CN111172270B - Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof - Google Patents

Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof Download PDF

Info

Publication number
CN111172270B
CN111172270B CN201911390742.9A CN201911390742A CN111172270B CN 111172270 B CN111172270 B CN 111172270B CN 201911390742 A CN201911390742 A CN 201911390742A CN 111172270 B CN111172270 B CN 111172270B
Authority
CN
China
Prior art keywords
seq
squamous intraepithelial
cervical squamous
gene
intraepithelial lesions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911390742.9A
Other languages
Chinese (zh)
Other versions
CN111172270A (en
Inventor
程昌明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Jiema Medical Examination Co ltd
Original Assignee
Qingdao Renhe Medical Laboratory Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Renhe Medical Laboratory Co ltd filed Critical Qingdao Renhe Medical Laboratory Co ltd
Priority to CN201911390742.9A priority Critical patent/CN111172270B/en
Publication of CN111172270A publication Critical patent/CN111172270A/en
Application granted granted Critical
Publication of CN111172270B publication Critical patent/CN111172270B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a whole blood transcription gene marker for grading cervical squamous intraepithelial lesions, which comprises the following components: the characteristic gene sequences related to cervical intraepithelial neoplasia grading are shown in SEQ ID NO. 1-SEQ ID NO. 10. The invention also discloses application of the gene marker in preparation of products for screening high-grade cervical squamous intraepithelial lesions. The cervical squamous intraepithelial lesion related transcriptional gene marker can be used for screening high-level intraepithelial lesions (HSIL) and low-level intraepithelial lesions (LSIL), effectively finds out the high-level intraepithelial lesions (HSIL) with canceration potential, is beneficial to fundamentally reducing the incidence rate and death rate of cervical cancer through timely intervention, takes whole blood as a detection material, has the advantages of no wound, safe sampling, simple and convenient operation and high accuracy, is beneficial to improving the compliance of the detection of screened crowds, is very suitable for early screening and auxiliary diagnosis of cervical cancer of large-scale crowds, and has wide application prospect.

Description

Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof
Technical Field
The invention relates to the technical field of molecular biology, in particular to a whole blood transcriptional gene marker for discriminating and grading low-grade cervical squamous intraepithelial lesion (LSIL) and high-grade cervical squamous intraepithelial lesion (HSIL) and application thereof.
Background
Cervical cancer is the 3 rd most common malignancy among women worldwide after breast cancer and colorectal cancer, the 2 nd most common malignancy in developing countries after breast cancer, and the most common malignancy in female genital tract, and the onset of the malignancy tends to be younger. The pathogenesis of the cervical cancer is not completely clear at present, women who are married early, fertile early, prolific and disordered in sexual life have higher morbidity, and the cervical cytology screening is generally applied in recent decades, so that the cervical cancer and precancerous diseases are discovered and treated in early stages, and the morbidity and mortality of the cervical cancer are obviously reduced.
Cervical Squamous intraepithelial lesions (SIL for short) are a Lesion of epithelial tissue closely related to cervical cancer, and are frequently found in women between 25 and 35 years of age. Cervical Squamous intraepithelial lesions are further classified into Low-grade Squamous intraepithelial lesions (Low-grade Squamous intraepithelial lesions, abbreviated as LSIL) and High-grade Squamous intraepithelial lesions (High-grade Squamous intraepithelial lesions, abbreviated as HSIL) according to the difference in tissue and cellular morphology. Wherein the low grade squamous intraepithelial lesions are naturally regressed, but the high grade squamous intraepithelial lesions have a cancerating potential. In clinical practice, cervical squamous intraepithelial lesions are screened and found by people, high-grade squamous intraepithelial lesions are screened, and the high-grade squamous intraepithelial lesions are treated in time, so that the method is an effective measure for preventing cervical cancer.
A large number of clinical studies prove that the treatment effect of the cervical cancer is closely related to the discovery stage, the earlier the cervical cancer is discovered, the better the treatment effect is, and if the cervical cancer precancerous lesion such as high-grade cervical squamous intraepithelial lesion can be discovered and treated in time, the ideal treatment effect can be obtained. At present, cervical squamous intraepithelial lesions are clinically diagnosed mainly through colposcopic tissue biopsy, the method is a traumatic sampling inspection method, the inspection process is complicated, pain and bleeding risks exist, and the compliance of screening people who accept the invasive inspection is low. Therefore, in the field of cervical cancer screening, a noninvasive, safe and simple method is urgently needed, high-grade cervical squamous intraepithelial lesions can be screened, so that intervention treatment can be timely carried out on the cervical cancer precancerous lesions, and the morbidity and mortality of cervical cancer in China are fundamentally reduced.
Blood is a commonly used test material in clinic, and the blood flowing in circulation can exchange information with almost all tissue cells, wherein abundant disease information is contained. Immune cells (leukocytes) in blood are important components of the immune system, when abnormal tumor cells are generated in vivo, the immune system can perform an immune monitoring function, the immune cells such as leukocytes contained in the blood participate in the interaction between the immune system and the tumor, and the gene expression signals of the immune cells change correspondingly, and the change of the gene expression signals of the immune cells is far earlier than the change of obvious signs of the body due to diseases. Therefore, by closely monitoring the blood cell gene expression signal, micro information of malignant diseases such as in vivo tumor can be sensitively captured, the trace of in vivo tumor can be found earlier, and especially reliable evidence is provided for early screening of cervical squamous intraepithelial lesion and other precancerous lesions.
Disclosure of Invention
The invention aims to solve the problem that the diagnosis of cervical squamous intraepithelial lesions depends on traumatic biopsy sampling examination in the current cervical cancer screening process, so that the compliance of screened people to be examined is low, and provides a whole blood transcription gene marker combination for grading cervical squamous intraepithelial lesions, which is used for screening low-grade intraepithelial lesions and high-grade intraepithelial lesions and has high detection accuracy.
In order to solve the technical problems, the invention is realized by the following technical scheme:
in one aspect of the invention, a whole blood transcription gene marker for grading cervical squamous intraepithelial lesions is provided, which comprises one or any combination of more than two of the following genes: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 genes shown in SEQ ID NO. 1-10.
Preferably, the whole blood transcriptional gene marker comprises the following 10 gene combinations: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 genes shown in SEQ ID NO. 1-10.
In another aspect of the present invention, there is provided a kit for screening and grading cervical squamous intraepithelial lesions, the kit comprising: a reagent for detecting the expression level of any one or any two or more of the following genes: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 genes shown in SEQ ID No. 1-10.
Preferably, the kit comprises: the reagent for detecting the expression level of the following 10 genes: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 genes shown in SEQ ID NO. 1-10.
The reagent is a reagent for detecting the amount of RNA transcribed from the gene, and the reagent is preferably a primer and/or a probe.
The reagent is a reagent for detecting the amount of the gene reverse transcribed into complementary DNA (cDNA), and the reagent is a primer and/or a probe. Because of the strict quantitative correspondence between messenger RNA (mRNA) and its reverse transcribed complementary DNA (cDNA), cervical squamous intraepithelial lesions can be screened by detecting the amount of cDNA.
In another aspect of the present invention, there is also provided a composition comprising primers and/or probes for detecting genes differentially expressed in whole blood of patients with low-grade cervical squamous intraepithelial lesions and high-grade cervical squamous intraepithelial lesions, the genes comprising one or a combination of any two or more of the following genes: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 genes shown in SEQ ID No. 1-10.
Preferably, the genes include the following 10 genes: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 genes shown in SEQ ID No. 1-10.
In another aspect of the present invention, there is also provided a gene chip for screening and grading cervical squamous intraepithelial lesions, the gene chip comprising oligonucleotide probes hybridized with a characteristic gene sequence related to cervical squamous intraepithelial lesions, the gene comprising one or any combination of two or more of the following genes: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 genes shown in SEQ ID NO. 1-10.
The kit or the gene chip can be used for detecting the expression condition of cervical squamous intraepithelial lesion related characteristic genes shown in SEQ ID NO. 1-SEQ ID NO.10 in whole blood of a detected person, and then a prediction model is constructed according to the up-regulation or down-regulation information of the gene expression and a statistical method such as a Logistic regression algorithm (LSIL) and the like to judge whether the detected person is high-level intraepithelial lesion (HSIL) or low-level intraepithelial lesion (LSIL), so that the high-level intraepithelial lesion (HSIL) with canceration potential is screened, the compliance of the screened person for receiving examination is improved, the early discovery of the cervical carcinoma precancerous lesion is realized, timely intervention is carried out, and the morbidity and mortality of the cervical carcinoma are fundamentally reduced.
In another aspect of the invention, the application of the whole blood transcription gene marker in preparing a product for screening high-grade cervical squamous intraepithelial lesions is also provided.
The product for screening high-grade cervical squamous intraepithelial lesions comprises: products for detecting high-grade cervical squamous intraepithelial lesions by using real-time quantitative PCR, RNA sequencing or gene chips.
In the present invention, the term "cervical squamous intraepithelial lesion-related characteristic gene" means a gene that can be used for discriminating between high-grade intraepithelial lesions (HSIL) and low-grade intraepithelial lesions (LSIL), and a significant change in the expression level of the group of genes can be used as an index for discriminating between high-grade intraepithelial lesions (HSIL).
The term "primer" refers to an oligonucleotide that, when paired with a strand of DNA, initiates primer extension synthesis product in the presence of a suitable polymerization reagent. To maximize amplification efficiency, the primer is preferably single-stranded. The length of the primer depends on many factors, including: application area, temperature used, template reaction conditions, other reagents and primer sources. The skilled person can design the primers autonomously according to the characteristic genes of colorectal cancer of the present invention and specific requirements.
The term "probe" refers to a molecule that binds to a specific sequence or subsequence or other portion of another molecule. Unless otherwise indicated, the term "probe" generally refers to a polynucleotide probe that is capable of binding to another polynucleotide (often referred to as a "target polynucleotide") by complementary base pairing. Depending on the stringency of the hybridization conditions, a probe can bind to a target polynucleotide that lacks complete sequence complementarity to the probe. The probe may be directly or indirectly labeled.
Those skilled in the art can design other probes that can be used to implement the present invention according to the characteristic genes related to cervical squamous intraepithelial lesions and specific requirements, and are not limited to the probes specifically used in the embodiments of the present invention.
The term "gene chip" refers to a substrate having oligonucleotide probes with different known sequences deposited at known discrete locations on the surface of the substrate. The substrate may be silicon or glass, have the thickness of a glass slide or cover slip, or may be composed of other synthetic polymers.
The transcription gene marker combination for screening and grading cervical squamous intraepithelial lesions adopts an ROC curve (receiver operating characteristic curve) tool to measure the performance of the gene marker combination. Disease diagnosis is the problem of distinguishing between patients and normal persons, and is mathematically a dichotomous problem, i.e., dividing instances into positive or negative, so that a combination of gene markers essentially behaves as a classifier. Four situations can occur when the classification is correct and incorrect: true Positive (TP) if an instance is Positive and is predicted to be Positive; if the example is negative but predicted to be Positive, it is called False Positive (FP). Accordingly, if an instance is Negative and predicted to be Negative, it is referred to as True Negative (TN), and if the instance is positive but predicted to be Negative, it is False Negative (FN). The classification ability of a classifier is measured in terms of sensitivity (sensitivity) and specificity (specificity). The sensitivity is a True Positive Rate (TPR), and the calculation formula is TPR = TP/(TP + FN), which indicates the proportion of the positive examples identified by the classifier to all the positive examples. The specificity is True Negative Rate (TNR), and the calculation formula is TNR = TN/(FP + TN), which represents the proportion of the Negative examples identified by the classifier to all Negative examples.
The marker genes of the invention can be used to design specific oligonucleotide probes and corresponding primers. Such probes and primers can be of any length that specifically hybridizes to a marker gene sequence and is at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500 nucleotides in length, and the probes can be up to the full length of the marker gene sequences of the present invention. The probe may also comprise other sequences at its 5 'and/or 3' end so as to be capable of extending beyond the target sequence to which it is hybridised.
When a nucleic acid amplification method is used, these probes and primers enable rapid analysis of peripheral blood samples, i.e., detection or quantitative determination of the transcription products (mainly mRNA) of the marker genes. Such methods include any method or technique known in the art or described herein for replicating or increasing the copy number or content of a target nucleic acid or its complement.
The cervical squamous intraepithelial lesion related transcriptional gene marker can be used for screening high-grade intraepithelial lesions (HSIL) and low-grade intraepithelial lesions (LSIL), effectively finds out the high-grade intraepithelial lesions (HSIL) with canceration potential, and contributes to fundamentally reducing the incidence rate and death rate of cervical cancer through timely intervention. In addition, the invention takes whole blood as a detection material, has the advantages of no wound, safe sampling, simple and convenient operation and high accuracy, is beneficial to improving the compliance of the detection acceptance of screening people, is very suitable for early screening and auxiliary diagnosis of cervical cancer of large-scale people, and has wide application prospect.
Drawings
The present invention will be described in further detail with reference to the accompanying drawings and specific embodiments.
FIG. 1 is a ROC AUC graph for the classification diagnosis of 66 high-grade cervical squamous intraepithelial lesions (HSIL) and 36 low-grade cervical squamous intraepithelial lesions (LSIL) by using the cervical squamous intraepithelial lesion classification diagnosis model constructed by the combination of 10 transcriptional gene markers;
FIG. 2 is a box plot of 66 high-grade cervical squamous intraepithelial lesions (HSIL) and 36 low-grade cervical squamous intraepithelial lesions (LSIL) screened by the 10 combinations of gene markers according to the present invention, wherein the ordinate is the decision score (decision score) of the sample, also called logistic regression log likelihood ratio (log regression), the critical threshold (cutoff value) for determination is set to 0, and if the decision score of the sample is greater than or equal to 0, the high-grade cervical squamous intraepithelial lesions (HSIL) is determined; a low-grade cervical squamous intraepithelial lesion (LSIL) is judged if the sample decision score value is less than 0.
Detailed Description
The invention is based on the quantitative analysis of the whole blood whole gene expression profile, the whole blood gene expression difference of patients with higher-level cervical squamous intraepithelial lesions (HSIL) and lower-level cervical squamous intraepithelial lesions (LSIL) is screened out 10 characteristic gene expression signals (transcription gene markers, messenger RNA) of the high-level intraepithelial lesions (HSIL) from the whole blood gene expression profile by a characteristic recursion Elimination (Recurved Feature Elimination): STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18. Based on the 10 gene markers obtained by screening, a classification model for cervical squamous intraepithelial lesions is constructed by using a Logistic Regression algorithm (Logistic Regression). Quantitatively detecting the relative expression data of the 10 gene markers in the whole blood of a detected person by utilizing a fluorescence quantitative RT-PCR (reverse transcription-polymerase chain reaction), a gene expression profiling chip or an RNA sequencing technology, substituting the relative expression data into the constructed intraepithelial lesion classification diagnosis model, calculating a decision score (decision score) of a sample, also called a logistic regression log likelihood ratio (log likelihood ratio), setting a judgment critical threshold (cutoff value) to be 0, and judging high-grade cervical squamous intraepithelial lesions (HSIL) if the decision score of the sample is greater than or equal to 0; a low-grade cervical squamous intraepithelial lesion (LSIL) is judged if the sample decision score value is less than 0.
Example 1 screening of Gene markers characteristic of cervical squamous intraepithelial lesions
The screening of the cervical squamous intraepithelial lesion peripheral blood characteristic gene comprises the following steps:
1) Peripheral blood samples of 20 patients with high-grade cervical squamous intraepithelial lesions (HSIL) and 20 patients with low-grade cervical squamous intraepithelial lesions (LSIL) confirmed by pathological examination were collected using PAXgeneTMblood RNA Tube blood collection tubes, and 2-3mL of peripheral blood was collected from each sample.
2) Total RNA of the peripheral Blood sample was extracted using PAXgene Blood RNA Kit extraction Kit. The RNA samples were tested for fragment integrity (RIN) using an Agilent Bioanalyzer 2100 and for purity using a Nano1000 micro-UV spectrophotometer. All RNA samples must meet the following quality control conditions: the RNA yield is more than 2 micrograms, the ratio of 28S/18S peak is more than 1, the RIN value is more than 7, and the absorbance ratio of 260nm/280nm is more than 1.8.
3) The Gene expression signal of the RNA sample was detected by Affymetrix Gene Profiling Array cGMP U133P 2 chip (human whole Gene expression Profiling chip).
4) The MAS5 statistical method in Affymetrix Expression vector software is utilized to carry out Normalization processing (Normalization) on the detection result of the gene Expression profile chip of each sample, and genes with proper Expression in all samples are selected for subsequent analysis.
5) Screening characteristic gene expression signals related to cervical squamous intraepithelial lesions by using a characteristic recursive elimination method to obtain 10 genes which can be used for screening high-level intraepithelial lesions (HSIL) and low-level intraepithelial lesions (LSIL) and have the highest prediction accuracy (accuracy) and serve as gene markers: STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18;
6) And detecting the expression signals of the 10 characteristic genes related to the cervical squamous intraepithelial lesions by using a real-time fluorescent quantitative PCR method, wherein the results show that the expression trends of all the 10 characteristic genes on a PCR platform and an expression profile chip platform are consistent. The sequences of the 10 gene markers are shown in table 1 below.
TABLE 1 Gene sequences of cervical squamous intraepithelial lesion-associated Gene markers
Figure BDA0002344866170000061
As can be seen from table 1 above:
the correlation between the expression level of STMN3 gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.74, and the high expression of the gene can obviously increase the risk of HSIL.
The correlation between the expression level of TRPC4AP gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.70, and the high expression of the gene can obviously increase the risk of HSIL.
The correlation between the expression level of DYRK2 gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.62, and the high expression of the gene can obviously increase the risk of HSIL.
The correlation between the expression level of the AGK gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.65, and the high expression of the AGK gene can obviously increase the risk of suffering from the HSIL.
The correlation between the expression level of the KIAA0319L gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.62, and the high expression of the gene can obviously increase the risk of suffering from HSIL.
The correlation between the expression level of GRPEL1 gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.66, and the high expression of the gene can obviously increase the risk of HSIL.
The correlation between the expression level of the ZFC3H1 gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.65, and the high expression of the gene can obviously increase the risk of suffering from HSIL.
The correlation between the expression level of LYL1 gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.61, and the low expression of the gene can obviously increase the risk of HSIL.
The correlation between the expression level of the ITGB1 gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.68, and the low expression of the gene can obviously increase the risk of suffering from the HSIL.
The correlation between the expression level of the ARHGAP18 gene and high-grade cervical squamous intraepithelial lesion (HSIL) is 0.75, and the low expression of the gene can obviously increase the risk of suffering from the HSIL.
8) Based on 10 screened cervical squamous intraepithelial lesion related gene markers, analyzing relative expression values of samples by using a Logistic Regression algorithm (Logistic Regression), constructing a cervical squamous intraepithelial lesion classification model, calculating a decision score (decision score) of each sample, also called a Logistic Regression log likelihood ratio (Logistic Regression), setting a critical threshold (cutoff value) of the Logistic Regression score to be 0, taking the critical threshold as a judgment standard, and judging the sample to be positive, namely HSIL if the decision score of the sample is greater than or equal to 0; and if the decision score of the sample is less than 0, judging the sample to be negative, namely LSIL.
Example 2 screening and grading of cervical squamous intraepithelial lesions Using 10 selected Whole blood immunogene markers
1. The method comprises the following steps:
1) Collecting peripheral blood samples of the sample to be detected: collecting peripheral blood of elbow vein of 2ml of the subject by using PAXgeneTMblood RNA Tube;
2) Extracting and purifying total RNA in a peripheral blood sample of a sample to be detected: extracting and purifying total RNA in peripheral Blood by using a PAXgene Blood RNA Kit extraction Kit, identifying the integrity and yield of the extracted total RNA fragment by using an Agilent BioAnalyzer model 2100 micro electrophoresis analyzer, and detecting the purity of an RNA sample by using a Nano1000 micro ultraviolet spectrophotometer;
3) Reverse transcription reaction: performing Reverse Transcription reaction by using a High-Capacity cDNA Reverse Transcription kit of Life Techonlgy company and taking Olig (dT) as a Reverse Transcription primer by using total RNA as a template to synthesize cDNA;
TABLE 2 reaction System for reverse transcription Synthesis of cDNA
Figure BDA0002344866170000081
4) Fluorescent quantitative RT-PCR detection: according to messenger RNA (mRNA) sequences of 10 cervical squamous intraepithelial lesion related gene markers, specific primers SEQ ID NO. 11-SEQ ID NO.30 are designed (wherein, the primers SEQ ID NO. 11-SEQ ID NO.12 are used for specifically amplifying an STMN3 gene marker shown in SEQ ID NO.1, the primers SEQ ID NO. 13-SEQ ID NO.14 are used for specifically amplifying a TRPC4AP gene marker shown in SEQ ID NO.2, the primers SEQ ID NO. 15-SEQ ID NO.16 are used for specifically amplifying a DYRK2 gene marker shown in SEQ ID NO.3, the primers SEQ ID NO. 17-SEQ ID NO.18 are used for specifically amplifying an AGK gene marker shown in SEQ ID NO.4, the primers SEQ ID NO. 19-SEQ ID NO.20 are used for specifically amplifying a KIAA0319L gene marker shown in SEQ ID NO.5, the primers SEQ ID NO. 21-SEQ ID NO.22 are used for specifically amplifying a GRID NO.1 gene marker shown in SEQ ID NO.6, primers SEQ ID NO. 23-SEQ ID NO.24 are used for specifically amplifying a ZFC3H1 gene marker shown in SEQ ID NO.7, primers SEQ ID NO. 25-SEQ ID NO.26 are used for specifically amplifying a LYL1 gene marker shown in SEQ ID NO.8, primers SEQ ID NO. 27-SEQ ID NO.28 are used for specifically amplifying an ITGB1 gene marker shown in SEQ ID NO.9, and primers SEQ ID NO. 29-SEQ ID NO.30 are used for specifically amplifying an ARHGAP18 gene marker shown in SEQ ID NO. 10), and specific probes SEQ ID NO. 31-SEQ ID NO.40 (wherein SEQ ID NO. 31-SEQ ID NO.40 are probe sequences of characteristic gene sequences of SEQ ID NO. 1-SEQ ID NO.10 respectively) are designed, the SEQ ID NO. 11-SEQ ID NO.30 are used as primers, the SEQ ID NO. 31-SEQ ID NO.40 are used as probes or SYBR Green which can be combined with PCR amplification fragment specific dyes, and (3) carrying out real-time fluorescent quantitative RT-PCR reaction by using cDNA obtained by reverse transcription as an amplification template to obtain the mRNA relative content of the 10 gene markers in the peripheral blood sample.
The sequence of the fluorescent quantitative PCR amplification primer is as follows:
STMN3 gene
A forward primer: 5 'GCTGTCCACTACTGGCTTTTG 3' (SEQ ID NO. 11)
Reverse primer: 5 'GGTGCATATTACAGGAGGCTTTCG 3' (SEQ ID NO. 12)
TRPC4AP Gene
A forward primer: 5'CTCGGGCTGTGGAGAGTTTC 3' (SEQ ID NO. 13)
Reverse primer: 5'GCCTCGCTTCAGCAGGAA' (SEQ ID NO. 14)
DYRK2 gene
A forward primer: 5 'CACGGACACGATCCAGGTTCCA 3' (SEQ ID NO. 15)
Reverse primer: 5'CCGTTTTGCCCACTGTTGTA 3' (SEQ ID NO. 16)
AGK gene
A forward primer: 5 'TCTCTCTTCTTTGACCGTGCTAGGA 3' (SEQ ID NO. 17)
Reverse primer: 5 'TGTGGAGGAGCCTAGACACTAGGA 3' (SEQ ID NO. 18)
KIAA0319L gene
A forward primer: 5 'GGAAGGCTATGTGTGAACGTGACCA 3' (SEQ ID No. 19)
Reverse primer: 5'CTGTAGAAGTGGTTGGCAAAGAGA 3' (SEQ ID NO. 20)
GRPEL1 gene
A forward primer: 5'TTCGGGAGTCTGTTCCCTTT 3' (SEQ ID NO. 21)
Reverse primer: 5 'GGCCCTGTCTGAGCTCTTCT 3' (SEQ ID NO. 22)
ZFC3H1 gene
A forward primer: 5 'CAACCGTGAAACAGCGTTT 3' (SEQ ID NO. 23)
Reverse primer: 5'CTGCCAATACCATCAATTTCCA 3' (SEQ ID NO. 24)
LYL1 gene
A forward primer: 5 'CCCCTCTCTCCTCAACAGTGTCTACAT 3' (SEQ ID NO. 25)
Reverse primer: 5'AGCCAGGTCCAGCTCACAGT 3' (SEQ ID NO. 26)
ITGB1 gene
A forward primer: 5'TCAGAATTGGATTTGGCTCATTT 3' (SEQ ID NO. 27)
Reverse primer: 5'TGGTGCAGTTCTGTTCACTTGTG 3' (SEQ ID NO. 28)
ARHGAP18 gene
A forward primer: 5 'GATGATGCCCACATTACTAGTTTCA 3' (SEQ ID NO. 29)
Reverse primer: 5 'GGTGCGAGGTCACCATCC 3' (SEQ ID NO. 30)
The fluorescent quantitative PCR probe sequence is as follows:
STMN3 gene
The probe sequence is as follows: 5 'ATATTCCTCATGGGCCAGCTCA 3' (SEQ ID NO. 31)
TRPC4AP Gene
The probe sequence is as follows: 5 'CCGAGGGACCTCTCTATGCAGA 3' (SEQ ID NO. 32)
DYRK2 gene
The probe sequence is as follows: 5'AAGCGGACAGTGCTCACGACACAACC 3' (SEQ ID NO. 33)
AGK gene
The probe sequence is as follows: 5 'AAAGTGCATTCTGCCTGGCCCTGGCGCGACC 3' (SEQ ID NO. 34)
KIAA0319L gene
The probe sequence is as follows: 5 'AGAATCGGCCCCCCCATTGCTATTGT 3' (SEQ ID No. 35)
GRPEL1 gene
The probe sequence is as follows: 5 'TGCCACGCGTTGAATAGTTCCACTACTT 3' (SEQ ID NO. 36)
ZFC3H1 gene
The probe sequence is as follows: 5 'AGACAAGTTCATCCCCAGCAAACTCTG 3' (SEQ ID No. 37)
LYL1 gene
The probe sequence is as follows: 5 'CATCTTTCCCTAGCAGCCGGTTGAAGC 3' (SEQ ID NO. 38)
ITGB1 gene
The probe sequence is as follows: 5 'TAGCACACACCAGCTAAGCTCAGGAACCC 3' (SEQ ID No. 39)
ARHGAP18 gene
The probe sequence is as follows: 5'ATTGCCAAAAGACAAAACGGGTACCACA 3' (SEQ ID NO. 40)
TABLE 3 real-time fluorescent quantitative PCR reaction System
Figure BDA0002344866170000101
5) And (3) diagnosis of the result of the sample to be detected: according to the relative expression values of 10 transcription gene markers such as STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1, ARHGAP18 and the like in a whole blood sample obtained by real-time fluorescent quantitative PCR detection, substituting into a constructed cervical squamous intraepithelial lesion classification model, calculating the decision score value of each sample, taking the critical threshold value 0 as a judgment standard, and judging that the sample is positive if the decision score value of the sample is greater than or equal to 0, namely judging that the sample is HSIL; if the result of the decision score value of the sample is less than 0, the sample is determined to be negative, i.e., the sample is determined to be LSIL.
2. Results
Collecting peripheral blood samples of 66 patients with high-level cervical squamous intraepithelial lesions (HSIL) and 36 patients with low-Level Squamous Intraepithelial Lesions (LSIL), detecting the relative expression quantity of 10 peripheral blood transcription gene markers in the peripheral blood by using fluorescence quantitative RT-PCR (reverse transcription-polymerase chain reaction), inputting the relative expression quantity into a cervical squamous intraepithelial lesion classification model, calculating a decision score of each sample, and judging a positive detection result, namely HSIL, when the sample decision score is not less than 0; otherwise, the result is a negative detection result, namely HSIL. Comparing the sample classification result obtained by model calculation with the sample pathological diagnosis result, the sensitivity (TP, true positive rate) of the classification diagnosis of the cervical squamous intraepithelial lesions based on 10 whole blood transcription gene marker combinations reaches 82%, the specificity (TN, true negative rate) reaches 83%, and the detection accuracy reaches 82%. Meanwhile, an ROC curve is established according to the decision score and the judgment result of the sample, and the area under the ROC curve (ROC AUC) is calculated to be 0.90. The specific test results are shown in Table 4 and FIGS. 1-2.
TABLE 4 sensitivity, specificity and ROC AUC values for colorectal cancer detection
Figure BDA0002344866170000111
The above-mentioned embodiments only express the implementation manner of the present invention, and the description thereof is specific and detailed, but not to be understood as the limitation of the patent scope of the present invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.
Sequence listing
<110> Huaxia upper garment science and technology Co., ltd
<120> Whole blood transcription gene marker for cervical squamous intraepithelial lesion grading and application thereof
<160> 40
<170> PatentIn version 3.3
<210> 1
<211> 2351
<212> DNA
<213> human (Homo sapiens)
<400> 1
acaccgctgc ggcctcgggg accacccttt gcgacgcccg cgccacctgc tctggccaga 60
aaagccactg ccctttgcgc cgcggggtct ggatggggga ggggcgactg cgatccccaa 120
accctccgga gaccagaggg ctccgcccct cccgcccctc cacctcccgc ggggcggacc 180
caccgccttc gaagcctaca aggagaagat gaaggagctg tcggtgctgt cgctcatctg 240
ctcctgcttc tacacacagc cgcaccccaa taccgtctac cagtacgggg acatggaggt 300
gaagcagctg gacaagcggg cctcaggcca gagcttcgag gtcatcctca agtccccttc 360
tgacctgtcc ccagagagcc ctatgctctc ctccccaccc aagaagaagg acacctccct 420
ggaggagctg caaaagcggc tggaggcagc cgaggagcgg aggaagacgc aggaggcgca 480
ggtgctgaag cagctggcgg agcggcgcga gcacgagcgc gaggtgctgc acaaggcgct 540
ggaggagaat aacaacttca gccgccaggc ggaggagaag ctcaactaca agatggagct 600
cagcaaggag atccgcgagg cacacctggc cgcactgcgc gagcggctgc gcgagaagga 660
gctgcacgcg gccgaggtgc gcaggaacaa ggagcagcga gaagagatgt cgggctaagg 720
gcccgggacg ggcggcgccc atcctgcgac agaacacgtt cgggttttgg ttttgtttcg 780
ttcacctctg tctagatgca acttttgttc ctcctccccc acccccgccc ccagcttcat 840
gcttctcttc cgcactcagc cgccctgccc tgtcctcgtg gtgagtcgct gaccacggct 900
tcccctgcag gagccgccgg gcgtgagacg cggtccctcg gtgcagacac caggccgggc 960
gcggctgggt cccccggggg ccctgtgaga gaggtggcgg tgaccgtggt aaacccaggg 1020
cggtggcgtg ggatcacggg tccttacgct gggctgtctg gtcagcacgt gcaggtcagg 1080
gcaggtcctc tgagccggcg cccctggcca gcaggcgagg ctacagtacc tgctgtcttt 1140
ccagggggaa ggggctcccc atgagggagg ggcgacgggg gaggggggtg atggtgcctg 1200
ggagcctgcg tgtgcagccg gtgcttgttg aactggcagg cgggtgggtg ggggctgcag 1260
ctttccttaa tgtggttgca caggggtcct ctgagaccac ctggcgtgag gtggacaccc 1320
tgggccttcc tggaagcctg cagttggggg cctgccctga gtctgctggg gagtgggcat 1380
tctctgccag ggacccatga gcaggctgca tggtctagag gttgtgggca gcatggacag 1440
tcccccactc agaagtgcaa gagttccaaa gagcctctgg cccaggcccc tccccaccag 1500
ggctttgcag atgtccttga aagacccacc ctagagccct ttggagtgct ggcccctcct 1560
gtgccctctg ccctggtgga agcggcagcc acaagtcctc ctcagggagc cccaaggggg 1620
attttgtggg accgctgccc acagatccag gtgttggaag ggcagcgggt aaggttccca 1680
agccagcccc aacacccttc ccacttggca cccagagggg gctgtgggtg gaggcctgac 1740
tccaggcctc tcctgcccac accctctggg ctgagttcct tctttccctt ggacgcccag 1800
tgctggcctt ggaggacggt cagctggagg atggcggtgg gggaggctgt ctttgtacca 1860
ctgcagcatc ccccacttct ccacggaagc cccatcccaa agctgctgcc tggccccttg 1920
ctgtaaagtg tgaagggggc ggctgagttc tcttaggacc cagagccagg gccctcaact 1980
tccatcctgc gggaggcctt ggccgggcac tgccagtgtc ttccagagtc acacccaggg 2040
accacgggag gatcctgacc cctgcagggc tcaggggtca gcagggaccc actgccccat 2100
ctccctctcc ccaccaagac agccccagaa ggagcagcca gctgggatgg gaacccaagg 2160
ctgtccacat ctggcttttg tgggactcag aaagggaagc agaactgagg gctgggatat 2220
tcctcatggt ggcagcgctc atagcgaaag cctactgtaa tatgcaccca tctcatccac 2280
gtagtaaagt gaacttaaaa attcaatcaa atgaacaatt aaataaacac ctgtgtgttt 2340
aagacatggt t 2351
<210> 2
<211> 3162
<212> DNA
<213> human (Homo sapiens)
<400> 2
gcttcctgtt tgtccgacga ggagacatgg cggcggcgcc ggtagcggct gggtctggag 60
ccggccgagg gagacggtcg gcagccacag tggcggcttg gggcggatgg ggcggccggc 120
cgcggcctgg taacattctg ctgcagctgc ggcagggcca gctgaccggc cggggcctgg 180
tccgggcggt gcagttcact gagacttttt tgacggagag ggacaaacaa tccaagtgga 240
gtggaattcc tcagctgctc ctcaagctgc acaccaccag ccacctccac agtgactttg 300
ttgagtgtca aaacatcctc aaggaaattt ctcctcttct ctccatggag gctatggcat 360
ttgttactga agagaggaaa cttacccaag aaaccactta tccaaatact tacatttttg 420
acttgtttgg aggtgttgat cttcttgtag aaattcttat gaggcctacg atctctatcc 480
ggggacagaa actgaaaata agtgatgaaa tgtccaagga ctgcttgagt atcctgtata 540
atacctgtgt ctgtacagag ggagttacaa agcgtttggc agaaaagaat gactttgtga 600
tcttcctgtt tacattgatg acaagtaaga agacattctt acaaacagca accctcattg 660
aagatatttt gggtgttaaa aaggaaatga tccgactaga tgaagtcccc aatctgagtt 720
ccttagtatc caatttcgat cagcagcagc tcgctaattt ctgccggatt ctggctgtca 780
ccatttcaga gatggataca gggaatgatg acaagcacac gcttcttgcc aaaaatgctc 840
aacagaagaa gagcttgagt ttggggcctt ctgcagctga aatcaatcaa gcggcccttc 900
tcagcattcc tggctttgtt gagcggcttt gcaaactggc gactcgaaag gtgtcagagt 960
caacgggcac agccagcttc cttcaggagt tggaagagtg gtacacatgg ctagacaatg 1020
ctttggtgct agatgccctg atgcgagtgg ccaatgagga gtcagagcac aatcaagcct 1080
ccattgtgtt ccctcctcca ggggcttctg aggagaatgg cctgcctcac acgtcagcca 1140
gaacccagct gccccagtca atgaagatta tgcatgagat catgtacaaa ctggaagtgc 1200
tctatgtcct ctgcgtgctg ctgatggggc gtcagcgaaa ccaggttcac agaatgattg 1260
cagagttcaa gctgatccct ggacttaata atttgtttga caaactgatt tggaggaagc 1320
attcagcatc tgcccttgtc ctccatggtc acaaccagaa ctgtgactgt agcccggaca 1380
tcaccttgaa gatacagttt ttgaggcttc ttcagagctt cagtgaccac cacgagaaca 1440
agtacttgtt actcaacaac caggagctga atgaactcag tgccatctct ctcaaggcca 1500
acatccctga ggtggaagct gtcctcaaca ccgacaggag tttggtgtgt gatgggaaga 1560
ggggcttatt aactcgtctg ctgcaggtca tgaagaagga gccagcagag tcgtctttca 1620
ggttttggca agctcgggct gtggagagtt tcctccgagg gaccacctcc tatgcagacc 1680
agatgttcct gctgaagcga ggcctcttgg agcacatcct ttactgcatt gtggacagcg 1740
agtgtaagtc aagggatgtg ctccagagtt actttgacct cctgggggag ctgatgaagt 1800
tcaacgttga tgcattcaag agattcaata aatatatcaa caccgatgca aagttccagg 1860
tattcctgaa gcagatcaac agctccctgg tggactccaa catgctggtg cgctgtgtca 1920
ctctgtccct ggaccgattt gaaaaccagg tggatatgaa agttgccgag gtactgtctg 1980
aatgccgcct gctcgcctac atatcccagg tgcccacgca gatgtccttc ctcttccgcc 2040
tcatcaacat catccacgtg cagacgctga cccaggagaa cgtcagctgc ctcaacacca 2100
gcctggtgat cctgatgctg gcccgacgga aagagcggct gcccctgtac ctgcggctgc 2160
tgcagcggat ggagcacagc aagaagtacc ccggcttcct gctcaacaac ttccacaacc 2220
tgctgcgctt ctggcagcag cactacctgc acaaggacaa ggacagcacc tgcctagaga 2280
acagctcctg catcagcttc tcatactgga aggagacagt gtccatcctg ttgaacccgg 2340
accggcagtc accctctgct ctcgttagct acattgagga gccctacatg gacatagaca 2400
gggacttcac tgaggagtga ccttgggcca ggcctcggga ggctgctggg ccagtgtggg 2460
tgagcgtggg tacgatgcca cacgccctgc cctgttcccg ttcctccctg ctgctctctg 2520
cctgccccag gtctttgggt acaggcttgg tgggagggaa gtcctagaag cccttggtcc 2580
ccctgggtct gagggcccta ggtcatggag agcctcagtc cccataatga ggacagggta 2640
ccatgcccac ctttccttca gaaccctggg gcccagggcc acccagaggt aagaggacat 2700
ttagcattag ctctgtgtga gctcctgccg gtttcttggc tgtcagtcag tcccagagtg 2760
gggaggaaga tatgggtgac ccccaccccc catctgtgag ccaagcctcc cttgtccctg 2820
gcctttggac ccaggcaaag gcttctgagc cctgggcagg ggtggtgggt accagagaat 2880
gctgccttcc cccaagcctg cccctctgcc tcattttcct gtagctcctc tggttctgtt 2940
tgctcattgg ccgctgtgtt catccaaggg ggttctccca gaagtgaggg gcctttccct 3000
ccatcccttg gggcacgggg cagctgtgcc tgccctgcct ctgcctgagg cagccgctcc 3060
tgcctgagcc tggacatggg gcccttcctt gtgttgccaa tttattaaca gcaaataaac 3120
caattaaatg gagactatta aataacttta ttttaaaaat ga 3162
<210> 3
<211> 8739
<212> DNA
<213> human (Homo sapiens)
<400> 3
gcgcgcgggc ccgggagagg ctcccgagcc aggcggtctt cggtcctcgc agcgcttcca 60
gctccccgcg cccctatgtg agggagacgg ggaggcccgc ggcgcgcagg ggagggcgag 120
gcatgtgcac gggccggagg gtgctgcagc cgcccgagga agaggaggac ggcggcgagg 180
aggagagcgg ggggctcgcg gcggcgggcc ccggccgagg ggatgcagtg gactgtgtgt 240
gtctggctgt agcagacgcg aggcggcgac gaggcgccgg ggacccgcgc gaggggcggc 300
cgggaggcgg cggcggcggc cgccagaagt agcagcagga ccggcggcgg cgacggcagc 360
cctgaaatgc attttcctct ccagcggcca tgttaaccag gaaaccttcg gccgccgctc 420
ccgccgccta cccgaccgat tggcggcagt aagcacacaa tgaatgatca cctgcatgtc 480
ggcagccacg ctcacggaca gatccaggtt caacagttgt ttgaggataa cagtaacaag 540
cggacagtgc tcacgacaca accaaatggg cttacaacag tgggcaaaac gggcttgcca 600
gtggtgccag agcggcagct ggacagcatt catagacggc aggggagctc cacctctcta 660
aagtccatgg aaggcatggg gaaggtgaaa gccaccccca tgacacctga acaagcaatg 720
aagcaataca tgcaaaaact cacagccttc gaacaccatg agattttcag ctaccctgaa 780
atatatttct tgggtctaaa tgctaagaag cgccagggca tgacaggtgg gcccaacaat 840
ggtggctatg atgatgacca gggatcatat gtgcaggtgc cccacgatca cgtggcttac 900
aggtatgagg tcctcaaggt cattgggaag gggagctttg ggcaggtggt caaggcctac 960
gatcacaaag tccaccagca cgtggcccta aagatggtgc ggaatgagaa gcgcttccac 1020
cggcaagcag cggaggagat ccgaatcctg gaacacctgc ggaagcagga caaggataac 1080
acaatgaatg tcatccatat gctggagaat ttcaccttcc gcaaccacat ctgcatgacg 1140
tttgagctgc tgagcatgaa cctctatgag ctcatcaaga agaataaatt ccagggcttc 1200
agtctgcctt tggttcgcaa gtttgcccac tcgattctgc agtgcttgga tgctttgcac 1260
aaaaacagaa taattcactg tgaccttaag cccgagaaca ttttgttaaa gcagcagggt 1320
agaagcggta ttaaagtaat tgattttggc tccagttgtt acgagcatca gcgtgtctac 1380
acgtacatcc agtcgcgttt ttaccgggct ccagaagtga tccttggggc caggtatggc 1440
atgcccattg atatgtggag cctgggctgc attttagcag agctcctgac gggttacccc 1500
ctcttgcctg gggaagatga aggggaccag ctggcctgta tgattgaact gttgggcatg 1560
ccctcacaga aactgctgga tgcatccaaa cgagccaaaa attttgtgag ctccaagggt 1620
tatccccgtt actgcactgt cacgactctc tcagatggct ctgtggtcct aaacggaggc 1680
cgttcccgga gggggaaact gaggggccca ccggagagca gagagtgggg gaacgcgctg 1740
aaggggtgtg atgatcccct tttccttgac ttcttaaaac agtgtttaga gtgggatcct 1800
gcagtgcgca tgaccccagg ccaggctttg cggcacccct ggctgaggag gcggttgcca 1860
aagcctccca ccggggagaa aacgtcagtg aaaaggataa ctgagagcac cggtgctatc 1920
acatctatat ccaagttacc tccaccttct agctcagctt ccaaactgag gactaatttg 1980
gcgcagatga cagatgccaa tgggaatatt cagcagagga cagtgttgcc aaaacttgtt 2040
agctgagctc acgtcccctg atgctggtaa cctgaaagat acgacattgc tgagccttac 2100
tgggttgaaa aggagtagct cagacctgtt tttatttgct caataactct actcatttgt 2160
atcttttcag cacttaattt taatgtaaga aagttgttca ttttgttttt ataaaataca 2220
tgaggacaat gctttaagtt tttatacttt cagaaacttt ttgtgttcta aaagtacaat 2280
gagccttact gtatttagtg tggcagaata ataacatcag tggcaggcca ctgattactt 2340
catgactgcc acgcatttac agattggtgt caaagacatt cactatgttt ttatggttca 2400
tgttatatcc tccccagggt gacagcccct taaggccctc cttttccctc catgctccag 2460
gtccatgcac aggtgtagca tgtcctgctt ccgtttttca taaattaatc tgggtgttgg 2520
gggtagtggg aggagaacgg tcagaatcaa agtgacattc taagaaaaac tgtaccttag 2580
agattttcct ctagtgctca aacaaataca aaataagatc cccaaggttt aaactgccca 2640
gttagcattc tgacattcta aaagccggca aagcagcttt tagtggataa atgggaatgg 2700
aaacgtgtgt gttcctccaa attttctagt atgatcggtg agctgttttg taaagaagcc 2760
tcatattaca gagttgcttt tgcacctaaa tttagaattg tattccatga actgttcctc 2820
ccttttctct gcttttctcc tctctgttcc tcttttaata ccacacgtct gttgcttgca 2880
tttagtttgt cttcttcctt cagctgtgta tcccagactg ttaatacaga aaagagacat 2940
ttcagctgtg attatgacca ttgtttcata ttccaattaa aaaaagaaca gcagcctagc 3000
tacttaaggt ggggatttcc atagttccaa agaagattta gcagattaga gtgagttcac 3060
acttttcagg tgccactgta aggttctctc agcctgggaa actatcaact ctttctttaa 3120
aaagaaagag ggttgaaaat cctctggacg aacagaagtc actttggctg ttcagtaagg 3180
ccaatgttaa caacacgttt agaggaggaa aagttcaacc tcaagttaaa tggtttgact 3240
tattcttcgt atcattagaa gaaccccaga gatagcattc ctctatttta ttttactttc 3300
ttttggattg cactgattgt ttttgtggga atgacacttt atctggcaaa gtaactgaga 3360
gtttggtaaa agaatatttt cttctctgaa taataattat tttcacagtg aaaatttcag 3420
tattttatca ctaatgtatg agcaatgatc tatatcaatt tcaaggcacg tgaaaaaaat 3480
tttttagtat gtgcaattta atatagaaag atttctgcct gtttggacaa taggttttgg 3540
gtagtacaga ttaggataag taagcttata tatgcacaga gattattgta ttacctgtaa 3600
attgatttac aagtacttaa aagcgtggtc cccagtgagg ccaagaaagt ttccggttaa 3660
gttctttaat aataatccta cagtttatct taagaaaaaa aaaaaggttt gaaaaaaaca 3720
ctttaattta ggcttcgttg gttgatggtg gaaaaaaatg ctcaggaaat atttcagata 3780
tttgccaaaa aaccagtaat aaggttacct tattaaaata gtgatatttg ctttactatt 3840
taaggtgtca ctgataaatt aatttgtact tctgtgttta gaaattatag cttcttttcc 3900
cttagtcaaa ttttttagca tattatacac atttctgtgt aatctgtgga agtgcaataa 3960
tatgttagta agttacattt taaataatgc tcatgtgaca atactcccaa tcaatggctt 4020
atagaattta aagatctgta tattagattt tggcttaaag gcatgagaag tataagactt 4080
ggtttggtgg ctttgtaaga ccaccagcct cttaatgatg gttagcttct ttaggtcatt 4140
aaatcaataa aaacatataa tgctgttttg ctcttctaat gctcctcttc catttccagt 4200
tatcttcaca tttacattta aatatacaaa cctgagcctg ccattattaa tttccctata 4260
aaatgacgat acatgtgaac atttataaat ggactaatac tgcttgtctt tcccccaccg 4320
cacaaaactg gttcttaaga tgccagcaat gaatttgaga ctatctttat ttataaatgg 4380
aaaccggaaa cttttatacc aaactataat aatgtgcagc actgtagggc tttttttttt 4440
ttccctccaa atacagtgaa atttttttat tcacaagagc tgccacatct cagcatttag 4500
taatagagct gctttaataa aattctagtt tgattgtcat gtcaaaaaaa gaaaaatgtt 4560
gcatctttgt gattttaaaa cataaattaa tgaaggctct gataggctat taggagttgg 4620
cttggaaaca gtttttggtc tcacaggtta ccattgtttg gggatgtctg agctgttttc 4680
agatctagga atagcacagt gttgtcttgt ctttggcagt ctcatttggc tctgtttctt 4740
gcaccaccag cgtgttcatt accacttaaa tatattgcta cagcagtgga acaacagagt 4800
ggtgcaagac actgtagatt aacggtagag gagaaattgt gcccttagtg ttaacaatgt 4860
gccttttgtt ctgaatgcca tgttgtaggg catgcatttt ttggcctctt taactcttcg 4920
aattctagtc agtaagaatg gaacccatct ctgcaaagat acatctgtct taaatatcta 4980
gttacaggcc ttaatagaaa ccataaggca tgactcatct tcaggcactg aaaaaagata 5040
accatcaggt agtgttacac aaggacttcc tatatttaag gggttaaaga tggtctttgt 5100
tgtatcttaa catcagactg atttttacat tttttttttg ttatgctaac actagacaaa 5160
aatcaactgt atttgtaaaa atttacctca aaccatttaa ttttatagtg tgattaatcc 5220
cagggcattt ggtatgaacc aaagtgcatt ccttttatat gtgcctggct ctagtaagga 5280
tggccaggga tttttacaat ttgggtgcaa ggcacttaag ccacttttaa acttaatggg 5340
tggtttgggg tcgtgttaaa tgactccatc agaatgttag aaaacacttt aggcatcagt 5400
agcattgggc catattggaa tcctaaagtg tgaattattt taaggagagc attcattttt 5460
gtaatttttt tcatcaaaaa tatttctggt aagcagaaga ctttttaaaa aaactgatct 5520
ggtctcggta aaggttttaa tattgcccaa cataatgctg taatagcatt aaaaaaagta 5580
tttgtgaact ctgtttctta ggggcttgta catctctctg ctatggacat acataaaatt 5640
aattgtaatt atactcagct caactgctac agttctgtct aggcagtggc ttgggttttt 5700
atcgagcaac aacttagaca cgtgactgta atatgctgca actgtgtgta ctgaaaatat 5760
gtgaaaatgg ttgaatgtgg actgtgtata tatgtatgta aaaatttctg tgagatgctg 5820
ctgtcgccac ttaacattaa atatgttcta gtggatttta atcctagtgg ccagttctat 5880
gatactgtat gtattataca gctgatgaca ggagtaagac tgtttagtga atatctgtta 5940
aattttattg ttgtggccag agataatttc agaataaaat tttaatgtcc taccttactt 6000
ctctcccctt tctaactata atttaactcc tgatctattt ctggtattat cctttgtcaa 6060
ttagcctgga gagggtttag aatgcaaaat ggatagctct atatcagggt cttgagaagt 6120
taaaataatt cattctacta gtttgttcat agcaatactt tattagttca atataagtat 6180
gcagattcca agtggaaaaa caaaggtttt agtaagtagt tcttgctttt cccaggatat 6240
tctattcctt cacctgtcag atttttatgt taactttttt atatatagcc tctgctgtgt 6300
tctttattat gctagagctt catatcttct tttattttaa ccttcacaat gatagttaag 6360
ctgggggagc agaacctgtc aattattccc caccagtctt cattcttttc tctgcacaag 6420
ttctggtaaa ttattctaat gtgctctaac cagttccacc caatgttttt taatgcttat 6480
gagtttgcag tttttgtact tggtggtctc tgtggttcac atttttttgt gttgtagtgt 6540
ctcctgcctc ggttggctca gaaaataagg cctaggaact gcaattagct catgatttgt 6600
caagttcagt tagtaccaag ctaagagttt acttacagat gacagcaagc agatgctcta 6660
gtaattcgtc agacattgca gggatattgt gtagtcagat attaccctct tgtggaaaga 6720
actacctcac atcattattt atttcccttc tgttaccaac agccaaggaa ttacttagtg 6780
tggctccctg catcaatact gggatatgct taaacaaggg aatgccataa gagttcccaa 6840
ttgcctcgtc atagcctggg ccatagattt ttgttactgc taatcttgct tcttaaagtt 6900
cacacccagt gcaaaaaacc caatcagcaa actaacccca aaatccaata tatttagaaa 6960
tgtaagtgtt aagagatgtg cattatgtac aaaattgaaa attggtgcta aagtggcaat 7020
gtcaatttaa aatttcttgt ccagatctga ctgactgact caggagatta tagttcctac 7080
tcattctctt tccttttatc agatctttca aaagcgcttt ttaaaattga tcaatgtgca 7140
attctgtttg agtctctaca gtcctatccc ttttggaatg aacagctaca caaataaata 7200
ttcttggaac ttcgaagttg tcttcaaact agctctagaa aatgtcccta gttgacatta 7260
gtgttggtct gttagaaggg gaaattgatt tgactgcttc atgttttgaa aagagcatta 7320
agagggattt gaggaaggta tatgtggctt tctttttttt tcttaagttt gaattacact 7380
tgatttcctt tgggttatta ggcagataaa cccttgtcat tagtaatact tagcactgtc 7440
caaaatgaaa aatgactgcc agtgtgttgc acatacataa gaaaattaca tcttactgcg 7500
aagtctttgg tttgtttcct tatttggttt gactttgact tactattttg ctatggtcat 7560
atccttaata tctgcggtac atttcatata tatatatggg gtgggagcat aattgccatt 7620
cccatgtgtc tcaaggaagc ttaatgagga aactaatgag ttaatattaa ctcttctgaa 7680
gaaagctgac attttaggag tattaagtca tctgtcgtta aggagcagca agaatatatt 7740
atgattgtat cacatgttcc agaagagcat taccccttac atagaaagct ccttggagat 7800
ttcatgatgt tggatgaaca tcagtttatc cttatacatc cctatgagct ataattatcc 7860
tcatttgata cttgaggaaa ctgaagtgac ttgctccaaa gttgactaca aaaacattgc 7920
agtttgaggc ttaggttgta atcaggtaat tttggtcttg gacagtaagg gaaaatccat 7980
aatacataaa acacaaaagt ttagaaaggg ggggaagttg agctagcaat gggcatttct 8040
attatttaag ttacatatca gtttccagga atatttttca aatgggacaa actaaaaagt 8100
tgaggactag agcatcgtag tgtctaagtg cacctaataa cttaatgcat gtgcacacac 8160
cctcagttaa tttgtaagag agtgacttct cattgttatt tgtggagagg ctaattatag 8220
tagcttcatt ctttattttc tgtgttctta aatttttttt tacatttgaa agtatgaaaa 8280
tactattttt gacactttac tgatactcag ggattaaaag ttaaatttta ctgactgtag 8340
cagcaggtaa atctcttaaa tttactcagg tttcctatcc tttgcctcca tatttaagaa 8400
aatatagaat gcctgccagg gaaatatata aaaataaaaa tttcaaatac aattttaaaa 8460
taccaatttg taaataaacc aattttacaa actaaaatat tgtgtctttc cttgcttttt 8520
atcccaattt atctcccctc ctaagtttga ggagttttat atattaaggc tatttcttca 8580
tttgtaaaaa tgaagtatgc tatttgcaaa gcaaaagccc atgaaaagcc ccaaatcatt 8640
taagtaaagc ttactgaatt gttttcaatt gttttgggag aaatgtaact aattataagc 8700
aatttatgtg gaccagcagc aaataaatgt atgagtaca 8739
<210> 4
<211> 3628
<212> DNA
<213> human (Homo sapiens)
<400> 4
agagccgcga gctggaccag ccgtgcaaat ctctagaaga tgacggtgtt ctttaaaacg 60
cttcgaaatc actggaagaa aactacagct gggctctgcc tgctgacctg gggaggccat 120
tggctctatg gaaaacactg tgataacctc ctaaggagag cagcctgtca agaagctcag 180
gtgtttggca atcaactcat tcctcccaat gcacaagtga agaaggccac tgtttttctc 240
aatcctgcag cttgcaaagg aaaagccagg actctatttg aaaaaaatgc tgccccgatt 300
ttacatttat ctggcatgga tgtgactatt gttaagacag attatgaggg acaagccaag 360
aaactcctgg aactgatgga aaacacggat gtgatcattg ttgcaggagg agatgggaca 420
ctgcaggagg ttgttactgg tgttcttcga cgaacagatg aggctacctt cagtaagatt 480
cccattggat ttatcccact gggagagacc agtagtttga gtcataccct ctttgccgaa 540
agtggaaaca aagtccaaca tattactgat gccacacttg ccattgtgaa aggagagaca 600
gttccacttg atgtcttgca gatcaagggt gaaaaggaac agcctgtatt tgcaatgacc 660
ggccttcgat ggggatcttt cagagatgct ggcgtcaaag ttagcaagta ctggtatctt 720
gggcctctaa aaatcaaagc agcccacttt ttcagcactc ttaaggagtg gcctcagact 780
catcaagcct ctatctcata cacgggacct acagagagac ctcccaatga accagaggag 840
acccctgtac aaaggccttc tttgtacagg agaatattac gaaggcttgc gtcctactgg 900
gcacaaccac aggatgccct ttcccaagag gtgagcccgg aggtctggaa agatgtgcag 960
ctgtccacca ttgaactgtc catcacaaca cggaataatc agcttgaccc gacaagcaaa 1020
gaagattttc tgaatatctg cattgaacct gacaccatca gcaaaggaga ctttataact 1080
ataggaagtc gaaaggtgag aaaccccaag ctgcacgtgg agggcacgga gtgtctccaa 1140
gccagccagt gcactttgct tatcccggag ggagcagggg gctcttttag cattgacagt 1200
gaggagtatg aagcgatgcc tgtggaggtg aaactgctcc ccaggaagct gcagttcttc 1260
tgtgatccta ggaagagaga acagatgctc acaagcccca cccagtgagc agcagaagac 1320
aagcactctg agaccacact ttaggccacc ggtgggacca aaagggaaca ggtgcctcag 1380
ccatcccaac agtgtcgtca gagggtcccc agggcatttt catggcaagt acccctctgc 1440
ccccactcca gcagtgcttc ccaaagtgtg ctctgtcacc tgctttgcaa tcggcttcca 1500
ttagcgcatg ttttattttg gtgtgacggt tggccctcct aaacacggac tttcctcagg 1560
ctggttcaag acggaaaagg actttcttct gttttcttcc aaagtgcaac cacagtggag 1620
agcccacggt gggcttagcc tgcctaggcc cttccatttc tcttctttga ccgtgctagg 1680
aattccagga aagtgcattc ctgccctggt gaccttttcc tatgtctagg ctcctccaca 1740
ggtgctgcta ttttgtgagc tccggctcct gtttagcttt tatttcagtt ctaacctcag 1800
tccagaaaca tatgtgaggt tgtttccctc ttcagccacg gctacaatac cggaaaatgc 1860
tagtttttat ttattttttt aagtagtgct tcctaaatgg tttgcatgag agccacctgg 1920
ggtacatgtt gaaaacttat ttggggtcta ccccaaacct aataacccaa atttggggat 1980
ggggcccagg aatatgcatt tttaaaaagt catctgccct tcccaggtga ttctgtaagt 2040
tgtccctcaa ctgtacttgg agaaatcgtg ttttaaagca gtagtccaca aagtattctg 2100
ctcatgtgcc cccaaaagta ttttgaaaaa tcatgtatac cctcacccat ctaagttgat 2160
atctaaaatt ttatctaagt tggtatctaa aatttttcat gggaagttaa atagttgaca 2220
aagtatgtat ttgctggtgt cgtgtaaata ttggtatttt aaaataaaaa ctgttacatc 2280
actattttaa acatatccag tacaatttaa atatcacaac aatttgacac ccttcattca 2340
tttataaaaa taaatgagct agttctttag tagttaaaca tttcaaattg gcttttctcc 2400
ttctgtattt ccataccact tttcagccaa gaatcctatc ataatgtaat ctattatgcc 2460
cgacatcttt taatcattca ccccattact tcttgtcaac aaaaaatata aatggaaatt 2520
ttttttttag ctcttgcttt aagtgtttgt ttgttatctc agtccagaac caatattatc 2580
gtaattaatt attggtatat aatgaaaacg gtattaattc ttggatgatt aaaagttttt 2640
ttattagaat gttctttatc ctaattagtt catttatcca agaatacatg aatgtgattt 2700
acagctgaga tggggttcaa cctcagctgt attccttgtt tctgtataga tgtaagcaca 2760
taaattcgat ggaatagaat tacgttaaca atgtttttac agttctttgg attcctttgg 2820
cattttgaca aagatcacag tgctctatca tcaagaatta ttaatgatga tctatcaact 2880
aacaaacaac ttgattagat tctcctttag tctgttgaaa gcagagaact gaaatccacc 2940
tgatttacca tggctttgcc agccagtcat tagcaccatt tacttttact atcgctgaca 3000
ttttcctttg ttcagtggcc ctgaggttct tacactctag ggggcagtgc accacaggaa 3060
gatagatcaa tgagggagga ttgcgagggg gaaggggagg aagcagagct ggcaggcctt 3120
agctacaggc tctctctcag gcagatccct tttaagatac atacaccatg cccacacatc 3180
ccatggagag agaccaatgc tttagtagat tacagaacag ctatgaaaag tccatgaatg 3240
aagatcacaa aaaggaaggc tttcttattt catactgtat tcttcagggt ggtaaaattt 3300
ctgcttttgg caaaaacata acagacggtt ccaaacatca gcataaagat cactcatccc 3360
ataccaccca caggtaggga ggaaggatgc tgtagtatat gaaaacaaaa gttttcacct 3420
gagctgagag catttagcat atcgtggttc tgtaacaata tcaaggacca gtgcagaatc 3480
tggctttctt ttctgatagg ctaccagtgt gtgtttatgt gtgctcattt tgtggttcta 3540
atcataatgg tacatataat tagggaagga tatggaagcc actttagaat cttattcatt 3600
tttaaatata aatatgcctt gtttcaaa 3628
<210> 5
<211> 4777
<212> DNA
<213> human (Homo sapiens)
<400> 5
gtttccggcc gccgtcgctg tccagggagg ctgaggcgag aggtagctgt ccgggtgggg 60
agcccgcact accttcttcc tcttcctcct cctcctccgg gtgaggggag cgaaggttgg 120
gggtccccga gcccatggac caggaggagg cggaggccgc cgagagccgg ggccccgcta 180
tgtggccctg agccccgtgt actggttctg cctgtctgga gggccatgga gaagaggctg 240
ggagtcaagc caaatcctgc ttcctggatt ttatcaggat attattggca gacatctgcg 300
aagtggttga gaagcctgta cctgttttat acttgctttt gcttcagcgt tctgtggttg 360
tcaacagatg ccagtgagag caggtgccag caggggaaga cacaatttgg agttggcctg 420
agatctgggg gagaaaatca cctctggctt cttgaaggaa ccccctctct ccagtcatgt 480
tgggctgcct gctgccagga ctctgcctgc catgtctttt ggtggctaga agggatgtgc 540
attcaggcag actgcagcag gccccagagc tgccgggctt ttaggacaca ctcctccaat 600
tccatgctgg tgtttttaaa aaaattccaa actgcagatg atttgggctt tctacctgaa 660
gatgatgtac cacatcttct ggggctaggt tggaactggg catcttggag gcagagccca 720
cccagagctg cactcagacc tgctgtatct tccagtgacc agcagagctt aatcaggaag 780
cttcagaaga gaggtagtcc cagtgacgta gttacaccta tagtgacaca gcattctaaa 840
gtgaatgact ccaacgaatt aggtggtctg actaccagtg gctctgcaga ggtccacaag 900
gcgattacaa tttccagtcc cctaaccaca gacctgactg cagagctgtc tggtgggcca 960
aagaatgtat cagtgcaacc tgaaatatca gagggtcttg ctactacgcc cagcactcaa 1020
caagtaaaaa gttctgagaa aacccagatt gctgtccccc agccagtggc tccctcctac 1080
agttatgcta cccctacccc ccaggcctct ttccagagca cctcagcacc atacccagtt 1140
ataaaggaac tggtggtatc tgctggagag agtgtccaga taaccctgcc taagaatgaa 1200
gttcaattaa atgcatatgt tctccaagaa ccacctaaag gagaaaccta cacctacgac 1260
tggcagctga ttactcatcc tagagactac agtggagaaa tggaagggaa acattcccag 1320
atcctcaaac tatcgaagct cactccaggc ctgtatgaat tcaaagtgat tgtagagggt 1380
caaaatgccc atggggaagg ctatgtgaac gtgacagtca agccagagcc ccgtaagaat 1440
cggcccccca ttgctattgt gtcacctcag ttccaggaga tctctttgcc aaccacttct 1500
acagtcattg atggcagtca aagcactgat gatgataaaa tcgttcagta ccattgggaa 1560
gaacttaagg ggcctctaag agaagagaag atttctgaag atacagccat attaaaacta 1620
agtaaactcg tccctgggaa ctacactttc agcttgactg tagtagactc tgatggagct 1680
accaactcta ctactgcaaa cctgacagtg aacaaagctg tggattaccc ccctgtggcc 1740
aacgcaggcc ccaaccaagt gatcaccctg ccccaaaact ccatcaccct ctttgggaac 1800
cagagcactg atgatcatgg catcaccagc tatgagtggt cactcagccc aagcagcaaa 1860
gggaaagtgg tggagatgca gggtgttaga acaccaacct tacagctctc tgcgatgcaa 1920
gaaggagact acacttacca gctcacagtg actgacacaa taggacagca ggccactgct 1980
caagtgactg ttattgtgca acctgaaaac aataagcctc ctcaggcaga tgcaggccca 2040
gataaagagc tgacccttcc tgtggatagc acaaccctgg atggcagcaa gagctcagat 2100
gatcagaaaa ttatctcata tctctgggaa aaaacacagg gacctgatgg ggtgcagctc 2160
gagaatgcta acagcagtgt tgctactgtg actgggctgc aagtggggac ctatgtgttc 2220
accttgactg tcaaagatga gaggaacctg caaagccaga gctctgtgaa tgtcattgtc 2280
aaagaagaaa taaacaaacc acctatagcc aagataactg ggaatgtggt gattacccta 2340
cccacgagca cagcagagct ggatggctct aagtcctcag atgacaaggg aatagtcagc 2400
tacctctgga ctcgagatga ggggagccca gcagcagggg aggtgttaaa tcactctgac 2460
catcacccta tcctttttct ttcaaacctg gttgagggaa cctacacttt tcacctgaaa 2520
gtgaccgatg caaagggtga gagtgacaca gaccggacca ctgtggaggt gaaacctgat 2580
cccaggaaaa acaacctggt ggagatcatc ttggatatca acgtcagtca gctaactgag 2640
aggctgaagg ggatgttcat ccgccagatt ggggtcctcc tgggggtgct ggattccgac 2700
atcattgtgc aaaagattca gccgtacacg gagcagagca ccaaaatggt attttttgtt 2760
caaaacgagc ctccccacca gatcttcaaa ggccatgagg tggcagcgat gctcaagagt 2820
gagctgcgga agcaaaaggc agactttttg atattcagag ccttggaagt caacactgtc 2880
acatgtcagc tgaactgttc cgaccatggc cactgtgact cgttcaccaa acgctgtatc 2940
tgtgaccctt tttggatgga gaatttcatc aaggtgcagc tgagggatgg agacagcaac 3000
tgtgagtgga gcgtgttata tgttatcatt gctacctttg tcattgttgt tgccttggga 3060
atcctgtctt ggactgtgat ctgttgttgt aagaggcaaa aaggaaaacc caagaggaaa 3120
agcaagtaca agatcctgga tgccacggat caggaaagcc tggagctgaa gccaacctcc 3180
cgagcaggca tcaaacagaa aggccttttg ctaagtagca gcctgatgca ctccgagtca 3240
gagctggaca gcgatgatgc catctttaca tggccagacc gagagaaggg caaactcctg 3300
catggtcaga atggctctgt acccaacggg cagacccctc tgaaggccag gagcccgcgg 3360
gaggagatcc tgtagccacc tggtctgtct cctcagggca gggcccagca cactgcccgg 3420
ccagtcctcc tacctcccga gtctgcgggc agctgctgtc ccagcatctg ctggtcattt 3480
cgccctgaca gtcccaacca gaacccctgg gacttgaatc cagagacgtc ctccaggaac 3540
ccctcaacga agctgtgaat gaagaggttt cctctttaaa cctgtctggt gggcccccag 3600
atatcctcac ctcagggcct cctttttttg caaactcctc ccctcccccg agggcagacc 3660
cagccagctg ctaagctctg cagctcccca gtggacagtg tcattgtgcc cagagtgctg 3720
caaggtgagg cctgctgtgc tgcccgcaca cctgagtgca aaaccaagca ctgtgggcat 3780
ggtgtttccc tctctggggt agagtacgcc ctctcgctgg gcaaagagga agtggcaccc 3840
ctcccctcac cacagatgct gagatggtag catagaaatg atggccgggc gcggtggctc 3900
acgcctgtaa tcccagcact ttgggaggcc gaggcgggcg gatcatgagg tcaggagatc 3960
aagaccaccc tggctaacac ggtgaaaccc catctctact aaaaataaaa aaaaaaatta 4020
gccgggtttg gtggcgtatg cctgtaatcc cagctactcg ggaggctgag gcaggagaat 4080
tgcttaaacc tgggaggtgg aggctgcagt gagccaagat cgtgccactg cactccagcc 4140
tgagtgacag agcaagactc cgtcaaaaaa aaaaaaaaaa aaaaagaaat gatatctggc 4200
ccccccttaa cactggagcc ccactccctt ctcccatccg gcccgagatt agggaggatt 4260
gactgtgtca gggatggcgg gtggcctctc tcgctgccag ggcccttgtc agagcagcca 4320
ggctggacag acggcctccc tcctctccat ctgaccggca cctgctgctt cggggcttag 4380
gccaccgctc cctgtcccca gaggagatag ccccagatgg actggaatgt tgtggcatga 4440
gagcgcatgt gtgcgatggc cccgctgtgg tcccctctct gtccctccat ctgtatgtgt 4500
tctgtgtccc ttgcatgtgt gcgtgttaga gtgagcgcgt atgcatcaac tcattgggct 4560
cttggctgct cacaaggcaa atttgacttg gaaagacttt catctccttg gaaccaagac 4620
ttcctgagtc cccctcaccc tggccctgtt ccaccatggt tatctgggta ttggggaatg 4680
gaaactttgg gggagtgact ttttaaagag acacttataa tttctactac tgcactactg 4740
tccattgtgg gatgattaaa catggtattt aactgtg 4777
<210> 6
<211> 2653
<212> DNA
<213> human (Homo sapiens)
<400> 6
gtgcgcggcg actgcgacgg gcagtggcag tcatggcggc tcagtgcgtg aggttggcgc 60
ggcgcagtct tcctgctttg gcgttgtctc tcaggccatc tccccggttg ttgtgcacag 120
ccacgaaaca aaagaacagt ggccagaacc tggaagagga catgggtcag agtgaacaga 180
aggcagatcc tcctgctaca gagaagaccc tcctggaaga gaaggtcaag ttggaggaac 240
agctgaagga gactgtggaa aaatataaac gagctttggc agacactgag aacttacggc 300
agaggagcca gaaattggtg gaggaggcaa aattatacgg cattcaagcc ttctgcaagg 360
acttgttgga ggtggcagac gttctggaga aggcaacaca gtgtgttcca aaagaagaaa 420
ttaaagacga taaccctcac ctgaagaacc tctatgaggg gctggtcatg actgaagtcc 480
agatccagaa ggtgttcaca aagcatggct tgctcaagtt gaaccctgtc ggagccaagt 540
tcgaccctta tgaacatgag gccttgttcc acacaccggt tgaggggaag gagccaggca 600
cagtggccct agttagcaaa gtggggtaca agctgcatgg gcgcactctg agacccgccc 660
tggtgggggt ggtgaaggaa gcttagctgc tgttgatggg gtgggtgttt ttaaactcac 720
ttgatgtaac tctcaaggct ggttcattgt ttctcatcta tgagtacgtg tgaccttttc 780
ccaaacctta ttggaaacct taagtaacca gtggctaaac agaaaagccg gttgcccaac 840
tgcattaatg aactctaatt cgggagtctg ttccctttta gtgccacgcg ttgaatagtt 900
ccacatactt tcagaagagc tcagcagggc cctgcctggt ctcccgagca tcatgagtaa 960
cgtgtctgct cagactctgc tgacaccaaa gtattttaaa caaataaaag gtcttgggga 1020
attctgtttg gctacctggg cacgccagtc tgcaccatgt gtccctgcgg cgcatgagtg 1080
actggcgtat ttagcccgtc acatttcatt cgctgaagga aaggcaagag agttgaaaca 1140
tttttcttac ttaaaaaaaa tgatctttgt gaagaacata gtgagttcgt ttgtcttcag 1200
tcaacagcgg ctgaaactga ccactgagaa atgggtgtgg gcactgacag ttctccccca 1260
ttatttggcc aggaattgag cttggcttgg caaagttcct tttaccctgt tctgttcatc 1320
taaatgcaga catatttaaa tcatattcaa ctagttacta atgacctcaa gttgtattcc 1380
ctggcaaaat ggactttctc aaaataggac tgcacgcttg gtgtacttta aatgttaatg 1440
tttaatttaa aatttttatt taagaggatt aaagccctaa tgtttatttt cctactttct 1500
gaaaacaatt ttgtgtcctc tcatggagat ccttgccgct gaggcaagca tggcttagcc 1560
ttcccattct ctactccagc ccagaagctg tcagcttgac acgtgcgtgc gtgcacattc 1620
acgtacacac atatacaggc ttctacacag aaagggagag ccacactccc ccagtgcagc 1680
tgcagcccgt ccggtaagaa tacgaaacac ccaggagcca cagcaagggc acaggatttg 1740
caaaatcatc ttgccaaagg gctgttcctc atttacacgg tcatccaggg cttagaaaaa 1800
ggctgaatga ttggcgtctg ttacaaaaaa gagaaaagaa cctttcgctg cctttgcttc 1860
tagaatggaa gatacttgtg aaagccattt gctgcacagg aaagatgggg cagtttattt 1920
cacttctaat tttaaaagac gcaagtaatg gtcccataat acttcatctt gggataccat 1980
tcccaaacat gttccacctt taagatgcct taagttaatt tggtcagaaa caactaaagg 2040
cagcatcgtg tattgaagaa aacatgactg ggagctccag cgctgcctgt tttcacgctg 2100
tggggttgtg agtgcatcat cacccctgga gctcccgagt taaatggagg ctaagaaaag 2160
taatttatca actcatttct gtgaatgttt gcagtctcct accgtctcaa ctacagctgc 2220
agttgctaaa aagcacttaa ctcgtaacct agaggcaata tagcttaagt agcaaaatat 2280
ttttttacag taagcttcag tcatccatag tcactataag ttggttatca tctgaaatgc 2340
ttagaaccag aattgtttca aacttggggg gttttcggat tttggaatat agtcaagcat 2400
ggcttaacca cagggatgtg ttctgagaaa tgcgctgtca ggcagttttt cctgtgaaca 2460
ccatgtgtac ctacatggac ctaaaaaaca ggtggtggag cctcctccac acctaggcta 2520
tatggtgtat gtagcctgtt gctctagact ggagggcacg ttactgtact gatactgtag 2580
gcaactgtta acacaatggt atctgtgtat ctgaacataa catagtaaag gtacagtgca 2640
aactgtgttc taa 2653
<210> 7
<211> 7037
<212> DNA
<213> human (Homo sapiens)
<400> 7
agaaccccga tcgctgagga gcaagggggc gctaggaaag ggaactgggt tgcgacggtc 60
cggcgagaga gagctggggt gctggggtgc ggggaagttg gggagcagag gccgcttggt 120
gtccgagtag ggtaagaccg caccgaccca gtccgttagg aaagaaggga aacgaggcaa 180
ttgtcgggcg gatccccgga cggagggcta aggttgtgtg gaaggcgctg ctccccggat 240
ggcgaccgca gatactccgg ccccggcctc cagtggcctc tcgccgaagg aagaagggga 300
gcttgaagat ggggaaatca gtgacgacga taataacagc cagatacgga gtcggagcag 360
cagcagcagc agcggcggcg ggctgttacc ctatccgcgg cgaaggcctc ctcactcggc 420
ccggggcggt ggatctggcg gaggcggtgg ctcttcctcg tcatcgtcct cttctcagca 480
gcagctgagg aatttctcac gctcgcggca cgcgtctgag cggggccacc tcaggggacc 540
cagcagctac cgacccaaag aaccgttccg gtctcatccg ccttctgtac ggatgccttc 600
gagctcactg tccgaaagca gtccccggcc gtctttctgg gagcggagcc acctcgcctt 660
ggaccgtttc cgctttcgag gcaggcctta ccggggtggg agtcgctgga gtcgggggcg 720
aggagtgggt gagcgaggag gcaagccggg gtgcagacct cctctgggag gaggagcagg 780
atccgggttc agcagcagtc agagctggcg agagccctct ccacctcgga agagctccaa 840
aagttttgga aggtctccat caagaaaaca aaattattca tcaaaaaatg aaaactgtgt 900
ggaagaaact tttgaagatt tgcttttaaa gtataaacaa atacagttgg aactagaatg 960
catcaataag gatgaaaaac tagcattgag tagcaaagaa gagaatgtgc aggaagatcc 1020
taaaacattg aacttcgagg accaaactag cactgataat gtcagtatta caaaggattc 1080
aagtaaagaa gtagctcctg aggagaaaac acaagtcaaa acttttcagg catttgaatt 1140
aaaaccactc aggcaaaaat tgactttacc aggagataag aaccgtttga aaaaagttaa 1200
agatggagca aaaccacttt ccctgaaatc cgacactact gattctagtc aaggattaca 1260
agataaagaa caaaatttaa caagaagaat tagtacctca gatattctgt ctgaaaagaa 1320
acttggtgaa gatgaagagg aactatctga attacagctt cgccttttgg ctcttcagtc 1380
agccagtaaa aaatggcaac aaaaagaaca gcaggtgatg aaagaaagca aagaaaagtt 1440
gactaagacg aaaactgtac agcaaaaagt taaaacaagt acaaaaacac attcggccaa 1500
aaaagttagc actacagcta aacaagcatt gaggaagcag caaacaaagg catggaagaa 1560
actacaacaa caaaaagagc aggaaagaca gaaagaagag gatcagcgga aacaagctga 1620
agaagaagag agaaggaaaa gagaggaaga aatcagaaaa attcgagatc tctcaaatca 1680
ggaagaacag tacaatcgat tcatgaaatt ggttggtggc aagaggagat caagaagtaa 1740
atcttcagat cctgacctga ggcgatcctt agataagcaa cctactgata gtggaggagg 1800
catttatcag tatgataact atgaagaagt tgctatggat acagatagtg aaaccagttc 1860
tccagctcct tcaccagtgc aaccgccatt tttctctgaa tgttcattgg ggtatttttc 1920
tccagcacca tctctttctt tgcctccacc acctcaggtt tcttctctgc cacctttgag 1980
ccagccttat gtggaaggct tgtgtgtttc tcttgaacct ctacctcctc taccaccatt 2040
accacctctc ccacctgaag atccagaaca gcctccaaaa ccaccttttg cagatgagga 2100
agaggaggaa gaaatgctgc ttcgagaaga actacttaaa tctctagcaa ataaaagagc 2160
ttttaagcca gaggaaacat ccagtaatag tgacccacct tcacctccag ttctgaacaa 2220
ttcacatcct gtgccaagaa gcaatctatc aatagtcagt attaacacag tgtctcagcc 2280
taggatacag aatccaaagt ttcacagagg accccgtctt ccacgaactg tgatctcgct 2340
tccaaagcat aaatcagtgg ttgtaacact aaatgattca gatgatagtg aatctgatgg 2400
agaggcttcc aagtcaacaa atagtgtttt tggtggatta gagtccatga ttaaagaagc 2460
aagacgaact gctgagcaag cttcaaaacc gaaagtacct ccaaaatctg aaaaagaaaa 2520
tgatcctctg cgaacaccgg aggctttgcc tgaagaaaag aagattgaat atagattgtt 2580
aaaggaagag attgccaacc gtgagaaaca gcgtttgatt aaatcagatc agctgaagac 2640
aagttcatca tccccagcaa actctgatgt ggaaattgat ggtattggca ggatagcaat 2700
ggttactaag caggttacag atgcagaatc aaaactgaaa aaacatagga ttctcttgat 2760
gaaagatgaa tctgttttaa agaatttagt gcaacaagaa gctaagaaga aagaatctgt 2820
tagaaatgct gaagcaaaga ttacaaaact tacagaacag cttcaagcaa ctgaaaaaat 2880
tcttaatgtt aacagaatgt ttttgaagaa gcttcaggaa caaattcaca gagttcaaca 2940
gcgtgttaca attaagaaag ctttgactct aaaatatgga gaagagcttg ctcgggcaaa 3000
ggcagtggcc agtaaagaaa taggaaaacg taaactggaa caagatcgct ttgggccaaa 3060
caaaatgatg agactggaca gttctccagt atcaagtcca agaaagcatt cagcagaact 3120
aattgctatg gagaaaagac ggttacaaaa gctagaatat gaatatgccc tgaaaattca 3180
aaaattaaaa gaagcccgtg cccttaaagc aaaggaacaa caaaatatct ctccagttgt 3240
ggaagaggaa cccgaatttt ctttacctca accctcactt catgatctga cacaagataa 3300
attaaccctg gacactgaag aaaatgatgt tgatgatgaa attttgtctg gttcaagcag 3360
agagcgaaga agatcttttt tagaatccaa ttattttact aaacctaacc ttaagcacac 3420
tgatactgct aacaaagaat gcataaacaa acttaataaa aatactgtag aaaaaccaga 3480
actttttcta gggttaaaaa ttggtgaatt gcaaaaattg tattcaaaag ctgacagcct 3540
aaaacagctg attttaaaaa ccaccacagg cattacagag aaggttttgc atggtcagga 3600
gatttctgta gatgtggatt ttgtcacagc acaaagtaaa acaatggaag tgaagccatg 3660
tccttttaga ccctaccata gtcctcttct agtttttaag tcctacagat ttagtccata 3720
ttatcgaacc aaggaaaaac ttcccctgag ctcagtatca tacagtaata tgattgaacc 3780
ggatcagtgt ttctgccgtt ttgatttaac aggaacatgt aatgatgatg attgtcaatg 3840
gcagcatata caagactata cacttagccg aaaacagtta ttccaggaca ttctgtcata 3900
taatctgtct ttgattggtt gtgcagagac aagtactaat gaagaaatta ctgcttcagc 3960
agaaaaatat gttgagaaac tttttggagt aaacaaagat cgaatgtcaa tggaccagat 4020
ggctgttctc cttgttagca atatcaatga aagtaaaggt catactcctc catttacaac 4080
ctacaaagat aaaagaaagt ggaagccaaa gttttggaga aaacctattt cagataatag 4140
cttcagtagt gatgaggaac agtctacagg accaattaag tatgctttcc agccagagaa 4200
ccaaataaat gttccagctc tggatacagt tgtcactcca gatgatgtca gatactttac 4260
aaatgagact gatgacatcg ctaatttaga agcaagtgtg cttgaaaatc cttctcatgt 4320
acaactttgg ctcaagcttg cgtacaagta cttgaatcaa aatgaggggg agtgctcaga 4380
atccttggat tctgctttaa atgttctggc gcgagcattg gaaaataaca aagacaatcc 4440
agaaatttgg tgccattacc tcagattgtt ctcaaaaaga ggaaccaagg acgaggtgca 4500
ggaaatgtgt gaaacagctg ttgaatatgc tccagattat caaagctttt ggacttttct 4560
acacctagaa agtacctttg aagaaaagga ttacgtatgt gagagaatgt tggagtttct 4620
gatgggagca gccaagcagg aaacatccaa tattttgtcc tttcagcttt tagaggctct 4680
tttgtttaga gttcagctgc acatatttac tggaagatgc caaagtgcac tggcaatttt 4740
acagaatgca ttgaaatctg ctaatgatgg aatagtagct gaatacctta aaaccagtga 4800
tcgatgtttg gcatggttgg cctacataca tcttattgaa ttcaacattc tcccttcaaa 4860
attttatgat ccatctaatg ataatccttc aagaattgtt aacactgaat catttgtaat 4920
gccatggcaa gctgttcaag atgtaaagac taatcctgac atgttgttag cagtttttga 4980
agatgcagtg aaagcttgca cagatgagag ccttgctgtt gaggaaagaa tagaggcctg 5040
ccttccactt tacacaaaca tgattgctct gcaccaactc ctggagaggt atgaggctgc 5100
aatggagctt tgtaaatctt tattggaatc atgtcctatt aactgccagt tgctggaagc 5160
tcttgttgca ttatatttgc aaacaaatca gcatgacaaa gccagagcag tgtggcttac 5220
tgcatttgaa aaaaatcctc agaatgcaga ggttttttat catatgtgca aattcttcat 5280
cttacagaat cgaggcgata atcttcttcc atttttgcgg aaatttattg catccttctt 5340
taaaccgggg tttgagaagt ataataactt ggatctgttt cggtatctct taaatattcc 5400
aggaccaatt gacattccat ctcgtttatg taaagggaat tttgatgatg atatgtttaa 5460
ccaccaagtt ccttatttgt ggctgattta ctgcctttgt catcctcttc aatcaagtat 5520
taaagaaaca gtggaggcat atgaggcagc attaggggtg gctatgagat gtgatatagt 5580
acagaagata tggatggatt atcttgtctt tgcaaataat agagctgctg gatccagaaa 5640
caaagttcaa gaattcaaat tttttactga tttagtgaat agatgtttgg ttacagtccc 5700
tgcccgatac cccattcctt ttagcagtgc tgattactgg tccaactatg aatttcataa 5760
tagggttatt ttcttttatt tgagctgtgt tccaaagacc cagcattcca aaaccttgga 5820
acggttttgt tcagttatgc cagctaattc tggacttgca ttgaggttac ttcaacatga 5880
atgggaagaa agcaatgttc agattctgaa acttcaagcc aagatgttta catataatat 5940
cccaacatgc ctggccacct ggaaaatagc cattgctgct gagattgttc taaagggaca 6000
aagagaggtc caccgtttat atcagagagc cttacagaag ttacctcttt gtgcatcact 6060
gtggaaagat caactcttgt ttgaagcatc agaaggaggt aaaactgata acctgagaaa 6120
actagtttcc aagtgccaag agattggagt cagcctaaat gagctcttaa atttaaacag 6180
taacaaaaca gaaagcaaga atcactgaac actgggtgca gtcagttcta agtccttata 6240
ataattgcca aaattatttg aatgattctt caagattagg ctgatccctg gctaaggtct 6300
gtgtaaggca gacaagcgtt attgatcata tcaagttccc tacaatatcc tgtcctcaaa 6360
accggaagca atgaacatga tcctcttcgg ttggataaat gaacttcctg tttggcctgc 6420
ttctaggccc tgccagattc tcataacatc atatacgtaa gtatagttcc tcaaagtgac 6480
tgacatttat tttaattttg ctttgttttt ttttattttc tcccccattc ctttattttg 6540
tgttattcct gactcacttg acactctctg atgcctgaga gattcctgtt tgggatttaa 6600
tatccagggc tgtgtttaca gtaaaaaaag caggcagtcc cttttagttt ttccttttta 6660
aatttttttg agattcttca tttcaggatt taaaactata gcagtccatc ttaaggaaag 6720
tgtaactgcc atggccacaa gtctgctagt tgcacttgaa tgctctatca gggttgttta 6780
ttaccctttc tacgttctgg actccttgcc gagactgttt aacttgaaga ttaaagaaac 6840
tattgcaaat gccagtgcat cagaacctaa gagtggtcaa atattatgtg caattttttt 6900
gtaaagaaat tttaatttat aataaagttt aacagtttaa agaacagtta atatttgaac 6960
tgctttgtat tgaaatacta ctttgtagta ttgaaattgt ttatatactt ttttaatata 7020
agttaacttt ctaaaaa 7037
<210> 8
<211> 1481
<212> DNA
<213> human (Homo sapiens)
<400> 8
ccttatctgc actgggccag catcctccgg ccgctgcgcc gccaggggtg agagggagga 60
aaccgggccg ccgggggcgg ggagaaggcg ggccggcccg ggagccgctc actttccctg 120
ggggggacct acgcggagac ctcggctatc ctggccttcc gaggcccacg aggaggcgcg 180
gcccaacgcc ggggcctgga gcattgaggc cggaccctcg cgagacagca gagcctggcc 240
tgacgctgga aaccacaccc tggcccagac tgccagccct gacgggacag agccagggca 300
ctcaccaggc tgcaagaaca gtgctggggt gagtaccccc acgtcggggt ccatgtgccc 360
gcctcaggca caggcagagg tgggccccac catgactgag aaggcagaga tggtgtgtgc 420
ccccagccca gcgcctgccc caccccctaa gcctgcctcg cctgggcccc cgcaggtgga 480
ggaggtgggc caccgaggag gctcctcgcc ccccaggctg ccacctggtg taccagtgat 540
cagcctgggc cacagcaggc ccccaggggt agccatgccc accacagagc tgggcactct 600
gcggcccccg ctgctgcaac tctccaccct gggaactgcc ccgcccactt tggccctgca 660
ctaccaccct caccccttcc tcaacagtgt ctacattggg ccagcaggac cttttagcat 720
cttccctagc agccggttga agcggagacc aagccactgt gagctggacc tggctgaggg 780
gcaccagccc cagaaggtgg cccggcgcgt gttcaccaac agccgggagc gctggcggca 840
gcagaacgtt aacggcgcct tcgccgagct gaggaagctg ctgccgacgc acccgcccga 900
ccggaagctg agcaagaacg aggtgctccg cctagccatg aagtacatcg gcttcctggt 960
gcggctgctg cgcgaccaag ccgcagctct ggccgcaggc cccacccctc ccgggcctcg 1020
caaacggccg gtgcaccggg tcccagacga cggcgcccgc cggggatccg gacgcagggc 1080
cgaggcggca gcgcgctcgc agcccgcgcc cccggccgac cccgacggca gccccggtgg 1140
agcggcccgg cccatcaaga tggagcaaac cgctttgagc ccagaggtgc ggtgaccgca 1200
cgcggcagca cctctgagcc ggagggcacc agggactcgg cccagggccg tcaaggaaag 1260
ggcagtggac gtgctgcgca tgttcgggag cgaactcccc cgaagaagga ccagtgaaga 1320
cgtcaggggc aaggtctcgg gggtccggaa gggtgatcat cgacccccaa gggacccgca 1380
gacccttaaa aaaatcaccc acaaccctct ggaagtggcc ttgcccggtc cccttcccag 1440
gggcgaggtc ggcaaagcaa catggcagag cagtcatagg a 1481
<210> 9
<211> 3735
<212> DNA
<213> human (Homo sapiens)
<400> 9
gccagcccgc gggagaggcc cagcgggagt cgcggaacag caggcccgag cccaccgcgc 60
cgggccccgg acgccgcgcg gaaaagatga atttacaacc aattttctgg attggactga 120
tcagttcagt ttgctgtgtg tttgctcaaa cagatgaaaa tagatgttta aaagcaaatg 180
ccaaatcatg tggagaatgt atacaagcag ggccaaattg tgggtggtgc acaaattcaa 240
catttttaca ggaaggaatg cctacttctg cacgatgtga tgatttagaa gccttaaaaa 300
agaagggttg ccctccagat gacatagaaa atcccagagg ctccaaagat ataaagaaaa 360
ataaaaatgt aaccaaccgt agcaaaggaa cagcagagaa gctcaagcca gaggatatta 420
ctcagatcca accacagcag ttggttttgc gattaagatc aggggagcca cagacattta 480
cattaaaatt caagagagct gaagactatc ccattgacct ctactacctt atggacctgt 540
cttactcaat gaaagacgat ttggagaatg taaaaagtct tggaacagat ctgatgaatg 600
aaatgaggag gattacttcg gacttcagaa ttggatttgg ctcatttgtg gaaaagactg 660
tgatgcctta cattagcaca acaccagcta agctcaggaa cccttgcaca agtgaacaga 720
actgcaccag cccatttagc tacaaaaatg tgctcagtct tactaataaa ggagaagtat 780
ttaatgaact tgttggaaaa cagcgcatat ctggaaattt ggattctcca gaaggtggtt 840
tcgatgccat catgcaagtt gcagtttgtg gatcactgat tggctggagg aatgttacac 900
ggctgctggt gttttccaca gatgccgggt ttcactttgc tggagatggg aaacttggtg 960
gcattgtttt accaaatgat ggacaatgtc acctggaaaa taatatgtac acaatgagcc 1020
attattatga ttatccttct attgctcacc ttgtccagaa actgagtgaa aataatattc 1080
agacaatttt tgcagttact gaagaatttc agcctgttta caaggagctg aaaaacttga 1140
tccctaagtc agcagtagga acattatctg caaattctag caatgtaatt cagttgatca 1200
ttgatgcata caattccctt tcctcagaag tcattttgga aaacggcaaa ttgtcagaag 1260
gcgtaacaat aagttacaaa tcttactgca agaacggggt gaatggaaca ggggaaaatg 1320
gaagaaaatg ttccaatatt tccattggag atgaggttca atttgaaatt agcataactt 1380
caaataagtg tccaaaaaag gattctgaca gctttaaaat taggcctctg ggctttacgg 1440
aggaagtaga ggttattctt cagtacatct gtgaatgtga atgccaaagc gaaggcatcc 1500
ctgaaagtcc caagtgtcat gaaggaaatg ggacatttga gtgtggcgcg tgcaggtgca 1560
atgaagggcg tgttggtaga cattgtgaat gcagcacaga tgaagttaac agtgaagaca 1620
tggatgctta ctgcaggaaa gaaaacagtt cagaaatctg cagtaacaat ggagagtgcg 1680
tctgcggaca gtgtgtttgt aggaagaggg ataatacaaa tgaaatttat tctggcaaat 1740
tctgcgagtg tgataatttc aactgtgata gatccaatgg cttaatttgt ggaggaaatg 1800
gtgtttgcaa gtgtcgtgtg tgtgagtgca accccaacta cactggcagt gcatgtgact 1860
gttctttgga tactagtact tgtgaagcca gcaacggaca gatctgcaat ggccggggca 1920
tctgcgagtg tggtgtctgt aagtgtacag atccgaagtt tcaagggcaa acgtgtgaga 1980
tgtgtcagac ctgccttggt gtctgtgctg agcataaaga atgtgttcag tgcagagcct 2040
tcaataaagg agaaaagaaa gacacatgca cacaggaatg ttcctatttt aacattacca 2100
aggtagaaag tcgggacaaa ttaccccagc cggtccaacc tgatcctgtg tcccattgta 2160
aggagaagga tgttgacgac tgttggttct attttacgta ttcagtgaat gggaacaacg 2220
aggtcatggt tcatgttgtg gagaatccag agtgtcccac tggtccagac atcattccaa 2280
ttgtagctgg tgtggttgct ggaattgttc ttattggcct tgcattactg ctgatatgga 2340
agcttttaat gataattcat gacagaaggg agtttgctaa atttgaaaag gagaaaatga 2400
atgccaaatg ggacacgggt gaaaatccta tttataagag tgccgtaaca actgtggtca 2460
atccgaagta tgagggaaaa tgagtactgc ccgtgcaaat cccacaacac tgaatgcaaa 2520
gtagcaattt ccatagtcac agttaggtag ctttagggca atattgccat ggttttactc 2580
atgtgcaggt tttgaaaatg tacaatatgt ataattttta aaatgtttta ttattttgaa 2640
aataatgttg taattcatgc cagggactga caaaagactt gagacaggat ggttactctt 2700
gtcagctaag gtcacattgt gcctttttga ccttttcttc ctggactatt gaaatcaagc 2760
ttattggatt aagtgatatt tctatagcga ttgaaagggc aatagttaaa gtaatgagca 2820
tgatgagagt ttctgttaat catgtattaa aactgatttt tagctttaca aatatgtcag 2880
tttgcagtta tgcagaatcc aaagtaaatg tcctgctagc tagttaagga ttgttttaaa 2940
tctgttattt tgctatttgc ctgttagaca tgactgatga catatctgaa agacaagtat 3000
gttgagagtt gctggtgtaa aatacgtttg aaatagttga tctacaaagg ccatgggaaa 3060
aattcagaga gttaggaagg aaaaaccaat agctttaaaa cctgtgtgcc attttaagag 3120
ttacttaatg tttggtaact tttatgcctt cactttacaa attcaagcct tagataaaag 3180
aaccgagcaa ttttctgcta aaaagtcctt gatttagcac tatttacata caggccatac 3240
tttacaaagt atttgctgaa tggggacctt ttgagttgaa tttattttat tatttttatt 3300
ttgtttaatg tctggtgctt tctgtcacct cttctaatct tttaatgtat ttgtttgcaa 3360
ttttggggta agactttttt tatgagtact ttttctttga agttttagcg gtcaatttgc 3420
ctttttaatg aacatgtgaa gttatactgt ggctatgcaa cagctctcac ctacgcgagt 3480
cttactttga gttagtgcca taacagacca ctgtatgttt acttctcacc atttgagttg 3540
cccatcttgt ttcacactag tcacattctt gttttaagtg cctttagttt taacagttca 3600
ctttttacag tgctatttac tgaagttatt tattaaatat gcctaaaata cttaaatcgg 3660
atgtcttgac tctgatgtat tttatcaggt tgtgtgcatg aaatttttat agattaaaga 3720
agttgaggaa aagca 3735
<210> 10
<211> 4414
<212> DNA
<213> human (Homo sapiens)
<400> 10
ctctgtgtca ggatcgcaga aagtatgtcc cttctctcac catgagctgg ctctccagtt 60
cccagggagt ggtactaaca gcctaccacc ccagcggcaa ggaccagacc gtcgggaaca 120
gccatgcaaa ggcaggggag gaagccacct cgagtcgcag atatggccag tacactatga 180
accaggaaag caccaccatc aaagttatgg agaagcctcc atttgatcga tcaatttccc 240
aggattcttt ggatgaacta tctatggaag actattggat agaactagaa aacatcaaga 300
aatctagtga aaacagccaa gaagatcaag aggtggttgt tgtcaaagag cctgatgagg 360
gagaattgga agaagagtgg cttaaagagg ccggtttatc caatctcttc ggagagtctg 420
ctggagatcc acaggaaagc attgtgtttt tatcaacatt gacgcggacc caggcagcag 480
cagttcagaa gcgagtagag acggtctccc agaccttgag gaaaaaaaac aaacagtacc 540
agattcctga cgtcagagac atatttgctc aacagagaga atcaaaagaa acagctccag 600
gtggcactga atcgcagtca cttagaacaa atgaaaacaa ataccaagga agagatgacg 660
aggcatctaa ccttgttggt gaagagaagc tgatcccacc tgaggagacg cctgcccctg 720
aaacagacat caacctggag gtatcatttg ccgagcaagc actcaatcag aaagagagct 780
ccaaggagaa aatccagaag agcaaaggcg atgatgccac attacctagt ttcagattgc 840
caaaagacaa aacgggtacc acaaggattg gtgacctcgc accccaggac atgaagaaag 900
tttgccattt agccctaatt gagctgactg ccctctatga tgtattgggt attgagctga 960
aacaacaaaa agctgtgaaa atcaaaacaa aagattctgg tcttttttgc gttccattga 1020
cagcgctatt agaacaagat cagaggaaag taccaggaat gcgaataccc ttgatctttc 1080
aaaaactgat ttctcgaatt gaagagagag gtttggaaac agaaggcctc ttacggatcc 1140
ctggagctgc cattagaatc aagaatcttt gccaagaact agaagcaaag ttttatgaag 1200
ggacttttaa ttgggaaagt gtcaaacagc atgatgccgc cagcctgctg aagctcttca 1260
ttcgggagtt gccccagcca ctgctcagtg tggagtatct caaagccttt caggctgtcc 1320
agaatcttcc aaccaagaag cagcaactac aggctttgaa ccttcttgtc atcctcctac 1380
ctgatgcaaa cagggacaca ctgaaggccc ttcttgaatt tctccaaaga gtaatagata 1440
ataaagaaaa aaataaaatg acagtcatga atgtagcaat ggtcatggcc ccgaatctct 1500
ttatgtgtca tgcattggga ttgaagtcca gtgaacagcg agaatttgta atggcagctg 1560
ggacagcaaa taccatgcac ttattgatta agtaccaaaa acttctgtgg acaattccca 1620
agtttattgt aaaccaagtg aggaagcaaa acacggaaaa tcataaaaag gataaaagag 1680
ccatgaagaa attgctgaag aaaatggctt atgaccgaga aaaatatgaa aagcaagata 1740
agagtacaaa tgatgctgac gttcctcagg gagtgattcg agtgcaagct ccccatcttt 1800
cgaaagtttc catggcaata cagctaactg aagaactaaa agccagtgat gtacttgcca 1860
ggtttctcag ccaagaaagt ggggttgccc agactctcaa gaaaggagaa gtttttttgt 1920
atgaaattgg aggaaatatt ggggaacgct gccttgatga tgacacttac atgaaggatt 1980
tatatcagct taacccaaat gctgagtggg ttataaagtc aaagccattg tagaagactt 2040
aacaagctgc agataaccat gtggacttct gtcataattc ttgctgagtc aagagtgtaa 2100
ataaaagaaa tggcaggact catattattc agttgtaccc aagtatttaa aaatgactct 2160
cttaagcctt aaaaagtcat agatttgtgc tgctgccaga attatattaa ttattattaa 2220
tgttattatt agaaaaaaaa tttctggagt gagagtaaag aggcttaatt agtttgtggg 2280
cagttttcat atgctctgtg aaatgtgtcc agatgtgaca tagttttttt ttttaatatg 2340
tggaaatgtc ttctcttccc attcttttct cctaaaatca tatatactgt aatatatgct 2400
ctctcacctc tattacctcc tcacatctac cctttcccag ttaggtttgc tttttgacca 2460
aaaagataac aaataccagg tatggcaagt tgtgaagaca gcacattaaa acatacctaa 2520
tttcacagta ttcctgtcac gacagaatgt tagtattcat ctctttgaat catttgctca 2580
aataataaca ttccaccttt tcctgctgta tcacaggaag tgatttgcat tttttttcag 2640
ttcatctgac ttatgttcac agaaccgtat cagcgaccaa gaaaatagga ctgtcagaag 2700
ctgccagtta ttactgaacc attaaatact tatatactaa gaataaataa aatataccca 2760
tgtgaaataa taattggatt atggataaca agagagtgaa agccaaagca ctttctgtct 2820
actgtactct tctaaatgga attttaaaag tcatagctgg ctttacgtgt tgtcattatt 2880
agcattataa atatgcatga tagtataatc cagtaatggt tgaagaatgt attttactta 2940
aagagggatt ttttttttta agtcctgaat aagtctactg gaagaattat tcttctgggt 3000
gaaaaagctt ttgtttgtgt tcttatttta aataatcgga gtcaatttat taaaatgttc 3060
ttgaaagtac tattcccagg gattttaatg cacaaaccat attgtgacaa gagatgagcc 3120
tctgtactgt aaataagaaa tgaagtagag aaatgttaaa tattttatga gtttagaata 3180
tagtaaataa aaggtgatgt aaatgaatgc tgcacaaacg gtgttcatga tacttttagt 3240
agtactttag gaaaaactac acattctcag aagctcttga tgtctctaat gaaggggggg 3300
aatgctgtta atgagaacag tcataaattt ttagcatata attacaagaa cagcctgtgg 3360
atatgatcac ttaaatgatt ttgtggtgat tcgtgccatt gcttttttat ttaaaagaaa 3420
attttgtaat taaatgcctt tttctaaatt atcttctctt ggaatcatta cttttaatcc 3480
tatgtgttta tgagtatttt tgcttttttt ttattaatat tgagaaatgg acttttttgt 3540
tattaaaagt cacctctatt ttctattttc tttgtaattt ttaaagtagg aagatgtcag 3600
agatgtaaat atgttttcgt ctttagtttt tttcctttta caaattttta ttcttcagga 3660
ttttcaaaat acagtttagt ctgtttcttt gacaatatgt attaatttcc caattagcaa 3720
aatggtactt attagtgggt tgaaaacaat taataatata aaagaaaaat taagtgctta 3780
aaacatttta ggagtataca acttcaaaaa aaaagatagc agtgaggata atgatttaag 3840
taaaaggttg tctgaagcat atgccaacta aatttcgcaa cgtttgctac ctacctgaaa 3900
aggagggtca ggagggagac acaacatatt tttgatcatg aaaaagtatc ttaattttaa 3960
aaaagtgaaa atgccatttt attttgaatc ccttttagaa ctcacgaccc aagttcatca 4020
atgttgaata atatcacgtt taaataacaa aaaaatatgg actttaaaaa atctcaaatt 4080
ttttagagac agggtcttgc tctgttttcc agattggagt acagcagtgc attcgcggct 4140
aactgcagcc tcaagcactg gggctcaagc aaacctcctg cctcagcctc gtgagtagct 4200
aggaccacag gtgcatgcca ccatgcctgg ctctaaagag aaaaaaaact tgataccata 4260
gagccttgaa tataaatatc ctgatgttaa cctactgctt ttgctgtgat tttttttcct 4320
tagtgagttt taaatctcag gctagatttt tatttgtttt tctgtgtgtg tatgagacaa 4380
aataaaaata aatatatttg ccttgagttt aaaa 4414
<210> 11
<211> 21
<212> DNA
<213> Artificial sequence (Artificial)
<400> 11
gctgtccaca tctggctttt g 21
<210> 12
<211> 24
<212> DNA
<213> Artificial sequence (Artificial)
<400> 12
ggtgcatatt acagtaggct ttcg 24
<210> 13
<211> 20
<212> DNA
<213> Artificial sequence (Artificial)
<400> 13
ctcgggctgt ggagagtttc 20
<210> 14
<211> 18
<212> DNA
<213> Artificial sequence (Artificial)
<400> 14
gcctcgcttc agcaggaa 18
<210> 15
<211> 20
<212> DNA
<213> Artificial sequence (Artificial)
<400> 15
cacggacaga tccaggttca 20
<210> 16
<211> 20
<212> DNA
<213> Artificial sequence (Artificial)
<400> 16
ccgttttgcc cactgttgta 20
<210> 17
<211> 23
<212> DNA
<213> Artificial sequence (Artificial)
<400> 17
tctcttcttt gaccgtgcta gga 23
<210> 18
<211> 23
<212> DNA
<213> Artificial sequence (Artificial)
<400> 18
tgtggaggag cctagacata gga 23
<210> 19
<211> 22
<212> DNA
<213> Artificial sequence (Artificial)
<400> 19
ggaaggctat gtgaacgtga ca 22
<210> 20
<211> 24
<212> DNA
<213> Artificial sequence (Artificial)
<400> 20
ctgtagaagt ggttggcaaa gaga 24
<210> 21
<211> 21
<212> DNA
<213> Artificial sequence (Artificial)
<400> 21
ttcgggagtc tgttcccttt t 21
<210> 22
<211> 19
<212> DNA
<213> Artificial sequence (Artificial)
<400> 22
ggccctgctg agctcttct 19
<210> 23
<211> 21
<212> DNA
<213> Artificial sequence (Artificial)
<400> 23
caaccgtgag aaacagcgtt t 21
<210> 24
<211> 22
<212> DNA
<213> Artificial sequence (Artificial)
<400> 24
ctgccaatac catcaatttc ca 22
<210> 25
<211> 24
<212> DNA
<213> Artificial sequence (Artificial)
<400> 25
ccccttcctc aacagtgtct acat 24
<210> 26
<211> 20
<212> DNA
<213> Artificial sequence (Artificial)
<400> 26
agccaggtcc agctcacagt 20
<210> 27
<211> 23
<212> DNA
<213> Artificial sequence (Artificial)
<400> 27
tcagaattgg atttggctca ttt 23
<210> 28
<211> 23
<212> DNA
<213> Artificial sequence (Artificial)
<400> 28
tggtgcagtt ctgttcactt gtg 23
<210> 29
<211> 25
<212> DNA
<213> Artificial sequence (Artificial)
<400> 29
gatgatgcca cattacctag tttca 25
<210> 30
<211> 19
<212> DNA
<213> Artificial sequence (Artificial)
<400> 30
ggtgcgaggt caccaatcc 19
<210> 31
<211> 25
<212> DNA
<213> Artificial sequence (Artificial)
<400> 31
atattcctca tggtggcagc gctca 25
<210> 32
<211> 24
<212> DNA
<213> Artificial sequence (Artificial)
<400> 32
ccgagggacc acctcctatg caga 24
<210> 33
<211> 26
<212> DNA
<213> Artificial sequence (Artificial)
<400> 33
aagcggacag tgctcacgac acaacc 26
<210> 34
<211> 25
<212> DNA
<213> Artificial sequence (Artificial)
<400> 34
aaagtgcatt cctgccctgg tgacc 25
<210> 35
<211> 25
<212> DNA
<213> Artificial sequence (Artificial)
<400> 35
agaatcggcc ccccattgct attgt 25
<210> 36
<211> 29
<212> DNA
<213> Artificial sequence (Artificial)
<400> 36
tgccacgcgt tgaatagttc cacatactt 29
<210> 37
<211> 30
<212> DNA
<213> Artificial sequence (Artificial)
<400> 37
agacaagttc atcatcccca gcaaactctg 30
<210> 38
<211> 26
<212> DNA
<213> Artificial sequence (Artificial)
<400> 38
catcttccct agcagccggt tgaagc 26
<210> 39
<211> 30
<212> DNA
<213> Artificial sequence (Artificial)
<400> 39
tagcacaaca ccagctaagc tcaggaaccc 30
<210> 40
<211> 28
<212> DNA
<213> Artificial sequence (Artificial)
<400> 40
attgccaaaa gacaaaacgg gtaccaca 28

Claims (6)

1. A whole blood transcription gene marker for grading cervical squamous intraepithelial lesions, which is applied to the preparation of products for screening high-grade cervical squamous intraepithelial lesions, is disclosed, wherein the genes of the gene marker are STMN3, TRPC4AP, DYRK2, AGK, KIAAO319L, GRPEL1, ZFC3HL, LYL1, ITGB1 and ARHGAP18 genes shown in SEQ ID No. 1-SEQ ID No. 10.
2. The kit for screening and grading the cervical squamous intraepithelial lesions is applied to preparation of products for screening the high-grade cervical squamous intraepithelial lesions, and is characterized in that genes detected by a reagent in the kit are STMN3, TRPC4AP, DYRK2, AGK, KIAAO319L, GRPEL1, ZFC3H1, LYL1, ITGB1 and ARHGAP18 genes shown in SEQ ID No. 1-SEQ ID No.10, and the reagent is a primer and/or a probe.
3. The kit for screening and grading cervical squamous intraepithelial lesions, for use in the preparation of a product for screening high-grade cervical squamous intraepithelial lesions, according to claim 2, characterized in that said reagent is a reagent for detecting the amount of RNA transcribed from said gene, said reagent being a primer and/or a probe.
4. The kit for screening and grading cervical squamous intraepithelial lesions, for use in the preparation of a product for screening high-grade cervical squamous intraepithelial lesions, according to claim 3, wherein the reagent is a reagent for detecting the amount of reverse transcription of the gene into complementary DNA.
5. A composition for use in preparing a product for screening high-grade cervical squamous intraepithelial lesions, comprising primers and/or probes for detecting genes differentially expressed in whole blood of patients with low-grade cervical squamous intraepithelial lesions and high-grade cervical squamous intraepithelial lesions, the genes being STMN3, TRPC4AP, DYRK2, AGK, KIAAO319L, GRPEL1, ZFC3H1, LYL1, ITGB1 and ARHGAP18 genes represented by SEQ ID N0.1 to SEQ ID N0.10.
6. A gene chip for screening and grading cervical squamous intraepithelial lesions is characterized by comprising oligonucleotide probes hybridized with cervical squamous intraepithelial lesion related characteristic gene sequences, wherein the genes are STMN3, TRPC4AP, DYRK2, AGK, KIAAO319L, GRPEL1, ZFC3H1, LYL1, ITGB1 and ARHGAP18 genes shown as SEQ ID N0.1-SEQ ID N0.10.
CN201911390742.9A 2019-12-30 2019-12-30 Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof Active CN111172270B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911390742.9A CN111172270B (en) 2019-12-30 2019-12-30 Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911390742.9A CN111172270B (en) 2019-12-30 2019-12-30 Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof

Publications (2)

Publication Number Publication Date
CN111172270A CN111172270A (en) 2020-05-19
CN111172270B true CN111172270B (en) 2022-12-13

Family

ID=70618315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911390742.9A Active CN111172270B (en) 2019-12-30 2019-12-30 Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof

Country Status (1)

Country Link
CN (1) CN111172270B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241220A (en) * 2019-07-31 2019-09-17 华夏帮服科技有限公司 For the peripheral blood open gene marker of breast cancer detection and its application
CN110499364A (en) * 2019-07-30 2019-11-26 北京凯昂医学诊断技术有限公司 A kind of probe groups and its kit and application for detecting the full exon of extended pattern hereditary disease

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031008A2 (en) * 2010-08-31 2012-03-08 The General Hospital Corporation Cancer-related biological materials in microvesicles
EP2594334A1 (en) * 2011-11-21 2013-05-22 Drive O2 Sample vial for digital holographic analysis of a liquid cell sample
US20160083791A1 (en) * 2014-09-18 2016-03-24 Pathadvantage Associated System and method for detecting abnormalities in cervical cells
WO2017040491A1 (en) * 2015-08-31 2017-03-09 The United States Of America As Represented By The Secretary Of The Army Methods for molecularly characterizing cervical cell samples

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499364A (en) * 2019-07-30 2019-11-26 北京凯昂医学诊断技术有限公司 A kind of probe groups and its kit and application for detecting the full exon of extended pattern hereditary disease
CN110241220A (en) * 2019-07-31 2019-09-17 华夏帮服科技有限公司 For the peripheral blood open gene marker of breast cancer detection and its application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Identification of key pathways and genes in the progression of cervical cancer using bioinformatics analysis;KEJIA WU等;《ONCOLOGY LETTERS》;20181231;第16卷;第1003-1009页 *

Also Published As

Publication number Publication date
CN111172270A (en) 2020-05-19

Similar Documents

Publication Publication Date Title
KR102114412B1 (en) PREDICTING GASTROENTEROPANCREATIC NEUROENDOCRINE NEOPLASMS (GEP-NENs)
DK2644712T3 (en) A method for diagnosing neoplasms
RU2721916C2 (en) Methods for prostate cancer prediction
CN109863251B (en) Method for subtyping lung squamous cell carcinoma
US20190300967A1 (en) Compositions and methods for predicting response and resistance to ctla4 blockade in melanoma using a gene expression signature
CN109790583A (en) To the method for adenocarcinoma of lung subtype typing
KR20140044341A (en) Molecular diagnostic test for cancer
AU2018210695A1 (en) Molecular subtyping, prognosis, and treatment of bladder cancer
KR101421326B1 (en) Composition for predicting prognosis of breast cancer and kit comprising the same
CN107077536A (en) The activity of TGF β cell signaling pathways is evaluated using the mathematical modeling of expression of target gene
CN101258249A (en) Methods and reagents for the detection of melanoma
KR20150090246A (en) Molecular diagnostic test for cancer
CN101641451A (en) Cancer susceptibility variants on the chr8q24.21
CN101573453A (en) Methods of predicting distant metastasis of lymph node-negative primary breast cancer using biological pathway gene expression analysis
CN101111768A (en) Lung cancer prognostics
US20230022417A1 (en) Chemical compositions and methods of use
KR102079976B1 (en) A biomarker for diagnosing periodontal disease
US20020137077A1 (en) Genes regulated in activated T cells
CN111172270B (en) Whole blood transcription gene marker for grading cervical squamous intraepithelial lesions and application thereof
US20030175761A1 (en) Identification of genes whose expression patterns distinguish benign lymphoid tissue and mantle cell, follicular, and small lymphocytic lymphoma
KR20190126812A (en) Biomarkers for Disease Diagnosis
CN110819715A (en) Immune gene marker and kit for colorectal cancer detection
KR101633998B1 (en) Biomarkers for detection of ADHD
TW201827602A (en) Primary site of metastatic cancer identification method and system thereof
CN113943795B (en) Probe set for detecting noise-related deafness gene and kit thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210511

Address after: 266100 6th floor, marine biochemical incubation center, 168 Zhuzhou Road, Laoshan District, Qingdao City, Shandong Province

Applicant after: QINGDAO JIEMA MEDICAL EXAMINATION Co.,Ltd.

Address before: 100094 218 / 220, 2 / F, building 1, No. 538, yongfengtun, Haidian District, Beijing

Applicant before: Huaxia Bangfu Technology Co.,Ltd.

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 266100 6th floor, marine biochemical incubation center, 168 Zhuzhou Road, Laoshan District, Qingdao City, Shandong Province

Applicant after: Qingdao Renhe medical laboratory Co.,Ltd.

Address before: 266100 6th floor, marine biochemical incubation center, 168 Zhuzhou Road, Laoshan District, Qingdao City, Shandong Province

Applicant before: QINGDAO JIEMA MEDICAL EXAMINATION CO.,LTD.

GR01 Patent grant
GR01 Patent grant