CN110253572B - 一种输入饱和多单臂机械手的事件触发控制方法 - Google Patents

一种输入饱和多单臂机械手的事件触发控制方法 Download PDF

Info

Publication number
CN110253572B
CN110253572B CN201910468560.2A CN201910468560A CN110253572B CN 110253572 B CN110253572 B CN 110253572B CN 201910468560 A CN201910468560 A CN 201910468560A CN 110253572 B CN110253572 B CN 110253572B
Authority
CN
China
Prior art keywords
manipulator
input
control
arm
saturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910468560.2A
Other languages
English (en)
Other versions
CN110253572A (zh
Inventor
周琪
陈广登
李鸿一
鲁仁全
白伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910468560.2A priority Critical patent/CN110253572B/zh
Publication of CN110253572A publication Critical patent/CN110253572A/zh
Application granted granted Critical
Publication of CN110253572B publication Critical patent/CN110253572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于扰动观测器的输入饱和多单臂机械手的事件触发控制方法,首先设计扰动观测器观测未知扰动,进而得以有效补偿扰动带来的影响。设计自适应律在线估计未知参数,结合动态面控制与自适应反步法设计控制输入,解决传统反步法存在的“计算爆炸”问题。其次采用分布式相对阈值事件触发控制策略减轻机械手之间的通信负担,降低系统的能耗。并引入饱和补偿系统防止机械手系统发生输入饱和时控制性能不理想。该设计方案可以有效的观测未知外界扰动,简化控制器设计过程计算步骤,避免降低对通信资源需求,保证机械手能够有效跟踪给定信号。

Description

一种输入饱和多单臂机械手的事件触发控制方法
技术领域
本发明涉及人工智能及控制的技术领域,尤其涉及到一种基于扰动观测器的输入饱和多单臂机械手的事件触发控制方法。
背景技术
自20世纪60年代以来,机械手在广泛领域得到应用,如机械加工、点焊、装配、检测、航天等。特别在工业自动化生产线上,工业机械手占据着重要的位置。
其中,工程机械的作业工况通常比较的恶劣,由于工程机械手工作环境情况非常复杂,自身的硬件性能有限,为保证其工作安全可靠,提高施工质量和作业效率,对其进行准确的控制设计是非常有必要的。
但随着机械手应用范围不断扩大,互相独立的单臂机械手显现出越来越多的局限性,而多单臂机械手协同作业操作灵活,鲁棒性强,可以完成繁琐多样的任务要求。因此,研究多单臂机械手输出一致控制器的设计具有重要意义。考虑到可能只有部分机械手能直接接受到跟踪轨迹信号,则可将多单臂机械手系统中某一能直接接受到跟踪信号的机械手当作领导者,其他的“跟随者”可以跟踪领导者的输出信号,从而实现输出一致的控制目标,将此跟随“领导者”的一类单臂机械手称为“跟随者”。
在许多应用场景中,对多单臂机械手系统的工作精度具有很高的要求,然而由于经常工作于复杂甚至是危险的环境中,多单臂机械手系统会受到各种扰动的负面影响。因此,扰动抑制成为多单臂机械手系统控制设计的一个关键目标。
当一个扰动是可测量的,众所周知,前馈策略可以减弱或消除扰动的影响。然而,通常情况下,外部扰动无法直接测量或测量成本太高。因此,转而从可测量的变量中估计扰动或扰动的带来影响,通常由内部模型或扰动观测器得出扰动的估计,然后根据干扰的估计,采用控制输入来补偿扰动。韩京清先生提出的自抗扰理论的思想内核是自发检测系统模型以及外部扰动并及时进行补偿。陈文华等人对机械手系统设计的非线性扰动观测器可应用于机械臂的摩擦补偿、独立关节控制、无传感器扭矩控制和故障诊断等方面。丁正涛针对网络连接的动态系统中影响轨迹一致性的扰动设计了扰动观测器。然而扰动抑制通常需要更大的控制输入,但多单臂机械手系统由于机械构造与部件性能等物理因素的限制,会导致输入饱和现象的发生,严重制约控制性能甚至造成系统失稳。所以输入饱和问题应该予以重视。
在先进的控制应用,控制的实现很大程度上是基于数字平台,其中控制组件(物理设备、采样器、控制器和执行器)通过通信网络连接。在这种实现中,控制任务包括采样物理信号,计算控制信号,实现执行器信号。传统上,控制任务以周期性的方式执行,即系统控制采用时间触发控制策略。然而,许多实际系统中的机械手可能只装配简单的嵌入式微处理器和有限的通信信道带宽和能源,一个通信网络通常由不同的系统节点共享。时间触发控制策略为了保障系统的良好性能,系统稳定时也需要维持长时间的快速采样,这样不仅会造成网络拥挤,且会导致系统的能耗过高,从而缩短系统的使用寿命。因此,本发明采用只有符合触发条件时才执行控制任务的事件触发控制策略。由于输入饱和与事件触发都直接影响控制输入,若同时考虑未知扰动会为设计有效的控制器带来很大的挑战,据调查研究得知,目前还没有较好的解决方法。
发明内容
针对现有技术中存在的问题,本发明将多单臂机械手协同作业、控制输入饱和、通信资源有限以及外部扰动等问题综合考虑,提出基于扰动观测器的输入饱和多单臂机械手的事件触发控制方法。
为实现上述目的,本发明所提供的技术方案为:
一种基于扰动观测器的输入饱和多单臂机械手的事件触发控制方法,包含N个单臂机械手,且N≥2;跟随者为多智能体系统中除领导者之外的,受未知外界扰动影响的单臂机械手;多智能体系统由一个领导者与N个跟随者通过有向拓扑图组成。
包括以下步骤:
S1:对单臂机械手进行建模;
S2:根据机械手物理特性,将建模得到的方程模型转换为状态方程,并考虑扰动;
S3:基于步骤S2得到的状态方程设计扰动观测器;
S4:定义第i个机械手一致跟踪误差,并设计第一个虚拟控制器αi,1
S5:将第一个虚拟控制器的信号输入到第一个一阶低通滤波器,得到新的状态变量λi,1代替第一个虚拟控制器进行下一步计算,减小计算量;根据新的状态变量λi,1设计第二个误差面,设计第二个虚拟控制器αi,2,设计自适应控制wi
S6:对系统发生输入饱和进行建模,并引入双曲正切函数;
S7:定义相对阈值事件触发机制;
S8:设计饱和补偿系统hi,设计自适应律
Figure GDA0002898000490000031
在线估计未知系统参数。
进一步地,跟随者中第i个单臂机械手的系统模型为
Figure GDA0002898000490000032
上式中,
Figure GDA0002898000490000033
分别为连杆的转角位置、角速度和角加速度,Mi为连杆总质量,Ji为连杆总转动惯量,g为重力加速度,Di为总阻尼系数,Li为从关节轴到连杆质心的距离。
进一步地,步骤S2所述的状态方程为:
Figure GDA0002898000490000041
上式中,
Figure GDA0002898000490000042
分别为连杆的角速度和角加速度,未知系统参数
Figure GDA0002898000490000043
di,1、di,2为未知扰动。
进一步地,所述步骤S3设计的扰动观测器为:
Figure GDA0002898000490000044
Figure GDA0002898000490000045
其中,
Figure GDA0002898000490000046
Figure GDA0002898000490000047
分别为对扰动di,1和di,2的观测值,
Figure GDA0002898000490000048
Figure GDA0002898000490000049
为扰动观测器辅助系统状态,ζi,1i,2>0为待设计参数。
进一步地,所述步骤S4具体包括:
S4.1:由图论知识如下定义第i个机械手一致跟踪误差:
Figure GDA00028980004900000410
其中,yi表示第i个机械手的输出,y0表示给定跟踪信号,给定跟踪信号当成编号为0的领导者机械手,a包含机械手之间的通信信息;
S4.2:设计第一个虚拟控制器αi,1为:
Figure GDA00028980004900000411
其中,ci,1>0为设计参数,
Figure GDA00028980004900000412
为图论知识中的入度。
进一步地,所述步骤S5具体包括:
S5.1:将第一个虚拟控制器αi,1输入到第一个一阶低通滤波器,得到新的状态变量λi,1,根据新的状态变量λi,1设计第二个误差面为:
Figure GDA0002898000490000051
其中,hi为饱和补偿系统的状态;
S5.2:设计第二个虚拟控制器αi,2为:
Figure GDA0002898000490000052
其中,ci,2>0为设计参数,hi为饱和补偿系统的状态;
S5.3:设计自适应控制wi为:
Figure GDA0002898000490000053
Figure GDA0002898000490000054
其中,0<Δi<1,∈i,li为正的设计参数。
进一步地,所述步骤S6具体包括:
S6.1:对系统发生饱和现象进行建模:
Figure GDA0002898000490000055
其中,ui,N为控制输入受限边界;
S6.2:引入双曲正切函数:
Figure GDA0002898000490000056
进一步地,所述步骤S7定义的事件触发机制为:
Figure GDA0002898000490000057
ti,k+1=inf{t>ti,k||Φi|≥Δi|ui|+li},ti,1=0;
其中,inf{·}表示下确界,ti,k为第i个智能体第k个触发时刻。
进一步地,所述步骤S8具体包括:
S8.1,设计饱和补偿系统hi
Figure GDA0002898000490000061
S8.2,设计自适应律
Figure GDA0002898000490000062
在线估计未知系统参数:
Figure GDA0002898000490000063
与现有技术相比,本方案原理和优点如下:
1.针对含有未知系统参数的非严格反馈系统,设计自适应律在线估计未知参数,引入动态面技术解决传统反步法存在的“计算爆炸”问题。
2.通过设计扰动观测器观测未知扰动,进而得以有效补偿扰动带来的影响;构造饱和补偿系统以解决系统的输入饱和问题。
3.为了减轻机械手之间的通信负担,降低系统的能耗,设计一种基于相对阈值策略的分布式事件触发控制器。
最后利用MATLAB仿真软件对设计的控制器进行验证本方案的有效性,机械手在控制输入饱和,通信资源有限以及存在外部扰动的情况下能够有效跟踪给定信号,且所有信号全局一致最终有界,一致跟踪误差指数收敛在原点附近一个可通过改变参数调节的紧集内。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的服务作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为多单臂机械手的结构示意图;
图2为机械手之间的通信拓扑图;
图3为饱和示意图;
图4~图7为控制方法的实现方式;
图8为跟踪效果图;
图9为跟踪误差示意图;
图10为未知扰动di,1的观测结果示意图;
图11为未知扰动di,2的观测结果示意图;
图12为事件触发控制器信号图;
图13为控制输入u1的事件触发时间间隔示意图;
图14为控制输入u2的事件触发时间间隔示意图;
图15为控制输入u3的事件触发时间间隔示意图;
图16为控制输入u4的事件触发时间间隔示意图。
具体实施方式
本实施例针对多单臂机械手系统,提出基于李雅普诺夫稳定性分析的输入饱和多单臂机械手的事件触发控制方法,该方法首先设计扰动观测器观测未知扰动,进而结合动态面控制与自适应反步法设计控制信号;其次采用相对阈值事件触发控制策略解决通信资源有限的问题,并引入饱和补偿系统减轻输入饱和的影响;最后通过李亚普诺夫稳定性定理证明闭环系统的所有信号全局一致最终有界且一致跟踪误差收敛在原点附近的紧集内。公式的简单实现方式在附图有说明,但不代表具体实现方式,也不限于该实现方式。
本实施例所述的一种输入饱和多单臂机械手的事件触发控制方法,包含N个单臂机械手,且N≥2;跟随者为多智能体系统中除领导者之外的,受未知外界扰动影响的单臂机械手;多智能体系统由一个领导者与N个跟随者通过有向拓扑图组成。包括以下步骤:
S1:对单臂机械手进行建模;
如图1所示,跟随者中第i个单臂机械手的系统模型为:
Figure GDA0002898000490000071
上式中,
Figure GDA0002898000490000081
分别为连杆的转角位置、角速度和角加速度,Mi为连杆总质量,Ji为连杆总转动惯量,g为重力加速度,Di为总阻尼系数,Li为从关节轴到质心的距离。
Figure GDA0002898000490000082
分别表示qi的一阶导数和二阶导数可由积分器实现。
S2:根据机械手物理特性,将建模得到的方程模型转换为状态方程,并考虑扰动的存在,具体模型如下:
Figure GDA0002898000490000083
上式中,
Figure GDA0002898000490000084
分别为连杆的角速度和角加速度,未知系统参数
Figure GDA0002898000490000085
考虑扰动为未知,但是为了验证方法的有效性可假定为di,1=sin(0.5t)-0.5sin(1.5t);di,2=-1.5[sin(0.5t-1.5)-sin(0.5t-1.6)]。
S3:基于步骤S2得到的状态方程设计扰动观测器:
Figure GDA0002898000490000086
Figure GDA0002898000490000087
其中,
Figure GDA0002898000490000088
Figure GDA0002898000490000089
是对扰动di,1,di,2的观测值,
Figure GDA00028980004900000810
Figure GDA00028980004900000811
为扰动观测器辅助系统状态,ζi,1i,2>0为待设计参数,其中符号等式
Figure GDA00028980004900000812
成立。
实现方式如图4所显示,所有输入量均为已知或可求得,得到
Figure GDA00028980004900000813
不仅自身系统需要还通过通信网络发送给其他单臂机械手。
为了便于描述图2拓扑图中机械手之间的通信关系,需要引入代数图论的相关知识。图
Figure GDA00028980004900000814
表示多机械手系统的有向通信拓扑图,图中每个节点各对应一个机械手,其中,
Figure GDA00028980004900000815
表示N个节点的集合,节点之间边的集合为
Figure GDA0002898000490000091
从节点i到节点j的边定义为有序对
Figure GDA0002898000490000092
表示机械手i能接收到机械手j的信息,并称节点i与节点j相邻,定义
Figure GDA0002898000490000093
为智能体i邻边的集合。
Figure GDA0002898000490000094
表示带权邻接矩阵,如果
Figure GDA0002898000490000095
那么ai,j>0;否则ai,j=0。节点i的入度
Figure GDA0002898000490000096
定义
Figure GDA0002898000490000097
为度对角矩阵,则图
Figure GDA0002898000490000098
的拉普拉斯矩阵为
Figure GDA0002898000490000099
S4:由图论知识如下定义第i个机械手一致跟踪误差:
Figure GDA00028980004900000910
其中,yi=xi,1表示第i个机械手的输出,y0表示给定跟踪信号,本实施例中亦将给定跟踪信号当成编号为0的领导者机械手。之所以如此定义跟踪误差是因为在协同控制中,不仅希望该机械手的而输入与领导者的输入相差较小,且要求与与其他机械手的输出一致。
设计第一个虚拟控制器αi,1为:
Figure GDA00028980004900000911
其中,ci,1>0为设计参数,
Figure GDA00028980004900000912
为图论知识中的入度。
S5:因为本实施例所述的控制方法是基于反步法设计的,而传统反步法需对虚拟控制器αi,1反复微分而引起的“微分爆炸”问题。因此引入动态面技术,动态面将第一个虚拟控制器的信号输入到第一个一阶低通滤波器,得到新的状态变量λi,1代替第一个虚拟控制器进行下一步计算,这样处理的优点在于减少自变量,反复微分,从而无需减小计算量;即:
Figure GDA00028980004900000913
根据新的状态变量λi,1设计第二个误差面为
Figure GDA00028980004900000914
其中hi为饱和补偿系统的状态。
设计第二个虚拟控制器αi,2为:
Figure GDA0002898000490000101
其中,ci,2>0为设计参数,由于过饱和部分控制量由饱和补偿系统提供,故第二个虚拟控制器αi,2减去饱和补偿系统的状态。
为了使用相对阈值事件触发控制方法,需对第二个虚拟控制器αi,2进行自适应调整,设计自适应控制wi为:
Figure GDA0002898000490000102
Figure GDA0002898000490000103
其中0<Δi<1,∈i,li为正的设计参数。
S6:对系统发生饱和现象进行建模:
Figure GDA0002898000490000104
其中,uN为控制输入受限边界。sign(·)为符号函数,当wi>0时,sign(wi)=1;当wi<0时,sign(wi)=-1。一般来说,饱和的上限与下限的绝对值应该不同,即ui,Nup≠ui,Ndown,但是处理方法雷同,所以为了便于描述与推导,将饱和的上限与下限的绝对值当作相同处理。
由于该饱和模型存在不光滑棱角,不利于控制器的设计,故引入双曲正切函数进行处理;
Figure GDA0002898000490000105
wi、sat(wi)和pi(wi)三个变量之间的关系如图3所示。
S7:定义相对阈值事件触发机制为:
Figure GDA0002898000490000111
ti,k+1=inf{t>ti,k||Φi|≥Δi|ui|+li},ti,1=0
其中,inf{·}表示下确界,相关系数Δi∈(0,1),li为正的设计参数,同时令
Figure GDA0002898000490000112
ti,k为第i个智能体第k个触发时刻,ui(t)从触发时刻ti,k到下一触发时刻之间均保持vi在ti,k时刻的控制输入,直到下一触发时刻来临才会更新控制输入。.相关阈值策略为只有当测量误差|Φi|=|vi-ui|大于某个与ui相关的阈值时才会发生触发,其优点为当控制信号ui幅值较大时,应用较大的测量误差可以避免频繁触发;当ui幅值较小,采用较小的测量误差能获得更好的控制性能。
S8:由于机械手会发生输入饱和,为了维持良好的控制性能,但控制输入发生饱和时,过饱和部分控制量通过设计饱和补偿系统来补偿,设计饱和补偿系统为:
Figure GDA0002898000490000113
系统的未知参数通过设计自适应律
Figure GDA0002898000490000114
进行在线估计,但需要说明的是,设计自适应律的目的不是出于准确估计未知参数,而是为了得到能使系统稳定的估计值,而系统稳定就要求估计误差不能太大,当该估计值误差太大使系统趋于不稳定时,自适应律的机制会自动调整,在线更新,给出得到新的、能使系统稳定的估计值。设计自适应律
Figure GDA0002898000490000115
为:
Figure GDA0002898000490000116
其中,σi>0为设计参数。
整个控制方法的实现过程可参考图4~图7,但本发明的实现过程不限于图4~图7所示内容。
仿真实验:
仿真实验的控制目标是使连杆的角速度
Figure GDA0002898000490000121
跟踪上给定轨迹信号y0=0.5*sin(0.5*t)+0.1*sin(1.5*t);考虑扰动为未知,但是为了验证方法的有效性可假定为:di,1=sin(0.5t)-0.5sin(1.5t);di,2=-1.5[sin(0.5t-1.5)-sin(0.5t-1.6)]。
根据实际系统,相关参数为:连杆总质量Mi=1kg,连杆总转动惯量Ji=1kg·m^2,重力加速度g=10m/s^2,总阻尼系数Di=2,从关节轴到质心的距离Li=1m,未知系统参数
Figure GDA0002898000490000122
仿真初始条件为:
x0=[0.01;0.01;-0.01;0.01;0.2;0.2;0.2;0.2];
z0=[1;1;1;1;3.3;3.3;3.3;3.3];
h0=[0;0;0;0];
lambda0=[0;0;0;0];
thetag0=[0;0;0;0];
仿真时长T=60s;
控制输入受限边界ui,N=40;
相关参数的设定值如下,参数名称与希腊字母表相对应。
c11=80;c21=80;c31=80;c41=80;
c12=60;c22=60;c32=60;c42=60;
zeta11=70;zeta21=75;zeta31=80;zeta41=85;
zeta12=0.34;zeta22=0.34;zeta32=0.34;zeta42=0.34;
tau1=0.01;tau2=0.01;tau3=0.01;tau4=0.01;
gamma1=0.03;gamma2=0.03;gamma3=0.03;gamma4=0.03;
sigma1=30;sigma2=30;sigma3=30;sigma4=30;
epsilon1=2.6;epsilon2=2.6;epsilon3=2.6;epsilon4=2.6;
deta1=0.08;deta2=0.08;deta3=0.08;deta4=0.08;
mu1=1.0;mu2=1.0;mu3=1.0;mu4=1.0;
l1=0.03;l2=0.03;l3=0.03;l4=0.03;
仿真结果如图8~图16所示,由图9的跟踪误差示意图可知,经过极短的调整时间后,一致跟踪误差收敛在区间[-0.005,0.005]内。因此,由图8与图9验证证明了机械手的连杆输出角速度能够跟踪上给定轨迹信号y0。图10与11分别为未知扰动di,1与di,2的观测结果示意图,验证了扰动观测器的有效性。图12为事件触发控制器信号图,由图可以看到的ui幅值维持ui,N内,局部放大图显示应用相对阈值策略时,触发阈值随ui的变化而变化,当ui幅值接近0时,触发阈值随之减小.图13~图16为控制输入的事件触发时间间隔示意图,横轴表示发生触发的时刻,纵轴表示该次触发持续时间,每一框图上方显示总触发次数。因此,数值仿真证明了所提出的控制方法的有效性。
综上所述,本实施例具有以下优点:
(1)设计扰动观测器观测未知扰动,得以有效补偿扰动带来的影响。相比于假设扰动有界并进行放缩的处理方式,设计扰动观测器可以有效处理上界较大的扰动。
(2)建立饱和模型,引入双曲正切函数弥补模型存在不光滑棱角的缺陷,构造饱和补偿系统补偿输入饱和对控制性能的影响。
(3)为了减轻机械手之间的通信负担,降低系统的能耗,设计一种基于相对阈值策略的分布式事件触发控制器。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (9)

1.一种输入饱和多单臂机械手的事件触发控制方法,包含N个单臂机械手,且N≥2;
跟随者为多智能体系统中除领导者之外的,受未知外界扰动影响的单臂机械手;
多智能体系统由一个领导者与N个跟随者通过有向拓扑图组成;
其特征在于,包括以下步骤:
S1:对单臂机械手进行建模;
S2:根据机械手物理特性,将建模得到的方程模型转换为状态方程,并考虑扰动;
S3:基于步骤S2得到的状态方程设计扰动观测器;
S4:定义第i个机械手一致跟踪误差,并设计第一个虚拟控制器αi,1
S5:将第一个虚拟控制器的信号输入到第一个一阶低通滤波器,得到新的状态变量λi,1代替第一个虚拟控制器进行下一步计算,减小计算量;根据新的状态变量λi,1设计第二个误差面,设计第二个虚拟控制器αi,2,设计自适应控制wi
S6:对系统发生输入饱和进行建模,并引入双曲正切函数;
S7:定义相对阈值事件触发机制;
S8:设计饱和补偿系统hi,设计自适应律
Figure FDA0002933194030000011
在线估计未知系统参数。
2.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,跟随者中第i个单臂机械手的系统模型为
Figure FDA0002933194030000012
上式中,qi,
Figure FDA0002933194030000013
分别为连杆的转角位置、角速度和角加速度,Mi为连杆总质量,Ji为连杆总转动惯量,g为重力加速度,Di为总阻尼系数,Li为从关节轴到连杆质心的距离。
3.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,步骤S2所述的状态方程为:
Figure FDA0002933194030000021
上式中,
Figure FDA0002933194030000022
未知系统参数
Figure FDA0002933194030000023
di,1、di,2为未知扰动,
Figure FDA0002933194030000024
分别为连杆的角速度和角加速度,Mi为连杆总质量,Ji为连杆总转动惯量,g为重力加速度,Di为总阻尼系数,Li为从关节轴到连杆质心的距离,ui为机械手的控制输入。
4.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,所述步骤S3设计的扰动观测器为:
(1)
Figure FDA0002933194030000025
(2)
Figure FDA0002933194030000026
其中,
Figure FDA0002933194030000027
Figure FDA0002933194030000028
分别为对扰动di,1和di,2的观测值,
Figure FDA0002933194030000029
Figure FDA00029331940300000210
为扰动观测器辅助系统状态,ζi,1i,2>0为待设计参数,xi,1和xi,2分别为机械手连杆的角速度和角加速度,Ji为连杆总转动惯量,Di为总阻尼系数,ui为机械手的控制输入,
Figure FDA00029331940300000211
表示系统参数θi的自适应估计值。
5.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,所述步骤S4具体包括:
S4.1:由图论知识如下定义第i个机械手一致跟踪误差:
Figure FDA00029331940300000212
其中,yi表示第i个机械手的输出,yj表示第j个机械手的输出,y0表示给定跟踪信号,给定跟踪信号当成编号为0的领导者机械手,ai,j和ai,0均为包含机械手之间的通信信息,
Figure FDA00029331940300000311
表示第i个机械手的邻居的集合,即当第j个机械手能传递信息给第i个机械手时,第j个机械手就属于第i个机械手,也就是
Figure FDA00029331940300000310
S4.2:设计第一个虚拟控制器αi,1为:
Figure FDA0002933194030000031
其中,ci,1>0为设计参数,
Figure FDA0002933194030000032
为图论知识中的入度,xj,2表示机械手j的角加速度,
Figure FDA0002933194030000033
表示机械手j中扰动dj,1的观测值,
Figure FDA0002933194030000034
表示机械手i中扰动di,1的观测值。
6.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,所述步骤S5具体包括:
S5.1:将第一个虚拟控制器αi,1输入到第一个一阶低通滤波器,得到新的状态变量λi,1,根据新的状态变量λi,1设计第二个误差面为:
Figure FDA0002933194030000035
其中,hi为饱和补偿系统的状态,xi,2为机械手连杆的角加速度;
S5.2:设计第二个虚拟控制器αi,2为:
Figure FDA0002933194030000036
其中,ci,2>0为设计参数,hi为饱和补偿系统的状态,
Figure FDA0002933194030000037
表示系统参数θi的自适应估计值;
Figure FDA0002933194030000038
为第i个机械手一致跟踪误差,xi,1和xi,2分别为机械手连杆的角速度和角加速度,Ji为机械手的连杆总转动惯量,Di为机械手的总阻尼系数,
Figure FDA0002933194030000039
表示机械手i中扰动di,2的观测值;
S5.3:设计自适应控制wi为:
Figure FDA0002933194030000041
Figure FDA0002933194030000042
其中,0<Δi<1,∈i,li为正的设计参数,Δi表示事件触发阈值与控制器ui之间的相关程度,∈i用于减少事件触发控制的误差,li用于提高事件触发控制的鲁棒性。
7.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,所述步骤S6具体包括:
S6.1:对系统发生饱和现象进行建模:
Figure FDA0002933194030000043
其中,ui,N为控制输入受限边界,sign(·)为符号函数;
S6.2:引入双曲正切函数:
Figure FDA0002933194030000044
8.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,所述步骤S7定义的事件触发机制为:
Figure FDA0002933194030000045
ti,k+1=inf{t>ti,k||Φi|≥Δi|ui|+li},ti,1=0;
其中,inf{·}表示下确界,ti,k为第i个智能体第k个触发时刻,vi(ti,k)表示输入vi在ti,k时刻的值,ti,k+1=inf{t>ti,k||Φi|≥Δi|ui|+li}表示为:大于触发时刻ti,k,又使得表达式|Φi|≥Δi|ui|+li成立的触发时刻,Φi为测量误差,Δi表示事件触发阈值与控制器ui之间的相关程度,ui为机械手的控制输入,li为设计参数,用于提高事件触发控制的鲁棒性。
9.根据权利要求1所述的一种输入饱和多单臂机械手的事件触发控制方法,其特征在于,所述步骤S8具体包括:
S8.1,设计饱和补偿系统hi
Figure FDA0002933194030000051
Δi表示事件触发阈值与控制器ui之间的相关程度,pi(wi)表示用双曲正切函数近似饱和函数sat(wi)的结果;
S8.2,设计自适应律
Figure FDA0002933194030000052
在线估计未知系统参数:
Figure FDA0002933194030000053
其中,Гi表示大于0的增益,σi为调节参数,用于调节参数估计的快慢,xi,1为机械手连杆的角速度,
Figure FDA0002933194030000054
表示系统参数θi的自适应估计值,
Figure FDA0002933194030000055
为第二个误差面。
CN201910468560.2A 2019-05-31 2019-05-31 一种输入饱和多单臂机械手的事件触发控制方法 Active CN110253572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910468560.2A CN110253572B (zh) 2019-05-31 2019-05-31 一种输入饱和多单臂机械手的事件触发控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910468560.2A CN110253572B (zh) 2019-05-31 2019-05-31 一种输入饱和多单臂机械手的事件触发控制方法

Publications (2)

Publication Number Publication Date
CN110253572A CN110253572A (zh) 2019-09-20
CN110253572B true CN110253572B (zh) 2021-03-30

Family

ID=67916204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910468560.2A Active CN110253572B (zh) 2019-05-31 2019-05-31 一种输入饱和多单臂机械手的事件触发控制方法

Country Status (1)

Country Link
CN (1) CN110253572B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859915B (zh) * 2021-01-15 2024-04-26 广东工业大学 基于饱和阈值事件触发的高层消防无人机编队控制方法及系统
CN113219826B (zh) * 2021-04-09 2022-03-15 杭州电子科技大学 基于事件触发机制的非线性振荡器的自适应跟踪控制方法
CN113296398A (zh) * 2021-04-14 2021-08-24 山东师范大学 一种柔性单链机械臂基于事件触发的命令滤波控制方法
CN113110059B (zh) * 2021-04-26 2022-04-19 杭州电子科技大学 基于事件触发的单连杆机械臂系统实际跟踪的控制方法
CN113183154B (zh) * 2021-05-10 2022-04-26 浙江工业大学 一种柔性关节机械臂的自适应反演控制方法
CN113602274B (zh) * 2021-08-30 2024-04-19 吉林大学 一种基于电控助力制动的智能车辆纵向运动控制方法
CN113814983B (zh) * 2021-10-18 2022-12-06 广东工业大学 一种多单臂机械手系统控制方法及系统
CN114179115B (zh) * 2021-11-16 2023-10-13 南京邮电大学 一种多单臂机械手自适应前向输出一致安全控制器
CN114851198B (zh) * 2022-05-17 2023-05-16 广州大学 一种多单连杆式机械臂的一致跟踪固定时间稳定控制方法
CN115008456B (zh) * 2022-06-14 2023-02-10 中国科学院数学与系统科学研究院 一种柔性单链机械臂多智能体的跟踪控制方法和系统
CN117359645B (zh) * 2023-12-04 2024-02-23 青岛理工大学 一种单连杆机械臂的自适应预定义时间控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217902A (zh) * 2013-03-14 2013-07-24 郭雷 一种基于干扰观测器的指令滤波反步控制方法
CN106113046A (zh) * 2016-07-13 2016-11-16 浙江工业大学 基于死区和摩擦补偿的机械臂伺服系统动态面瞬态控制方法
CN109116736A (zh) * 2018-09-19 2019-01-01 南京航空航天大学 基于滑模的线性多智能体系统执行器故障的容错控制方法
CN109189085A (zh) * 2018-07-25 2019-01-11 西北工业大学 基于事件触发的航天器网络化系统姿态控制方法
CN109333529A (zh) * 2018-09-20 2019-02-15 南京邮电大学 含预定义性能的多单臂机械手输出一致控制器及设计方法
CN109358506A (zh) * 2018-10-26 2019-02-19 南京理工大学 一种基于干扰观测器的自适应模糊遥操作控制方法
CN109465825A (zh) * 2018-11-09 2019-03-15 广东工业大学 机械臂柔性关节的rbf神经网络自适应动态面控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569596B2 (ja) * 2016-05-20 2019-09-04 トヨタ自動車株式会社 車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217902A (zh) * 2013-03-14 2013-07-24 郭雷 一种基于干扰观测器的指令滤波反步控制方法
CN106113046A (zh) * 2016-07-13 2016-11-16 浙江工业大学 基于死区和摩擦补偿的机械臂伺服系统动态面瞬态控制方法
CN109189085A (zh) * 2018-07-25 2019-01-11 西北工业大学 基于事件触发的航天器网络化系统姿态控制方法
CN109116736A (zh) * 2018-09-19 2019-01-01 南京航空航天大学 基于滑模的线性多智能体系统执行器故障的容错控制方法
CN109333529A (zh) * 2018-09-20 2019-02-15 南京邮电大学 含预定义性能的多单臂机械手输出一致控制器及设计方法
CN109358506A (zh) * 2018-10-26 2019-02-19 南京理工大学 一种基于干扰观测器的自适应模糊遥操作控制方法
CN109465825A (zh) * 2018-11-09 2019-03-15 广东工业大学 机械臂柔性关节的rbf神经网络自适应动态面控制方法

Also Published As

Publication number Publication date
CN110253572A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110253572B (zh) 一种输入饱和多单臂机械手的事件触发控制方法
Cao et al. Observer-based dynamic event-triggered control for multiagent systems with time-varying delay
Zhang et al. Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures
Pan et al. Event-triggered adaptive control for uncertain constrained nonlinear systems with its application
Wang et al. Fully distributed consensus control for a class of disturbed second-order multi-agent systems with directed networks
Yu et al. Design of robust adaptive neural switching controller for robotic manipulators with uncertainty and disturbances
Wu et al. Cooperative adaptive dynamic surface control for a class of high-order stochastic nonlinear multiagent systems
Jing et al. Fuzzy adaptive fault-tolerant control for uncertain nonlinear systems with unknown dead-zone and unmodeled dynamics
Seyboth et al. Control of multi-agent systems via event-based communication
Yan et al. Coordinated target tracking strategy for multiple unmanned underwater vehicles with time delays
CN110597061A (zh) 一种多智能体完全分布式自抗扰时变编队控制方法
CN113342037B (zh) 具有输入饱和的多旋翼无人机时变编队控制方法及系统
He et al. Uncertainty and disturbance estimator-based distributed synchronization control for multiple marine surface vehicles with prescribed performance
CN113589689B (zh) 一种基于多参数自适应神经网络的滑模控制器设计方法
CN110497415B (zh) 一种基于干扰观测器的多机械臂系统的一致控制方法
CN113814983B (zh) 一种多单臂机械手系统控制方法及系统
Liu et al. Second-order super-twisting sliding mode control for finite-time leader-follower consensus with uncertain nonlinear multiagent systems
Wu et al. Adaptive saturated two-bit-triggered bipartite consensus control for networked MASs with periodic disturbances: a low-computation method
CN111965976A (zh) 基于神经网络观测器的机器人关节滑膜控制方法及系统
CN113219825B (zh) 一种四足机器人单腿轨迹跟踪控制方法及系统
Li et al. Learning-observer-based adaptive tracking control of multiagent systems using compensation mechanism
Ren et al. Fixed-time output feedback distributed cooperative event-triggered control for multiple surface vessels with prescribed performance constraints
Socas et al. Optimal threshold setting for event-based control strategies
Liaquat et al. Sampled data output regulation of n-link robotic manipulator using a realizable reconstruction filter
Yan et al. Synchronous control of master-slave manipulator system under deception attacks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant