CN110160573A - 艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统 - Google Patents

艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统 Download PDF

Info

Publication number
CN110160573A
CN110160573A CN201910611291.0A CN201910611291A CN110160573A CN 110160573 A CN110160573 A CN 110160573A CN 201910611291 A CN201910611291 A CN 201910611291A CN 110160573 A CN110160573 A CN 110160573A
Authority
CN
China
Prior art keywords
wavelength
division multiplexer
phase
laser
connect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910611291.0A
Other languages
English (en)
Other versions
CN110160573B (zh
Inventor
尚盈
王晨
王昌
倪家升
赵文安
李常
曹冰
黄胜
王英英
武延彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Institute of Shandong Academy of Science
Original Assignee
Laser Institute of Shandong Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Institute of Shandong Academy of Science filed Critical Laser Institute of Shandong Academy of Science
Priority to CN201910611291.0A priority Critical patent/CN110160573B/zh
Priority to US16/534,567 priority patent/US11480450B2/en
Priority to FR1909123A priority patent/FR3098659B1/fr
Publication of CN110160573A publication Critical patent/CN110160573A/zh
Application granted granted Critical
Publication of CN110160573B publication Critical patent/CN110160573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35335Aspects of emitters or receivers used by an interferometer in an optical fibre sensor arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Optical Transform (AREA)

Abstract

本申请提供了一种艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统,通过掺杂光纤上刻有多个中心窗口波长不同的相移光栅且相邻中心窗口波长之间的波长间隔为预设固定值,当泵浦激光源发出的泵浦光通过波分复用器的耦合进入到掺杂光纤中,利用掺杂光纤上所刻制的相移光栅,便可以产生波长间隔为预设固定值的多波长的单模窄线宽激光;然后,通过基于EOM的时域控制法完成超快调制,得到由多个频率线性递增的脉冲光连续拼接而成的内变频脉冲光,形成分布反馈光纤激光器的艾赫兹超快调制。这样,便可以在激光频率不变的前提下,提高输出激光的相干长度,进而可以有效解决现有的分布式光纤传感系统在高空间分辨率、长距离以及高频带相制约的问题。

Description

艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统
技术领域
本申请涉及分布式光纤传感技术领域,尤其涉及一种艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统。
背景技术
由于分布式光纤传感技术可以实现沿光纤长度方向分布的被测物理量连续传感、测量,能够集传感、传输功能于一体,不仅能够完成在整条光纤长度上的分布式环境参量的空间、时间多维分布状态信息的连续测量,还能将分布式的测量信息实时、无损地传输到信息处理中心,同时,基于分布式光纤传感技术的传感系统具有结构简单、使用方便、单位长度内信号获取成本低、性价比高等优点,因此,该技术被广泛地应用于周界安防、管道泄漏、地震波勘探以及水听探测等诸多军事民用重要领域。
分布式光纤传感技术可以分为OTDR(Optical Time Domain Reflectometry,光时域反射法)及OFDR(Optical Frequency Domain Reflectometry,光频域反射法)两种技术。其中,与OTDR相比,OFDR在超高空间分辨率指标上有着极大优势,其空间分辨率取决于OFDR系统中激光源的线性扫频范围,其线性扫频范围越大,则OFDR系统的空间分辨率越高,若光源具有足够宽的线性扫频范围,则能够实现非常高的空间分辨率。然而,OFDR的探测距离受限于激光源的光频扫描时间长度,光频扫描时间越长,则探测距离越长。但是,激光源的光频扫描时间越长,对应的频率越低,进而导致待测信号的频率上限受限制。
因此,作为分布式光纤传感系统中的关键器件,如何通过对激光器的改进,以使分布式光纤传感系统在保持较高空间分辨率的同时延长OFDR测量距离,成为目前本领域技术人员亟待解决的问题。
发明内容
本申请提供了一种艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统,解决现有的分布式光纤传感系统在高空间分辨率、长距离以及高频带关键指标相制约的问题。
根据本申请实施例的第一方面,提供了一种艾赫兹超快调制脉冲扫描激光器,其主要包括泵浦激光源、第一波分复用器、级联相移光纤光栅、第二波分复用器、多个电光调制器、以及与所述多个电光调制器连接的控制器,其中:
所述泵浦激光源的输出端与所述第一波分复用器的第一端连接;
所述级联相移光纤光栅为在掺杂光纤上刻有多个中心窗口波长不同的相移光栅且相邻所述中心窗口波长之间的波长间隔为预设固定值,所述级联相移光纤光栅与所述第一波分复用器的第二端连接;
第一波分复用器的第三端与所述第二波分复用器的一端连接;
所述第二波分复用器的各波长输出通道所输出的激光分别传输至一个所述电光调制器;
所述控制器,用于在预设时长内,按照预设时间间隔依次选通所述多个电光调制器中的一个电光调制器。
可选地,所述激光器还包括隔离器,其中:
所述隔离器的一端与第一波分复用器的第三端连接、另一端与所述第二波分复用器的一端连接。
可选地,所述激光器还包括信号放大器,其中:
所述信号放大器的一端与第一波分复用器的第三端连接、另一端与所述第二波分复用器的一端连接。
可选地,所述级联相移光纤光栅由N根并联的子掺杂光纤组成,N≥2,其中:
各所述子级联相移光纤光栅的掺杂光纤上均刻有多个中心窗口波长不同的相移光栅且相邻中心窗口波长之间的波长差值为第一预设固定值;
所述第一预设固定值为所述级联相移光纤光栅所输出波长的波长间隔的N倍。
可选地,所述泵浦激光源包括第一子泵浦激光源和第二子泵浦激光源,所述第一波分复用器包括第一子波分复用器和第二子波分复用器,其中:
所述第一子泵浦激光源的输出端与所述第一子波分复用器的第一端连接,所述第二子泵浦激光源的输出端与所述第二子波分复用器的第一端连接;
所述级联相移光纤光栅分别与所述第一波分复用器和所述第二子波分复用器的第二端连接;
所述第一波分复用器或所述第二子波分复用器的第三端与所述第二波分复用器的一端连接。
可选地,相邻所述中心窗口波长之间的波长间隔大于或等于0.2nm。
根据本申请实施例的第二方面,提供了一种分布式光纤传感系统,该系统包括本申请实施例第一方面所述的艾赫兹超快调制脉冲扫描激光器。
可选地,所述系统还包括与环形器、传感光纤、耦合器、第一干涉臂、第二干涉臂、拉第旋转镜以及相位解调器,其中:
所述艾赫兹超快调制脉冲扫描激光器的输出端与所述环形器的第一端连接,所述环形器的第二端与所述传感光纤连接,所述环形器的第三端与所述耦合器的第一端连接;
所述耦合器的第二端分别与所述第一干涉臂和第二干涉臂的一端连接,所述第一干涉臂和第二干涉臂另一端分别连接一个所述拉第旋转镜,所述第一干涉臂和第二干涉臂的长度不相等;
所述相位解调器与所述耦合器的第三端连接,用于解调所述传感光纤中的扰动信号所引起的相位变化。
由以上实施例可见,本申请实施例提供的一种艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统,通过掺杂光纤上刻制多个中心窗口波长不同的相移光栅以形成级联相移光栅,当泵浦激光源发出的泵浦光通过波分复用器耦合进入到级联相移光栅中,便可以产生波长间隔为预设固定值的多个波长的激光;然后,通过基于电光调制器的时域控制法,对上述多个波长的激光完成超快调制,便得到由多个频率线性递增的脉冲光连续拼接而成的内变频脉冲光,进而可以提高分布式光纤传感系统中激光源的线性扫频范围,有效保证系统的空间分辨率。同时,基于上述级联相移光栅所输出激光的窄线宽特性、以及电光调制器的超快调制,可以在激光频率不变的前提下,提高激光器所输出激光的相干长度。因此,本实施提供的艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统,可以有效解决现有的分布式光纤传感系统在高空间分辨率、长距离以及高频带关键指标相制约的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种艾赫兹超快调制脉冲扫描激光器的基本结构示意图;
图2为本申请实施例提供的另一种艾赫兹超快调制脉冲扫描激光器的基本结构示意图;
图3为本申请实施例提供的一种分布式光纤传感系统的基本结构示意图;
图4为后向瑞利散射光通过图3中的迈克尔逊干涉仪空间差分干涉的示意图;
图5为图4中的延时信号与原始信号的时序对应关系示意图;
图6为本申请实施例提供的另一种分布式光纤传感系统的基本结构示意图;
图7为图6中的3×3耦合器相位解调光路示意图;
图8为本申请实施例提供的基于3×3耦合器的相位解调算法的原理框图;
图9为本申请实施例提供的正交优化后的3×3耦合器相位解调算法的原理框图;
图10为本申请实施例提供的又一种分布式光纤传感系统的基本结构示意图;
图11本申请实施例提供的相位载波解调算法的原理框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
激光器是分布式光纤传感系统实现高精度动态检测的关键器件,激光器的参数决定分布式光纤传感的性能参数。其中,在OFDR系统中,由于其探测范围受限于激光器相干长度,因此,本实施例提供的一种新型的艾赫兹超快调制脉冲扫描激光器,以在OFDR系统具有较高空间分辨率的同时延长其探测距离。
图1为本申请实施例提供的一种艾赫兹超快调制脉冲扫描激光器的基本结构示意图。如图1所示,该激光器主要包括泵浦激光源101、第一波分复用器102、级联相移光纤光栅103、第二波分复用器104以及波长选择输出器105。
在连接方式上,泵浦激光源101的输出端与第一波分复用器102的第一端连接,使得大部分的泵浦光可通过第一波分复用器102的第二端耦合进入级联相移光纤光栅103中。
其中,级联相移光纤光栅103为在一根或多根串联的掺杂光纤上刻有多个中心窗口波长不同的相移光栅且相邻中心窗口波长之间的波长间隔为预设固定值,即其为前后紧接在一起的多个均匀周期结构的相移光栅组成。具体的,该级联相移光纤光栅103可以采用相位掩膜板移动法制作方法制备,另外,还可以在多根并联的掺杂光纤上刻相移光栅。
与普通的多相移光栅相比,本实施例中设计的级联相移光纤光栅103的级联数对透射谱宽度的影响并不是很大,其内部各相移光栅在相应的波长位置打开透射窗口,且带宽与单相移时相比差不多。进而,其具有透射波长均一性好、输出功率稳定的优点,有利于多波长激光器窄线宽稳定功率的输出。
基于级联相移光纤光栅103中各相移光栅可以其超窄的窄带透射峰来保证发生谐振的激光腔内的模式只有单纵模,从而获得稳定的单模窄线宽激光的特性,级联相移光纤光栅103便可以在泵浦激光源101的激发下输出多个窄线宽激光信号。例如,本实施例在一根掺铒光纤上刻制20个相移光栅,相邻中心窗口波长之间的波长间隔为0.2nm,即中心窗口波长λ1、λ2、λ3、λ5、λ6……λ19、λ20间距为0.2nm,进而在频域上可以形成固定波长差值为0.2nm,波长范围1548nm~1551.8nm的激光。需要说明的是,上述相移光栅的波长间隔并不限于0.2nm,可以为其它任意值,但是鉴于相移光栅的波长有带宽,为了避免重叠,因此本实例将波长间隔设置为大于或等于0.2nm。
进一步的,级联相移光纤光栅103输出的激光通过第一波分复用器102的第三端口输出至第二波分复用器104,利用该第二波分复用器104可以将不同波长的光信号以不同光信道同时传输,且互不干扰。另外,在第一波分复用器102与第二波分复用器104之间,本实例还设置有隔离器107,以使从第一波分复用器102输出的激光在光纤路径中只能沿激光的输出方向单向传输,有效防止其后向反射和散射作用影响激光器的输出稳定性,或者反馈光经波分复用器输入掺杂光纤中后对激光器造成损坏。
本实施例还在第一波分复用器102与第二波分复用器104之间设置有信号放大器108,以实现对光信号的放大其中,信号放大器108的一端与隔离器107的输出端连接、另一端与第二波分复用器104的一端连接,如果未设置隔离器107时,信号放大器108的一端则与第一波分复用器102的第三端连接。具体的,根据级联相移光纤光栅103所输出的激光波长,信号放大器108可以选用掺铒光纤放大器、掺镱光纤放大器等。
本实施例中的波长选择输出器105包括多个电光调制器(EOM,Electro-opticModulationCrystals)、以及与多个电光调制器连接的控制器,其中,第二波分复用器104的各波长输出通道所输出的激光分别传输至一个电光调制器,控制器输出控制信号控制电光调制器工作,实现某个波长的输出,以实现在预设时长内,按照预设时间间隔依次选通多个电光调制器中的一个电光调制器,以在时域上形成固定时间间隔的波长序列。这样,通过基于电光调制器的时域控制法,对上述多个波长的激光完成超快调制,便得到由多个频率线性递增的脉冲光连续拼接而成的内变频脉冲光。
例如,控制器输出的控制信号为低电平时,EOM不输出;控制信号为高电平时,EOM输出。假设第二波分复用器104输出20个波长的激光,每个波长输出通道对应连接一个EOM,控制器在0ns~5ns时间内,控制第一个波长的激光对应的通道ctl1为高电平,5ns~10ns时间内第二个通道ctl2高电平,以此类推,这样,便可以将20个波长的激光,等时间间距排列在1个100纳秒的脉冲宽度内,形成激光器的艾赫兹超快调制。
需要说明的是,上述波长选择输出器105并不限于电光晶体和控制器的调制方式,还可以其它任意方式,只要能够实现在预设时长内,可以选择第二波分复用器104输出的多个波长的激光按照预设时间间隔依次输出,形成固定时间间隔的波长序列的需要即可,例如还可以是声光调制等,只是电光调制方式具有调制频率更快的优点。另外,本实施例中掺杂光纤为在光纤基质材料中掺杂不同的稀土离子获得的有源光纤,可以是掺铒(Er)光纤、掺镱(Yb)光纤或掺铥(Tm)光纤;泵浦源是输出激光中心波长与掺杂光纤吸收波长匹配的半导体激光器,对应的,掺铒(Er)光纤的中心波长为980nm或1480nm、掺镱(Yb)光纤的中心波长为915nm或975nm、掺铥(Tm)光纤的中心波长为793nm或1560nm;当然,泵浦源还可以是其他能够发出所需泵浦光的激光器或激光二极管。
进一步的,为了波长选择输出器105输出的内变频脉冲光可以在一根光纤内传输,本实施例还在波长选择输出器105的输出端设置有第三波分复用器106,其中,基于级联相移光纤光栅103输出的激光波长间隔较短,因此,本实施例中的第二波分复用器104和第三波分复用器106可以选用密集波分复用器。
由于本实例提供的激光器可以输出多个频率线性递增的脉冲光连续拼接而成的内变频脉冲光,因此,将该激光器应用于分布式光纤传感系统中,可以有效提高分布式光纤传感系统中激光源的线性扫频范围,进而可以保证OFDR系统的空间分辨率;同时,同时,基于上述级联相移光栅所输出激光的窄线宽特性、以及电光调制器的超快调制,可以在激光频率不变的前提下,提高激光器所输出激光的相干长度。因此,本实施提供的艾赫兹超快调制脉冲扫描激光器,可以有效解决现有的分布式光纤传感系统在高空间分辨率、长距离以及高频带关键指标相制约的问题。
图2为本申请实施例提供的另一种艾赫兹超快调制脉冲扫描激光器的基本结构示意图。如图2所示,本实施例中的艾赫兹超快调制脉冲扫描激光器与实施一例所提供的艾赫兹超快调制脉冲扫描激光器的主要区别在于,本实例中的级联相移光纤光栅103为在两个并联的掺杂光纤上刻有多个中心窗口波长不同的相移光栅,分别为第一级联相移光纤光栅1031和第二级联相移光纤光栅1032。
例如,可在第一级联相移光纤光栅1031的掺铒光纤上刻制10个波长间隔为0.4nm的相移光栅,对应输出波长为λ1、λ3、λ5……λ19,第二级联相移光纤光栅1032的掺铒光纤上刻制10个波长间距0.4nm的相移光栅,对应输出波长为λ2、λ4、λ6……λ20,这样,两个掺铒光纤上对应相移光栅波长间距满足0.2nm,即λ1、λ2、λ3、λ5、λ6……λ19、λ20间距为0.2nm,并联两根掺铒光纤形成20个分布式反馈激光波长。这样,通过并联的方式,可以避免波长重叠,进而可以更新一步减小波长输出间隔。
需要说明的是,上述级联相移光纤光栅103并不限于两个级联相移光纤光栅并联的方式,还可以任意个数,另外,各级联相移光纤光栅的掺杂光纤所刻制的相移光栅的个数也不限于同样的数目,只要满足各掺杂光纤上所刻制的相移光栅的相邻中心窗口波长之间的波长差值为第一预设固定值,并且第一预设固定值为级联相移光纤光栅103所输出波长的波长间隔的N倍的要求即可,其中,N为级联相移光纤光栅的数目。
进一步的,为了使泵浦激光源101可以提供足够的泵浦能量,产生更加功率更加稳定、线宽漂移率低的窄线宽激光。本实施例中的泵浦激光源101包括第一子泵浦激光源1011和第二子泵浦激光源1012,第一波分复用器102包括第一子波分复用器1021和第二子波分复用器1022。其中,第一子泵浦激光源1011的输出端与第一子波分复用器1021的第一端连接,第二子泵浦激光源1012的输出端与第二子波分复用器1022的第一端连接;级联相移光纤光栅103分别与第一波分复用器102和第二子波分复用器1022的第二端连接,第一波分复用器102或第二子波分复用器1022的第三端与第二波分复用器104的一端连接。
基于上述艾赫兹超快调制脉冲扫描激光器的发明构思,本实例还提供了一种分布式光纤传感系统,该系统包括上述任一实施例提供的艾赫兹超快调制脉冲扫描激光器。
进一步的,针对目前利用OFDR技术进行静态测量已经有相对成熟的发展,而对于高频带扰动信号的测量,并未有较完善的系统可以进行测量的问题,本实例还提供了可以实现扰动信号相位信息的解调的分布式光纤传感系统。
图3为本申请实施例提供的一种分布式光纤传感系统的基本结构示意图。如图3所示,该系统包括艾赫兹超快调制脉冲扫描激光器10、环形器20、传感光纤30、耦合器40、第一干涉臂51、第二干涉臂53、法拉第旋转镜52、54以及相位解调器60。
其中,环形器20的C1端口与艾赫兹超快调制脉冲扫描激光器10的输出端连接,环形器20的C2端口连接的传感光纤30、环形器20的C3端口连接的耦合器40的第一端、耦合器40的第二端分别与第一干涉臂51和第二干涉臂53的一端连接;第一干涉臂51和第二干涉臂53另一端分别连接一个拉第旋转镜,并且第一干涉臂51和第二干涉臂53的长度不相等;相位解调器60与耦合器40的第三端连接,用于解调传感光纤30中的扰动信号所引起的相位变化。本实施例中,将第一干涉臂51、第二干涉臂53、法拉第旋转镜以及相位解调器60组成的结构称为非平衡迈克尔逊干涉仪。本实施例中FRM法拉第旋转镜的旋转角度设为90°,但不限于该数值,这样不仅可以实现光信号的发射,还可以消除偏振影响。
本实施例从光纤后向瑞利散射的一维脉冲响应模型出发,描述系统任意时刻接收到的瑞利散射光波形特性。将长度为L的光纤分成N个散射单元,Δl=L/N是散射单元的长度,在每一个散射单元是完全独立的假设前提下,定义τ0=2nfΔl/c为单位散射时间。输入至传感光纤30的光为我们设计的高相干内变频脉冲光,其是由k个频率fk线性递增的超短脉冲光连续拼接而成,相邻两个频率间隔为固定值Δf0,每个频率光脉冲宽度为ω,则总脉冲宽度为k*ω。因此,将这束高相干内变频脉冲光从l=0处入射到传感光纤30上,在传感光纤30输入端获得的后向瑞利散射信号振幅可表示为:
在式(1)中,am是光纤任意第m个散射点后向瑞利散射幅值,τm是光纤任意第m个散射点的时间延迟,其与从输入端到光纤任意第m个散射点的光纤长度lm的关系为:
在式(2)中,c是真空中光速,nf是光纤折射率,并且当时矩形函数其他情况
这样,光纤上某一点的信息便由对应某时刻的后向瑞利散射光信号来描述,散射光的变化就能反应出此点上的信息所包含的内容。
进一步的,在传感光纤30中产生的后向瑞利散射光通过耦合器40进入干涉臂长差为s的迈克尔逊干涉仪,当干涉仪臂长差s远小于干涉臂长度L时,在一个脉冲扫描周期内光纤空间上相邻两个干涉仪臂长差位置的后向瑞利散射光逐一发生干涉,我们称之为空间差分干涉。图4为后向瑞利散射光通过图3中的迈克尔逊干涉仪空间差分干涉的示意图。如图4所示,本实例称在较短的第二干涉臂53返回的信号为原始信号,在第一干涉臂51返回的信号为时延信号,两者的光程差为2nfs。
由干涉仪引入的延时τs=2nfs/c,则时延信号振幅可表示为:
图5为图4中的延时信号与原始信号的时序对应关系示意图。如图5所示,延时信号的时序与原始信号、即入射至干涉仪中改的入射背向散射光信号是一一对应的,设长度s的光纤内的散射单元点数为SL,则延时信号的时序满足n=m+SL
因此,经过干涉仪后所接收到的总干涉光强可表示为:
在式(4)中,包含多级差频项2πpΔf0w,同时,相位差即为由外部扰动造成的某点后向散射光功率的变化,因此,只要通过测量干涉信号的变化曲线,就可以得到声源的位置、频率、强度等信息,如利用与所述耦合器40的第三端连接的相位解调器60,解调传感光纤30中的扰动信号所引起的相位变化。
进一步的,根据式(4),将总干涉光强经过高通滤波后取差频成分,利用由微波雷达技术发展的匹配滤波器技术,将相关接收到的数据与一个正比于信号波形复共轭的函数进行卷积,可达到脉冲压缩的效果。与单频OTDR系统相比脉冲宽度压窄为原来的1/k,系统空间分辨率最终满足
而在频响范围上,将总干涉光强经过低通滤波后取零差频成分,整个系统可等效为k个不同频率的OTDR系统同时按时序工作,将相位解调后的相对相位结果也按时序排列后,系统的频响范围较单一频率的OTDR系统提升了k倍。并且,基于艾赫兹超快调制脉冲扫描激光器10的输出输出特性,可以使该系统可以实现其在长距离、高频带信号以及高空间分辨率的同时监测。
针对相位差信号的解调,本实施例提供了不同的相位差的解调算法。图6为本申请实施例提供的另一种分布式光纤传感系统的基本结构示意图。
如图6所示,本实例中的艾赫兹超快调制脉冲扫描激光器10选用基于艾赫兹艾赫兹超快调制脉冲扫描的激光器,艾赫兹超快调制艾赫兹超快调制脉冲扫描激光器经过AOM(Acousto-optical Modulators,声光调制器70)的进一步斩波处理(如100ns脉宽,20KHz扫描频率),使得激光器隔离度达到60dB,经过第一参饵光纤放大器80((Erbium Doped FiberAmplifier,EDFA)的放大经环形器20进入传感光纤30,后向瑞利散射信号第二掺饵光纤放大器90的放大经进入非平衡迈克尔逊干涉仪,实现空间差分干涉,最后利用相位解调器60实现相位信息的解调。其中,相位解调器60包括三个光电探测器(PD1、PD2、PD3)、环形器和相位解调单元。
图7为图6中的3×3耦合器40相位解调光路示意图。如图7所示,3×3耦合器40的端口4、6连接两个不同长度的光纤,形成臂长差,并连接上法拉第旋转镜,形成相位匹配干涉仪的两臂,调节相位匹配干涉仪的臂长差,就可以实现不同相邻空间段内的后向瑞利散射光形成干涉场。后向瑞利散射光经过环形器20入射到3×3耦合器40的端口2,由3×3耦合器40的端口2分束分为两路光信号,一路光进入3×3耦合器40的端口4,经过第一干涉臂51和法拉第旋转镜52返回3×3耦合器40的端口4,另一束光进入到3×3耦合器40的端口6经第二干涉臂53和法拉第旋转镜54后返回到耦合器40的端口6,两束光在3×3耦合器40处合束干涉,后向瑞利散射干涉光经3×3耦合器40的端口1、端口3进入到PD1、PD3,后向瑞利散射干涉光经3×3耦合器40的端口2经过环形器20后进入到PD2。
其中,三个探测器获取到的光强表达式为:
Ip=D+I0 cos[φ(t)-(p-1)×(2π/3)],p=1,2,3 (5)
在式(5)中,Φ(t)=φ(t)+ψ(t);D为干涉信号直流分量;I0为干涉信号交流分量幅值;p为探测器接收光信号序列号,p=1,2,3;φ(t)为扰动信号引起的相位差信号,rad;ψ(t)为环境噪声引起的相位差信号,rad。
然后,利用相位解调单元对三个探测器所接收的光信号进行相位解调。图8为本申请实施例提供的基于3×3耦合器的相位解调算法的原理框图。如图8所示,为推导方便起见,假设A1~A7=1。
3路光强信号相加并乘以1/3,第一个加法器输出表达式如下:
I1~I3分别再与-D相加得:
a=I0 cos[φ(t)],b=I0 cos[φ(t)-2π/3],c=I0 cos[φ(t)-4π/3] (7)
消除直流项,保留交流项,a,b,c微分运算可得:
两路微分信号相减与剩余一路信号相乘,可得:
a(e-f)、b(f-d)、c(d-e)之和:
由于I0受系统影响而会发生变化,消除带I0的变化,将三路信号平方和:
式(10)除以式(11)得:
经积分运算后输出得:
由于ψ(t)是缓变量,经过高通滤波器来滤除环境引起的相位变化缓变量,进而可以得出扰动信号,如声波信号引起的相位变化φ(t)。
进一步的,为了消除3×3耦合器40夹角的影响,并将三路数据运算转化为两路数据运算,在基于现场可编程门阵列(Field-Programmable Gate Array,FPGA)的3×3耦合器40相位解调算法中减少了片内资源要求,提高运算实时性。本实施例还提供了3×3耦合器40相位解调改进算法。图9为本申请实施例提供的正交优化后的3×3耦合器相位解调算法的原理框图。如图9所示,本实施例将已知的3×3耦合器40夹角θ1、θ2代入3×3耦合器40的三路原始信号式,得到:
将式(14)进行三角变换得到:
对式(15中两个正交变量a=I0cosφ(t)、b=I0sinφ(t)进行求解,得到:
微分可得:
相乘后作差,可得:
2个正交变量平方求和,可得:
式(18)除式(19),可得:
对式(20)积分,可得:
由于ψ(t)是缓变量,经过高通滤波器来滤除环境引起的相位变化缓变量,进而可以得出扰动信号,如声波信号引起的相位变化φ(t)。
图10为本申请实施例提供的又一种分布式光纤传感系统的基本结构示意图。如图10所示,本实施例中的分布式光纤传感系统与上一实施例的主要区别在于,本实施例采用相位载波解调方式,其中,相位解调器60包括一个光电探测器(PD4)和相位解调单元,同时,在第一干涉臂51上还设有相位调制器55。
传感光纤30产生的后向瑞利散射光经过环形器20入射到耦合器40,由3×3耦合器40的第一端口分束分为两路光信号,一路光进入耦合器40的第二端口,经过第一干涉臂51和法拉第旋转镜52返回耦合器40中,另一束光进入到耦合器40的第三端口经第二干涉臂53和法拉第旋转镜54后返回到耦合器40中,两束光在耦合器40处合束干涉,后向瑞利散射干涉光经耦合器40的第四端口进入光电探测器PD4。
根据光的相干原理,光电探测器PD4上的光强I可表示为:
I=A+BcosΦ(t) (22)
式(22)中:A是干涉仪输出的平均光功率,B是干涉信号幅值,B=κA,κ≤1为干涉条纹可见度。Φ(t)是干涉仪的相位差。设则式(22)可写为:
在式(22)中Ccosω0t是相位载波,C是幅值,ω0是载波频率;Dcosωst是传感光纤30扰动信号引起的相位变化,D是幅值,ωs是声场信号频率,Ψ(t)是环境扰动等引起的初始相位的缓慢变化。将式(23)用Bessel函数展开得:
式(24)中Jn(m)是m调制深度下的n阶Bessel函数值,分别令k=0和1,便可以得到极品信号和二倍频信号。
图11本申请实施例提供的相位载波解调算法的原理框图。如图11所示,本实施例中的相位解调器60、即相位载波(Phase Generated Carrier,PGC)解调装置包括乘法器、滤波器、微分器、积分器。探测器信号与基频信号在第一乘法器相乘进入到第一低通滤波器,信号送至第一微分器,与第二低通滤波后的信号相乘,进入到减法器一端,与第四乘法器之后的信号进行减法运算;探测器信号与倍频信号在第二乘法器相乘进入到第二低通滤波器,信号送至第二微分器,与第一低通滤波后的信号相乘,进入到减法器一端,与第三乘法器之后的信号进行减法运算;两路信号同时送入减法器,运算后送入积分器、高通滤波器后,解调出传感信号。具体的:
利用Bessel函数展开后的干涉仪输出探测器信号I进行基频信号(幅值是G)、二倍频信号(幅值是H)相乘,为了克服信号随外部的干扰信号的涨落而出现的消隐和畸变现象,对两路信号进行了微分交叉相乘(DCM),微分交叉相乘后的信号经过差分放大、积分运算处理后转换为
代入式(25),可得:
B2GHJ1(C)J2(C)[Dcosωst+Ψ(t)] (26)
可得,积分后得到的信号包含了待测信号Dcosωst和外界的环境信息.,后者通常是个慢变信号,且幅度可以很大,可通过高通滤波器加以滤除.系统的最后输出为:
B2GHJ1(C)J2(C)Dcosωst (27)
由式(27)可以求解出传感光纤30扰动信号引起的相位变化的Dcosωst信号。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
本领域技术人员在考虑说明书及实践这里发明的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (8)

1.一种艾赫兹超快调制脉冲扫描激光器,其特征在于,包括泵浦激光源、第一波分复用器、级联相移光纤光栅、第二波分复用器、多个电光调制器、以及与所述多个电光调制器连接的控制器,其中:
所述泵浦激光源的输出端与所述第一波分复用器的第一端连接;
所述级联相移光纤光栅为在掺杂光纤上刻有多个中心窗口波长不同的相移光栅且相邻所述中心窗口波长之间的波长间隔为预设固定值,所述级联相移光纤光栅与所述第一波分复用器的第二端连接;
第一波分复用器的第三端与所述第二波分复用器的一端连接;
所述第二波分复用器的各波长输出通道所输出的激光分别传输至一个所述电光调制器;
所述控制器,用于在预设时长内,按照预设时间间隔依次选通所述多个电光调制器中的一个电光调制器。
2.根据权利要求1所述的艾赫兹超快调制脉冲扫描激光器,其特征在于,所述激光器还包括隔离器,其中:
所述隔离器的一端与第一波分复用器的第三端连接、另一端与所述第二波分复用器的一端连接。
3.根据权利要求1所述的艾赫兹超快调制脉冲扫描激光器,其特征在于,所述激光器还包括信号放大器,其中:
所述信号放大器的一端与第一波分复用器的第三端连接、另一端与所述第二波分复用器的一端连接。
4.根据权利要求1所述的艾赫兹超快调制脉冲扫描激光器,其特征在于,所述级联相移光纤光栅由N根并联的子级联相移光纤光栅组成,N≥2,其中:
各所述子级联相移光纤光栅的掺杂光纤上均刻有多个中心窗口波长不同的相移光栅且相邻中心窗口波长之间的波长差值为第一预设固定值;
所述第一预设固定值为所述级联相移光纤光栅所输出波长的波长间隔的N倍。
5.根据权利要求1至4任一所述的艾赫兹超快调制脉冲扫描激光器,其特征在于,所述泵浦激光源包括第一子泵浦激光源和第二子泵浦激光源,所述第一波分复用器包括第一子波分复用器和第二子波分复用器,其中:
所述第一子泵浦激光源的输出端与所述第一子波分复用器的第一端连接,所述第二子泵浦激光源的输出端与所述第二子波分复用器的第一端连接;
所述级联相移光纤光栅分别与所述第一波分复用器和所述第二子波分复用器的第二端连接;
所述第一波分复用器或所述第二子波分复用器的第三端与所述第二波分复用器的一端连接。
6.根据权利要求1至4任一所述的艾赫兹超快调制脉冲扫描激光器,其特征在于,相邻所述中心窗口波长之间的波长间隔大于或等于0.2nm。
7.一种分布式光纤传感系统,其特征在于,所述系统包括权利要求1至6任一所述的艾赫兹超快调制脉冲扫描激光器。
8.根据权利要求7所述的分布式光纤传感系统,其特征在于,所述系统还包括与环形器、传感光纤、耦合器、第一干涉臂、第二干涉臂、拉第旋转镜以及相位解调器,其中:
所述艾赫兹超快调制脉冲扫描激光器的输出端与所述环形器的第一端连接,所述环形器的第二端与所述传感光纤连接,所述环形器的第三端与所述耦合器的第一端连接;
所述耦合器的第二端分别与所述第一干涉臂和第二干涉臂的一端连接,所述第一干涉臂和第二干涉臂另一端分别连接一个所述拉第旋转镜,所述第一干涉臂和第二干涉臂的长度不相等;
所述相位解调器与所述耦合器的第三端连接,用于解调所述传感光纤中的扰动信号所引起的相位变化。
CN201910611291.0A 2019-07-08 2019-07-08 艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统 Active CN110160573B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910611291.0A CN110160573B (zh) 2019-07-08 2019-07-08 艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统
US16/534,567 US11480450B2 (en) 2019-07-08 2019-08-07 EHz ultrafast modulated pulse scanning laser and distributed fiber sensing system
FR1909123A FR3098659B1 (fr) 2019-07-08 2019-08-09 Dispositif laser de balayage d'impulsion de modulation ultra-rapide EHz et un système de détection à fibres optiques distribuées

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910611291.0A CN110160573B (zh) 2019-07-08 2019-07-08 艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统

Publications (2)

Publication Number Publication Date
CN110160573A true CN110160573A (zh) 2019-08-23
CN110160573B CN110160573B (zh) 2022-03-25

Family

ID=67637874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910611291.0A Active CN110160573B (zh) 2019-07-08 2019-07-08 艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统

Country Status (3)

Country Link
US (1) US11480450B2 (zh)
CN (1) CN110160573B (zh)
FR (1) FR3098659B1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595365A (zh) * 2020-07-06 2020-08-28 山东省科学院激光研究所 一种用于海洋温度及压力同步监测的多波长激光器
CN111884027A (zh) * 2020-07-28 2020-11-03 中国人民解放军国防科技大学 一种基于二维有源π相移光纤光栅的多波长光纤激光器
CN112255318A (zh) * 2020-10-16 2021-01-22 哈尔滨工程大学 复杂构型件缺陷光纤声检测系统及其检测和成像方法
CN112810227A (zh) * 2021-03-04 2021-05-18 济宁科力光电产业有限责任公司 一种新型的伺服压力机控制方法
CN113790792A (zh) * 2021-08-18 2021-12-14 北京航空航天大学 一种基于零差探测的分布式光纤声波传感装置及解调方法
WO2022006702A1 (zh) * 2020-07-06 2022-01-13 山东省科学院 海洋温度及压力的连续空间同步监测装置
CN114447737A (zh) * 2022-02-17 2022-05-06 山东飞博赛斯光电科技有限公司 一种基于有源相移光栅的单频微波信号源及信号发生方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160572B (zh) * 2019-07-08 2022-03-25 山东省科学院激光研究所 基于艾赫兹超快脉冲扫描的高性能分布式光纤传感系统
CN110440900B (zh) * 2019-08-13 2021-06-04 山东省科学院激光研究所 一种光纤分布式声波传感系统
CN117109720B (zh) * 2023-09-04 2024-04-26 江南大学 一种基于时分复用技术的分布式光纤振动传感器

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148011A (en) * 1998-05-01 2000-11-14 Institut National D'optique Wavelength sliced self-seeded pulsed laser
US6195200B1 (en) * 1998-02-18 2001-02-27 Lucent Technologies Inc. High power multiwavelength light source
CN1457571A (zh) * 2000-09-11 2003-11-19 三菱电机株式会社 相位调制装置及相位调制方法
US6816515B1 (en) * 1998-04-28 2004-11-09 Korea Advanced Institute Of Science And Technology Wavelength-swept laser and method for its operation
WO2007040672A2 (en) * 2005-09-30 2007-04-12 Virgin Islands Microsystems, Inc. Ultra-small resonating charged particle beam modulator
US20070170370A1 (en) * 2005-09-30 2007-07-26 Virgin Islands Microsystems, Inc. Structures and methods for coupling energy from an electromagnetic wave
DE102006058395A1 (de) * 2006-12-07 2008-06-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur elektrischen Ansteuerung und schnellen Modulation von THz-Sendern und THz-Messsystemen
CN105973284A (zh) * 2016-06-30 2016-09-28 山东航天电子技术研究所 一种多通道高精度光纤光栅传感器解调装置
KR20170062953A (ko) * 2015-11-30 2017-06-08 목원대학교 산학협력단 다채널 테라헤르츠파를 이용한 시간영역 분광 시스템
KR20170091403A (ko) * 2016-02-01 2017-08-09 연세대학교 산학협력단 위상절연체를 이용한 테라헤르츠 펄스 변조 장치 및 방법
WO2018076551A1 (zh) * 2016-10-25 2018-05-03 北京大学 能够实现全相位解调的分布式光纤传感系统及其测量方法
CN108803194A (zh) * 2018-07-02 2018-11-13 天津大学 太赫兹波内调制装置
CN109708761A (zh) * 2019-01-10 2019-05-03 北京信息科技大学 一种紧凑微型太赫兹检测系统
CN109873290A (zh) * 2019-03-26 2019-06-11 深圳市镭神智能系统有限公司 一种多波长脉冲光纤激光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1343227B1 (en) * 2002-03-06 2006-04-26 Aston University Generating electronic carrier signals in the optical domain
US20050053101A1 (en) * 2003-09-09 2005-03-10 Jian Liu Mode selection for single frequency fiber laser
CN110160572B (zh) * 2019-07-08 2022-03-25 山东省科学院激光研究所 基于艾赫兹超快脉冲扫描的高性能分布式光纤传感系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195200B1 (en) * 1998-02-18 2001-02-27 Lucent Technologies Inc. High power multiwavelength light source
US6816515B1 (en) * 1998-04-28 2004-11-09 Korea Advanced Institute Of Science And Technology Wavelength-swept laser and method for its operation
US6148011A (en) * 1998-05-01 2000-11-14 Institut National D'optique Wavelength sliced self-seeded pulsed laser
CN1457571A (zh) * 2000-09-11 2003-11-19 三菱电机株式会社 相位调制装置及相位调制方法
WO2007040672A2 (en) * 2005-09-30 2007-04-12 Virgin Islands Microsystems, Inc. Ultra-small resonating charged particle beam modulator
US20070170370A1 (en) * 2005-09-30 2007-07-26 Virgin Islands Microsystems, Inc. Structures and methods for coupling energy from an electromagnetic wave
DE102006058395A1 (de) * 2006-12-07 2008-06-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur elektrischen Ansteuerung und schnellen Modulation von THz-Sendern und THz-Messsystemen
KR20170062953A (ko) * 2015-11-30 2017-06-08 목원대학교 산학협력단 다채널 테라헤르츠파를 이용한 시간영역 분광 시스템
KR20170091403A (ko) * 2016-02-01 2017-08-09 연세대학교 산학협력단 위상절연체를 이용한 테라헤르츠 펄스 변조 장치 및 방법
CN105973284A (zh) * 2016-06-30 2016-09-28 山东航天电子技术研究所 一种多通道高精度光纤光栅传感器解调装置
WO2018076551A1 (zh) * 2016-10-25 2018-05-03 北京大学 能够实现全相位解调的分布式光纤传感系统及其测量方法
CN108803194A (zh) * 2018-07-02 2018-11-13 天津大学 太赫兹波内调制装置
CN109708761A (zh) * 2019-01-10 2019-05-03 北京信息科技大学 一种紧凑微型太赫兹检测系统
CN109873290A (zh) * 2019-03-26 2019-06-11 深圳市镭神智能系统有限公司 一种多波长脉冲光纤激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YING SHANG;YUANHONG YANG; CHEN WANG; XIAOHUI LIU; CHANG WANG: "Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering", 《MEASUREMENT》 *
沈德元等: "《中红外激光器》", 31 December 2015, 国防工业出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595365A (zh) * 2020-07-06 2020-08-28 山东省科学院激光研究所 一种用于海洋温度及压力同步监测的多波长激光器
WO2022006702A1 (zh) * 2020-07-06 2022-01-13 山东省科学院 海洋温度及压力的连续空间同步监测装置
GB2612237A (en) * 2020-07-06 2023-04-26 Shandong Acad Of Sciences Continuous spatial synchronization monitoring device for ocean temperature and pressure
CN111884027A (zh) * 2020-07-28 2020-11-03 中国人民解放军国防科技大学 一种基于二维有源π相移光纤光栅的多波长光纤激光器
CN111884027B (zh) * 2020-07-28 2021-10-15 中国人民解放军国防科技大学 一种基于二维有源π相移光纤光栅的多波长光纤激光器
CN112255318A (zh) * 2020-10-16 2021-01-22 哈尔滨工程大学 复杂构型件缺陷光纤声检测系统及其检测和成像方法
CN112810227A (zh) * 2021-03-04 2021-05-18 济宁科力光电产业有限责任公司 一种新型的伺服压力机控制方法
CN113790792A (zh) * 2021-08-18 2021-12-14 北京航空航天大学 一种基于零差探测的分布式光纤声波传感装置及解调方法
CN114447737A (zh) * 2022-02-17 2022-05-06 山东飞博赛斯光电科技有限公司 一种基于有源相移光栅的单频微波信号源及信号发生方法

Also Published As

Publication number Publication date
US20210010834A1 (en) 2021-01-14
CN110160573B (zh) 2022-03-25
FR3098659A1 (fr) 2021-01-15
FR3098659B1 (fr) 2023-09-15
US11480450B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
CN110160572A (zh) 基于艾赫兹超快脉冲扫描的高性能分布式光纤传感系统
CN110160573A (zh) 艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统
US10461850B2 (en) Frequency synthesis-based optical frequency domain reflectometry method and system
CN108827175B (zh) 基于宽频混沌激光的分布式光纤动态应变传感装置及方法
CN110440900B (zh) 一种光纤分布式声波传感系统
CN110108346B (zh) 基于延迟调相啁啾脉冲对的光纤振动传感器
CN105634588B (zh) 基于相位共轭双子波的相干光时域反射仪
Muanenda et al. Dynamic phase extraction in high-SNR DAS based on UWFBGs without phase unwrapping using scalable homodyne demodulation in direct detection
CN101634571B (zh) 光纤脉栅分布传感装置
CN110243493B (zh) 基于超连续谱的布里渊光时域反射仪装置及方法
CN106019313A (zh) 基于偏振双边缘的单像素探测测风激光雷达
US9500562B2 (en) Kerr phase-interrogator for sensing and signal processing applications
CN110081974A (zh) 一种激光线宽测量系统
CN113790792A (zh) 一种基于零差探测的分布式光纤声波传感装置及解调方法
CN110726468B (zh) 一种基于直波导相位调制器的分布式光纤声波传感系统
CN203642943U (zh) 一种基于四波混频过程的高空间分辨率光频域反射计系统
CN110375960A (zh) 一种基于超连续谱光源otdr的装置及方法
CN110319940A (zh) 高密度等离子体密度测量的激光光纤干涉仪诊断系统
CN110542447A (zh) 一种长距离高分辨率布里渊光学时域分析仪
Li et al. Dual-pulse complex superposition based noise suppression for distributed acoustic sensing
Jeon et al. Optical fiber chromatic dispersion measurement using bidirectional modulation of an optical intensity modulator
Bian et al. Vibration measurement technique for repeated fiber-optic hydrophone transmission cable system
Dong et al. Instantaneous frequency measurement based on transversal microwave filters with high resolution
Guerrier High bandwidth detection of mechanical stress in optical fibre using coherent detection of Rayleigh scattering
Morsali et al. Significance of modulator extinction ratio in long distance coherent optical time domain reflectometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant