of ion homeostasis in the body, protein dysfunction, DNA and plasma membrane damage, accumulation of active oxygen, and the like after entering the human body. Cadmium is also a carcinogen, and accumulation of cadmium in the human body can lead to bone fragility and renal failure. Cadmium is mainly dependent on food intake. Cadmium has a long biological half-life in the kidney (about 10-30 years) and even long-term low dose intake can lead to chronic poisoning.
Existing studies indicate that plant-derived dietary Cd is the major route of ingestion. Cd in the polluted soil is absorbed by plants and then transferred to human bodies and livestock bodies. The leaf vegetables and grain foods are the main sources of cadmium intake of people. Some important crops, such as staple food rice and wheat, have cadmium pollution incidents, so the problem of cadmium metal absorption in soil is not easy to solve. In the existing method, soil remediation is mainly used as a treatment method for treating cadmium pollution in soil, but no matter soil cleaning or soil replacement, the method is useless for large-scale pollution, and the engineering quantity and huge cost of the method make the method basically not operable. And low-cadmium crop breeding is a relatively feasible measure at present. Therefore, there is a need to find new products, such as new resistance genes, to control the uptake of cadmium metal in soil by plants to help guide crop breeding practices with low cadmium accumulation.
Disclosure of Invention
The invention aims to provide rice OsABCG48 protein;
the invention also aims to provide a gene for coding the OsABCG48 protein of the corn rice;
the invention also aims to provide a recombinant vector, a recombinant bacterium or a transgenic cell line and a transgenic plant line containing the gene sequence;
the invention also aims to provide application of the rice OsABCG48 protein and the coding gene thereof in improving the cadmium stress resistance of single-cell organisms and plants.
The technical scheme adopted by the invention is as follows:
in a first aspect of the present invention, there is provided:
the rice OsABCG48 protein contains an amino acid sequence shown in any one of the following (1) to (2):
(1) an amino acid sequence shown as SEQ ID NO. 1;
(2) the amino acid sequence shown in SEQ ID NO.1 is subjected to substitution, deletion and/or addition of one or more amino acids and/or terminal modification, and has a sequence for improving the cadmium stress resistance of single-cell organisms and plants.
Wherein the amino acid sequence (with the sequence length of 1480aa) shown in the SEQ ID NO.1 is:
massaeaaaamaaapsasgrrsmswgssisqsfrqaeaddpfgraasqqghdddeenlrwaaleklptydrmrrgvirtallhhdgggdgggaaaaakdgrmelvdiqklaagnlgralldrvfqddserflrrlrdridmvgielptievryeqlsiqaevfvgsralptltnaatnvlqgligrfgssnkrtinilqdvsgiikpsrmtlllgppssgkstlmraltgkldknlkvsgditycghtfsefypertsayvsqydlhnaemtvretldfsgrclgigarydmlaelarrernagikpdpeidafmkatavqghktnittdvtlkalgldicadiiigdemirgisggqkkrvttgemltgparalfmdeistgldssstfeivkyighlvhvmnetvmisllqpppetynlfddiillsegyivyhgprenileffenagfrcperkgiadflqevtskkdqqqywyhdqeryryvsvpefaqrfksfhvgqkmqkemqipydkssthpaaltttkyglssweslravmsrewllmkrnsfiyifkvtqliilafmsmtvflrtkmpsgtisdgtkflgaltfslitilfngfaelqltikklpvfykhrdflffpawtfgvanillkvpvslveaavwvvltyyvmgfapsagrffrqfiaffvthqmamamfrflgailktmvvantfgmfvllivfifggflisrndikpwwiwgywaspmmysqqaisineflasrwaipntdatideptvgkailkskglitsdggfwisigaligflvvfnilyilaltylspggssntivsdedsedktdmktrneqqmsqivhnngasntsatssipmsgsrstnqqsrsqivlpfqplslcfnhvnyyvdmptemkeqgftesrlqllsdisgvfrpgvltalvgvsgagkttlmdvlagrktsgviegditlsgypkkqetfarisgyceqtdihspnvtvyesilysawlrlssdvdtntrkmfvdevmslveldvlrnalvglpgvsglsteqrkrltiavelvanpsvifmdeptsgldaraaaivmrtvrntvntgrtvvctihqpsidifesfdellllkrggqviyagelgrhshklveyfeavpgvpkitegynpatwmlevtspiaearlnvnfaeiyanselyrknqelikelstpppgyqdlsfptkysqnfysqcianfwkqyrsywknppynamrylmtllnglvfgtvfwqkgtkissqqdlfnllgatyaatfflgaancitvqpvvsiertvfyreraagmysslsyafaqacveviynilqgilytiiiyamigydwkadkffyfmffivasfnyftlfgmmlvactpsamlanilisfvlplwnlfagflvvrplipiwwrwyywanpvswtiygvvasqfgkngdvlsvpggsptvvkqflednlgmrhsflgyvvlthfgyiivfffifgyaikyfnfqkr(SEQ ID NO.1)。
as the gene is a transporter and is likely to relate to cadmium transportation, namely, the transgenic plant is likely to show high cadmium accumulation or low cadmium accumulation, the OsABCG48 gene has extremely high application value in the aspect of cultivating a new strain of a single cell species or a new strain of a plant. If the OsABCG48 gene can cause low cadmium accumulation, the method can be used for breeding a low cadmium single cell new strain or plant, such as a low cadmium accumulation new variety breeding of crops; if the OsABCG48 gene causes high cadmium accumulation, the gene can be used for culturing a new unicellular strain or a new plant strain for removing cadmium pollution of water or soil.
Of course, the sequences with improved cadmium stress resistance of unicellular organisms and plants after substitution, deletion and/or addition of one or more amino acids and/or terminal modification of the amino acid sequence shown in SEQ ID NO.1 by any means in the art are also within the scope of the present invention.
In a second aspect of the present invention, there is provided:
the gene of the rice OsABCG48 protein is coded.
In the embodiment of the invention, the nucleotide sequence (with the sequence length of 4443bp) of the gene for coding the rice OsABCG48 protein is as follows:
5’-atggcgtcgtcggcggaggcggctgcggcgatggcggcggcgccgtcggcgagcgggcggcggagcatgagctgggggtcgtcgatctcgcagtcgttccggcaggcggaggcggacgacccgttcggtcgcgcggcgtcgcagcaggggcacgacgacgacgaggagaacctccggtgggcggcgctcgagaagctccccacctacgaccgcatgcgccgcggcgtcatccgcaccgcgctcctccatcacgacggcggcggcgacggcggcggcgcggcggcggcggcgaaggacgggaggatggagctcgtcgacatccagaagctcgccgccggcaacctcggccgcgcgctcctcgaccgcgtgttccaggacgacagcgagcgcttcctccgccgcctccgggaccgcatcgacatggtggggatcgagctgccgacgatcgaggtgaggtacgagcagctgtcgatccaggcggaggtgttcgtcggcagccgtgcgctgcccacgctcaccaacgccgccaccaacgtcctccagggtctcattggacgatttggttcttcaaataagaggaccattaacatactgcaagatgttagtggcatcatcaagccatccaggatgacacttcttcttgggcctccatcctcgggaaagagcacactaatgcgagcacttacagggaagcttgataaaaacctcaaggtgtccggcgacatcacatactgtggacacacattttctgagttctaccctgagaggaccagtgcatatgtcagtcagtatgatcttcataatgcagagatgactgtgagagagacattggatttctctgggcggtgcttaggcattggtgcaagatatgacatgctcgcggaactcgcgagaagggagcgcaatgcaggcattaagccagatcctgagatcgatgctttcatgaaagctactgcagtgcaagggcataaaactaacatcactacagatgttactctcaaggcacttgggttggacatttgtgctgatattattattggggatgagatgattagaggaatttctggtgggcaaaagaagcgtgtgacaacaggggagatgttaacgggaccagcacgggcattgttcatggatgaaatatccaccggtctagatagctctagcacatttgagattgtcaagtatattgggcatttggtccatgtgatgaatgagactgtgatgatatccctcctgcagccaccaccggagacctacaatctttttgatgacataattctactatcagaaggatatatagtctatcacggaccacgtgagaacatcttggaattcttcgaaaatgctggtttccgatgccctgaaaggaaaggaatcgctgatttccttcaagaggtcacttccaagaaagaccagcagcagtactggtaccatgaccaagaacggtatcggtatgtgtcagttccagagtttgcacaacgtttcaagtcattccatgtaggtcagaaaatgcagaaggagatgcaaattccttatgacaagtccagcacacatcctgctgcattgacaactaccaagtatgggctatccagttgggagtcactcagggcagtgatgtcaagagagtggttattgatgaagcgcaactccttcatctacattttcaaggtcacccagttgatcatccttgccttcatgtccatgactgtgttcctcagaacaaagatgcctagtgggacaatctctgatggcactaaattccttggggctctcacctttagtttgatcaccatcttgttcaatggctttgctgagctacaactgaccataaagaagcttcctgtgttctacaaacatagagatttcttgttcttccctgcatggacctttggagtagcaaatatcctcttgaaagttcctgtttctcttgtagaggcggcggtatgggttgtgctcacatactatgtgatggggtttgcaccctctgcaggaaggttctttcgtcaatttatagctttctttgttactcaccaaatggcaatggctatgttccgatttcttggtgctattttgaaaacaatggttgtggccaatacttttgggatgtttgtgctgcttattgtcttcatttttggaggatttctcatatctagaaatgacatcaagccatggtggatttggggttactgggcatctcctatgatgtatagtcaacaagcaatatcaatcaatgagttccttgctagtagatgggctattccaaatactgatgcaacaattgatgagccaactgttggcaaggctattctcaaatccaaaggcttgattactagtgatggggggttttggatttccattggagcccttataggattccttgttgtgttcaatatcttatacattttggcccttacatacttgagtcctggtggcagctcaaacacaatagtttcagatgaagatagtgaagataagacggacatgaaaacaagaaatgaacaacaaatgtcccaaattgtacacaataatggagctagtaatacatctgcaacatcgtcaatccccatgagtggaagcagatcaacaaatcagcaaagtagatcacaaattgtcttgcctttccaacccctttcactttgtttcaaccatgtaaactactatgtggatatgccaacagaaatgaaagagcaaggattcacagaaagccgtctccagttactatctgatatcagtggagttttcagaccaggtgttttgacagcattagttggtgtaagtggagctggcaagaccaccctaatggatgtcttagcaggaaggaaaacaagtggagtaattgaaggagacatcaccctctctggttatccaaagaaacaagaaacttttgcacgcattagtggttactgtgaacagactgatattcattcaccaaatgttactgtctatgaatccattctctactctgcttggctacgtctttcgtcagatgttgacaccaatacgaggaagatgttcgtggatgaagtcatgtcccttgtagagcttgatgtgttacgtaatgctttggtgggtcttcctggagttagtggtttatcaactgaacagagaaagaggctcacaattgcagtggagttggtagcaaacccttcagtaatattcatggatgagccaacttctggacttgatgctagagctgcagcaattgtcatgcgaaccgtgagaaataccgtcaacacgggacgcactgtggtttgcacaattcatcaacccagcatcgatatttttgagtcttttgatgagcttttgctattgaaaaggggagggcaagttatttatgctggtgaactcggccgccactcccataaactagttgaatattttgaggcagttccaggtgttccaaagataacagaaggatataatcctgcaacatggatgctagaagtcacctcccctatagctgaggctcgtcttaatgtaaattttgctgaaatttatgctaattctgagctttataggaaaaaccaagagctaatcaaggaattgagcactcccccaccaggatatcaagatctctcatttcctacaaagtattctcaaaatttctatagtcaatgcattgcaaacttttggaagcaatatcgttcttattggaagaatccaccatacaatgccatgcgctatcttatgacattgctcaatggccttgtctttggcacggtattttggcaaaaaggaactaagatatcatcacaacaagatttgttcaatttgcttggagccacttatgctgcaactttcttccttggggctgccaattgtatcacagttcaacctgttgtttccatcgaaagaacagtcttctaccgcgaaagggcagcagggatgtactcttcattgtcctatgcatttgctcaggcatgcgtggaggtcatctacaacatcttacaggggattctatacactattatcatctatgcaatgattggatatgactggaaagccgacaaattcttctatttcatgttctttattgtagcaagtttcaactacttcacattgtttgggatgatgttggtggcatgcaccccatctgcaatgcttgcaaacattctcatatcctttgtacttcctctctggaatctttttgctgggttcctcgttgttaggccgttgataccgatttggtggaggtggtactactgggcaaaccccgtgtcatggaccatctatggtgttgtggcgtcacagtttggtaaaaatggtgatgttctttcggttcccggtgggagccctacggtagtgaagcaattcttggaggacaacctagggatgcggcatagtttcctaggatatgttgtgctcacacattttggctacatcatcgttttcttcttcatctttggctatgccatcaagtacttcaacttccagaaacgatag-3’(SEQ ID NO.2)。
the invention clones OsABCG48 gene from rice. When it is overexpressed in unicellular organisms and plants, resistance to cadmium stress can be specifically enhanced without altering resistance to other divalent metal elements (e.g., copper and manganese, etc.). Therefore, the gene has the capability of improving the cadmium stress resistance of single-cell organisms (yeast and the like) and plants, particularly crops, and is expected to be used for cadmium resistance research of the single-cell organisms and the plants and breeding of new varieties of the crops related to the increase of the cadmium resistance.
In a third aspect of the present invention, there is provided:
recombinant vector, recombinant bacteria or transgenic cell line, transgenic plant line containing the gene sequence.
In a fourth aspect of the present invention, there is provided:
application of rice OsABCG48 protein and coding gene thereof in improving cadmium stress resistance of unicellular organisms and plants.
Furthermore, the unicellular organism comprises engineering bacteria such as yeast and escherichia coli.
Overexpression of OsABCG48 can enhance the resistance of yeast to diamide diamides and cadmium. Because the chemical diamide is able to directly induce an oxidation reaction, it is likely that osacg 48 plays a role in an oxidative stress response mechanism and a cadmium stress response mechanism.
Further, the yeast is Schizosaccharomyces.
Further, the above plants include Arabidopsis thaliana and crops which are conventional in the art.
The invention has the beneficial effects that:
1. the OsABCG48 gene is overexpressed in single-cell organisms and plants, so that the cadmium stress resistance of the single-cell organisms and the plants is improved, the copper and manganese stress resistance is not changed, and the OsABCG48 gene has obvious specificity;
2. the sequence consistency of the OsABCG48 gene and other ABCG genes is low, and the invention provides a new cadmium-resistant strain of unicellular organisms and a new cadmium-resistant crop strain cultured by using the OsABCG48 gene for the first time;
ABC transporters (ATP-binding cassette transporters) are a class of membrane-integrated superfamily of transporters that occur widely in all organisms and function in substance transport across membranes during organism physiology and development. This superfamily can be subdivided into 8 subfamilies from ABCA to ABCH. The inventor screens an ABCG subfamily member OsABCG48 gene by using an RNAseq technology, and the overexpression of the gene in the fission yeast of the unicellular organism and the plant Arabidopsis can obviously improve the resistance to cadmium stress, which shows that the growth inhibition on the unicellular organism and the higher plant caused by the cadmium stress can be effectively removed.
Drawings
FIG. 1 is an agarose gel electrophoresis image of the OsABCG48 clone by PCR verification;
FIG. 2 is a WEBSEQUENCE TWHMM posterior probability chart of OsABCG48 protein;
FIG. 3 is a diagram of an ABCG subfamily developmental tree;
FIG. 4 is a graph showing the effect of OsABCG48 and the blank vector EV on the resistance to diamide diamides and cadmium in yeast;
FIG. 5 shows the growth under normal growth conditions (0. mu.M CdCl)2) And with CdCl2(50. mu.M) after 2 weeks of treatment, Col-0 wild type Arabidopsis and homozygote line growth status picture (A); under normal growth conditions (0. mu.M CdCl)2) And with CdCl2(50. mu.M) after 2 weeks of treatment, the root length of wild type Arabidopsis Col-0 and homozygote lines are compared in the histogram (B).
FIG. 6 is a picture of the growth of Col-0 wild type Arabidopsis and homozygote lines under different copper and manganese stress conditions 2 weeks after copper and manganese stress treatment.
Detailed Description
In order to make the objects, technical solutions and technical effects of the present invention more clear, the present invention will be described in further detail with reference to specific embodiments. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The experimental materials and reagents used are, unless otherwise specified, all consumables and reagents which are conventionally available from commercial sources.
Test materials
The unicellular organisms used in the examples below were all yeasts, in particular Schizosaccharomyces (Schizosaccharomyces pombe) JS 23; the plants used in the following examples were all wild type Arabidopsis thaliana (Arabidopsis thaliana) which all adopted Columbia (Col-0) ecotype; the wild rice (Oryza sativa sp Japonica) is adopted as "Zhonghua 11" of Japonica rice.
Cloning and primer design of rice OSABCG48 gene
Taking a japonica rice variety 'Zhonghua 11' as a material to extract total RNA, and carrying out reverse transcription to obtain cDNA. The cDNA is used as a template, and a primer is designed to obtain an OsABCG48 gene primer group.
The nucleotide sequence of the OsABCG48 gene primer group is as follows:
OsABCG48-F:5’-ATGGCGTCGTCGGCGGC-3’(SEQ ID NO.3);
OsABCG48-R:5’-CTATCGTTTCTGGAAGTTGAAGTACTTGATG-3’(SEQ ID NO.4)。
and cloning to obtain the coding region OsABCG48 of the complete OsABCG48 gene by taking the cDNA obtained by the reverse transcription as a template.
The OsABCG48 amino acid sequence is as follows:
massaeaaaamaaapsasgrrsmswgssisqsfrqaeaddpfgraasqqghdddeenlrwaaleklptydrmrrgvirtallhhdgggdgggaaaaakdgrmelvdiqklaagnlgralldrvfqddserflrrlrdridmvgielptievryeqlsiqaevfvgsralptltnaatnvlqgligrfgssnkrtinilqdvsgiikpsrmtlllgppssgkstlmraltgkldknlkvsgditycghtfsefypertsayvsqydlhnaemtvretldfsgrclgigarydmlaelarrernagikpdpeidafmkatavqghktnittdvtlkalgldicadiiigdemirgisggqkkrvttgemltgparalfmdeistgldssstfeivkyighlvhvmnetvmisllqpppetynlfddiillsegyivyhgprenileffenagfrcperkgiadflqevtskkdqqqywyhdqeryryvsvpefaqrfksfhvgqkmqkemqipydkssthpaaltttkyglssweslravmsrewllmkrnsfiyifkvtqliilafmsmtvflrtkmpsgtisdgtkflgaltfslitilfngfaelqltikklpvfykhrdflffpawtfgvanillkvpvslveaavwvvltyyvmgfapsagrffrqfiaffvthqmamamfrflgailktmvvantfgmfvllivfifggflisrndikpwwiwgywaspmmysqqaisineflasrwaipntdatideptvgkailkskglitsdggfwisigaligflvvfnilyilaltylspggssntivsdedsedktdmktrneqqmsqivhnngasntsatssipmsgsrstnqqsrsqivlpfqplslcfnhvnyyvdmptemkeqgftesrlqllsdisgvfrpgvltalvgvsgagkttlmdvlagrktsgviegditlsgypkkqetfarisgyceqtdihspnvtvyesilysawlrlssdvdtntrkmfvdevmslveldvlrnalvglpgvsglsteqrkrltiavelvanpsvifmdeptsgldaraaaivmrtvrntvntgrtvvctihqpsidifesfdellllkrggqviyagelgrhshklveyfeavpgvpkitegynpatwmlevtspiaearlnvnfaeiyanselyrknqelikelstpppgyqdlsfptkysqnfysqcianfwkqyrsywknppynamrylmtllnglvfgtvfwqkgtkissqqdlfnllgatyaatfflgaancitvqpvvsiertvfyreraagmysslsyafaqacveviynilqgilytiiiyamigydwkadkffyfmffivasfnyftlfgmmlvactpsamlanilisfvlplwnlfagflvvrplipiwwrwyywanpvswtiygvvasqfgkngdvlsvpggsptvvkqflednlgmrhsflgyvvlthfgyiivfffifgyaikyfnfqkr(SEQ ID NO.1)。
the corresponding OsABCG48 nucleotide sequence for coding the protein is as follows: 5'-atggcgtcgtcggcggaggcggctgcggcgatggcggcggcgccgtcggcgagcgggcggcggagcatgagctgggggtcgtcgatctcgcagtcgttccggcaggcggaggcggacgacccgttcggtcgcgcggcgtcgcagcaggggcacgacgacgacgaggagaacctccggtgggcggcgctcgagaagctccccacctacgaccgcatgcgccgcggcgtcatccgcaccgcgctcctccatcacgacggcggcggcgacggcggcggcgcggcggcggcggcgaaggacgggaggatggagctcgtcgacatccagaagctcgccgccggcaacctcggccgcgcgctcctcgaccgcgtgttccaggacgacagcgagcgcttcctccgccgcctccgggaccgcatcgacatggtggggatcgagctgccgacgatcgaggtgaggtacgagcagctgtcgatccaggcggaggtgttcgtcggcagccgtgcgctgcccacgctcaccaacgccgccaccaacgtcctccagggtctcattggacgatttggttcttcaaataagaggaccattaacatactgcaagatgttagtggcatcatcaagccatccaggatgacacttcttcttgggcctccatcctcgggaaagagcacactaatgcgagcacttacagggaagcttgataaaaacctcaaggtgtccggcgacatcacatactgtggacacacattttctgagttctaccctgagaggaccagtgcatatgtcagtcagtatgatcttcataatgcagagatgactgtgagagagacattggatttctctgggcggtgcttaggcattggtgcaagatatgacatgctcgcggaactcgcgagaagggagcgcaatgcaggcattaagccagatcctgagatcgatgctttcatgaaagctactgcagtgcaagggcataaaactaacatcactacagatgttactctcaaggcacttgggttggacatttgtgctgatattattattggggatgagatgattagaggaatttctggtgggcaaaagaagcgtgtgacaacaggggagatgttaacgggaccagcacgggcattgttcatggatgaaatatccaccggtctagatagctctagcacatttgagattgtcaagtatattgggcatttggtccatgtgatgaatgagactgtgatgatatccctcctgcagccaccaccggagacctacaatctttttgatgacataattctactatcagaaggatatatagtctatcacggaccacgtgagaacatcttggaattcttcgaaaatgctggtttccgatgccctgaaaggaaaggaatcgctgatttccttcaagaggtcacttccaagaaagaccagcagcagtactggtaccatgaccaagaacggtatcggtatgtgtcagttccagagtttgcacaacgtttcaagtcattccatgtaggtcagaaaatgcagaaggagatgcaaattccttatgacaagtccagcacacatcctgctgcattgacaactaccaagtatgggctatccagttgggagtcactcagggcagtgatgtcaagagagtggttattgatgaagcgcaactccttcatctacattttcaaggtcacccagttgatcatccttgccttcatgtccatgactgtgttcctcagaacaaagatgcctagtgggacaatctctgatggcactaaattccttggggctctcacctttagtttgatcaccatcttgttcaatggctttgctgagctacaactgaccataaagaagcttcctgtgttctacaaacatagagatttcttgttcttccctgcatggacctttggagtagcaaatatcctcttgaaagttcctgtttctcttgtagaggcggcggtatgggttgtgctcacatactatgtgatggggtttgcaccctctgcaggaaggttctttcgtcaatttatagctttctttgttactcaccaaatggcaatggctatgttccgatttcttggtgctattttgaaaacaatggttgtggccaatacttttgggatgtttgtgctgcttattgtcttcatttttggaggatttctcatatctagaaatgacatcaagccatggtggatttggggttactgggcatctcctatgatgtatagtcaacaagcaatatcaatcaatgagttccttgctagtagatgggctattccaaatactgatgcaacaattgatgagccaactgttggcaaggctattctcaaatccaaaggcttgattactagtgatggggggttttggatttccattggagcccttataggattccttgttgtgttcaatatcttatacattttggcccttacatacttgagtcctggtggcagctcaaacacaatagtttcagatgaagatagtgaagataagacggacatgaaaacaagaaatgaacaacaaatgtcccaaattgtacacaataatggagctagtaatacatctgcaacatcgtcaatccccatgagtggaagcagatcaacaaatcagcaaagtagatcacaaattgtcttgcctttccaacccctttcactttgtttcaaccatgtaaactactatgtggatatgccaacagaaatgaaagagcaaggattcacagaaagccgtctccagttactatctgatatcagtggagttttcagaccaggtgttttgacagcattagttggtgtaagtggagctggcaagaccaccctaatggatgtcttagcaggaaggaaaacaagtggagtaattgaaggagacatcaccctctctggttatccaaagaaacaagaaacttttgcacgcattagtggttactgtgaacagactgatattcattcaccaaatgttactgtctatgaatccattctctactctgcttggctacgtctttcgtcagatgttgacaccaatacgaggaagatgttcgtggatgaagtcatgtcccttgtagagcttgatgtgttacgtaatgctttggtgggtcttcctggagttagtggtttatcaactgaacagagaaagaggctcacaattgcagtggagttggtagcaaacccttcagtaatattcatggatgagccaacttctggacttgatgctagagctgcagcaattgtcatgcgaaccgtgagaaataccgtcaacacgggacgcactgtggtttgcacaattcatcaacccagcatcgatatttttgagtcttttgatgagcttttgctattgaaaaggggagggcaagttatttatgctggtgaactcggccgccactcccataaactagttgaatattttgaggcagttccaggtgttccaaagataacagaaggatataatcctgcaacatggatgctagaagtcacctcccctatagctgaggctcgtcttaatgtaaattttgctgaaatttatgctaattctgagctttataggaaaaaccaagagctaatcaaggaattgagcactcccccaccaggatatcaagatctctcatttcctacaaagtattctcaaaatttctatagtcaatgcattgcaaacttttggaagcaatatcgttcttattggaagaatccaccatacaatgccatgcgctatcttatgacattgctcaatggccttgtctttggcacggtattttggcaaaaaggaactaagatatcatcacaacaagatttgttcaatttgcttggagccacttatgctgcaactttcttccttggggctgccaattgtatcacagttcaacctgttgtttccatcgaaagaacagtcttctaccgcgaaagggcagcagggatgtactcttcattgtcctatgcatttgctcaggcatgcgtggaggtcatctacaacatcttacaggggattctatacactattatcatctatgcaatgattggatatgactggaaagccgacaaattcttctatttcatgttctttattgtagcaagtttcaactacttcacattgtttgggatgatgttggtggcatgcaccccatctgcaatgcttgcaaacattctcatatcctttgtacttcctctctggaatctttttgctgggttcctcgttgttaggccgttgataccgatttggtggaggtggtactactgggcaaaccccgtgtcatggaccatctatggtgttgtggcgtcacagtttggtaaaaatggtgatgttctttcggttcccggtgggagccctacggtagtgaagcaattcttggaggacaacctagggatgcggcatagtttcctaggatatgttgtgctcacacattttggctacatcatcgttttcttcttcatctttggctatgccatcaagtacttcaacttccagaaacgatag-3' (SEQ ID NO. 2).
The OsABCG48 gene obtained by cloning is amplified by using an OsABCG48 gene primer group and adopting a High-Fidelity DNA Polymerase PCR reaction system, 5 mu L of PCR amplification product is taken to be analyzed and detected in 1% agarose gel electrophoresis, the result is shown in figure 1, the OsABCG48 gene obtained by cloning is confirmed to be real and effective, a T vector (pMD-18) is transferred, and sequencing verification is carried out to confirm that the OsABCG48 gene is the OsABCG48 gene.
Rice OsABCG48 protein and characteristic comparison test with other ABCG genes
The OsABCG48 protein obtained by the cloning is compared with OsABCG43 and OsABCG36 genes.
As shown in a typical model of ABC protein in figure 2, OsABCG48 is a transmembrane protein and consists of two subunits, each subunit is provided with 6 transmembrane domains, the total number of the transmembrane domains is 12, the family characteristics of a typical ABC transporter are realized, the OsABCG48 gene belongs to an ABC superfamily gene and can be further divided into 8 subfamilies, and the OsABCG48 belongs to an ABCG subfamily, and as can be seen from figure 3, the OsABCG48 has relatively close homology with OsABCG43 and is far away from OsABCG 36. BLAST alignment shows that the sequence consistency among the three is less than 75 percent and can reach 56.6 percent at the lowest, and only OsABCG48 is found that the overexpression phenotype shows cadmium stress resistance, and other two genes lack related research data.
Test of influence of OsABCG48 gene on cadmium stress resistance of unicellular organism
The OsABCG48 is cloned into a yeast expression vector pART1, the fission yeast JS23 is transformed, after the transformation is successful, 3-5 fission yeast JS23 with consistent growth state and moderate size are selected to be singly cloned into 3ml EMM liquid screening culture Medium (Edinburgh Minimal Medium), and the mixture is fully dispersed and uniformly mixed. The culture was carried out overnight at 30 ℃ and 250 rpm. The Schizosaccharomyces cerevisiae JS23 mother liquor cultured overnight is diluted to OD600To 0.15. Further culturing at 250rpm and 30 deg.C for 4-5 hr to obtain OD600Up to about 0.3. Respectively diluting the Schizosaccharomyces cerevisiae JS23 mother liquor to concentration gradients of 1/10, 1/100 and 1/1000, and sequentially dripping 3 mu L of solution to the solution containing CdCl with different concentrations2EMM solid screening media (0mM, 0.5mM) and diamide (0mM and 2.0mM) against the blank vector (EV). The culture was inverted at 30 ℃ for 5 to 7 days, and the results were observed and compared.
As shown in FIG. 4, overexpression of OsABCG48 in Schizosaccharomyces cerevisiae JS23 enhanced yeast resistance to diamide and cadmium. Because the chemical diamide is able to directly induce an oxidation reaction, it is likely that osacg 48 plays a role in an oxidative stress response mechanism and a cadmium stress response mechanism. Therefore, the OsABCG48 has the capability of improving the cadmium resistance of single-cell organisms (yeast, escherichia coli and the like), and is expected to be used for culturing new cadmium-resistant strains of the single-cell organisms.
Test of influence of OsABCG48 gene on cadmium stress resistance of plants
Wild type Arabidopsis seeds were washed 4 times with sterile water for 5 minutes each. Then putting the seeds into a refrigerator at 4 ℃ for vernalization for 3 days, and sowing the vernalized arabidopsis seeds in nutrient-containing soil: in a seedling pot of vermiculite (volume ratio 1: 1), watering and culturing periodically until flowering, and using the plant for subsequent gene transformation.
An expression vector pSUPER carrying the OsABCG48 gene was introduced into Agrobacterium tumefaciens GV3101 by electroporation. Agrobacterium colonies resistant to rifampicin and kanamycin were screened and colony PCR validation was performed using the primer set designed above to ensure successful introduction of the osabccg 48 gene. And (3) carrying out shake propagation to obtain a positive colony, carrying out dip-dyeing on the arabidopsis thaliana florets by using a dip-dyeing method, carrying out gene transformation, and using the transformed arabidopsis thaliana to obtain T0 generation seeds.
Planting T0 generation seeds on an 1/2-concentration MS culture medium containing 35 mu g/ml hygromycin, screening T1 generation seedlings, taking leaves of T1 generation and wild type arabidopsis Col-0 plants to extract DNA, carrying out PCR identification by taking wild type arabidopsis as negative control, selecting positive transgenic plants to obtain 10T 1 generation transgenic plants, and further breeding the 10T 1 generation transgenic plants to obtain progeny T2 and T3 groups. Screening to obtain the single-site insertion homozygote strain of the transgenic arabidopsis thaliana by analyzing segregation ratio of transgenes in T2 and T3 progeny populations. From these, 3 homozygote strains were randomly selected as materials for subsequent studies for cadmium-resistance detection.
And (3) carrying out RT-qPCR detection on randomly selected 3 homozygote strains, and confirming that the transgenic strains all realize the overexpression of the OsABCG43 gene. The homozygote line was subjected to cadmium stress treatment (with wild type Arabidopsis thaliana as control, 0. mu.M and 50. mu.M CdCl were applied, respectively2). As shown in FIG. 5, under normal growth conditions (0. mu.M CdCl)2) The growth conditions of Col-0 wild type Arabidopsis and the homozygote strain are consistent. When using CdCl2After 2 weeks of treatment (50. mu.M), the roots of the homozygote lines were significantly longer than wild type, an increase of 42% over the wild type control. The stress treatment of copper and manganese was carried out using the same lines and using the same method, and the results showed that the homozygote lines were not different from the control (wild type) (FIG. 6).
The experimental results show that the cadmium stress resistance of the arabidopsis thaliana can be specifically enhanced by over-expressing the OsABCG48 gene in the arabidopsis thaliana. Therefore, the OsABCG48 gene has the capability of improving the cadmium resistance of plants, and is expected to be used for the molecular mechanism research of biological cadmium resistance and the breeding of related new crop lines.
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations, and simplifications are intended to be included in the scope of the present invention.
SEQUENCE LISTING
<110> south China plant garden of Chinese academy of sciences
<120> OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants
<130>
<160> 4
<170> PatentIn version 3.5
<210> 1
<211> 1480
<212> PRT
<213> OsABCG48
<400> 1
Met Ala Ser Ser Ala Glu Ala Ala Ala Ala Met Ala Ala Ala Pro Ser
1 5 10 15
Ala Ser Gly Arg Arg Ser Met Ser Trp Gly Ser Ser Ile Ser Gln Ser
20 25 30
Phe Arg Gln Ala Glu Ala Asp Asp Pro Phe Gly Arg Ala Ala Ser Gln
35 40 45
Gln Gly His Asp Asp Asp Glu Glu Asn Leu Arg Trp Ala Ala Leu Glu
50 55 60
Lys Leu Pro Thr Tyr Asp Arg Met Arg Arg Gly Val Ile Arg Thr Ala
65 70 75 80
Leu Leu His His Asp Gly Gly Gly Asp Gly Gly Gly Ala Ala Ala Ala
85 90 95
Ala Lys Asp Gly Arg Met Glu Leu Val Asp Ile Gln Lys Leu Ala Ala
100 105 110
Gly Asn Leu Gly Arg Ala Leu Leu Asp Arg Val Phe Gln Asp Asp Ser
115 120 125
Glu Arg Phe Leu Arg Arg Leu Arg Asp Arg Ile Asp Met Val Gly Ile
130 135 140
Glu Leu Pro Thr Ile Glu Val Arg Tyr Glu Gln Leu Ser Ile Gln Ala
145 150 155 160
Glu Val Phe Val Gly Ser Arg Ala Leu Pro Thr Leu Thr Asn Ala Ala
165 170 175
Thr Asn Val Leu Gln Gly Leu Ile Gly Arg Phe Gly Ser Ser Asn Lys
180 185 190
Arg Thr Ile Asn Ile Leu Gln Asp Val Ser Gly Ile Ile Lys Pro Ser
195 200 205
Arg Met Thr Leu Leu Leu Gly Pro Pro Ser Ser Gly Lys Ser Thr Leu
210 215 220
Met Arg Ala Leu Thr Gly Lys Leu Asp Lys Asn Leu Lys Val Ser Gly
225 230 235 240
Asp Ile Thr Tyr Cys Gly His Thr Phe Ser Glu Phe Tyr Pro Glu Arg
245 250 255
Thr Ser Ala Tyr Val Ser Gln Tyr Asp Leu His Asn Ala Glu Met Thr
260 265 270
Val Arg Glu Thr Leu Asp Phe Ser Gly Arg Cys Leu Gly Ile Gly Ala
275 280 285
Arg Tyr Asp Met Leu Ala Glu Leu Ala Arg Arg Glu Arg Asn Ala Gly
290 295 300
Ile Lys Pro Asp Pro Glu Ile Asp Ala Phe Met Lys Ala Thr Ala Val
305 310 315 320
Gln Gly His Lys Thr Asn Ile Thr Thr Asp Val Thr Leu Lys Ala Leu
325 330 335
Gly Leu Asp Ile Cys Ala Asp Ile Ile Ile Gly Asp Glu Met Ile Arg
340 345 350
Gly Ile Ser Gly Gly Gln Lys Lys Arg Val Thr Thr Gly Glu Met Leu
355 360 365
Thr Gly Pro Ala Arg Ala Leu Phe Met Asp Glu Ile Ser Thr Gly Leu
370 375 380
Asp Ser Ser Ser Thr Phe Glu Ile Val Lys Tyr Ile Gly His Leu Val
385 390 395 400
His Val Met Asn Glu Thr Val Met Ile Ser Leu Leu Gln Pro Pro Pro
405 410 415
Glu Thr Tyr Asn Leu Phe Asp Asp Ile Ile Leu Leu Ser Glu Gly Tyr
420 425 430
Ile Val Tyr His Gly Pro Arg Glu Asn Ile Leu Glu Phe Phe Glu Asn
435 440 445
Ala Gly Phe Arg Cys Pro Glu Arg Lys Gly Ile Ala Asp Phe Leu Gln
450 455 460
Glu Val Thr Ser Lys Lys Asp Gln Gln Gln Tyr Trp Tyr His Asp Gln
465 470 475 480
Glu Arg Tyr Arg Tyr Val Ser Val Pro Glu Phe Ala Gln Arg Phe Lys
485 490 495
Ser Phe His Val Gly Gln Lys Met Gln Lys Glu Met Gln Ile Pro Tyr
500 505 510
Asp Lys Ser Ser Thr His Pro Ala Ala Leu Thr Thr Thr Lys Tyr Gly
515 520 525
Leu Ser Ser Trp Glu Ser Leu Arg Ala Val Met Ser Arg Glu Trp Leu
530 535 540
Leu Met Lys Arg Asn Ser Phe Ile Tyr Ile Phe Lys Val Thr Gln Leu
545 550 555 560
Ile Ile Leu Ala Phe Met Ser Met Thr Val Phe Leu Arg Thr Lys Met
565 570 575
Pro Ser Gly Thr Ile Ser Asp Gly Thr Lys Phe Leu Gly Ala Leu Thr
580 585 590
Phe Ser Leu Ile Thr Ile Leu Phe Asn Gly Phe Ala Glu Leu Gln Leu
595 600 605
Thr Ile Lys Lys Leu Pro Val Phe Tyr Lys His Arg Asp Phe Leu Phe
610 615 620
Phe Pro Ala Trp Thr Phe Gly Val Ala Asn Ile Leu Leu Lys Val Pro
625 630 635 640
Val Ser Leu Val Glu Ala Ala Val Trp Val Val Leu Thr Tyr Tyr Val
645 650 655
Met Gly Phe Ala Pro Ser Ala Gly Arg Phe Phe Arg Gln Phe Ile Ala
660 665 670
Phe Phe Val Thr His Gln Met Ala Met Ala Met Phe Arg Phe Leu Gly
675 680 685
Ala Ile Leu Lys Thr Met Val Val Ala Asn Thr Phe Gly Met Phe Val
690 695 700
Leu Leu Ile Val Phe Ile Phe Gly Gly Phe Leu Ile Ser Arg Asn Asp
705 710 715 720
Ile Lys Pro Trp Trp Ile Trp Gly Tyr Trp Ala Ser Pro Met Met Tyr
725 730 735
Ser Gln Gln Ala Ile Ser Ile Asn Glu Phe Leu Ala Ser Arg Trp Ala
740 745 750
Ile Pro Asn Thr Asp Ala Thr Ile Asp Glu Pro Thr Val Gly Lys Ala
755 760 765
Ile Leu Lys Ser Lys Gly Leu Ile Thr Ser Asp Gly Gly Phe Trp Ile
770 775 780
Ser Ile Gly Ala Leu Ile Gly Phe Leu Val Val Phe Asn Ile Leu Tyr
785 790 795 800
Ile Leu Ala Leu Thr Tyr Leu Ser Pro Gly Gly Ser Ser Asn Thr Ile
805 810 815
Val Ser Asp Glu Asp Ser Glu Asp Lys Thr Asp Met Lys Thr Arg Asn
820 825 830
Glu Gln Gln Met Ser Gln Ile Val His Asn Asn Gly Ala Ser Asn Thr
835 840 845
Ser Ala Thr Ser Ser Ile Pro Met Ser Gly Ser Arg Ser Thr Asn Gln
850 855 860
Gln Ser Arg Ser Gln Ile Val Leu Pro Phe Gln Pro Leu Ser Leu Cys
865 870 875 880
Phe Asn His Val Asn Tyr Tyr Val Asp Met Pro Thr Glu Met Lys Glu
885 890 895
Gln Gly Phe Thr Glu Ser Arg Leu Gln Leu Leu Ser Asp Ile Ser Gly
900 905 910
Val Phe Arg Pro Gly Val Leu Thr Ala Leu Val Gly Val Ser Gly Ala
915 920 925
Gly Lys Thr Thr Leu Met Asp Val Leu Ala Gly Arg Lys Thr Ser Gly
930 935 940
Val Ile Glu Gly Asp Ile Thr Leu Ser Gly Tyr Pro Lys Lys Gln Glu
945 950 955 960
Thr Phe Ala Arg Ile Ser Gly Tyr Cys Glu Gln Thr Asp Ile His Ser
965 970 975
Pro Asn Val Thr Val Tyr Glu Ser Ile Leu Tyr Ser Ala Trp Leu Arg
980 985 990
Leu Ser Ser Asp Val Asp Thr Asn Thr Arg Lys Met Phe Val Asp Glu
995 1000 1005
Val Met Ser Leu Val Glu Leu Asp Val Leu Arg Asn Ala Leu Val
1010 1015 1020
Gly Leu Pro Gly Val Ser Gly Leu Ser Thr Glu Gln Arg Lys Arg
1025 1030 1035
Leu Thr Ile Ala Val Glu Leu Val Ala Asn Pro Ser Val Ile Phe
1040 1045 1050
Met Asp Glu Pro Thr Ser Gly Leu Asp Ala Arg Ala Ala Ala Ile
1055 1060 1065
Val Met Arg Thr Val Arg Asn Thr Val Asn Thr Gly Arg Thr Val
1070 1075 1080
Val Cys Thr Ile His Gln Pro Ser Ile Asp Ile Phe Glu Ser Phe
1085 1090 1095
Asp Glu Leu Leu Leu Leu Lys Arg Gly Gly Gln Val Ile Tyr Ala
1100 1105 1110
Gly Glu Leu Gly Arg His Ser His Lys Leu Val Glu Tyr Phe Glu
1115 1120 1125
Ala Val Pro Gly Val Pro Lys Ile Thr Glu Gly Tyr Asn Pro Ala
1130 1135 1140
Thr Trp Met Leu Glu Val Thr Ser Pro Ile Ala Glu Ala Arg Leu
1145 1150 1155
Asn Val Asn Phe Ala Glu Ile Tyr Ala Asn Ser Glu Leu Tyr Arg
1160 1165 1170
Lys Asn Gln Glu Leu Ile Lys Glu Leu Ser Thr Pro Pro Pro Gly
1175 1180 1185
Tyr Gln Asp Leu Ser Phe Pro Thr Lys Tyr Ser Gln Asn Phe Tyr
1190 1195 1200
Ser Gln Cys Ile Ala Asn Phe Trp Lys Gln Tyr Arg Ser Tyr Trp
1205 1210 1215
Lys Asn Pro Pro Tyr Asn Ala Met Arg Tyr Leu Met Thr Leu Leu
1220 1225 1230
Asn Gly Leu Val Phe Gly Thr Val Phe Trp Gln Lys Gly Thr Lys
1235 1240 1245
Ile Ser Ser Gln Gln Asp Leu Phe Asn Leu Leu Gly Ala Thr Tyr
1250 1255 1260
Ala Ala Thr Phe Phe Leu Gly Ala Ala Asn Cys Ile Thr Val Gln
1265 1270 1275
Pro Val Val Ser Ile Glu Arg Thr Val Phe Tyr Arg Glu Arg Ala
1280 1285 1290
Ala Gly Met Tyr Ser Ser Leu Ser Tyr Ala Phe Ala Gln Ala Cys
1295 1300 1305
Val Glu Val Ile Tyr Asn Ile Leu Gln Gly Ile Leu Tyr Thr Ile
1310 1315 1320
Ile Ile Tyr Ala Met Ile Gly Tyr Asp Trp Lys Ala Asp Lys Phe
1325 1330 1335
Phe Tyr Phe Met Phe Phe Ile Val Ala Ser Phe Asn Tyr Phe Thr
1340 1345 1350
Leu Phe Gly Met Met Leu Val Ala Cys Thr Pro Ser Ala Met Leu
1355 1360 1365
Ala Asn Ile Leu Ile Ser Phe Val Leu Pro Leu Trp Asn Leu Phe
1370 1375 1380
Ala Gly Phe Leu Val Val Arg Pro Leu Ile Pro Ile Trp Trp Arg
1385 1390 1395
Trp Tyr Tyr Trp Ala Asn Pro Val Ser Trp Thr Ile Tyr Gly Val
1400 1405 1410
Val Ala Ser Gln Phe Gly Lys Asn Gly Asp Val Leu Ser Val Pro
1415 1420 1425
Gly Gly Ser Pro Thr Val Val Lys Gln Phe Leu Glu Asp Asn Leu
1430 1435 1440
Gly Met Arg His Ser Phe Leu Gly Tyr Val Val Leu Thr His Phe
1445 1450 1455
Gly Tyr Ile Ile Val Phe Phe Phe Ile Phe Gly Tyr Ala Ile Lys
1460 1465 1470
Tyr Phe Asn Phe Gln Lys Arg
1475 1480
<210> 2
<211> 4443
<212> DNA
<213> OsABCG48
<400> 2
atggcgtcgt cggcggaggc ggctgcggcg atggcggcgg cgccgtcggc gagcgggcgg 60
cggagcatga gctgggggtc gtcgatctcg cagtcgttcc ggcaggcgga ggcggacgac 120
ccgttcggtc gcgcggcgtc gcagcagggg cacgacgacg acgaggagaa cctccggtgg 180
gcggcgctcg agaagctccc cacctacgac cgcatgcgcc gcggcgtcat ccgcaccgcg 240
ctcctccatc acgacggcgg cggcgacggc ggcggcgcgg cggcggcggc gaaggacggg 300
aggatggagc tcgtcgacat ccagaagctc gccgccggca acctcggccg cgcgctcctc 360
gaccgcgtgt tccaggacga cagcgagcgc ttcctccgcc gcctccggga ccgcatcgac 420
atggtgggga tcgagctgcc gacgatcgag gtgaggtacg agcagctgtc gatccaggcg 480
gaggtgttcg tcggcagccg tgcgctgccc acgctcacca acgccgccac caacgtcctc 540
cagggtctca ttggacgatt tggttcttca aataagagga ccattaacat actgcaagat 600
gttagtggca tcatcaagcc atccaggatg acacttcttc ttgggcctcc atcctcggga 660
aagagcacac taatgcgagc acttacaggg aagcttgata aaaacctcaa ggtgtccggc 720
gacatcacat actgtggaca cacattttct gagttctacc ctgagaggac cagtgcatat 780
gtcagtcagt atgatcttca taatgcagag atgactgtga gagagacatt ggatttctct 840
gggcggtgct taggcattgg tgcaagatat gacatgctcg cggaactcgc gagaagggag 900
cgcaatgcag gcattaagcc agatcctgag atcgatgctt tcatgaaagc tactgcagtg 960
caagggcata aaactaacat cactacagat gttactctca aggcacttgg gttggacatt 1020
tgtgctgata ttattattgg ggatgagatg attagaggaa tttctggtgg gcaaaagaag 1080
cgtgtgacaa caggggagat gttaacggga ccagcacggg cattgttcat ggatgaaata 1140
tccaccggtc tagatagctc tagcacattt gagattgtca agtatattgg gcatttggtc 1200
catgtgatga atgagactgt gatgatatcc ctcctgcagc caccaccgga gacctacaat 1260
ctttttgatg acataattct actatcagaa ggatatatag tctatcacgg accacgtgag 1320
aacatcttgg aattcttcga aaatgctggt ttccgatgcc ctgaaaggaa aggaatcgct 1380
gatttccttc aagaggtcac ttccaagaaa gaccagcagc agtactggta ccatgaccaa 1440
gaacggtatc ggtatgtgtc agttccagag tttgcacaac gtttcaagtc attccatgta 1500
ggtcagaaaa tgcagaagga gatgcaaatt ccttatgaca agtccagcac acatcctgct 1560
gcattgacaa ctaccaagta tgggctatcc agttgggagt cactcagggc agtgatgtca 1620
agagagtggt tattgatgaa gcgcaactcc ttcatctaca ttttcaaggt cacccagttg 1680
atcatccttg ccttcatgtc catgactgtg ttcctcagaa caaagatgcc tagtgggaca 1740
atctctgatg gcactaaatt ccttggggct ctcaccttta gtttgatcac catcttgttc 1800
aatggctttg ctgagctaca actgaccata aagaagcttc ctgtgttcta caaacataga 1860
gatttcttgt tcttccctgc atggaccttt ggagtagcaa atatcctctt gaaagttcct 1920
gtttctcttg tagaggcggc ggtatgggtt gtgctcacat actatgtgat ggggtttgca 1980
ccctctgcag gaaggttctt tcgtcaattt atagctttct ttgttactca ccaaatggca 2040
atggctatgt tccgatttct tggtgctatt ttgaaaacaa tggttgtggc caatactttt 2100
gggatgtttg tgctgcttat tgtcttcatt tttggaggat ttctcatatc tagaaatgac 2160
atcaagccat ggtggatttg gggttactgg gcatctccta tgatgtatag tcaacaagca 2220
atatcaatca atgagttcct tgctagtaga tgggctattc caaatactga tgcaacaatt 2280
gatgagccaa ctgttggcaa ggctattctc aaatccaaag gcttgattac tagtgatggg 2340
gggttttgga tttccattgg agcccttata ggattccttg ttgtgttcaa tatcttatac 2400
attttggccc ttacatactt gagtcctggt ggcagctcaa acacaatagt ttcagatgaa 2460
gatagtgaag ataagacgga catgaaaaca agaaatgaac aacaaatgtc ccaaattgta 2520
cacaataatg gagctagtaa tacatctgca acatcgtcaa tccccatgag tggaagcaga 2580
tcaacaaatc agcaaagtag atcacaaatt gtcttgcctt tccaacccct ttcactttgt 2640
ttcaaccatg taaactacta tgtggatatg ccaacagaaa tgaaagagca aggattcaca 2700
gaaagccgtc tccagttact atctgatatc agtggagttt tcagaccagg tgttttgaca 2760
gcattagttg gtgtaagtgg agctggcaag accaccctaa tggatgtctt agcaggaagg 2820
aaaacaagtg gagtaattga aggagacatc accctctctg gttatccaaa gaaacaagaa 2880
acttttgcac gcattagtgg ttactgtgaa cagactgata ttcattcacc aaatgttact 2940
gtctatgaat ccattctcta ctctgcttgg ctacgtcttt cgtcagatgt tgacaccaat 3000
acgaggaaga tgttcgtgga tgaagtcatg tcccttgtag agcttgatgt gttacgtaat 3060
gctttggtgg gtcttcctgg agttagtggt ttatcaactg aacagagaaa gaggctcaca 3120
attgcagtgg agttggtagc aaacccttca gtaatattca tggatgagcc aacttctgga 3180
cttgatgcta gagctgcagc aattgtcatg cgaaccgtga gaaataccgt caacacggga 3240
cgcactgtgg tttgcacaat tcatcaaccc agcatcgata tttttgagtc ttttgatgag 3300
cttttgctat tgaaaagggg agggcaagtt atttatgctg gtgaactcgg ccgccactcc 3360
cataaactag ttgaatattt tgaggcagtt ccaggtgttc caaagataac agaaggatat 3420
aatcctgcaa catggatgct agaagtcacc tcccctatag ctgaggctcg tcttaatgta 3480
aattttgctg aaatttatgc taattctgag ctttatagga aaaaccaaga gctaatcaag 3540
gaattgagca ctcccccacc aggatatcaa gatctctcat ttcctacaaa gtattctcaa 3600
aatttctata gtcaatgcat tgcaaacttt tggaagcaat atcgttctta ttggaagaat 3660
ccaccataca atgccatgcg ctatcttatg acattgctca atggccttgt ctttggcacg 3720
gtattttggc aaaaaggaac taagatatca tcacaacaag atttgttcaa tttgcttgga 3780
gccacttatg ctgcaacttt cttccttggg gctgccaatt gtatcacagt tcaacctgtt 3840
gtttccatcg aaagaacagt cttctaccgc gaaagggcag cagggatgta ctcttcattg 3900
tcctatgcat ttgctcaggc atgcgtggag gtcatctaca acatcttaca ggggattcta 3960
tacactatta tcatctatgc aatgattgga tatgactgga aagccgacaa attcttctat 4020
ttcatgttct ttattgtagc aagtttcaac tacttcacat tgtttgggat gatgttggtg 4080
gcatgcaccc catctgcaat gcttgcaaac attctcatat cctttgtact tcctctctgg 4140
aatctttttg ctgggttcct cgttgttagg ccgttgatac cgatttggtg gaggtggtac 4200
tactgggcaa accccgtgtc atggaccatc tatggtgttg tggcgtcaca gtttggtaaa 4260
aatggtgatg ttctttcggt tcccggtggg agccctacgg tagtgaagca attcttggag 4320
gacaacctag ggatgcggca tagtttccta ggatatgttg tgctcacaca ttttggctac 4380
atcatcgttt tcttcttcat ctttggctat gccatcaagt acttcaactt ccagaaacga 4440
tag 4443
<210> 3
<211> 17
<212> DNA
<213> Artificial sequence
<400> 3
atggcgtcgt cggcggc 17
<210> 4
<211> 31
<212> DNA
<213> Artificial sequence
<400> 4
ctatcgtttc tggaagttga agtacttgat g 31

Claims (1)

1. The application of the rice OsABCG48 protein or the gene coding the rice OsABCG48 protein in improving the cadmium stress resistance of unicellular organisms and plants;
the amino acid sequence of the rice OsABCG48 protein is shown in SEQ ID NO. 1;
the single-cell organism is yeast;
the plant is Arabidopsis thaliana.
CN202010958900.2A 2020-09-14 2020-09-14 OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants Active CN112175056B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010958900.2A CN112175056B (en) 2020-09-14 2020-09-14 OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010958900.2A CN112175056B (en) 2020-09-14 2020-09-14 OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants

Publications (2)

Publication Number Publication Date
CN112175056A CN112175056A (en) 2021-01-05
CN112175056B true CN112175056B (en) 2022-03-25

Family

ID=73920725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010958900.2A Active CN112175056B (en) 2020-09-14 2020-09-14 OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants

Country Status (1)

Country Link
CN (1) CN112175056B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143739B (en) * 2020-09-30 2022-08-09 广西大学 Rice OsABCC9 gene and application thereof in cadmium transfer
CN114231537B (en) * 2021-12-21 2023-09-12 黑龙江省科学院高技术研究院 Poplar latex protein MLP gene capable of improving cadmium stress resistance of plant, protein expressed by poplar latex protein MLP gene and application of poplar latex protein MLP gene
CN114507687B (en) * 2022-04-02 2022-08-19 中国科学院华南植物园 Rice OsORM gene and application of protein thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090662A3 (en) * 2006-04-05 2012-10-31 Metanomics GmbH Process for the production of a fine chemical
CN102020706B (en) * 2009-09-23 2012-08-29 中国科学院植物研究所 Associated protein of biology cadmium resistance and coding gene of same
CN108864264B (en) * 2017-05-11 2020-12-29 中国科学院华南植物园 Corn OXS2a gene, and encoding protein and application thereof

Also Published As

Publication number Publication date
CN112175056A (en) 2021-01-05

Similar Documents

Publication Publication Date Title
Dubrovina et al. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance
CN112175056B (en) OsABCG48 gene and application thereof in improving cadmium stress resistance of unicellular organisms and plants
CN110904071B (en) Application of RAF49 protein and encoding gene thereof in regulation and control of plant drought resistance
CN111073873B (en) Application of PP84 protein and coding gene thereof in regulation and control of plant drought resistance
CN107937416A (en) Improve gene and its application of nitrogen fertilizer for paddy rice utilization ratio and yield
Dubrovina et al. VaCPK21, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., is involved in grape response to salt stress
CN107383179A (en) A kind of and plant stress tolerance correlative protein GsSLAH3 and its encoding gene and application
CN107759676A (en) A kind of plant amylose synthesis associated protein Du15 and its encoding gene and application
CN110078807A (en) Promote the protein and its encoding gene of potassium ion efficient absorption
CN115612695A (en) Application of GhGPX5 and GhGPX13 genes in improving salt stress tolerance of plants
CN108997487A (en) Application of the resistance relevant protein Z76 in regulation stress resistance of plant
CN107325161B (en) Protein related to low-nitrogen stress and high-salt stress resistance as well as encoding gene and application thereof
CN110684088B (en) Protein ZmbZIPa3 and application of coding gene thereof in regulating and controlling plant growth and development and stress tolerance
CN106749580A (en) Plant salt tolerance GAP-associated protein GAP TaPUB15 D and its encoding gene and application
CN108864264B (en) Corn OXS2a gene, and encoding protein and application thereof
CN106520723B (en) Protein VvMas, coding gene and application of protein VvMas in improving salt tolerance of plants
CN112708603B (en) Application of rice ARE2 gene in plant nitrogen metabolism regulation
CN107663232A (en) Plant anti-adversity associated protein OsIAA18 and its encoding gene and application
CN110452896B (en) Plant insect-resistant related proteins OsPAL6 and OsPAL8 as well as coding genes and application thereof
CN105802932B (en) Application of CRK4 protein and coding gene thereof in regulation and control of plant drought resistance
CN107266543B (en) Stress-resistance associated protein IbRAP2-12, and coding gene and application thereof
CN1886514B (en) For strengthening the method for stress tolerance in plants
CN110684749A (en) Application of corn 3-phosphoglycerol dehydrogenase ZmGPDH4 and coding gene thereof in regulation and control of plant stress tolerance
CN105950583B (en) Application of CRK5 protein and coding gene thereof in regulation and control of plant drought resistance
NL2024335B1 (en) Protein for improving ability of plants and microorganisms to resist low nitrogen stress and gene thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant