CN111080155B - 一种基于生成对抗网络的空调用户调频能力评估方法 - Google Patents

一种基于生成对抗网络的空调用户调频能力评估方法 Download PDF

Info

Publication number
CN111080155B
CN111080155B CN201911341588.6A CN201911341588A CN111080155B CN 111080155 B CN111080155 B CN 111080155B CN 201911341588 A CN201911341588 A CN 201911341588A CN 111080155 B CN111080155 B CN 111080155B
Authority
CN
China
Prior art keywords
frequency modulation
sample
model
generator
modulation capability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911341588.6A
Other languages
English (en)
Other versions
CN111080155A (zh
Inventor
姚良忠
徐业琰
廖思阳
黄鸣宇
李亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Wuhan University WHU
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
State Grid Electric Power Research Institute
Original Assignee
State Grid Corp of China SGCC
Wuhan University WHU
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
State Grid Electric Power Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Wuhan University WHU, Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd, State Grid Electric Power Research Institute filed Critical State Grid Corp of China SGCC
Priority to CN201911341588.6A priority Critical patent/CN111080155B/zh
Publication of CN111080155A publication Critical patent/CN111080155A/zh
Application granted granted Critical
Publication of CN111080155B publication Critical patent/CN111080155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Abstract

本发明提出了一种基于生成对抗网络的空调用户调频能力评估方法。根据空调用户调频机理,选择调频能力和影响调频能力的强相关因素的量测数据,构建小样本训练集、小样本生成集和调频能力评估模型的测试样本集;改进生成对抗网络算法的生成器模型,并利用小样本训练集对改进后的生成对抗网络模型进行训练,得到训练后的改进生成对抗网络模型,进一步采用小样本生成集生成合成样本集,构建调频能力评估模型的训练集;构建多层前馈神经网络模型,利用调频能力评估模型的训练集训练该模型,得到训练后的多层前馈神经网络模型,作为空调用户调频能力评估模型。本发明提高了空调用户调频能力评估模型的准确性。

Description

一种基于生成对抗网络的空调用户调频能力评估方法
技术领域
本发明涉及用户调频能力评估技术领域,具体地说是一种基于生成对抗网络的空调用户调频能力评估方法。
背景技术
近年来,分布式新能源的大规模并网对电力系统频率稳定提出了新的挑战。以风电和光伏为代表的分布式新能源具有间歇性和随机性,导致系统电力供需不平衡事件频繁发生,加重了电网调频任务。而且,分布式新能源主要通过电力电子设备并网,大量的电力电子设备接入电网降低了系统惯性,频率偏差事件愈加常见。常规发电机组已不能为系统调频提供足够的备用容量,许多学者提出从负荷侧入手,采用需求响应等技术,引导负荷侧资源为系统提供调频备用容量。
以空调为代表的温控负荷是理想的负荷侧调频资源。受建筑物热惯性的作用,空调可以开启或关停来提供响应功率,而不影响人体舒适度。而且,尽管单台空调的功率小,但空调负荷的占比高,空调集群的聚合调频潜力巨大。
在实际生活中,用户是否参与调频,与激励机制、时间等多种影响因素密切相关。因此,必须研究激励机制等因素对空调用户调频能力的影响,并基于此,建立空调用户的调频能力评估模型,空调用户的调频能力包括调频容量和调频持续时长等。大部分学者从运行机理入手,通过分析用户的消费心理学,来建立调频能力评估模型。例如《空调负荷的动态需求响应理论及其应用研究》采用分段函数的形式作为调频能力评估模型,《FrequencyControl of Air Conditioners in Response to Real-Time Dynamic ElectricityPrices in Smart Grids》用以运行经济性为目标的优化模型来评估空调用户的调频或削峰能力。这些理论成果忽略了用户的随机性等主观因素,不能正确反映空调用户的实际调频能力。
利用空调集群参与调频的实际数据样本,通过大数据技术和深度学习的方法建立空调负荷的调频能力评估模型,可有效解决上述问题,提高评估模型的精确度。但国内外相关空调参与调频项目还未大规模推广,参与调频的空调用户数量少、实际数据样本有限。如何利用有限的实际数据样本,评估空调用户的调频能力,成为研究的难点。
发明内容
为克服实际数据样本有限的问题,建立空调用户的调频能力评估模型,本发明提出了一种基于生成对抗网络的空调用户调频能力评估方法。
为实现上述目的,本发明采用以下的技术方案:
一种基于生成对抗网络的空调用户调频能力评估方法,其特征在于,包括:
步骤1:根据空调用户调频机理,选择调频能力和影响调频能力的强相关因素的量测数据,构建小样本训练集、小样本生成集和调频能力评估模型的测试样本集;
步骤2:改进生成对抗网络算法的生成器模型,并利用小样本训练集对改进后的生成对抗网络模型进行训练,得到训练后的改进生成对抗网络模型,进一步采用小样本生成集生成合成样本集,并通过小样本训练集、小样本生成集、合成样本集构建调频能力评估模型的训练集;
步骤3:构建多层前馈神经网络模型,利用调频能力评估模型的训练集训练该模型,得到训练后的多层前馈神经网络模型,作为空调用户调频能力评估模型。
进一步地,步骤1中所述根据空调用户调频机理,选择调频能力和影响调频能力的强相关因素作为量测对象,利用量测数据构建小样本训练集、小样本生成集和调频能力评估模型的测试样本集,具体步骤包括:
步骤1.1采用量测技术获取参与调频的空调用户相关数据;
步骤1.2分析步骤1.1获取的量测数据,遴选出反映调频能力的量测数据,和对调频能力有较强相关性的影响因素的量测数据,并将一组调频能力量测数据和对应的强相关影响因素量测数据构成一个样本,将样本分类为小样本训练集、小样本生成集和调频能力评估模型的测试样本集,具体如下:
Figure GDA0003379131540000021
其中,
Figure GDA0003379131540000022
代表集合label中第i个样本;label为1、2、3,分别代表小样本训练集、小样本生成集和调频能力评估模型的测试样本集;
Figure GDA0003379131540000023
代表强相关影响因素量测数据;
Figure GDA0003379131540000024
代表对应的调频能力量测数据;m代表一个样本包含的量测数据总个数。
为便于阐述发明内容,将步骤1中所述小样本训练集、小样本生成集以及调频能力评估模型的测试样本集分别用ST,SG和SV表示。
作为优选,步骤2中所述改进生成对抗网络算法的生成器模型,具体为:引入样本相关性损失函数,修改标准生成对抗网络算法的生成器损失函数模型。
所述样本相关性损失函数是指:将小样本训练集输入生成器后输出的结果与小样本训练集的相似度损失,并用输出结果和小样本训练集中样本之间的加权曼哈顿距离表示,如下所示:
Figure GDA0003379131540000031
其中,LC为样本相关性损失,在每一次训练迭代中,从小样本训练集ST中随机选择N个样本输入生成器;
Figure GDA0003379131540000032
代表将样本
Figure GDA0003379131540000033
输入生成器后输出的结果中第j个元素;γj
Figure GDA0003379131540000034
的加权值。
由式输出结果和小样本训练集中样本之间的加权曼哈顿距离可知,当
Figure GDA0003379131540000035
越接近于
Figure GDA0003379131540000036
时,样本相关性损失就越小,即当生成器输出结果的分布特征越接近于输入生成器的小样本训练集的分布特征时,样本相关性损失就越小。因此,所述样本相关性损失函数可用来衡量生成器的样本生成质量。
所述修改标准生成对抗网络算法的生成器数学模型,修改后的生成器损失函数模型如下所述:
min VG=LG+LC
其中,VG表示改进后的生成器损失函数;LG代表标准生成对抗网络算法的生成器损失函数,在生成器优化过程中,样本相关性损失函数的引入,将惩罚与小样本训练集分布特征不相似的输出结果,可加速生成器收敛。
步骤2中所述利用小样本训练集对改进生成对抗网络模型进行训练,得到训练后的改进生成对抗网络模型,具体为:
首先构造生成器和判别器的神经网络初始模型,并设置训练过程的迭代次数epoch。
然后采用交叉迭代方法和随机梯度下降法训练生成器和判别器的神经网络权重参数。具体为,采用交叉迭代方法,即在每一轮迭代训练过程中,先固定判别器神经网络权重参数不变,根据改进后的生成器损失函数VG,采用随机梯度下降法优化生成器神经网络的权重参数;然后将优化后的生成器神经网络权重参数固定不变,根据标准生成对抗网络算法中的判别器损失函数,采用随机梯度下降法优化判别器神经网络的权重系数。经过epoch轮迭代训练后,获得训练后的改进生成器模型和判别器模型。
步骤2中所述通过小样本生成集生成合成样本集,具体为:
将步骤1中所述小样本生成集SG输入训练后的改进生成器模型,生成合成样本集SA。步骤2中所述通过小样本训练集、小样本生成集、合成样本集构建调频能力评估模型的训练集,具体为:
将步骤1所述小样本训练集ST、小样本生成集SG和步骤2所述合成样本集SA混合,获得调频能力评估模型的训练集SE。作为优选,步骤3中所述构建多层前馈神经网络模型,具体为:
将空调用户参与调频的强相关影响因素作为多层前馈神经网络的输入节点,将空调用户的调频能力作为该神经网络的输出节点,输入节点和输出节点间通过多个隐藏层连接。
步骤3中所述利用调频能力评估模型的训练集,训练该模型,具体为:
利用步骤2所述调频能力评估模型的训练集SE,训练步骤3构造的多层前馈神经网络的权重参数,获得训练后的多层前馈神经网络模型,作为空调用户调频能力评估模型。
本发明具有的有益效果是:本发明提出采用神经网络构建空调用户的调频能力评估模型,并采用生成对抗网络的方法解决调频能力评估模型训练样本不足的问题,通过生成大量符合真实样本分布特征的合成样本,来扩充调频能力评估模型的训练样本集,可提高空调用户调频能力评估模型的准确性。所建调频能力评估模型能反映空调用户参与调频的强相关影响因素和实际调频能力之间的关系,可为制定并实施空调负荷参与电网调频的控制策略提供基础。
附图说明
图1:为本发明方法流程图;
图2:为本发明实施例的小样本集数据示意图;
图3:为本发明实施例中生成器和对抗器神经网络示意图;
图4:为本发明实施例中生成器和判别器的优化过程示意图;
图5:为本发明实施例中生成器的样本相关性损失函数变化图;
图6:为本发明实施例中多层前馈神经网络的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供一种基于有限数据样本和生成对抗网络的空调用户调频能力评估方法,具体包括以下步骤:
步骤1:根据空调用户调频机理,选择调频能力和影响调频能力的强相关因素的量测数据,构建小样本训练集、小样本生成集和调频能力评估模型的测试样本集;
进一步地,步骤1中所述根据空调用户调频机理,选择调频能力和影响调频能力的强相关因素作为量测对象,利用量测数据构建小样本训练集、小样本生成集和调频能力评估模型的测试样本集,具体步骤包括:
步骤1.1采用量测技术获取参与调频的空调用户相关数据;
步骤1.2分析步骤1.1获取的量测数据,遴选出反映调频能力的量测数据,和对调频能力有较强相关性的影响因素的量测数据,并将一组调频能力量测数据和对应的强相关影响因素量测数据构成一个样本,将样本分类为小样本训练集、小样本生成集和调频能力评估模型的测试样本集。具体地,强相关性影响因素在本发明实施例中,具体是指时间t、补偿单价p、室外温度Tout、空调运行状态φ、室内温度Tin、设置温度Tset、空调运行区间θ;调频能力在本发明实施例中,具体是指是否参与调频δ(开启/关停/不响应),响应最大持续时长ΔT。因此,本发明实施例中调频能力量测数据和对应的强相关影响因素量测数据构成的样本如下:
Figure GDA0003379131540000051
其中,其中,代表集合中第i个样本;为1、2、3,分别代表小样本训练集、小样本生成集和调频能力评估模型的测试样本集。。
本发明实施例中真实样本集的样本数量为1000,其中强相关影响因素和调频能力的真实数据分布如图2所示。小样本训练集ST包含400个样本,小样本生成集SG包含500个样本,调频能力评估模型的测试样本集SV包含100个样本。
步骤2:改进生成对抗网络算法的生成器模型,并利用小样本训练集对改进后的生成对抗网络模型进行训练,得到训练后的改进生成对抗网络模型,进一步采用小样本生成集生成合成样本集,并通过小样本训练集、小样本生成集、合成样本集构建调频能力评估模型的训练集;
标准生成对抗网络是一种数据扩展方法,已被广泛应用于图片生成领域。生成对抗网络由生成器和判别器构成,生成器用来产生大量与真实样本分布特征相似的合成样本,判别器用以判断生成器输出的合成样本是否符合真实样本的分布特征。判别器希望准确分类合成样本和真实样本,而生成器希望输出的合成样本能够骗过判别器,而被判别器分类成真实样本。二者形成零和博弈,当博弈达到均衡时,判别器将无法分类真实样本和合成样本,此时生成器输出的合成样本分布特征与真实样本分布特征高度相似。
标准生成对抗网络算法中,生成器LG和判别器VD的损失函数为:
Figure GDA0003379131540000061
Figure GDA0003379131540000062
其中,D()函数为判别器的输出函数;G()函数为生成器输出函数。在每一次训练迭代中,从小样本训练集ST中随机选择N个样本输入生成器。步骤2中所述改进生成对抗网络算法的生成器模型,具体为:引入样本相关性损失函数,修改标准生成对抗网络算法的生成器损失函数模型。
所述样本相关性损失函数是指:将小样本训练集输入生成器后输出的结果与小样本训练集的相似度损失,并用输出结果和小样本训练集中样本之间的加权曼哈顿距离表示,如下所示:
Figure GDA0003379131540000071
其中,LC为样本相关性损失,在每一次训练迭代中,从小样本训练集ST中随机选择N个样本输入生成器;
Figure GDA0003379131540000072
代表将样本
Figure GDA0003379131540000073
输入生成器后输出的结果中第j个元素;γj
Figure GDA0003379131540000074
的加权值。
所述修改标准生成对抗网络算法的生成器数学模型,修改后的生成器损失函数模型如下所述:
min VG=LG+LC
其中,VG表示改进后的生成器损失函数在生成器优化过程中,样本相关性损失函数的引入,将惩罚与小样本训练集分布特征不相似的输出结果,可加速生成器收敛。
步骤2中所述利用小样本训练集对改进生成对抗网络模型进行训练,得到训练后的改进生成对抗网络模型,具体为:
首先构造生成器和判别器的神经网络初始模型,并设置训练过程的迭代次数epoch。本发明实施例的神经网络初始模型如图3所示。生成器由多层前馈神经网络构成,包含9个输入节点分别代表步骤1.2中确定的7个强相关影响因素和2个调频能力指标;包含9个输出节点,分别代表7个强相关影响因素和2个调频能力指标;包含一个隐藏层,隐藏层内包含4个节点。判别器由多层前馈神经网络构成,包含9个输入节点;包含1个输出节点;包含一个隐藏层,隐藏层内包含5个节点。并设置训练过程的迭代次数epoch=500。
然后采用交叉迭代方法和随机梯度下降法训练生成器和判别器的神经网络权重参数,实施流程如图4所示。具体为,采用交叉迭代方法,即在每一轮迭代训练过程中,先固定判别器神经网络权重参数不变,根据改进后的生成器损失函数VG,采用随机梯度下降法优化生成器神经网络的权重参数;然后将优化后的生成器神经网络权重参数固定不变,根据标准生成对抗网络算法中的判别器损失函数,采用随机梯度下降法优化判别器神经网络的权重系数。经过epoch轮迭代训练后,获得训练后的改进生成器模型和判别器模型。
训练过程中生成器的样本相关性损失函数变化如图5所示。可见,改进的生成器训练完毕后,输出结果的分布特征与小样本训练集ST的分布特征高度相似。
步骤2中所述通过小样本生成集生成合成样本集,具体为:
将步骤1中所述小样本生成集SG输入训练后的改进生成器模型,生成合成样本集SA;然后,将步骤1.2中所述小样本训练集ST、小样本生成集SG和步骤2.2获得的合成样本集SA混合,获得调频能力评估模型的训练集SE。在本发明实施例中,集合SE内包含1400个样本。
在本发明实施例中,
步骤3:构建多层前馈神经网络模型,利用调频能力评估模型的训练集训练该模型,得到训练后的多层前馈神经网络模型,作为空调用户调频能力评估模型。
步骤3中所述构建多层前馈神经网络模型,在本发明实施例中如图6所示,包含7个输入节点,分别代表步骤1.2中确定的7种强相关影响因素,即时间、补偿单价、室外温度、空调运行状态、室内温度、设置温度、空调运行区间;包含2个输出节点,分别代表步骤1.2中给出的2种调频能力指标,即是否参与调频(开启/关停/不响应),响应最大持续时长;包含2个隐藏层,其中第一个隐藏层包含4个节点,第二个隐藏层包含4个节点。
步骤3中所述利用调频能力评估模型的训练集,训练该模型,具体为:
利用步骤2所述调频能力评估模型的训练集SE,训练步骤3构造的多层前馈神经网络的权重参数,获得训练后的多层前馈神经网络模型,作为空调用户调频能力评估模型。训练过程通过MATLAB的NNTOOL工具箱完成。
最后,基于本发明实施例结果,利用步骤1.2所述调频能力评估模型的测试样本集SV,验证步骤3.2所建调频能力评估模型的准确性。
具体地,将集合SV中样本
Figure GDA0003379131540000081
的强相关影响因素作为输入量,即将
Figure GDA0003379131540000082
输入步骤3.2所述空调用户调频能力评估模型,将模型输出结果定义为[δi,out,ΔTi,out],并定义
Figure GDA0003379131540000083
具体地,基于集合SV中样本
Figure GDA0003379131540000084
和评估模型对应的
Figure GDA0003379131540000085
样本的平均绝对比例误差,设计了准确性指标MAPE,该指标模型如下:
Figure GDA0003379131540000091
其中R代表集合SV包含的样本数量,根据步骤1.2可知在本发明实施例中R=100。
本发明实施例所建空调用户调频能力评估模型的准确性指标为98.75%。说明所建调频能力评估模型的评估精确性较高。
以上所描述的一种基于有限数据样本和生成对抗网络的空调用户调频能力评估方法,其有益效果是:提出采用神经网络构建空调用户的调频能力评估模型,并采用生成对抗网络的方法解决调频能力评估模型训练样本不足的问题,可提高空调用户调频能力评估模型的准确性。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (1)

1.一种基于生成对抗网络的空调用户调频能力评估方法,其特征在于,包括:
步骤1:根据空调用户调频机理,选择调频能力和影响调频能力的强相关因素的量测数据,构建小样本训练集、小样本生成集和调频能力评估模型的测试样本集;
步骤2:改进生成对抗网络算法的生成器模型,并利用小样本训练集对改进后的生成对抗网络模型进行训练,得到训练后的改进生成对抗网络模型,进一步采用小样本生成集生成合成样本集,并通过小样本训练集、小样本生成集、合成样本集构建调频能力评估模型的训练集;
步骤3:构建多层前馈神经网络模型,利用调频能力评估模型的训练集训练该模型,得到训练后的多层前馈神经网络模型,作为空调用户调频能力评估模型;
步骤1中所述根据空调用户调频机理,选择调频能力和影响调频能力的强相关因素作为量测对象,利用量测数据构建小样本训练集、小样本生成集和调频能力评估模型的测试样本集,具体步骤包括:
步骤1.1采用量测技术获取参与调频的空调用户相关数据;
步骤1.2分析步骤1.1获取的量测数据,遴选出反映调频能力的量测数据,和对调频能力有较强相关性的影响因素的量测数据,并将一组调频能力量测数据和对应的强相关影响因素量测数据构成一个样本,将样本分类为小样本训练集、小样本生成集和调频能力评估模型的测试样本集,具体如下:
Figure FDA0003489413480000011
其中,
Figure FDA0003489413480000012
代表集合label中第i个样本;label为1、2、3,分别代表小样本训练集、小样本生成集和调频能力评估模型的测试样本集;
Figure FDA0003489413480000013
代表强相关影响因素量测数据;
Figure FDA0003489413480000014
代表对应的调频能力量测数据;m代表一个样本包含的量测数据总个数;
将步骤1中所述小样本训练集、小样本生成集以及调频能力评估模型的测试样本集分别用ST,SG和SV表示;
步骤2中所述改进生成对抗网络算法的生成器模型,具体为:引入样本相关性损失函数,修改标准生成对抗网络算法的生成器损失函数模型;
所述样本相关性损失函数是指:将小样本训练集输入生成器后输出的结果与小样本训练集的相似度损失,并用输出结果和小样本训练集中样本之间的加权曼哈顿距离表示,如下所示:
Figure FDA0003489413480000021
其中,LC为样本相关性损失,在每一次训练迭代中,从小样本训练集ST中随机选择N个样本输入生成器;
Figure FDA0003489413480000022
代表将样本
Figure FDA0003489413480000023
输入生成器后输出的结果中第j个元素;γj
Figure FDA0003489413480000024
的加权值;
由式输出结果和小样本训练集中样本之间的加权曼哈顿距离可知,当
Figure FDA0003489413480000025
越接近于
Figure FDA0003489413480000026
时,样本相关性损失就越小,即当生成器输出结果的分布特征越接近于输入生成器的小样本训练集的分布特征时,样本相关性损失就越小;因此,所述样本相关性损失函数可用来衡量生成器的样本生成质量;
所述修改标准生成对抗网络算法的生成器数学模型,修改后的生成器损失函数模型如下所述:
min VG=LG+LC
其中,VG表示改进后的生成器损失函数;LG代表标准生成对抗网络算法的生成器损失函数,在生成器优化过程中,样本相关性损失函数的引入,将惩罚与小样本训练集分布特征不相似的输出结果,可加速生成器收敛;
步骤2中所述利用小样本训练集对改进生成对抗网络模型进行训练,得到训练后的改进生成对抗网络模型,具体为:
首先构造生成器和判别器的神经网络初始模型,并设置训练过程的迭代次数epoch;
然后采用交叉迭代方法和随机梯度下降法训练生成器和判别器的神经网络权重参数;具体为,采用交叉迭代方法,即在每一轮迭代训练过程中,先固定判别器神经网络权重参数不变,根据改进后的生成器损失函数VG,采用随机梯度下降法优化生成器神经网络的权重参数;然后将优化后的生成器神经网络权重参数固定不变,根据标准生成对抗网络算法中的判别器损失函数,采用随机梯度下降法优化判别器神经网络的权重系数;经过epoch轮迭代训练后,获得训练后的改进生成器模型和判别器模型;
步骤2中所述通过小样本生成集生成合成样本集,具体为:
将步骤1中所述小样本生成集SG输入训练后的改进生成器模型,生成合成样本集SA
步骤2中所述通过小样本训练集、小样本生成集、合成样本集构建调频能力评估模型的训练集,具体为:
将步骤1所述小样本训练集ST、小样本生成集SG和步骤2所述合成样本集SA混合,获得调频能力评估模型的训练集SE
步骤3中所述构建多层前馈神经网络模型,具体为:
将空调用户参与调频的强相关影响因素作为多层前馈神经网络的输入节点,将空调用户的调频能力作为该神经网络的输出节点,输入节点和输出节点间通过多个隐藏层连接;
步骤3中所述利用调频能力评估模型的训练集,训练该模型,具体为:利用步骤2所述调频能力评估模型的训练集SE,训练步骤3构造的多层前馈神经网络的权重参数,获得训练后的多层前馈神经网络模型,作为空调用户调频能力评估模型。
CN201911341588.6A 2019-12-24 2019-12-24 一种基于生成对抗网络的空调用户调频能力评估方法 Active CN111080155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911341588.6A CN111080155B (zh) 2019-12-24 2019-12-24 一种基于生成对抗网络的空调用户调频能力评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911341588.6A CN111080155B (zh) 2019-12-24 2019-12-24 一种基于生成对抗网络的空调用户调频能力评估方法

Publications (2)

Publication Number Publication Date
CN111080155A CN111080155A (zh) 2020-04-28
CN111080155B true CN111080155B (zh) 2022-03-15

Family

ID=70317015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911341588.6A Active CN111080155B (zh) 2019-12-24 2019-12-24 一种基于生成对抗网络的空调用户调频能力评估方法

Country Status (1)

Country Link
CN (1) CN111080155B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111639861B (zh) * 2020-06-01 2023-06-23 上海大学 一种基于神经网络的绩效考核方法及系统
CN111914488B (zh) * 2020-08-14 2023-09-01 贵州东方世纪科技股份有限公司 一种基于对抗神经网络的有资料地区水文参数率定方法
CN111931062B (zh) * 2020-08-28 2023-11-24 腾讯科技(深圳)有限公司 一种信息推荐模型的训练方法和相关装置
CN113222731A (zh) * 2021-04-25 2021-08-06 北京工业大学 一种基于机器学习的小样本信用评估方法、系统和介质
CN113920396B (zh) * 2021-10-08 2022-11-04 中国人民解放军军事科学院军事医学研究院 一种特殊岗位人员视觉认知能力量化评测方法、系统及评测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118467A (zh) * 2018-08-31 2019-01-01 武汉大学 基于生成对抗网络的红外与可见光图像融合方法
CN109492627A (zh) * 2019-01-22 2019-03-19 华南理工大学 一种基于全卷积网络的深度模型的场景文本擦除方法
CN109639710A (zh) * 2018-12-29 2019-04-16 浙江工业大学 一种基于对抗训练的网络攻击防御方法
CN110188822A (zh) * 2019-05-30 2019-08-30 盐城工学院 一种域对抗自适应一维卷积神经网络智能故障诊断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118467A (zh) * 2018-08-31 2019-01-01 武汉大学 基于生成对抗网络的红外与可见光图像融合方法
CN109639710A (zh) * 2018-12-29 2019-04-16 浙江工业大学 一种基于对抗训练的网络攻击防御方法
CN109492627A (zh) * 2019-01-22 2019-03-19 华南理工大学 一种基于全卷积网络的深度模型的场景文本擦除方法
CN110188822A (zh) * 2019-05-30 2019-08-30 盐城工学院 一种域对抗自适应一维卷积神经网络智能故障诊断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于深度学习的视频多目标跟踪算法研究;储琪;《万方学位论文库》;20190822;第1-123页 *

Also Published As

Publication number Publication date
CN111080155A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN111080155B (zh) 一种基于生成对抗网络的空调用户调频能力评估方法
CN105160149B (zh) 一种模拟调峰机组的需求响应调度评估体系构建方法
CN112182720B (zh) 一种基于建筑能源管理应用场景的建筑能耗模型评价方法
CN105303250A (zh) 一种基于最优权系数的风电功率组合预测方法
Joe et al. Virtual storage capability of residential buildings for sustainable smart city via model-based predictive control
CN107609790A (zh) 智能电网综合效益评估方法、装置、介质及计算机设备
CN112418495A (zh) 一种基于天牛须优化算法和神经网络的建筑能耗预测方法
CN111008790A (zh) 一种水电站群发电调度规则提取方法
CN112101736A (zh) 微电网运营模式的评估方法、装置、存储介质和电子设备
Jin et al. Wind and photovoltaic power time series data aggregation method based on an ensemble clustering and Markov chain
CN114139940A (zh) 一种基于组合赋权-云模型的广义需求侧资源网荷互动水平评估方法
CN114693076A (zh) 一种面向综合能源系统运行状态的动态评价方法
Wang et al. Aggregated large-scale air-conditioning load: Modeling and response capability evaluation of virtual generator units
CN117091242A (zh) 空调温控负荷集群的评估方法、温度设定方法及系统
Wang et al. Multi-agent simulation for strategic bidding in electricity markets using reinforcement learning
CN111275238B (zh) 基于每时晴空指数的大规模电站光伏出力序列生成方法
CN116502939A (zh) 一种负荷调节评估方法、装置、设备及介质
Kapetanakis et al. Evaluation of machine learning algorithms for demand response potential forecasting
CN109657967A (zh) 一种输电网规划方案评价指标权重的确认方法及系统
CN115940169A (zh) 一种计及源荷不确定性的改进电网电压越限风险评估方法
CN112633631B (zh) 多电源系统互补性的评价方法
CN114881506A (zh) 一种基于室温和iba-lstm的供热需求负荷评估方法及系统
Schumann et al. Multi-Agent based simulation of human activity for building and urban scale assessment of residential load curves and energy use
Aydinalp et al. Effects of socioeconomic factors on household appliance, lighting, and space cooling electricity consumption
CN116089847B (zh) 基于协方差代理的分布式可调资源聚类方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant