CN110938650B - mRNA variable shearing-luciferase report system and application thereof - Google Patents

mRNA variable shearing-luciferase report system and application thereof Download PDF

Info

Publication number
CN110938650B
CN110938650B CN201911298590.XA CN201911298590A CN110938650B CN 110938650 B CN110938650 B CN 110938650B CN 201911298590 A CN201911298590 A CN 201911298590A CN 110938650 B CN110938650 B CN 110938650B
Authority
CN
China
Prior art keywords
plant
variable
rlpk
mrna
luciferase reporter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911298590.XA
Other languages
Chinese (zh)
Other versions
CN110938650A (en
Inventor
董莎萌
黄杰
逯欣宇
王源超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201911298590.XA priority Critical patent/CN110938650B/en
Publication of CN110938650A publication Critical patent/CN110938650A/en
Application granted granted Critical
Publication of CN110938650B publication Critical patent/CN110938650B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters

Abstract

The invention provides an mRNA variable splicing-luciferase reporter system and application thereof. The invention also provides a transgenic tobacco seed of the variable shearing-luciferase report system, which utilizes the agrobacterium-mediated transient overexpression technology to express exogenous genes on the transgenic tobacco leaf; or by utilizing an agrobacterium-mediated gene silencing technology, silencing endogenous genes of tobacco on the transgenic tobacco leaf, and judging whether the gene coding protein to be detected participates in the variable shearing process of plant mRNA (messenger ribonucleic acid) by detecting the change of luciferase activity. The invention provides an important technical means for rapidly screening whether the exogenous gene or the plant endogenous gene regulates and controls the plant mRNA variable shearing process.

Description

mRNA variable shearing-luciferase report system and application thereof
Technical Field
The invention belongs to the field of plant molecular biology, and particularly relates to a luciferase report system and application thereof, in particular to a luciferase report system for specifically screening whether a gene to be tested participates in a plant mRNA variable shearing process and application thereof, which can be used for rapidly screening whether an exogenous expression gene or a plant endogenous gene participates in the plant mRNA variable shearing process.
Background
The variable splicing refers to a process that different mRNAs are generated from the same mRNA precursor (pre-mRNA) through different splicing modes, and during the growth and development of eukaryotes, the pre-mRNA of most genes needs to be capped by nucleotides at the 5 'end and added with polyadenylic acid at the 3' endA series of processes such as tail cleavage and intron cleavage to generate mature mRNA1,2. The variable shearing of RNA plays an important role in regulating and controlling the growth, development and other life activities of organisms, and the variable shearing not only can increase the complexity of gene expression in higher organisms3,4Moreover, some by-products of the variable splicing process can also process various non-coding RNAs to participate in the processes of growth and development of organisms and the like5,6. At present, in-vitro variable shear system constructed by using cell extracts of mammalian cells, yeast and drosophila in the field of variable shear research provides great help for researching assembly and formation of spliceosome and function and action mechanism of shear regulatory protein7-9. However, the lack of relevant mRNA variable splicing systems in the field of plant variable splicing research to date has severely limited the functional studies of splicing regulatory proteins in plants and the mechanism of action of mRNA variable splicing in plants. Therefore, the development of a novel in-plant mRNA variable splicing reporter system is an effective way for accelerating the research on the variable splicing action mechanism of plants.
Reference to the literature
1.Black,D.L.Mechanisms of alternative pre-messenger RNA splicing.Annual review of biochemistry 72,291-336,doi:10.1146/annurev.biochem.72.121801.161720(2003).
2.Reddy,A.S.&Shad Ali,G.Plant serine/arginine-rich proteins:roles in precursor messenger RNA splicing,plant development,and stress responses.Wiley interdisciplinary reviews.RNA 2, 875-889,doi:10.1002/wrna.98(2011).
3.Roy,B.,Haupt,L.M.&Griffiths,L.R.Review:Alternative Splicing(AS)of Genes As An Approach for Generating Protein Complexity.Current genomics 14,182-194,doi:Doi 10.2174/1389202911314030004(2013).
4.Frankiw,L.,Baltimore,D.&Li,G.Alternative mRNA splicing in cancer immunotherapy. Nature reviews.Immunology,doi:10.1038/s41577-019-0195-7(2019).
5.Yang,L.Splicing noncoding RNAs from the inside out.Wiley interdisciplinary reviews.RNA 6,651-660,doi:10.1002/wrna.1307(2015).
6.Zhang,Y.et al.The Biogenesis of Nascent Circular RNAs.Cell reports 15,611-624, doi:10.1016/j.celrep.2016.03.058(2016).
7.Lin,R.J.,Newman,A.J.,Cheng,S.C.&Abelson,J.Yeast mRNA splicing in vitro.The Journal of biological chemistry 260,14780-14792(1985).
8.Rio,D.C.Accurate and efficient pre-mRNAsplicing in Drosophila cell-free extracts. Proceedings of the National Academy of Sciences of the United States of America 85,2904- 2908,doi:10.1073/pnas.85.9.2904(1988).
9.Hernandez,N.&Keller,W.Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts.Cell 35,89-99,doi:10.1016/0092-8674(83)90211-8(1983).
Disclosure of Invention
The invention aims to provide an mRNA variable splicing-luciferase reporter system and application thereof.
Another objective of the invention is to provide an expression vector of the mRNA variable splicing-luciferase reporter system and a construction method thereof.
Another object of the present invention is to provide a method for breeding a transgenic plant having the mRNA variable excision-luciferase reporter system.
The purpose of the invention can be realized by the following technical scheme:
a mRNA variable splicing-luciferase reporter system comprising a variable splicing region sequence of plant RLPK and a luciferase reporter LUC sequence.
Preferably, the sequence of the variable splicing region of the plant RLPK is SEQ ID NO.1, the sequence of the luciferase reporter gene LUC is SEQ ID NO.2, and the sequence of the mRNA variable splicing-luciferase reporter system (RLPK-LUC) is SEQ ID NO. 3.
A plant transgenic vector of an mRNA variable shearing-luciferase reporter system is obtained by connecting the variable shearing region sequence of the plant RLPK and the luciferase reporter gene LUC sequence into a plant expression vector pCAMBIA1300 together to obtain the plant transgenic vector pCAMBIA1300 RLPK-LUC. The construction process of the plant transgenic vector comprises the following steps:
(1) extracting genomic DNA of tomato, amplifying variable shearing region sequence of plant RLPK by using primers SEQ ID NO.5 and SEQ ID NO.6 to obtain nucleotide sequence shown as SEQ ID NO. 1;
(2) amplifying a luciferase reporter gene LUC sequence by using primers SEQ ID NO.7 and SEQ ID NO.8 to obtain a nucleotide sequence shown as SEQ ID NO. 2;
(3) the variable splicing region sequence of plant RLPK and the luciferase reporter gene LUC sequence are connected into a plant expression vector pCAMBIA1300 together by using a multi-fragment recombination method to obtain a plant transgenic vector pCAMBIA1300, RLPK-LUC of the mRNA variable splicing-luciferase reporter system. The whole sequence of the plant transgenic vector of the mRNA variable shearing-luciferase reporting system is SEQ ID NO. 4.
A method for culturing transgenic plant with mRNA variable shearing-luciferase reporter system includes such steps as stably transforming the transgenic plant carrier to obtain transgenic plant with mRNA variable shearing-luciferase reporter system stably over-expressed by resistance screening and luciferase activity verification. The transgenic plant is preferably the nicotiana benthamiana.
The mRNA variable shearing-luciferase report system, the plant transgenic vector or the transgenic plant cultivated by the method are applied to rapidly screen whether the exogenous gene and the plant endogenous gene participate in the process of regulating and controlling the mRNA variable shearing of the plant.
A gene function research method based on variable shearing change utilizes an agrobacterium-mediated transient expression technology to overexpress exogenous genes on blades of a transgenic plant of an mRNA variable shearing-luciferase report system, or utilizes an agrobacterium-mediated gene silencing technology to silence endogenous genes of the plant on the blades of the transgenic plant of the mRNA variable shearing-luciferase report system, and judges whether genes to be detected participate in the mRNA variable shearing regulation and control process of the plant or not by detecting the change of luciferase activity, so that whether the genes to be detected participate in the mRNA variable shearing process of the plant or not is rapidly screened.
The invention utilizes an mRNA variable shearing-luciferase report system to identify whether a gene to be detected participates in the mRNA variable shearing regulation and control process of plants, and specifically comprises the following steps;
(1) extracting genomic DNA of tomato, and amplifying a variable shearing region sequence of RLPK by using primers (SEQ ID NO.5 and SEQ ID NO.6) to obtain a nucleotide sequence shown as SEQ ID NO. 1.
(2) Luciferase reporter gene LUC sequence was amplified using primers (SEQ ID NO.7 and SEQ ID NO.8) to obtain the nucleotide sequence shown as SEQ ID NO. 2.
(3) The variable splicing region sequence of RLPK and the luciferase reporter gene LUC sequence are connected into a plant expression vector pCAMBIA1300 together by using a multi-fragment recombination method to obtain the sequence of the variable splicing-luciferase reporter system shown as SEQ ID NO.3 and a plant transgenic vector pCAMBIA1300, RLPK-LUC.
(4) The mRNA variable shearing-luciferase reporter system is over-expressed in the tobacco (N.benthamian) by using a stable transformation method, and a stable transgenic tobacco plant of the variable shearing-luciferase reporter system is obtained by a resistance screening and luciferase activity verification method.
(5) And after the tobacco grows up, further harvesting the stable transgenic tobacco seeds of the variable shearing-luciferase reporter system.
(6) The method comprises the steps of overexpressing an exogenous gene or silencing a plant endogenous gene on tobacco of a report system by using an agrobacterium injection method, selecting a leaf of an injection point after 2 days, adding the leaf into a 96-well enzyme label plate (containing a luciferase substrate Luciferin with the final concentration of 1 mM), placing the plate in the dark at normal temperature for 5-10 minutes, detecting the enzyme activity of luciferase in a Promega GloMax 96 micropore plate luminescence detector, and judging whether the gene to be detected participates in the variable shearing process of plant mRNA (messenger ribonucleic acid) according to the change of the enzyme activity value.
According to the method provided by the invention, the sequence subjected to variable shearing in the RLPK gene is connected with the sequence of the luciferase reporter gene LUC to construct a luciferase reporter system capable of effectively screening and identifying whether the gene to be detected is involved in the plant mRNA variable shearing process, so that the problem of identifying whether the gene to be detected is involved in the plant mRNA variable shearing process is effectively solved, and a high-efficiency reporter system tool and a screening method are provided for discovering and researching the gene function.
The invention has the advantages of
The invention provides a transgenic plant of an mRNA variable shearing-luciferase report system, which overexpresses an exogenous gene on a tobacco leaf of the report system by utilizing an agrobacterium-mediated transient expression technology or silences a plant endogenous gene on the tobacco leaf of the report system by utilizing an agrobacterium-mediated gene silencing technology, and judges whether a gene to be detected participates in the variable shearing process of the plant or not through the change of luciferase activity. The invention can realize the rapid screening of whether the gene to be tested participates in the variable shearing process of plant mRNA.
Drawings
FIG. 1 shows the sequencing of transcriptome results that the tomato RLPK gene is variably sheared during the infection process of Phytophthora infestans.
FIG. 2 is a real-time fluorescent quantitative verification that the tomato RLPK gene is subjected to variable shearing in the phytophthora infestans process: the ratio of the expression amounts (RLPK.1/RLPK.2) of different transcripts of the tomato RLPK gene is verified by real-time fluorescent quantitative PCR (polymerase chain reaction) to be obviously changed in the process that two phytophthora infestans infect tomatoes.
FIG. 3 schematic of the construction of the variable shear-luciferase reporter system: the transcript RLPK.1 can be read through, and the protein translation is normal, so that the enzyme activity of luciferase can be utilized to carry out quantitative detection; the transcript RLPK.2 has a stop codon appearing in advance, cannot be read through and cannot detect the enzyme activity of luciferase; the occurrence of variable cleavage can be judged based on the level of the detected luciferase activity.
FIG. 4 detection of luciferase Activity in transgenic plants of the reporter System: the luciferase activity of the transgenic plants of the RLPK-LUC reporter system is detected by using an instrument.
FIG. 5 is a flow chart of the use of the variable shear-luciferase reporter system.
FIG. 6 screening of virulence factors in Phytophthora infestans for their involvement in the variable cleavage process of plant mRNA using a reporter system: a variable shearing-luciferase report system is utilized to screen a toxic factor participating in mRNA variable shearing in Phytophthora infestans, and whether the toxic factor participates in the variable shearing process of plant mRNA can be judged according to the activity of luciferase.
FIG. 7 uses a reporter system to investigate whether plant endogenous genes are involved in plant mRNA variable splicing: a report system is utilized to research whether the endogenous gene in the tobacco participates in the variable shearing of plant mRNA, and whether the endogenous gene participates in the variable shearing process of the plant mRNA can be judged according to the activity of luciferase.
Detailed Description
The following examples are for better understanding of the present invention, but are not intended to limit the present invention. The experimental methods used in the following examples are all conventional experimental methods unless otherwise specified. The test materials and the like used in the following examples are available from conventional biochemicals, unless otherwise specified. The primers involved in the examples of the present invention were synthesized by Nanjing Kingsrei Biotechnology Ltd.
Example 1 verification of the changes in the ratio of expression levels between different transcripts of the tomato RLPK Gene during Phytophthora infestans
Total RNA extraction of infection samples: tomato leaves are taken as materials, phytophthora infestans 88069 and T30-4 are used for infecting tomatoes, and samples which are infected for 0, 1, 2 and 3 days are selected to extract total RNA. The total RNA was extracted using an Invitrogen RNA extraction kit (cat. No.12183018A) according to the instructions, and the RNA concentration was measured using a NanoDrop spectrophotometer.
Reverse transcription to generate the first strand: mu.g of RNA was used as a template in accordance with PrimeScript of TakaraTMThe reverse transcription kit (RR047A) uses the instruction to perform cDNA synthesis, and finally the volume is determined to 20 mu L system, and the appropriate amount of reverse transcription product is used for the subsequent real-time fluorescent quantitative PCR detection.
Rlpk.1 primer sequence:
an upstream primer: SEQ ID NO.9
(5’-ACCTTCTTGTGCAGAGAATG-3’)
A downstream primer: SEQ ID NO.10
(5’-ATAGTAAGAACGCCATAGTAG-3’),
Rlpk.2 primer sequence:
an upstream primer: SEQ ID NO.11
(5’-CTACTATGGCGGTACGTATTTG-3’)
A downstream primer: SEQ ID NO.12
(5’-GTGGCAATGAACGCGGATTCT-3’),
20 μ L of the reaction system
Figure BDA0002321270810000051
Premix Ex Taq 10. mu.l, ROX Reference Dye 0.4. mu.l, upstream primers 0.4. mu.l each, cDNA 2. mu.l, ddH2O6.8 μ l; real-time PCR reaction procedure: pre-denaturation at 95 ℃ for 30 sec; then, the mixture was circulated at 95 ℃ for 5sec, 60 ℃ for 34 sec. The cycle number of amplification, the melting curve, and the Ct value of each sample are automatically given by the instrument.
The results show that the tomato RLPK gene undergoes variable shearing during phytophthora infestations (fig. 1), and the ratio of expression levels between different transcripts of the RLPK gene (rlpk.1/rlpk.2) changes significantly during phytophthora infestations 88069 and T30-4 in tomato (fig. 2).
Example 2 construction of variable cleavage-luciferase reporter System:
extracting genomic DNA of tomato, designing a primer according to the variable splicing sequence of RLPK to amplify the variable splicing sequence region of RLPK, designing a primer according to the LUC sequence of luciferase gene to amplify the luciferase gene, and constructing a variable splicing-luciferase reporter system (figure 3).
pCAMBIA1300 RLPK upstream primer: SEQ ID NO.5
5’-ACGGGGGACGAGCTCGGTACCATGTGTAGCATCCACTACTA-3’
pCAMBIA1300 RLPK downstream primer: SEQ ID NO.6
5’-ATGTTTTTGGCGTCTTCCATTATACTTATTCCACCGTAC-3’
pCAMBIA1300 LUC upstream primer: SEQ ID NO.7
5’-ATGGAAGACGCCAAAAACAT-3’
pCAMBIA1300 LUC downstream primer: SEQ ID NO.8
5’-ATACGAACGAAAGCTCTGCAGTTACACGGCGATCTTTCCGC-3’
The variable cleavage sequence region of RLPK and the sequence of luciferase gene LUC were amplified with primers SEQ ID NO.5, SEQ ID NO.6 and SEQ ID NO.7, SEQ ID NO.8, respectively. The PCR program is pre-denaturation at 98 ℃ for 5 min, denaturation at 98 ℃ for 30sec, annealing at 58 ℃ for 30sec, extension at 72 ℃ for 1.5 min, 30 cycles, and final extension at 72 ℃ for 5 min; the PCR product was separated by electrophoresis on a 1% agarose gel, the sizes of the variable cleavage sequence region of RLPK and the luciferase reporter gene LUC were 260bp and 1653bp, respectively, and the objective band was recovered by cutting the gel and then recovered by using a DNA purification kit (code. No.9762) of TaKaRa. The recovered product was ligated to a KpnI and PstI double-digested pCAMBIA1300 vector according to the protocol of the Vazyme's Multi-fragment ligation Kit (Clonexpress Multi S One Step Cloning Kit, C113) to obtain pCAMBIA1300: RLPK-LUC plasmid.
The ligation products were transformed into competent cells of Escherichia coli JM109, and subsequently the transformed competence was spread on Carna-resistant LB plates (containing 50. mu.g/mL of Carna), cultured in an incubator at 37 ℃ for 12 to 16 hours, followed by colony PCR verification of positive clones using vector primers (SEQ ID NO.13 and SEQ ID NO.14) and shake cultivation. The plasmid pCAMBIA1300, RLPK-LUC from which positive clones were extracted was subjected to sequencing by southern Jing King Shirui Biotech Co., Ltd, according to the procedure of Takara plasmid extraction kit (code. No.9760), and the sequencing primers had the sequences of SEQ ID No.13 and SEQ ID No. 14. The plasmid with correct sequencing is delivered to Wuhan double helix biotechnology limited company to perform stable transformation on Nicotiana benthamian (N.benthamian), and finally, a transgenic tobacco plant of pCAMBIA1300: RLPK-LUC with stable overexpression is obtained (figure 4).
Example 3 Using the variable excision-luciferase reporter System, it was investigated whether the genes to be tested are involved in the variable excision Process of plants
According to the operation scheme of FIG. 5, Agrobacterium transformed with the virulence factor of Phytophthora infestans was picked and inoculated into a test tube (liquid LB: Carna concentration)50. mu.g/mL, rifampicin concentration 50. mu.g/mL), cultured in a shaker (28 ℃,200 rpm) for 12-16 hours, and centrifuged at 4000g for 2 minutes to collect the cells. Followed by tobacco buffer (composition: 10mM MgCl)210mM MES, pH 5.6,200. mu.M AS) was resuspended 2 times to a final concentration OD6000.5. Selecting tobacco growing for 4-6 weeks, injecting prepared virulence factor bacterial liquid and control empty carrier bacterial liquid onto tobacco leaves, injecting 8 different tobacco leaves into each sample, and culturing the injected tobacco in a greenhouse (24 ℃/16h illumination and 22 ℃/8h darkness). After 2 days, the tobacco leaves at the injection point position are selected by a puncher for luciferase activity determination, three repeats (24 repeats in total for 8 leaves) at each injection point are taken and placed in a 96-hole enzyme label plate, a luciferase substrate (Luciferin; catalogue No. 7903; Biovision, USA) is added for reaction for 5-10 minutes, and then the obtained product is placed in a Promega Glo96 micropore plate luminescence detector for detecting the activity of the luciferase, and three independent experiments are carried out. As a result, it was found that the activities of the luciferases in the Pi04089 and Pi15038 treated samples were decreased compared with the control GFP treatment, indicating that Pi04089 and Pi15038 are involved in the process of variable cleavage of plant mRNA (FIG. 6).
The silencing fragments of NbSR30 and NbRS2Z32 were inserted into PK7GWIWG2D (II) vector to form silencing vectors for RNAi NbSR30 and RNAi NbRS2Z32 according to previous literature reports (Huang J, Gu L, Zhang Y, Yan T, Kong G, Kong L, Guo B, Qiu M, Wang Y, Jung M, et al 2017.An oomycete plant pathogen reagent pre-mRNA hybridization to subvert immunity. nat Commn 8(1): 2051). According to the operation scheme of FIG. 5, Agrobacterium transformed with RNAi: NbSR30 and RNAi: NbRS2Z32 was picked up, inoculated into a test tube (liquid LB: spectinomycin concentration 50. mu.g/mL, rifampicin concentration 50. mu.g/mL) for culture, cultured in a shaker (28 ℃,200 rpm) for 12-16 hours, and centrifuged at 4000g for 2-3 minutes to collect the cells. Followed by tobacco buffer (10 mM MgCl)210mM MES, pH 5.6,200. mu.M AS) was resuspended 2 times to a final concentration OD6000.5. Selecting tobacco growing for 4-6 weeks, injecting the prepared bacterial liquid of RNAi NbSR30 and RNAi NbRS2Z32 and the bacterial liquid of control RNAi RFP onto tobacco leaves, injecting 8 different tobacco leaves into each sample, and injectingThe tobacco was cultured in a greenhouse (24 ℃/16h light and 22 ℃/8h dark). After 2 days, the tobacco leaves at the injection point position are selected by a puncher for luciferase activity determination, three injection points are repeatedly placed into a 96-hole enzyme label plate at each injection point, luciferase substrates are added for reaction for 5-10 minutes, then the reaction product is placed into a Promega GloMax 96 micropore plate luminescence detector for detecting the activity of luciferase, three independent experiments are carried out totally, and NbSR30 can be preliminarily found to interfere the variable shearing process of the transgenic tobacco (figure 7).
Sequence listing
<110> Nanjing university of agriculture
<120> mRNA variable shearing-luciferase reporter system and application thereof
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 260
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atgtgtagca tccactacta tggcggtacg tatttgagat actggagtgc aataacttca 60
ttacactaaa cattttattg aaaggagatt gttaaagcaa taggtttacc atttttagaa 120
tccgcgttca ttgccaccta tatagctgta agctatttct tcaagacttt caatgatttt 180
acatcctctt aacttgattt ttcctttgtg atttacctgt tttgacagtt cttactataa 240
tgtacggtgg aataagtata 260
<210> 2
<211> 1653
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atggaagacg ccaaaaacat aaagaaaggc ccggcgccat tctatccgct ggaagatgga 60
accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120
gcttttacag atgcacatat cgaggtggac atcacttacg ctgagtactt cgaaatgtcc 180
gttcggttgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240
tgcagtgaaa actctcttca attctttatg ccggtgttgg gcgcgttatt tatcggagtt 300
gcagttgcgc ccgcgaacga catttataat gaacgtgaat tgctcaacag tatgggcatt 360
tcgcagccta ccgtggtgtt cgtttccaaa aaggggttgc aaaaaatttt gaacgtgcaa 420
aaaaagctcc caatcatcca aaaaattatt atcatggatt ctaaaacgga ttaccaggga 480
tttcagtcga tgtacacgtt cgtcacatct catctacctc ccggttttaa tgaatacgat 540
tttgtgccag agtccttcga tagggacaag acaattgcac tgatcatgaa ctcctctgga 600
tctactggtc tgcctaaagg tgtcgctctg cctcatagaa ctgcctgcgt gagattctcg 660
catgccagag atcctatttt tggcaatcaa atcattccgg atactgcgat tttaagtgtt 720
gttccattcc atcacggttt tggaatgttt actacactcg gatatttgat atgtggattt 780
cgagtcgtct taatgtatag atttgaagaa gagctgtttc tgaggagcct tcaggattac 840
aagattcaaa gtgcgctgct ggtgccaacc ctattctcct tcttcgccaa aagcactctg 900
attgacaaat acgatttatc taatttacac gaaattgctt ctggtggcgc tcccctctct 960
aaggaagtcg gggaagcggt tgccaagagg ttccatctgc caggtatcag gcaaggatat 1020
gggctcactg agactacatc agctattctg attacacccg agggggatga taaaccgggc 1080
gcggtcggta aagttgttcc attttttgaa gcgaaggttg tggatctgga taccgggaaa 1140
acgctgggcg ttaatcaaag aggcgaactg tgtgtgagag gtcctatgat tatgtccggt 1200
tatgtaaaca atccggaagc gaccaacgcc ttgattgaca aggatggatg gctacattct 1260
ggagacatag cttactggga cgaagacgaa cacttcttca tcgttgaccg cctgaagtct 1320
ctgattaagt acaaaggcta tcaggtggct cccgctgaat tggaatccat cttgctccaa 1380
caccccaaca tcttcgacgc aggtgtcgca ggtcttcccg acgatgacgc cggtgaactt 1440
cccgccgccg ttgttgtttt ggagcacgga aagacgatga cggaaaaaga gatcgtggat 1500
tacgtcgcca gtcaagtaac aaccgcgaaa aagttgcgcg gaggagttgt gtttgtggac 1560
gaagtaccga aaggtcttac cggaaaactc gacgcaagaa aaatcagaga gatcctcata 1620
aaggccaaga agggcggaaa gatcgccgtg taa 1653
<210> 3
<211> 1913
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
atgtgtagca tccactacta tggcggtacg tatttgagat actggagtgc aataacttca 60
ttacactaaa cattttattg aaaggagatt gttaaagcaa taggtttacc atttttagaa 120
tccgcgttca ttgccaccta tatagctgta agctatttct tcaagacttt caatgatttt 180
acatcctctt aacttgattt ttcctttgtg atttacctgt tttgacagtt cttactataa 240
tgtacggtgg aataagtata atggaagacg ccaaaaacat aaagaaaggc ccggcgccat 300
tctatccgct ggaagatgga accgctggag agcaactgca taaggctatg aagagatacg 360
ccctggttcc tggaacaatt gcttttacag atgcacatat cgaggtggac atcacttacg 420
ctgagtactt cgaaatgtcc gttcggttgg cagaagctat gaaacgatat gggctgaata 480
caaatcacag aatcgtcgta tgcagtgaaa actctcttca attctttatg ccggtgttgg 540
gcgcgttatt tatcggagtt gcagttgcgc ccgcgaacga catttataat gaacgtgaat 600
tgctcaacag tatgggcatt tcgcagccta ccgtggtgtt cgtttccaaa aaggggttgc 660
aaaaaatttt gaacgtgcaa aaaaagctcc caatcatcca aaaaattatt atcatggatt 720
ctaaaacgga ttaccaggga tttcagtcga tgtacacgtt cgtcacatct catctacctc 780
ccggttttaa tgaatacgat tttgtgccag agtccttcga tagggacaag acaattgcac 840
tgatcatgaa ctcctctgga tctactggtc tgcctaaagg tgtcgctctg cctcatagaa 900
ctgcctgcgt gagattctcg catgccagag atcctatttt tggcaatcaa atcattccgg 960
atactgcgat tttaagtgtt gttccattcc atcacggttt tggaatgttt actacactcg 1020
gatatttgat atgtggattt cgagtcgtct taatgtatag atttgaagaa gagctgtttc 1080
tgaggagcct tcaggattac aagattcaaa gtgcgctgct ggtgccaacc ctattctcct 1140
tcttcgccaa aagcactctg attgacaaat acgatttatc taatttacac gaaattgctt 1200
ctggtggcgc tcccctctct aaggaagtcg gggaagcggt tgccaagagg ttccatctgc 1260
caggtatcag gcaaggatat gggctcactg agactacatc agctattctg attacacccg 1320
agggggatga taaaccgggc gcggtcggta aagttgttcc attttttgaa gcgaaggttg 1380
tggatctgga taccgggaaa acgctgggcg ttaatcaaag aggcgaactg tgtgtgagag 1440
gtcctatgat tatgtccggt tatgtaaaca atccggaagc gaccaacgcc ttgattgaca 1500
aggatggatg gctacattct ggagacatag cttactggga cgaagacgaa cacttcttca 1560
tcgttgaccg cctgaagtct ctgattaagt acaaaggcta tcaggtggct cccgctgaat 1620
tggaatccat cttgctccaa caccccaaca tcttcgacgc aggtgtcgca ggtcttcccg 1680
acgatgacgc cggtgaactt cccgccgccg ttgttgtttt ggagcacgga aagacgatga 1740
cggaaaaaga gatcgtggat tacgtcgcca gtcaagtaac aaccgcgaaa aagttgcgcg 1800
gaggagttgt gtttgtggac gaagtaccga aaggtcttac cggaaaactc gacgcaagaa 1860
aaatcagaga gatcctcata aaggccaaga agggcggaaa gatcgccgtg taa 1913
<210> 4
<211> 12332
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
aattcggtcc ccagattagc cttttcaatt tcagaaagaa tgctaaccca cagatggtta 60
gagaggctta cgcagcaggt ctcatcaaga cgatctaccc gagcaataat ctccaggaaa 120
tcaaatacct tcccaagaag gttaaagatg cagtcaaaag attcaggact aactgcatca 180
agaacacaga gaaagatata tttctcaaga tcagaagtac tattccagta tggacgattc 240
aaggcttgct tcacaaacca aggcaagtaa tagagattgg agtctctaaa aaggtagttc 300
ccactgaatc aaaggccatg gagtcaaaga ttcaaataga ggacctaaca gaactcgccg 360
taaagactgg cgaacagttc atacagagtc tcttacgact caatgacaag aagaaaatct 420
tcgtcaacat ggtggagcac gacacacttg tctactccaa aaatatcaaa gatacagtct 480
cagaagacca aagggcaatt gagacttttc aacaaagggt aatatccgga aacctcctcg 540
gattccattg cccagctatc tgtcacttta ttgtgaagat agtggaaaag gaaggtggct 600
cctacaaatg ccatcattgc gataaaggaa aggccatcgt tgaagatgcc tctgccgaca 660
gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa gacgttccaa 720
ccacgtcttc aaagcaagtg gattgatgtg atatctccac tgacgtaagg gatgacgcac 780
aatcccacta tccttcgcaa gacccttcct ctatataagg aagttcattt catttggaga 840
gaacacgggg gacgagctcg gtaccatgtg tagcatccac tactatggcg gtacgtattt 900
gagatactgg agtgcaataa cttcattaca ctaaacattt tattgaaagg agattgttaa 960
agcaataggt ttaccatttt tagaatccgc gttcattgcc acctatatag ctgtaagcta 1020
tttcttcaag actttcaatg attttacatc ctcttaactt gatttttcct ttgtgattta 1080
cctgttttga cagttcttac tataatgtac ggtggaataa gtataatgga agacgccaaa 1140
aacataaaga aaggcccggc gccattctat ccgctggaag atggaaccgc tggagagcaa 1200
ctgcataagg ctatgaagag atacgccctg gttcctggaa caattgcttt tacagatgca 1260
catatcgagg tggacatcac ttacgctgag tacttcgaaa tgtccgttcg gttggcagaa 1320
gctatgaaac gatatgggct gaatacaaat cacagaatcg tcgtatgcag tgaaaactct 1380
cttcaattct ttatgccggt gttgggcgcg ttatttatcg gagttgcagt tgcgcccgcg 1440
aacgacattt ataatgaacg tgaattgctc aacagtatgg gcatttcgca gcctaccgtg 1500
gtgttcgttt ccaaaaaggg gttgcaaaaa attttgaacg tgcaaaaaaa gctcccaatc 1560
atccaaaaaa ttattatcat ggattctaaa acggattacc agggatttca gtcgatgtac 1620
acgttcgtca catctcatct acctcccggt tttaatgaat acgattttgt gccagagtcc 1680
ttcgataggg acaagacaat tgcactgatc atgaactcct ctggatctac tggtctgcct 1740
aaaggtgtcg ctctgcctca tagaactgcc tgcgtgagat tctcgcatgc cagagatcct 1800
atttttggca atcaaatcat tccggatact gcgattttaa gtgttgttcc attccatcac 1860
ggttttggaa tgtttactac actcggatat ttgatatgtg gatttcgagt cgtcttaatg 1920
tatagatttg aagaagagct gtttctgagg agccttcagg attacaagat tcaaagtgcg 1980
ctgctggtgc caaccctatt ctccttcttc gccaaaagca ctctgattga caaatacgat 2040
ttatctaatt tacacgaaat tgcttctggt ggcgctcccc tctctaagga agtcggggaa 2100
gcggttgcca agaggttcca tctgccaggt atcaggcaag gatatgggct cactgagact 2160
acatcagcta ttctgattac acccgagggg gatgataaac cgggcgcggt cggtaaagtt 2220
gttccatttt ttgaagcgaa ggttgtggat ctggataccg ggaaaacgct gggcgttaat 2280
caaagaggcg aactgtgtgt gagaggtcct atgattatgt ccggttatgt aaacaatccg 2340
gaagcgacca acgccttgat tgacaaggat ggatggctac attctggaga catagcttac 2400
tgggacgaag acgaacactt cttcatcgtt gaccgcctga agtctctgat taagtacaaa 2460
ggctatcagg tggctcccgc tgaattggaa tccatcttgc tccaacaccc caacatcttc 2520
gacgcaggtg tcgcaggtct tcccgacgat gacgccggtg aacttcccgc cgccgttgtt 2580
gttttggagc acggaaagac gatgacggaa aaagagatcg tggattacgt cgccagtcaa 2640
gtaacaaccg cgaaaaagtt gcgcggagga gttgtgtttg tggacgaagt accgaaaggt 2700
cttaccggaa aactcgacgc aagaaaaatc agagagatcc tcataaaggc caagaagggc 2760
ggaaagatcg ccgtgtaact gcagagcttt cgttcgtatc atcggtttcg acaacgttcg 2820
tcaagttcaa tgcatcagtt tcattgcgca cacaccagaa tcctactgag ttcgagtatt 2880
atggcattgg gaaacatgtt tttcttgtac catttgttgt gcttgtaatt tactgtgttt 2940
tttattcggt tttcgctatc gaactgtgaa atggaaatgg atggagaaga gttaatgaat 3000
gatatggtcc ttttgttcat tctcaaatta atattatttg ttttttctct tatttgttgt 3060
gtgttgaatt tgaaaatata agagatatgc aaacattttg ttttgagtaa aaatgtgtca 3120
aatcgtggcc tctaatgacc gaagttaata tgaggagtaa aacacttgta gttgtaccat 3180
tatgcttatt cactaggcaa caaatatatt ttcagaccta gaaaagctgc aaatgttact 3240
gaatacaagt atgtcctctt gtgttttaga catttatgaa ctttccttta tgtaattttc 3300
cagaatcctt gtcagattct aatcattgct ttataattat agttatactc atggatttgt 3360
agttgagtat gaaaatattt tttaatgcat tttatgactt gccaattgat tgacaacatg 3420
catcaagctt ggcactggcc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta 3480
cccaacttaa tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg 3540
cccgcaccga tcgcccttcc caacagttgc gcagcctgaa tggcgaatgc tagagcagct 3600
tgagcttgga tcagattgtc gtttcccgcc ttcagtttaa actatcagtg tttgacagga 3660
tatattggcg ggtaaaccta agagaaaaga gcgtttatta gaataacgga tatttaaaag 3720
ggcgtgaaaa ggtttatccg ttcgtccatt tgtatgtgca tgccaaccac agggttcccc 3780
tcgggatcaa agtactttga tccaacccct ccgctgctat agtgcagtcg gcttctgacg 3840
ttcagtgcag ccgtcttctg aaaacgacat gtcgcacaag tcctaagtta cgcgacaggc 3900
tgccgccctg cccttttcct ggcgttttct tgtcgcgtgt tttagtcgca taaagtagaa 3960
tacttgcgac tagaaccgga gacattacgc catgaacaag agcgccgccg ctggcctgct 4020
gggctatgcc cgcgtcagca ccgacgacca ggacttgacc aaccaacggg ccgaactgca 4080
cgcggccggc tgcaccaagc tgttttccga gaagatcacc ggcaccaggc gcgaccgccc 4140
ggagctggcc aggatgcttg accacctacg ccctggcgac gttgtgacag tgaccaggct 4200
agaccgcctg gcccgcagca cccgcgacct actggacatt gccgagcgca tccaggaggc 4260
cggcgcgggc ctgcgtagcc tggcagagcc gtgggccgac accaccacgc cggccggccg 4320
catggtgttg accgtgttcg ccggcattgc cgagttcgag cgttccctaa tcatcgaccg 4380
cacccggagc gggcgcgagg ccgccaaggc ccgaggcgtg aagtttggcc cccgccctac 4440
cctcaccccg gcacagatcg cgcacgcccg cgagctgatc gaccaggaag gccgcaccgt 4500
gaaagaggcg gctgcactgc ttggcgtgca tcgctcgacc ctgtaccgcg cacttgagcg 4560
cagcgaggaa gtgacgccca ccgaggccag gcggcgcggt gccttccgtg aggacgcatt 4620
gaccgaggcc gacgccctgg cggccgccga gaatgaacgc caagaggaac aagcatgaaa 4680
ccgcaccagg acggccagga cgaaccgttt ttcattaccg aagagatcga ggcggagatg 4740
atcgcggccg ggtacgtgtt cgagccgccc gcgcacgtct caaccgtgcg gctgcatgaa 4800
atcctggccg gtttgtctga tgccaagctg gcggcctggc cggccagctt ggccgctgaa 4860
gaaaccgagc gccgccgtct aaaaaggtga tgtgtatttg agtaaaacag cttgcgtcat 4920
gcggtcgctg cgtatatgat gcgatgagta aataaacaaa tacgcaaggg gaacgcatga 4980
aggttatcgc tgtacttaac cagaaaggcg ggtcaggcaa gacgaccatc gcaacccatc 5040
tagcccgcgc cctgcaactc gccggggccg atgttctgtt agtcgattcc gatccccagg 5100
gcagtgcccg cgattgggcg gccgtgcggg aagatcaacc gctaaccgtt gtcggcatcg 5160
accgcccgac gattgaccgc gacgtgaagg ccatcggccg gcgcgacttc gtagtgatcg 5220
acggagcgcc ccaggcggcg gacttggctg tgtccgcgat caaggcagcc gacttcgtgc 5280
tgattccggt gcagccaagc ccttacgaca tatgggccac cgccgacctg gtggagctgg 5340
ttaagcagcg cattgaggtc acggatggaa ggctacaagc ggcctttgtc gtgtcgcggg 5400
cgatcaaagg cacgcgcatc ggcggtgagg ttgccgaggc gctggccggg tacgagctgc 5460
ccattcttga gtcccgtatc acgcagcgcg tgagctaccc aggcactgcc gccgccggca 5520
caaccgttct tgaatcagaa cccgagggcg acgctgcccg cgaggtccag gcgctggccg 5580
ctgaaattaa atcaaaactc atttgagtta atgaggtaaa gagaaaatga gcaaaagcac 5640
aaacacgcta agtgccggcc gtccgagcgc acgcagcagc aaggctgcaa cgttggccag 5700
cctggcagac acgccagcca tgaagcgggt caactttcag ttgccggcgg aggatcacac 5760
caagctgaag atgtacgcgg tacgccaagg caagaccatt accgagctgc tatctgaata 5820
catcgcgcag ctaccagagt aaatgagcaa atgaataaat gagtagatga attttagcgg 5880
ctaaaggagg cggcatggaa aatcaagaac aaccaggcac cgacgccgtg gaatgcccca 5940
tgtgtggagg aacgggcggt tggccaggcg taagcggctg ggttgtctgc cggccctgca 6000
atggcactgg aacccccaag cccgaggaat cggcgtgacg gtcgcaaacc atccggcccg 6060
gtacaaatcg gcgcggcgct gggtgatgac ctggtggaga agttgaaggc cgcgcaggcc 6120
gcccagcggc aacgcatcga ggcagaagca cgccccggtg aatcgtggca agcggccgct 6180
gatcgaatcc gcaaagaatc ccggcaaccg ccggcagccg gtgcgccgtc gattaggaag 6240
ccgcccaagg gcgacgagca accagatttt ttcgttccga tgctctatga cgtgggcacc 6300
cgcgatagtc gcagcatcat ggacgtggcc gttttccgtc tgtcgaagcg tgaccgacga 6360
gctggcgagg tgatccgcta cgagcttcca gacgggcacg tagaggtttc cgcagggccg 6420
gccggcatgg ccagtgtgtg ggattacgac ctggtactga tggcggtttc ccatctaacc 6480
gaatccatga accgataccg ggaagggaag ggagacaagc ccggccgcgt gttccgtcca 6540
cacgttgcgg acgtactcaa gttctgccgg cgagccgatg gcggaaagca gaaagacgac 6600
ctggtagaaa cctgcattcg gttaaacacc acgcacgttg ccatgcagcg tacgaagaag 6660
gccaagaacg gccgcctggt gacggtatcc gagggtgaag ccttgattag ccgctacaag 6720
atcgtaaaga gcgaaaccgg gcggccggag tacatcgaga tcgagctagc tgattggatg 6780
taccgcgaga tcacagaagg caagaacccg gacgtgctga cggttcaccc cgattacttt 6840
ttgatcgatc ccggcatcgg ccgttttctc taccgcctgg cacgccgcgc cgcaggcaag 6900
gcagaagcca gatggttgtt caagacgatc tacgaacgca gtggcagcgc cggagagttc 6960
aagaagttct gtttcaccgt gcgcaagctg atcgggtcaa atgacctgcc ggagtacgat 7020
ttgaaggagg aggcggggca ggctggcccg atcctagtca tgcgctaccg caacctgatc 7080
gagggcgaag catccgccgg ttcctaatgt acggagcaga tgctagggca aattgcccta 7140
gcaggggaaa aaggtcgaaa aggtctcttt cctgtggata gcacgtacat tgggaaccca 7200
aagccgtaca ttgggaaccg gaacccgtac attgggaacc caaagccgta cattgggaac 7260
cggtcacaca tgtaagtgac tgatataaaa gagaaaaaag gcgatttttc cgcctaaaac 7320
tctttaaaac ttattaaaac tcttaaaacc cgcctggcct gtgcataact gtctggccag 7380
cgcacagccg aagagctgca aaaagcgcct acccttcggt cgctgcgctc cctacgcccc 7440
gccgcttcgc gtcggcctat cgcggccgct ggccgctcaa aaatggctgg cctacggcca 7500
ggcaatctac cagggcgcgg acaagccgcg ccgtcgccac tcgaccgccg gcgcccacat 7560
caaggcaccc tgcctcgcgc gtttcggtga tgacggtgaa aacctctgac acatgcagct 7620
cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag cccgtcaggg 7680
cgcgtcagcg ggtgttggcg ggtgtcgggg cgcagccatg acccagtcac gtagcgatag 7740
cggagtgtat actggcttaa ctatgcggca tcagagcaga ttgtactgag agtgcaccat 7800
atgcggtgtg aaataccgca cagatgcgta aggagaaaat accgcatcag gcgctcttcc 7860
gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 7920
cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 7980
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 8040
cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 8100
aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 8160
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 8220
gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 8280
ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 8340
cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 8400
aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 8460
tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 8520
ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 8580
tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 8640
ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 8700
cattctaggt actaaaacaa ttcatccagt aaaatataat attttatttt ctcccaatca 8760
ggcttgatcc ccagtaagtc aaaaaatagc tcgacatact gttcttcccc gatatcctcc 8820
ctgatcgacc ggacgcagaa ggcaatgtca taccacttgt ccgccctgcc gcttctccca 8880
agatcaataa agccacttac tttgccatct ttcacaaaga tgttgctgtc tcccaggtcg 8940
ccgtgggaaa agacaagttc ctcttcgggc ttttccgtct ttaaaaaatc atacagctcg 9000
cgcggatctt taaatggagt gtcttcttcc cagttttcgc aatccacatc ggccagatcg 9060
ttattcagta agtaatccaa ttcggctaag cggctgtcta agctattcgt atagggacaa 9120
tccgatatgt cgatggagtg aaagagcctg atgcactccg catacagctc gataatcttt 9180
tcagggcttt gttcatcttc atactcttcc gagcaaagga cgccatcggc ctcactcatg 9240
agcagattgc tccagccatc atgccgttca aagtgcagga cctttggaac aggcagcttt 9300
ccttccagcc atagcatcat gtccttttcc cgttccacat cataggtggt ccctttatac 9360
cggctgtccg tcatttttaa atataggttt tcattttctc ccaccagctt atatacctta 9420
gcaggagaca ttccttccgt atcttttacg cagcggtatt tttcgatcag ttttttcaat 9480
tccggtgata ttctcatttt agccatttat tatttccttc ctcttttcta cagtatttaa 9540
agatacccca agaagctaat tataacaaga cgaactccaa ttcactgttc cttgcattct 9600
aaaaccttaa ataccagaaa acagcttttt caaagttgtt ttcaaagttg gcgtataaca 9660
tagtatcgac ggagccgatt ttgaaaccgc ggtgatcaca ggcagcaacg ctctgtcatc 9720
gttacaatca acatgctacc ctccgcgaga tcatccgtgt ttcaaacccg gcagcttagt 9780
tgccgttctt ccgaatagca tcggtaacat gagcaaagtc tgccgcctta caacggctct 9840
cccgctgacg ccgtcccgga ctgatgggct gcctgtatcg agtggtgatt ttgtgccgag 9900
ctgccggtcg gggagctgtt ggctggctgg tggcaggata tattgtggtg taaacaaatt 9960
gacgcttaga caacttaata acacattgcg gacgttttta atgtactgaa ttaacgccga 10020
attaattcgg gggatctgga ttttagtact ggattttggt tttaggaatt agaaatttta 10080
ttgatagaag tattttacaa atacaaatac atactaaggg tttcttatat gctcaacaca 10140
tgagcgaaac cctataggaa ccctaattcc cttatctggg aactactcac acattattat 10200
ggagaaactc gagcttgtcg atcgacagat ccggtcggca tctactctat ttctttgccc 10260
tcggacgagt gctggggcgt cggtttccac tatcggcgag tacttctaca cagccatcgg 10320
tccagacggc cgcgcttctg cgggcgattt gtgtacgccc gacagtcccg gctccggatc 10380
ggacgattgc gtcgcatcga ccctgcgccc aagctgcatc atcgaaattg ccgtcaacca 10440
agctctgata gagttggtca agaccaatgc ggagcatata cgcccggagt cgtggcgatc 10500
ctgcaagctc cggatgcctc cgctcgaagt agcgcgtctg ctgctccata caagccaacc 10560
acggcctcca gaagaagatg ttggcgacct cgtattggga atccccgaac atcgcctcgc 10620
tccagtcaat gaccgctgtt atgcggccat tgtccgtcag gacattgttg gagccgaaat 10680
ccgcgtgcac gaggtgccgg acttcggggc agtcctcggc ccaaagcatc agctcatcga 10740
gagcctgcgc gacggacgca ctgacggtgt cgtccatcac agtttgccag tgatacacat 10800
ggggatcagc aatcgcgcat atgaaatcac gccatgtagt gtattgaccg attccttgcg 10860
gtccgaatgg gccgaacccg ctcgtctggc taagatcggc cgcagcgatc gcatccatag 10920
cctccgcgac cggttgtaga acagcgggca gttcggtttc aggcaggtct tgcaacgtga 10980
caccctgtgc acggcgggag atgcaatagg tcaggctctc gctaaactcc ccaatgtcaa 11040
gcacttccgg aatcgggagc gcggccgatg caaagtgccg ataaacataa cgatctttgt 11100
agaaaccatc ggcgcagcta tttacccgca ggacatatcc acgccctcct acatcgaagc 11160
tgaaagcacg agattcttcg ccctccgaga gctgcatcag gtcggagacg ctgtcgaact 11220
tttcgatcag aaacttctcg acagacgtcg cggtgagttc aggctttttc atatctcatt 11280
gccccccggg atctgcgaaa gctcgagaga gatagatttg tagagagaga ctggtgattt 11340
cagcgtgtcc tctccaaatg aaatgaactt ccttatatag aggaaggtct tgcgaaggat 11400
agtgggattg tgcgtcatcc cttacgtcag tggagatatc acatcaatcc acttgctttg 11460
aagacgtggt tggaacgtct tctttttcca cgatgctcct cgtgggtggg ggtccatctt 11520
tgggaccact gtcggcagag gcatcttgaa cgatagcctt tcctttatcg caatgatggc 11580
atttgtaggt gccaccttcc ttttctactg tccttttgat gaagtgacag atagctgggc 11640
aatggaatcc gaggaggttt cccgatatta ccctttgttg aaaagtctca atagcccttt 11700
ggtcttctga gactgtatct ttgatattct tggagtagac gagagtgtcg tgctccacca 11760
tgttatcaca tcaatccact tgctttgaag acgtggttgg aacgtcttct ttttccacga 11820
tgctcctcgt gggtgggggt ccatctttgg gaccactgtc ggcagaggca tcttgaacga 11880
tagcctttcc tttatcgcaa tgatggcatt tgtaggtgcc accttccttt tctactgtcc 11940
ttttgatgaa gtgacagata gctgggcaat ggaatccgag gaggtttccc gatattaccc 12000
tttgttgaaa agtctcaata gccctttggt cttctgagac tgtatctttg atattcttgg 12060
agtagacgag agtgtcgtgc tccaccatgt tggcaagctg ctctagccaa tacgcaaacc 12120
gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt ttcccgactg 12180
gaaagcgggc agtgagcgca acgcaattaa tgtgagttag ctcactcatt aggcacccca 12240
ggctttacac tttatgcttc cggctcgtat gttgtgtgga attgtgagcg gataacaatt 12300
tcacacagga aacagctatg accatgatta cg 12332
<210> 5
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
acgggggacg agctcggtac catgtgtagc atccactact a 41
<210> 6
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
atgtttttgg cgtcttccat tatacttatt ccaccgtac 39
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atggaagacg ccaaaaacat 20
<210> 8
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atacgaacga aagctctgca gttacacggc gatctttccg c 41
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
accttcttgt gcagagaatg 20
<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atagtaagaa cgccatagta g 21
<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
ctactatggc ggtacgtatt tg 22
<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
gtggcaatga acgcggattc t 21
<210> 13
<211> 17
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
tattgtgaag atagtgg 17
<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
tgaaactgat gcattgaact 20

Claims (7)

1. A mRNA variable splicing-luciferase reporter system comprising a variable splicing region sequence of plant RLPK and a luciferase reporter sequence; the sequence of the variable shearing region of the plant RLPK is SEQ ID NO.1, the sequence of the luciferase reporter gene LUC is SEQ ID NO.2, and the sequence of the mRNA variable shearing-luciferase reporter system is SEQ ID NO. 3.
2. A plant transgenic vector of the mRNA variable splicing-luciferase reporter system, which is obtained by connecting the variable splicing region sequence of the plant RLPK of claim 1 and the luciferase reporter gene LUC sequence together into a plant expression vector pCAMBIA1300 to obtain the plant transgenic vector pCAMBIA1300: RLPK-LUC.
3. The plant transgenic vector according to claim 2, wherein the construction process comprises the following steps:
(1) extracting tomato genome DNA, and amplifying plant by using primers SEQ ID NO.5 and SEQ ID NO.6RLPKObtaining the nucleotide sequence shown as SEQ ID NO. 1;
(2) amplifying a luciferase reporter gene sequence by using primers SEQ ID NO.7 and SEQ ID NO.8 to obtain a nucleotide sequence shown as SEQ ID NO. 2;
(3) the variable splicing region sequence of RLPK and the luciferase reporter gene LUC sequence in the plant are connected to a plant expression vector pCAMBIA1300 by using a multi-fragment recombination method to obtain a plant transgenic vector pCAMBIA1300 of an mRNA variable splicing-luciferase reporter system, namely RLPK-LUC.
4. A method for breeding transgenic plants of RLPK mRNA variable splicing-luciferase reporter system, which is characterized in that the transgenic vector pCAMBIA1300 RLPK-LUC of claim 2 or 3 is stably transformed on the plants, and the transgenic plants which stably over-express the variable splicing-luciferase reporter system are obtained by a method of resistance screening and luciferase activity verification.
5. The method of claim 4, wherein said transgenic plant is Nicotiana benthamiana.
6. Use of the mRNA variable splicing-luciferase reporter system of claim 1, the plant transgenic vector of claim 2 or 3, or the transgenic plant grown by the method of claim 4 or 5 for rapid screening of whether a test gene modulates the RLPK mRNA variable splicing process in a plant.
7.A gene screening method based on the variable splicing change of RLPK, which is characterized in that an exogenous gene is overexpressed on the leaves of a transgenic plant of the mRNA variable splicing-luciferase reporter system cultivated by the method of claim 4 or 5 by using an Agrobacterium-mediated transient overexpression technology; or silencing endogenous genes of plants in the transgenic plant leaves of the mRNA variable shearing-luciferase reporter system cultured by the method of claim 4 or 5 by utilizing an agrobacterium-mediated gene silencing technology, and judging whether the genes to be detected participate in the variable shearing process of the plants by detecting the change of the luciferase activity so as to realize the rapid screening of whether the genes to be detected participate in the variable shearing process of the plants.
CN201911298590.XA 2019-12-17 2019-12-17 mRNA variable shearing-luciferase report system and application thereof Active CN110938650B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911298590.XA CN110938650B (en) 2019-12-17 2019-12-17 mRNA variable shearing-luciferase report system and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911298590.XA CN110938650B (en) 2019-12-17 2019-12-17 mRNA variable shearing-luciferase report system and application thereof

Publications (2)

Publication Number Publication Date
CN110938650A CN110938650A (en) 2020-03-31
CN110938650B true CN110938650B (en) 2022-07-15

Family

ID=69911827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911298590.XA Active CN110938650B (en) 2019-12-17 2019-12-17 mRNA variable shearing-luciferase report system and application thereof

Country Status (1)

Country Link
CN (1) CN110938650B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117230107B (en) * 2023-11-13 2024-03-01 南京农业大学三亚研究院 mRNA variable shear-luciferase reporting system and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107760718A (en) * 2017-11-08 2018-03-06 吉林省农业科学院 Sheep CNKSR2 gene luciferase reporter gene carriers and construction method and application
CN110343713A (en) * 2019-07-08 2019-10-18 云南大学 It is a kind of based on the multi-functional luciferase reporter gene carrier and its construction method of source of people TLR4 gene and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107760718A (en) * 2017-11-08 2018-03-06 吉林省农业科学院 Sheep CNKSR2 gene luciferase reporter gene carriers and construction method and application
CN110343713A (en) * 2019-07-08 2019-10-18 云南大学 It is a kind of based on the multi-functional luciferase reporter gene carrier and its construction method of source of people TLR4 gene and application

Also Published As

Publication number Publication date
CN110938650A (en) 2020-03-31

Similar Documents

Publication Publication Date Title
CN108486146B (en) Application of LbCpf1-RR mutant in CRISPR/Cpf1 system in plant gene editing
CN108997484B (en) Application of wheat TaWox5 gene in improving wheat transformation efficiency
CN111534535B (en) Method for constructing ergothioneine producing strain
CN106834338B (en) Expression vector of arabidopsis gene REM16 and application thereof in regulating and controlling plant flowering period
CN111004814A (en) Construction method of sensitive arsenic ion whole-cell biosensor and arsenic ion concentration detection method
CN113234738A (en) red grape ABA8ox3 gene overexpression vector and construction method and application thereof
CN109679965B (en) Gene for regulating and controlling leaf type development of poplar and application thereof
CN106916828A (en) A kind of growth regulator gene of poplar adjusted and controlled leaf development and its application
CN110938650B (en) mRNA variable shearing-luciferase report system and application thereof
CN101709300B (en) Method for quickly constructing artificial mi RNA gene interference vector of paddy
CN109022285B (en) Method for improving tolerance capacity of Synechocystis PCC6803 ammonium salt and application thereof
CN108531502A (en) The structure and inoculation method of citrus decline virus infectious clone
CN114317598A (en) Virus-induced gene silencing vector and application thereof and citrus disease control method
CN109456990B (en) Method for improving chloroplast genetic transformation efficiency by using genome editing technology
CN111154764B (en) Method for improving disease resistance of rice through genome editing and sgRNA used in method
CN114672509B (en) Corynebacterium and escherichia coli dual-expression vector with high expression capacity and construction method thereof
CN113403314B (en) Corn drought inducible promoter ZmOMAp1730 and application thereof
CN108559759A (en) Ternary shuttle vector and the method for building CLBV infectious clones using it
KR102170566B1 (en) Vector for premature termination of target gene expression and strain containing the same
CN110669794A (en) Cell enrichment technology of C.T base substitution by using mutant screening agent resistance gene as report system and application thereof
LU502442B1 (en) Sugar transporter gene for affecting wood formation in poplar and application thereof
CN109750059B (en) Rice beta-amylase BA2 and coding gene and application thereof
CN113817766A (en) Gene expression cassette, recombinant expression vector, preparation method and application thereof
CN110724689B (en) Cas 9-mediated dendrocalamus latiflorus gene editing vector and application
CN112813093B (en) Inducible Ac/Ds transposon vector pRI-5 with activation tag and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant