CN110502822B - Topological optimization design method of self-supporting structure for additive manufacturing - Google Patents

Topological optimization design method of self-supporting structure for additive manufacturing Download PDF

Info

Publication number
CN110502822B
CN110502822B CN201910751448.XA CN201910751448A CN110502822B CN 110502822 B CN110502822 B CN 110502822B CN 201910751448 A CN201910751448 A CN 201910751448A CN 110502822 B CN110502822 B CN 110502822B
Authority
CN
China
Prior art keywords
density
unit
unit body
overhang
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910751448.XA
Other languages
Chinese (zh)
Other versions
CN110502822A (en
Inventor
陈建超
程嘉讯
米文轩
赵春富
吴敬鑫
王加春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201910751448.XA priority Critical patent/CN110502822B/en
Publication of CN110502822A publication Critical patent/CN110502822A/en
Application granted granted Critical
Publication of CN110502822B publication Critical patent/CN110502822B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)
  • Feedback Control In General (AREA)

Abstract

The invention discloses a topological optimization design method of a self-supporting structure for additive manufacturing, which belongs to the related technical field of structural optimization design, and the method is used for calculating and constraining an overhang angle alpha by a four-unit body method, and combining the overhang angle constraint with a SIMP (simple modeling and processing) method to obtain the overhang structure of the self-supporting structure in the additive manufacturing; in addition, the calculation method is completely suitable for a continuum structure, high in flexibility, wide in application range, easy to implement and capable of being implanted into a topology optimization framework as an expansion module.

Description

Topological optimization design method of self-supporting structure for additive manufacturing
Technical Field
The invention relates to a topological optimization design method of a self-supporting structure for additive manufacturing, and belongs to the technical field related to structural optimization design.
Background
Topological optimization is an effective means for realizing the lightweight design of a workpiece structure, but because the optimized workpiece is often complex in structure, most of the topological optimization is only used for the conceptual design of the structure, and the later processing stage is difficult to perform due to the limitation of the traditional processing technology. In recent years, with the rise and development of additive manufacturing technology, it is widely believed by domestic and foreign scholars and industrial designers that the additive manufacturing technology is not limited by a workpiece structure any more due to the obvious advantages of high capability of processing complex components, short processing period, no need of tooling and dies and the like, and the combination of the additive manufacturing technology and topology optimization is an optimal method for realizing the light weight of parts.
The molding principle of additive manufacturing technology is "additive manufacturing", i.e. molding a part by layers of materials. However, manufacturing constraints still exist in the additive manufacturing process, with the overhanging structure constraint affecting the most severely. In the vibration material disk, the model is sliced by software and then printed layer by layer, in order to avoid printing collapse, each part of each layer after slicing the model is required to be supported by enough materials, if the materials supported by the layers are insufficient, a suspension structure can be formed, auxiliary supports must be added manually to ensure successful printing, the supports are formed during processing and are removed during post-processing, so that the serious waste of raw materials and time cost is caused, and even the surface of a workpiece is damaged during removal. Scholars at home and abroad find that whether the overhanging structure needs auxiliary support can be judged through an overhanging angle, wherein the overhanging angle is an included angle between an overhanging surface of a workpiece and a horizontal plane and is found at an overhanging threshold angle. When the overhang angle is greater than or equal to the overhang threshold angle, the overhang structure can realize self-support, and higher printing quality can be achieved without adding auxiliary support; when the overhang angle is less than the overhang threshold angle, additional support may be required.
In view of the above problems, there is a strong need to develop a topology optimization design method for a self-supporting structure for additive manufacturing. In the topological optimization process, the calculated overhang angle is constrained to be larger than or equal to the overhang threshold angle all the time, namely the overhang structure is ensured to be a self-supporting structure all the time, a workpiece can be directly processed without being supported, the cost is greatly saved, and the time is saved.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a topological optimization design method of a self-supporting structure for additive manufacturing, which can calculate and constrain an overhang angle to obtain an overhang structure which is always a self-supporting structure, avoid the addition of a supporting structure, effectively reduce the consumption and cost of consumables and improve the surface quality of a workpiece.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows: a topological optimization design method of a self-supporting structure for additive manufacturing is a method for calculating and constraining a suspension angle alpha through a four-unit body method, and combining the suspension angle constraint with a SIMP method to obtain the suspension structure of the self-supporting structure in the additive manufacturing.
The technical scheme of the invention is further improved as follows: the method comprises the following steps:
a, establishing a part geometric model, defining load and boundary conditions, defining design variables, a target function and a constraint function based on a SIMP density-rigidity interpolation model, and initializing unit body density, material attribute parameters, material volume fraction and optimization algorithm parameters;
b, taking the relative density of the unit body as a design variable, and acquiring the intermediate density of the unit body through a linear density filter
Figure GDA0003644905060000021
C pass through nonlinear Density Filter and intermediate Density of Unit cells
Figure GDA0003644905060000022
Obtaining physical Density of Unit bodies
Figure GDA0003644905060000023
D, obtaining an overhang angle alpha through a four-unit body method, taking the overhang angle as an overhang angle constraint function, and applying an overhang angle constraint condition to obtain an overhang angle constraint equation, wherein the overhang angle constraint condition is that the overhang angle is greater than or equal to an overhang threshold angle: alpha is more than or equal to alpha 0 (ii) a The four-unit method in the step D comprises the following steps: when the topological optimization is carried out by using the SIMP method, a density uniform transition region with the unit volume density of 0-1 exists at the boundary of the SIMP density-rigidity interpolation model, a density gradient exists in the density uniform transition region, and the density gradient is vertical to the boundary of the SIMP density-rigidity interpolation model, so that the density equivalent value vertical to the density gradient exists in the density uniform transition region The line and the density contour line are parallel to the boundary of the model; the specific steps of the four-unit body method are as follows: selecting a certain unit body in a transition area with uniform density and three adjacent unit bodies to form a four-unit body in a shape of Chinese character tian, and sequentially recording the density of the central points of the four unit bodies as rho from the selected unit body 1 、ρ 2 、ρ 3 、ρ 4 The density distribution in the density transition area is a linear function, a density contour line is calculated according to the densities of the four selected unit bodies, and the included angle between the density contour line and the horizontal direction is the overhang angle alpha;
e, calculating the sensitivity of the target function and the constraint function to the design variable to obtain a sensitivity control equation;
f according to physical Density of Unit cell
Figure GDA0003644905060000032
Solving a suspension angle constraint equation and a SIMP density-rigidity interpolation model mathematical expression to obtain a structural response, and calculating an objective function value, a constraint function value and a sensitivity value;
and G, judging whether the algorithm is converged or not by using the obtained sensitivity value, if not, returning to the step (2) for algorithm iteration, if so, ending the algorithm iteration, and outputting a final topology optimization result.
The technical scheme of the invention is further improved as follows: in the step A, based on a SIMP density-rigidity interpolation model, the relative density of each discrete unit body is used as a design variable, the overall rigidity of the macro structure is used as a target function, the target is optimized to maximize the overall rigidity of the macro structure, namely the flexibility of the macro structure is minimized, the volume fraction of the structure is used as a volume constraint function, and the mathematical expression of the model is as follows:
find:ρ=(ρ 1 ,ρ 2 ,......,ρ nele ) T (1)
min:C=F T U (2)
s.t.:K(ρ)U=F (3)
Figure GDA0003644905060000031
0≤ρ i ≤1 i=1,2,...,nele (5)
Where ρ ═ p (ρ) 1 ,ρ 2 ,......,ρ nele ) T Is the discretized relative density of each unit body, and rho is [0, 1 ]]A continuous variable of (a);
c is the flexibility of the macrostructure;
f is a load vector;
u is a node displacement vector;
k is the integral rigidity of the macrostructure;
ρ i relative density of the ith unit cell;
v i is the volume fraction of the ith unit cell;
v is the structural volume fraction;
Figure GDA0003644905060000047
to set the structural volume fraction;
equation (2) is the objective equation, equation (3) is the governing equation, and equation (4) is the volume constraint equation.
The technical scheme of the invention is further improved as follows: the step B adopts a linear density filter, and specifically comprises the following steps:
Figure GDA0003644905060000041
N e ={m|||x m -x e ||≤R) (7)
w(x m )=R-||x m -x e || (8)
wherein the content of the first and second substances,
Figure GDA0003644905060000042
is the median density of unit e, i.e. the relative density of unit e after linear filtering;
r is the linear density filter radius;
x m is the centroid coordinate of the unit cell m.
The technical scheme of the invention is further improved as follows: in the step C, a nonlinear density filter is adopted
Figure GDA0003644905060000043
Filtering to physical density
Figure GDA0003644905060000044
The method comprises the following specific steps:
Figure GDA0003644905060000045
wherein β is the filtering degree of the filter, η is the threshold parameter, and is obtained by bisection method to keep the use of the front and rear materials of the nonlinear filter unchanged, and the formula is as follows:
Figure GDA0003644905060000046
the technical scheme of the invention is further improved as follows: the specific calculation process of the four-unit body method is as follows:
a. The boundary structure of the SIMP density-rigidity interpolation model is divided into an upper boundary, a vertical boundary and a lower boundary, wherein the lower boundary is a suspension structure, and suspension constraint conditions need to be considered only when the suspension structure is processed, so that the boundary structure where the four-unit body is located is judged:
Figure GDA0003644905060000051
that is, the formula (12) is satisfied, that is, the selected four-unit body is located at the lower boundary:
Figure GDA0003644905060000052
b. calculating the overhang angle α:
Figure GDA0003644905060000053
the technical scheme of the invention is further improved as follows: the suspension angle constraint equation is:
Figure GDA0003644905060000054
the technical scheme of the invention is further improved as follows: the sensitivity control equation in the step E is:
Figure GDA0003644905060000055
due to the adoption of the technical scheme, the invention has the technical progress that:
according to the invention, by combining the overhang angle constraint with the traditional SIMP topological optimization method, the appearance of an overhang structure needing to be supported can be restrained, extra supports do not need to be added and removed manually in the additive manufacturing process, the manufacturing period is shortened, the material consumption is saved, the cost is reduced, and the surface quality of a workpiece is improved; meanwhile, the method is completely suitable for a continuum structure, high in flexibility, wide in application range, easy to implement and easy to implement, and can be easily used as an extension module to be implanted into a topology optimization framework.
The method is based on the SIMP density-rigidity interpolation model, the linear density filter is used for obtaining the intermediate density of the unit bodies, then the physical density of the unit bodies is obtained through the nonlinear density filter and the intermediate density of the unit bodies, and the checkerboard phenomenon in the optimization process and the grid dependency of the optimization result can be avoided.
Drawings
FIG. 1 is a flow chart of the present invention;
FIG. 2 is a schematic view of the overhang structure and support structure of the present invention;
FIG. 3 is a schematic diagram of the topology optimization structure without applying the dangling constraints of the present invention;
FIG. 4 is an enlarged fragmentary view taken at A2 of FIG. 3 in accordance with the present invention;
FIG. 5 is a diagram illustrating the "four-unit method" at B in FIG. 4 according to the present invention;
FIG. 6 is a schematic diagram of the topology optimization structure after the application of the dangling constraints according to the present invention.
Detailed Description
The present invention will be described in further detail with reference to the following examples:
a topological optimization design method of a self-supporting structure for additive manufacturing is a method for calculating and constraining a suspension angle alpha through a four-unit body method, and combining the suspension angle constraint with a SIMP method to obtain the suspension structure of the self-supporting structure. As shown in FIG. 2, the overhang structure of the printed entity is overhung by a threshold angle α 0 Is divided into two parts. Wherein the thick solid portion is a overhang angle alpha equal to or greater than a overhang threshold angle alpha 0 The suspension structure does not need to be additionally provided with auxiliary support during printing, and self-support is realized; the dashed portion is where the overhang angle α is less than the overhang threshold angle α 0 The suspension structure of (2) needs to be added with auxiliary support during printing to ensure successful printing.
As shown in fig. 1, the method comprises the following steps:
A, establishing a part geometric model, defining load and boundary conditions, defining design variables, a target function and a constraint function based on a SIMP density-rigidity interpolation model, and initializing unit body density, material attribute parameters, material volume fraction and optimization algorithm parameters;
in the step A, based on a SIMP density-rigidity interpolation model, the relative density of each discrete unit body is used as a design variable, the overall rigidity of the macro structure is used as a target function, the target is optimized to maximize the overall rigidity of the macro structure, namely the flexibility of the macro structure is minimized, the volume fraction of the structure is used as a constraint function, and the mathematical expression of the model is as follows:
find:ρ=(ρ 12 ,......,ρ nele ) T (1)
min:C=F T U (2)
s.t.:K(ρ)U=F (3)
Figure GDA0003644905060000071
0≤ρ i ≤1 i=1,2,...,nele (5)
where ρ ═ p (ρ) 1 ,ρ 2 ,......,ρ nele ) T Is the discretized relative density of each unit body, and rho is [0, 1 ]]A continuous variable of (a);
c is the flexibility of the macrostructure;
f is a load vector;
u is a node displacement vector;
k is the integral rigidity of the macrostructure;
ρ i relative density of the ith unit cell;
v i is the volume fraction of the ith unit cell;
v is the structural volume fraction;
Figure GDA0003644905060000072
to set the structural volume fraction;
equation (2) is a target equation, equation (3) is a control equation, and equation (4) is a constraint equation.
B, taking the relative density of the unit body as a design variable, and acquiring the intermediate density of the unit body through a linear density filter
Figure GDA0003644905060000073
The step B adopts a linear density filter, and comprises the following specific steps:
Figure GDA0003644905060000074
N e ={m|||x m -x e ||≤R} (7)
w(x m )=R-||x m -x e || (8)
wherein, the first and the second end of the pipe are connected with each other,
Figure GDA0003644905060000075
is the median density of unit e, i.e. the relative density of unit e after linear filtering;
r is the linear density filter radius;
x m is the centroid coordinate of the unit cell m.
C pass through nonlinear Density Filter and intermediate Density of Unit cells
Figure GDA0003644905060000081
Obtaining physical Density of Unit bodies
Figure GDA0003644905060000082
The traditional SIMP only adopts a linear density filter, and in order to avoid the checkerboard phenomenon in the optimization process and the grid dependency of the optimization result, the invention further adopts a nonlinear density filter
Figure GDA0003644905060000086
Further filtering to physical density
Figure GDA0003644905060000083
The method comprises the following specific steps:
Figure GDA0003644905060000084
wherein, beta is the filtering degree of the filter,
eta is a threshold parameter and is obtained by a bisection method, and is used for keeping the use of materials before and after the nonlinear filter unchanged, and the formula is as follows:
Figure GDA0003644905060000085
d, obtaining the suspension angle alpha through a four-unit body method, and taking the suspension angle as the suspensionAnd (3) applying an angle constraint function and an overhang angle constraint condition to obtain an overhang angle constraint equation, wherein the overhang angle constraint condition is that the overhang angle is greater than or equal to an overhang threshold angle: alpha is more than or equal to alpha 0
As shown in fig. 3 to 5, when the SIMP method is used for topology optimization, a density uniform transition region with a unit volume density of 0-1 exists at the boundary of the SIMP density-stiffness interpolation model, and the density uniform transition region has a density gradient which is perpendicular to the boundary of the SIMP density-stiffness interpolation model, so that a density contour line which is perpendicular to the density gradient exists in the density uniform transition region and is parallel to the model boundary.
The four-unit-body method is characterized in that a certain unit body in a transition area with uniform density and three adjacent unit bodies are selected to form a four-unit body in a shape of Chinese character tian by utilizing the principle, and the density of the central points of the four unit bodies is recorded as rho from the selected unit body 1 、ρ 2 、ρ 3 、ρ 4 And the density distribution in the density transition region is a linear function, a density contour line is calculated according to the densities of the four selected unit bodies, and the included angle between the density contour line and the horizontal direction is the overhang angle alpha.
The specific calculation process is as follows:
a. the boundary structure of the SIMP density-rigidity interpolation model is divided into an upper boundary, a vertical boundary and a lower boundary, wherein the lower boundary is a suspension structure, and suspension constraint conditions need to be considered only when the suspension structure is processed, so that the boundary structure where the four-unit body is located is judged:
Figure GDA0003644905060000091
that is, the formula (12) is satisfied, that is, the selected four-unit body is located at the lower boundary:
Figure GDA0003644905060000092
b. calculating the overhang angle α:
Figure GDA0003644905060000093
applying a suspension angle constraint condition to obtain a suspension angle constraint equation as follows:
Figure GDA0003644905060000094
TABLE 1 center density table of a certain four-unit body
Density of unit body ρ 1 ρ 2 ρ 3 ρ 4
A 1 0.779 0.731 0.641 0.696
A 2 0.664 0.606 0.506 0.568
A 3 0.636 0.575 0.475 0.539
The overhang angles at points a1, a2 and A3 can be estimated to be about 30 ° according to fig. 3, and the overhang angles at points a1, a2 and A3 are calculated to be 31.4 °, 31.8 ° and 32.6 ° respectively according to the four-unit body center density data given in table 1 and by combining formula (13), which proves that the proposed overhang angle calculation method is accurate and effective.
E, calculating the sensitivity of the objective function and the constraint function to the design variable to obtain a sensitivity control equation (15):
Figure GDA0003644905060000101
f according to physical Density of Unit cell
Figure GDA0003644905060000102
Solving a suspension angle constraint equation and a SIMP density-rigidity interpolation model mathematical expression to obtain a structural response, and calculating an objective function value, a constraint function value and a sensitivity value;
and G, judging whether the algorithm is converged or not by using the obtained sensitivity value, if not, returning to the step (2) for algorithm iteration, if so, ending the algorithm iteration, and outputting a final topology optimization result.
The result of the topology optimization with the added droop constraint is shown in fig. 5.
The specific embodiments described in this specification are merely illustrative of the invention. Various modifications and additions can be made by those skilled in the art to the described embodiments without departing from the spirit of the invention or exceeding the scope defined by the appended claims.

Claims (7)

1. A method of topologically optimal design of a self-supporting structure for additive manufacturing, characterized by: calculating and constraining the overhang angle alpha by a four-unit body method, and combining the overhang angle constraint with an SIMP (simple modeling and machining) method to obtain an overhang structure which is a self-supporting structure in additive manufacturing; the method comprises the following steps:
A, establishing a part geometric model, defining load and boundary conditions, defining design variables, a target function and a constraint function based on a SIMP density-rigidity interpolation model, and initializing unit body density, material attribute parameters, material volume fraction and optimization algorithm parameters;
b, taking the relative density of the unit body as a design variable, and acquiring the intermediate density of the unit body through a linear density filter
Figure FDA0003674799300000011
C pass through nonlinear Density Filter and intermediate Density of Unit cells
Figure FDA0003674799300000012
Obtaining physical Density of Unit cells
Figure FDA0003674799300000013
D, obtaining an overhang angle alpha through a four-unit body method, taking the overhang angle as an overhang angle constraint function, and applying an overhang angle constraint condition to obtain an overhang angle constraint equation, wherein the overhang angle constraint condition is that the overhang angle is greater than or equal to an overhang threshold angle: alpha is more than or equal to alpha 0 (ii) a The four-unit method in the step D comprises the following steps: when topology optimization is carried out by using the SIMP method, a density uniform transition area with the unit volume density of 0-1 exists at the boundary of the SIMP density-rigidity interpolation model, a density gradient exists in the density uniform transition area, and the density gradient is vertical to the boundary of the SIMP density-rigidity interpolation model, so that a density contour line which is vertical to the density gradient exists in the density uniform transition area, and the density contour line is parallel to the model boundary; of the "four-unit method The method comprises the following specific steps: selecting a certain unit body in a transition area with uniform density and three adjacent unit bodies to form a four-unit body in a shape of Chinese character tian, and sequentially recording the density of the central points of the four unit bodies as rho from the selected unit body 1 、ρ 2 、ρ 3 、ρ 4 The density distribution in the density transition region is a linear function, a density contour line is calculated according to the densities of the four selected unit bodies, and the included angle between the density contour line and the horizontal direction is the overhang angle alpha;
e, calculating the sensitivity of the target function and the constraint function to the design variable to obtain a sensitivity control equation;
f according to physical Density of Unit cell
Figure FDA0003674799300000014
Solving a suspension angle constraint equation and a SIMP density-rigidity interpolation model mathematical expression to obtain a structural response, and calculating an objective function value, a constraint function value and a sensitivity value;
and G, judging whether the algorithm is converged or not by using the obtained sensitivity value, if not, returning to the step B for algorithm iteration, if so, ending the algorithm iteration, and outputting a final topology optimization result.
2. The method of topologically optimized design of a self-supporting structure for additive manufacturing of claim 1, wherein: in the step A, based on a SIMP density-rigidity interpolation model, the relative density of each discrete unit body is used as a design variable, the overall rigidity of the macro structure is used as a target function, the target is optimized to maximize the overall rigidity of the macro structure, namely the flexibility of the macro structure is minimized, the volume fraction of the structure is used as a volume constraint function, and the mathematical expression of the model is as follows:
find:ρ=(ρ 1 ,ρ 2 ,......,ρ nele ) T (1)
min:C=F T U (2)
s.t.:K(ρ)U=F (3)
Figure FDA0003674799300000021
0≤ρ i ≤1 i=1,2,...,nele (5)
Where ρ ═ p (ρ) 1 ,ρ 2 ,......,ρ nele ) T Is the discretized relative density of each unit body, and rho is [0, 1 ]]A continuous variable of (a);
c is the flexibility of the macrostructure;
f is a load vector;
u is a node displacement vector;
k is the integral rigidity of the macrostructure;
ρ i relative density of the ith unit cell;
v i is the volume fraction of the ith unit cell;
v is the structural volume fraction;
Figure FDA0003674799300000022
to set the structural volume fraction;
equation (2) is the objective equation, equation (3) is the governing equation, and equation (4) is the volume constraint equation.
3. The method of topologically optimized design of a self-supporting structure for additive manufacturing of claim 1, wherein: the step B adopts a linear density filter, and specifically comprises the following steps:
Figure FDA0003674799300000031
N e ={m|||x m -x e ||≤R} (7)
w(x m )=R-||x m -x e || (8)
wherein the content of the first and second substances,
Figure FDA0003674799300000032
is the median density of unit e, i.e. the relative density of unit e after linear filtering;
r is the linear density filter radius;
x m is the centroid coordinate of the unit cell m.
4. The method of topologically optimized design of a self-supporting structure for additive manufacturing of claim 1, wherein: in the step C, a nonlinear density filter is adopted
Figure FDA0003674799300000033
Filtering to physical density
Figure FDA0003674799300000034
The method comprises the following specific steps:
Figure FDA0003674799300000035
wherein β is the filtering degree of the filter, η is the threshold parameter, and is obtained by bisection method to keep the use of the front and rear materials of the nonlinear filter unchanged, and the formula is as follows:
Figure FDA0003674799300000036
5. The method of claim 4, wherein the method comprises: the specific calculation process of the four-unit body method is as follows:
a. the boundary structure of the SIMP density-stiffness interpolation model is divided into an upper boundary, a vertical boundary and a lower boundary, wherein the lower boundary is a suspension structure, and the suspension structure needs to consider a suspension angle constraint condition during processing to judge whether auxiliary support needs to be added, so that the boundary structure where the four-unit body is located is judged:
Figure FDA0003674799300000037
that is, the formula (12) is satisfied, that is, the selected four-unit body is located at the lower boundary:
Figure FDA0003674799300000041
b. calculating the overhang angle α:
Figure FDA0003674799300000042
6. the method of claim 5, wherein the method comprises: the suspension angle constraint equation is:
Figure FDA0003674799300000043
7. the method of claim 2, wherein the method comprises: the sensitivity control equation in the step E is:
Figure FDA0003674799300000044
CN201910751448.XA 2019-08-15 2019-08-15 Topological optimization design method of self-supporting structure for additive manufacturing Active CN110502822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910751448.XA CN110502822B (en) 2019-08-15 2019-08-15 Topological optimization design method of self-supporting structure for additive manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910751448.XA CN110502822B (en) 2019-08-15 2019-08-15 Topological optimization design method of self-supporting structure for additive manufacturing

Publications (2)

Publication Number Publication Date
CN110502822A CN110502822A (en) 2019-11-26
CN110502822B true CN110502822B (en) 2022-07-29

Family

ID=68587470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910751448.XA Active CN110502822B (en) 2019-08-15 2019-08-15 Topological optimization design method of self-supporting structure for additive manufacturing

Country Status (1)

Country Link
CN (1) CN110502822B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111319268B (en) * 2020-02-20 2021-12-28 西北工业大学 Self-supporting structure optimization design method considering additive manufacturing printing direction
CN111428397B (en) * 2020-02-28 2022-05-17 中国民航大学 Topological optimization design method considering additive manufacturing structure self-supporting constraint
CN111859671B (en) * 2020-07-21 2021-06-22 南京理工大学 Shape-preserving topology optimization method considering suspension characteristic constraint
CN112380601B (en) * 2020-11-12 2022-12-13 南昌航空大学 Additive manufacturing building direction optimization method and system
CN112191850B (en) * 2020-12-07 2021-03-16 鑫精合激光科技发展(北京)有限公司 Step-by-step additive manufacturing method, equipment and system
CN112699511B (en) * 2021-01-14 2022-05-03 上海交通大学 Additive manufacturing-oriented shell and filling structure collaborative optimization design method
CN112966410B (en) * 2021-02-03 2022-12-09 西安交通大学 Additive manufacturing self-supporting structure topology optimization method suitable for variable critical angle
CN112765865B (en) * 2021-02-04 2022-05-20 上海交通大学 Support structure design method for controlling metal powder bed additive manufacturing thermal deformation
CN113838192B (en) * 2021-09-29 2024-04-16 大连理工大学 Material increase manufacturing method and system based on topological optimization
CN115635683B (en) * 2022-10-25 2023-07-25 浙大城市学院 Structural layout, geometry and 3D printing integrated optimization design and manufacturing method
CN116522562B (en) * 2023-05-22 2024-01-30 上海祉元社企业管理合伙企业(有限合伙) Supporting structure construction method, system, electronic equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106650026A (en) * 2016-11-24 2017-05-10 浙江大学 Self-supporting structure design method oriented to three-dimensional printing
CN107391824A (en) * 2017-07-11 2017-11-24 西北工业大学 The method of topological optimization design of self supporting structure in increasing material manufacturing
CN109002598A (en) * 2018-06-29 2018-12-14 华中科技大学 Consider the self-supporting micro-structure Topology Optimization Method at overhanging angle and minimum dimension constraint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525628B2 (en) * 2016-04-28 2020-01-07 Wisconsin Alumni Research Foundation Systems and methods for controlling support structures in manufacturing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106650026A (en) * 2016-11-24 2017-05-10 浙江大学 Self-supporting structure design method oriented to three-dimensional printing
CN107391824A (en) * 2017-07-11 2017-11-24 西北工业大学 The method of topological optimization design of self supporting structure in increasing material manufacturing
CN109002598A (en) * 2018-06-29 2018-12-14 华中科技大学 Consider the self-supporting micro-structure Topology Optimization Method at overhanging angle and minimum dimension constraint

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Overhang constraint for topology optimization of self-supported compliant mechanisms considering additive manufacturing";Alain Garaigordobil等;《Computer-Aided Design》;20190430;第109卷;第33-48页 *
"Topology optimization considering overhang constraint in additive manufacturing";Kaiqing Zhang等;《Computers and Structures》;20190228;第212卷;第86-100页 *
"拓扑优化与增材制造结合:一种设计与制造一体化方法";刘书田 等;《航空制造技术》;20170515(第10期);第26-31页 *

Also Published As

Publication number Publication date
CN110502822A (en) 2019-11-26

Similar Documents

Publication Publication Date Title
CN110502822B (en) Topological optimization design method of self-supporting structure for additive manufacturing
CN110414127B (en) Support volume constraint topological optimization method for additive manufacturing
CN111428397B (en) Topological optimization design method considering additive manufacturing structure self-supporting constraint
CN107067471B (en) Self-adaptive scanning speed method for improving forming quality of pendant model
CN110069800B (en) Three-dimensional structure topology optimization design method and equipment with smooth boundary expression
CN109002598B (en) Self-supporting microstructure topology optimization method considering overhanging angle and minimum size constraint
CN106384384B (en) Shape optimization method of three-dimensional product model
CN112036041B (en) Comprehensive compensation method for STL model permeation error in 3DP process
WO2018094758A1 (en) Three-dimensional printing oriented self-supporting structure design method
CN109759587A (en) A kind of increasing material manufacturing method of no Auxiliary support processing metal overhung structure part
CN110210130B (en) Shape optimization method for I-beam two-dimensional model
Feng et al. An improved two-level support structure for extrusion-based additive manufacturing
CN104933220A (en) High precision manufacturing method and injection mold for plastic injection mold for complex curved surface
CN103244197B (en) Turbine blade partition rib parametric modeling method
CN117195643A (en) Finite element modeling method, system, equipment and storage medium for geometric model
CN114492173A (en) Special-shaped pipeline forming benchmark optimization method based on additive manufacturing
CN114972387A (en) Three-dimensional actual measurement-based mould deformation repairing method and system in composite material forming process
CN106202693A (en) A kind of Material Stiffened Panel structure anti-vibration fatigue optimization method based on parametric modeling
CN109783950A (en) The method of topological optimization design of connectivity structure in increasing material manufacturing
CN112464531B (en) B-spline parameterization-based reinforcement modeling and optimizing method for thin-wall structure
CN113312717A (en) Design method applied to low-loss compressor intermediary casing
CN115659480A (en) Aircraft parametric modeling and automatic optimization integrated design system
CN115630412A (en) Self-supporting structure optimization design and manufacturing method based on multi-axis 3D printing
Barbeiro et al. Automatic generation of conformal cooling channels in injection moulding
CN115600466A (en) Laser path and support structure optimization design method for controlling additive manufacturing thermal deformation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant