CN110106183B - Herbicide-resistant gene and application thereof - Google Patents

Herbicide-resistant gene and application thereof Download PDF

Info

Publication number
CN110106183B
CN110106183B CN201910274119.0A CN201910274119A CN110106183B CN 110106183 B CN110106183 B CN 110106183B CN 201910274119 A CN201910274119 A CN 201910274119A CN 110106183 B CN110106183 B CN 110106183B
Authority
CN
China
Prior art keywords
ala
leu
arg
herbicide
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910274119.0A
Other languages
Chinese (zh)
Other versions
CN110106183A (en
Inventor
郑挺
沈志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Ruifeng Biotechnology Ltd inc
Original Assignee
Hangzhou Ruifeng Biotechnology Ltd inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Ruifeng Biotechnology Ltd inc filed Critical Hangzhou Ruifeng Biotechnology Ltd inc
Priority to CN201910274119.0A priority Critical patent/CN110106183B/en
Publication of CN110106183A publication Critical patent/CN110106183A/en
Application granted granted Critical
Publication of CN110106183B publication Critical patent/CN110106183B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a herbicide-resistant gene and application thereof, wherein the nucleotide sequence of the herbicide-resistant gene is shown in SEQ ID No.15, the invention provides a novel herbicide-resistant gene derived from sugarcane, and the gene can degrade at least one ALS inhibitor herbicide and one HPPD inhibitor herbicide. The introduction of the herbicide-resistant gene into plants sensitive to the herbicides can remarkably increase the tolerance of the sensitive plants to the herbicides, so that the herbicide which cannot be used for controlling weeds on the plants originally can be used for the plants introduced with the herbicide-resistant gene, and more choices are provided for weed control. In addition, the gene of the invention can be used as a screening marker gene in the field of plant tissue culture.

Description

Herbicide-resistant gene and application thereof
(I) technical field
The invention relates to the field of plant genetic engineering, in particular to a gene for resisting various herbicides such as flazasulfuron, mesotrione and the like and a protein coded by the gene. This gene can be used to express in plants to increase the resistance of the plants to herbicides. The invention can be applied to the fields of crop breeding, plant cell culture screening and the like.
(II) background of the invention
Weed control is required during crop planting. If a crop plant obtains resistance to a broad-spectrum herbicide, the weeds of the crop plant can be controlled by spraying the broad-spectrum herbicide after emergence of the seedlings. The weed control method is simple, efficient, low in cost and safe for crops.
Crops can be improved by genetic engineering to obtain herbicide resistance. For example, a crop plant can be rendered glyphosate resistant by transgenic expression of a resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of Agrobacterium tumefaciens (Agrobacterium tumefaciens sp CP 4). Transgenic glyphosate resistant plants expressing this enzyme have been used in production (us patents 453590, 4769061, 5094945). In order to control the occurrence of herbicide resistance of weeds, improve the resistance level of transgenic crops and increase the diversity of resistance genes, the development of resistant transgenic crops resistant to herbicides other than glyphosate is very useful in production.
Cytochrome P450 is a large family of genes. In general, more than 200P 450 genes can be found in a single plant. Previous studies found that a part of the protein encoded by the P450 gene was able to degrade herbicides. For example, it can be obtained by fusing rat CYP1A1 with the yeast P450 reductase gene and introducing the fused gene into tobacco. And other cytochrome P450 genes (e.g., Didierjean, L.et al. (2002) Plant Physiol.130: 179-189; Morant, M.S.et al. (2003) Opinion in Biotechnology 14:151-162) have herbicide resistance and are used to obtain herbicide resistant transgenic plants. A cytochrome P450 gene in corn is found to have the capability of resisting herbicides such as nicosulfuron (Chinese patent, application No. 200610155661; U.S. Pat. No.3, 20080052798A1), and a cytochrome P450 gene in rice has the capability of resisting bentazon and sulforon herbicides (Pan et al, Plant Molecular Biology,2006, 61: 933-.
Sugarcane (Sacchrum officinarum x S. spontanium) can resist herbicides such as flazasulfuron, nicosulfuron, mesotrione and the like, so that a herbicide-resistant gene is hopefully cloned from sugarcane and applied to cultivation of herbicide-resistant transgenic crops. The invention clones a herbicide-resistant gene which can obviously resist at least one herbicide in the following herbicides from sugarcane: acetolactate synthase (ALS) inhibitor herbicides including, but not limited to, sulfonylureas, imidazolinones, triazolopyrimidine sulfonamides, and pyrimidinylsalicylates; p-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides, including but not limited to mesotrione, isoxazolone, and the like. The invention provides a method for obtaining transgenic herbicide-resistant crops by using the gene.
Disclosure of the invention
The invention aims to provide a herbicide-resistant gene and application thereof, wherein the herbicide-resistant gene can degrade at least one ALS inhibitor herbicide and at least one HPPD inhibitor herbicide simultaneously. Introduction of the herbicide-resistant gene into plants sensitive to these herbicides can significantly increase the tolerance of these sensitive plants to these herbicides, and thus herbicides that would otherwise not be used on these plants to control weeds can be used for plants into which the herbicide-resistant gene has been introduced. In addition, the herbicide-resistant gene can also be used in the field of plant tissue culture as a screening marker gene.
The technical scheme adopted by the invention is as follows:
the invention provides a herbicide-resistant gene, wherein the nucleotide sequence of the herbicide-resistant gene is shown in SEQ ID No.15, and the amino acid sequence of the herbicide-resistant gene coding protein is shown in SEQ ID No. 19.
The invention also provides an application of the herbicide-resistant gene in preparation of herbicide-resistant plant cells, wherein the application is to introduce the herbicide-resistant gene into plant cell genomes to obtain the herbicide-resistant plant cells.
Further, it is preferable that the herbicide-resistant gene encoding protein for use in preparing the herbicide-resistant plant cell is an amino acid fragment from position 104 to 170 in the amino acid sequence shown in SEQ ID NO.19 (SEQ ID NO. 20).
Furthermore, the application is obtained by constructing a T-DNA expression frame containing herbicide-resistant genes and then transforming plant genes into the T-DNA expression frame, wherein the construction method of the T-DNA expression frame comprises the following steps: the promoter is functionally connected with the herbicide-resistant gene cds shown in SEQ ID NO.15 at the 5 'position, and the terminator is functionally connected with the herbicide-resistant gene cds at the 3' position.
The expression of the protein polypeptide encoded by the herbicide-resistant gene in a plant, or having at least 83%, 85%, 90% or 95% of the amino acid sequence compared thereto, of the present invention results in a transgenic plant having improved herbicide resistance. Amino acid identity can be obtained by existing methods (Karlin and Altschul 1990). And a plant having introduced therein the gene at least exhibits increased resistance to one or more of the following herbicides: 1) acetolactate synthase (ALS) inhibitor herbicides including, but not limited to, sulfonylurea, imidazolinone, triazolopyrimidine sulfonamide, and pyrimidinylsalicylate herbicides; 2) herbicides of the hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor class include, but are not limited to, mesotrione, isoxazolone and the like.
The method of the present invention for producing herbicide-resistant transgenic plant cells is accomplished by expressing in a plant a protein polypeptide encoded by a polynucleotide sequence provided by the present invention. Expression of the polynucleotide-encoded polypeptide can be achieved by constructing a gene expression cassette obtained by functionally linking one or more expression-controlling polynucleotide sequences and herbicide-resistant polynucleotide sequences, and further transferring the expression cassette into the genome of the plant. One of ordinary skill in the art would be able to construct herbicide-resistant gene expression cassettes based on known knowledge using the polynucleotide sequences provided by the present invention, and transform plants to obtain transgenic plants that are herbicide-resistant. The herbicide tolerant transgenic plant can provide a convenient and economical method for controlling weeds.
The polynucleotide provided by the invention and the protein variant coded by the polynucleotide are also part of the protection content of the invention. A variant refers to a polynucleotide or protein with a highly similar sequence. Variants of a polynucleotide sequence include variations in deletion, insertion or substitution of one or more polynucleotides at one or more positions, which still do not alter the open reading frame. The source of a variant of a polynucleotide sequence can be of various aspects. One is the difference in codons encoding the same amino acid, since polynucleotide sequences encoding the same amino acid sequence may be different; another situation is the natural diversity that is widely present in different individuals or closely related species of organisms; also, mutation is introduced by human. Many methods for artificially introducing mutations are available, and those skilled in the art can introduce mutations by conventional techniques, for example, by PCR.
Protein polypeptide variants include variant proteins in which one or more amino acids are deleted, inserted, or substituted at one or more positions. The variants protected by the present invention are proteins that still retain the biological activity of their native genes, i.e. are capable of causing herbicide resistance in transgenic plants. Such variants may be derived from biological genetic polymorphisms (genetic polymorphisms) or artificial genetic manipulation changes. These genetic manipulations can effect amino acid substitutions, deletions or insertions into the protein. Methods for such genetic manipulation are known. Deletions, substitutions or insertional variations of a protein sequence do not in many cases alter the biological activity characteristics of the protein very significantly. However, even if one cannot predict the effect of these variations on protein activity, one of ordinary skill in the art would be able to express the proteins encoded by these particular variants in plants and evaluate their herbicide resistance.
The present invention provides herbicide-resistant proteins and also includes variants obtained by the protein domain replacement method. The present inventors have found that a fragment of SEQ ID No.19 plays a key role in its herbicide resistance. The herbicide resistance was obtained by substituting the amino acid sequence of SEQ ID NO:20 (corresponding to 67 amino acids from 104 to 170 of SEQ ID NO: 19) for the fragment corresponding to the cytochrome P450 homologous gene Zm-513 (nucleotide sequence SEQ ID NO:21, amino acid sequence SEQ ID NO:22, U.S. Pat. No.5,9657307) which had NO herbicide resistance (67 amino acids from 107 th to 173 of SEQ ID NO: 22). It is expected that artificial variants of proteins that are herbicide resistant may also be obtained by replacing corresponding fragments or corresponding amino acid positions of other cytochrome P450 homologous proteins with SEQ ID NO:20 or fragments or amino acid positions contained therein.
The polynucleotide provided by the invention and the protein coded by the polynucleotide also comprise variants obtained by artificial mutation or recombination method. Such methods of mutagenesis or recombination include, but are not limited to, recombinant integration of DNA (DNA shuffling), such as US 2002/0058249; stemmer (1994) proc.natl.Acad.Sci.USA 91: 10747-10751; stemmer (1994) Nature 370: 389-391; crameri et al (1997) Nature Biotech.15: 436-438; moore et al (1997) J.mol.biol.272: 336-347; zhang et al (1997) Proc.Natl.Acad.Sci.USA 94: 4504-; crameri et al (1998) Nature 391: 288-; and U.S. Pat. No.5, 605,793and 5,837, 458. One of ordinary skill in the art will recognize that variants can be obtained by these methods that still have the same herbicide resistance activity or have altered herbicide resistance.
The polynucleotides provided by the invention can also be used to clone corresponding genes from other plants. According to the polynucleotide sequences provided by the present invention, those skilled in the art can generally clone corresponding homologous genes from a plant by using PCR method and DNA hybridization method. The PCR method can be based on the polynucleotide sequence design primer, through the PCR method to obtain part or all homologous gene sequence. DNA hybridization methods homologous genes can be obtained by hybridizing DNA libraries using the polynucleotides provided by the present invention to prepare probes. Furthermore, those skilled in the art can also find out genes with high homology from genome libraries by using the nucleic acid sequences and protein sequences provided by the present invention through a molecular informatics method. Based on the polynucleotide sequences and the amino acid sequences of the protein polypeptides provided by the present invention, genes having higher homology to the genes provided by the present invention were found, for example, by using the BLAST (www.ncbi.nih.gov) method.
The polynucleotides provided by the invention can be cloned into plasmid vectors to obtain large-scale replication in cells. By using such a DNA recombination technique, the polynucleotide obtained in the present invention can be functionally linked to a promoter and a terminator which control gene expression to construct an expression cassette. By functionally linked is meant that the promoter and terminator are capable of acting to initiate and control expression of the polynucleotide to which they are linked. Typically, the promoter is linked at the 5 'end and the terminator is linked at the 3' end.
Promoters for controlling gene expression are well known to those skilled in the art. A review by Potenza et al details and summarizes the studies on the promoters (Potenza et al (2004) In Vitro Cell Dev Biol-Plant 40: 1-22). The promoter includes a promoter for constitutive expression, a tissue-specific expression promoter, a promoter capable of inducing expression, and the like. And constitutive expression promoters are widely used for herbicide-resistant gene control. For example, the CaMV35S promoter (Odell et al (1985) Nature 313: 810-812); the rice actin promoter (McElroy et al (1990) Plant Cell 2: 163-171); the maize ubiquitin promoter (Christensen et al (1989) Plant mol. biol.12:619-632and Christensen et al (1992) Plant mol. biol.18: 675-689). These promoters may be used to control the expression of the genes provided by the present invention in plants, thereby obtaining transgenic herbicide resistant plants.
The terminator which controls the expression of the gene may be the natural terminator which provides the gene, or may be a terminator of another gene derived from a plant or another plant gene. Commonly used terminators include Octopine synthase terminator and nopaline synthase terminator derived from Agrobacterium, such as CaMV35S terminator. References include: guerineau et al (1991) mol.Gen.Genet.262: 141-144; propufoot (1991) Cell 64: 671-674; sanfacon et al (1991) Genes Dev.5: 141-149; mogen et al (1990) Plant Cell 2: 1261-; munroe et al (1990) Gene 91: 151-158; ballas et al (1989) Nucleic Acids Res.17: 7891-7903; and Joshi et al (1987) Nucleic Acids Res.15:9627-9639.
The polynucleotide sequence of the gene may be further modified or altered in order to provide for the level of expression of the gene in the target plant. These changes include deletion of introns, removal of sequences that may affect normal expression, such as the immature PolyA signal sequence, etc. Depending on the codon usage of the target plant, the polynucleotide sequences encoding the same protein polypeptides may be optimized for increased expression in the target plant.
The vector comprising the expression cassette of the gene provided by the present invention may also comprise a selection marker gene expression cassette. This selectable marker gene can be used to select for transformed cells. Commonly used selectable marker genes include antibiotic resistance genes such as neomycin phosphotransferase II (NEO) and Hygromycin Phosphotransferase (HPT), herbicide resistance genes such as glyphosate resistance gene EPSPS gene, glufosinate resistance Bar gene, and the like. Other selectable marker genes may also be used as selectable genes for transformation in accordance with the present invention.
The herbicide-resistant gene provided by the invention can be introduced into plants to obtain transgenic herbicide-resistant plants, wherein the plants include but are not limited to corn, wheat, barley, sorghum, rice, soybean, carrot, potato, cotton, sunflower, rape, oak, turfgrass and pasture.
The polynucleotide provided by the present invention can be expressed by introducing it into a plant by a person of ordinary skill in the art using known techniques. The methods which are more commonly used are the gene gun method (Klein et al,1987, Nature (London)327: 70-73; U.S. Pat. No.4,945,050) or the Agrobacterium mediated method (De Blaere et al,1987, meth.enzymol.143: 277). The present invention is not limited to this method.
The methods and procedures for transformation vary from plant to plant. However, it is generally introduced into immature embryos, mature embryos, undifferentiated callus or protoplasts of plants by Agrobacterium or biolistics. The cultures were then screened using the corresponding screening medium. Then differentiation is carried out to obtain transformed buds, and the transgenic seedlings which can be planted can be obtained through the culture of a rooting culture medium. Further, herbicide-resistant transgenic plants can be screened by herbicide application, for example, flazasulfuron spray can kill non-transgenic rice.
Compared with the prior art, the invention has the following beneficial effects: the invention provides a novel herbicide-resistant gene derived from sugarcane, which can degrade at least one ALS inhibitor herbicide and one HPPD inhibitor herbicide. The introduction of the herbicide-resistant gene into plants sensitive to the herbicides can remarkably increase the tolerance of the sensitive plants to the herbicides, so that the herbicide which cannot be used for controlling weeds on the plants originally can be used for the plants introduced with the herbicide-resistant gene, and more choices are provided for weed control. In addition, the gene of the invention can be used as a screening marker gene in the field of plant tissue culture.
(IV) description of the drawings
FIG. 1 is a T-DNA vector map of the expressed gene 3.
FIG. 2 is a map of gene 48 plant expression vectors;
FIG. 3 is a map of a plant expression vector for the gene CF 48;
FIG. 4 is a plant expression vector map of gene 49.
(V) detailed description of the preferred embodiments
The invention will be further described with reference to specific examples, but the scope of the invention is not limited thereto:
the molecular biological and biochemical methods used in the following examples of the invention are all known techniques. The details are described in the documents A Laboratory Manual,3rd ED., and others, published by John Wiley and Sons company, Current Protocols in Molecular Biology, Ausubel, and Cold Spring Harbor Laboratory Press, J.Sambrook et al, Molecular Cloning, A Laboratory Manual,3rd ED..
Example 1 cloning of resistance candidate P450 Gene
1.1 amplification of conserved regions of candidate P450 genes
Plants typically have a relatively large P450 gene family, for example, in Arabidopsis thaliana genomes, over 300 cytochrome P450 genes are found (Werck-Reichhart et al (2000) Trends in Plant Science 5(3): 116-. DNA alignment analysis of three known gramineous plant P450 gene cDNA sequences (gene bank access: KT184658.1, EU955667.1, AK066760.1, respectively) with herbicide-resistant activity shows that the sequences of some regions are conserved. Based on the nucleotide sequences of these conserved regions of cytochrome P450 genes, PCR primers shown in Table 1 below were designed.
TABLE 1 amplification of P450 conserved region primers
Primer name Sequence 5'to 3'
SP450F1 CGCSARGGAGTGCTTCACSGASCACGACGTG
SP450F2 AGCTACGGSSCGYACTGGCGCRACCTSCGCCG
SP450F3 CCGTSCASCTSCTSTCCGCGCACCGCGTC
SP450F4 GAGSTCTCSCTCAGCGTGCTBATGGAGACCATCGC
SP450R1 GCGATGGTCTCCATVAGCACGCTGAGSGAGASCTC
SP450R2 GATCTTSYTCCTSACGCCGAAMACGTCGAACCA
SP450R3 GGCTCDGWCTTCTGCARAGTGAGCAGCA
SP450R4 TCYGGCTCDGWCTTCTGCARAGTGAGCAGCA
Genomic DNA was extracted from sugarcane leaves, and PCR was performed using PRIMESTAR HS DNA polymerase of Takara, using sugarcane genomic DNA as a template, and four forward primers and four reverse primers in Table 1 in combination.
The reaction system is as follows:
Figure BDA0002019388750000041
the reaction procedure was as follows:
94℃,5min;(98℃10s,56℃10s,72℃1min),32cycles;72℃,5min。
PCR products obtained by amplification of a primer combination (SP450F1, SP450R4) are selected, gel recovered and cloned into pMD19-T, and 18 clones are selected for sequencing. At least 4 fragments with different sequences were found in the PCR products, 3c (SEQ ID NO.1), 48c (SEQ ID NO.2), CF48c (SEQ ID NO.3), 49c (SEQ ID NO.4), respectively.
1.2 obtaining of nucleic acid sequence encoding end P450N
The alignment also shows that the first 5 amino acids at the N end of the P450 with the capability of degrading the herbicide are relatively conserved, and 15 nucleotides from the beginning of the initial code have relatively high conservation, so that the following 3N-end specific primers are designed for amplifying the nucleic acid sequence coding the four P450N ends.
P450-5-F15:5’-ATGGATAAGGCCTAC-3’
P450-5-F17:5’-ATGGATAAGGCCTACGT-3’
P450-5-F30:5’-CGAATTCACTAGTGATTATGGATAAGGCCT-3’
Further, based on the obtained sequences of 3c, 48c, CF48c, 49c, gene-specific primers of Table 2 were designed for amplification of the 5' portions of these four genes by nested PCR.
TABLE 2 specific primer sequences for amplification of 5' of sugarcane P450 candidate genes
Figure BDA0002019388750000042
The first round of nested PCR was performed using sugarcane genomic DNA as a template, a mixture of three P450-5-F15, P450-5-F17 and P450-5-F30 as a forward primer, and SR3 as a reverse primer for each of the four genes. The first round of reaction system is as follows:
Figure BDA0002019388750000043
Figure BDA0002019388750000051
the first round of PCR reaction procedure was as follows:
94℃,5min;(98℃10s,56℃10s,72℃1min),32cycles;72℃,5min。
the second PCR reaction was performed using the first product diluted 200 times as a template, P450-5-F30 as a forward primer, and SR2 as a reverse primer for each of the four genes. The second round of reaction system is as follows:
Figure BDA0002019388750000052
the second round of PCR reaction procedure was as follows:
94℃,5min;(98℃10s,56℃10s,72℃1min),32cycles;72℃,5min。
the sequences encoding 5' of the four P450 genes, 3-5 ' (SEQ ID NO.5), 48-5 ' (SEQ ID NO.6), CF48-5 ' (SEQ ID NO.7), 49-5 ' (SEQ ID NO.8), were obtained by two rounds of PCR.
1.3 obtaining of nucleic acid sequence encoding C-terminus of P450 Gene
The nucleic acid sequence of the C end of the coding P450 gene is obtained by nested PCR by taking sugarcane bud cDNA as a template. The nested PCR adopts a single-side nested design, two positive nested primers are designed in a gene conservation region, and a fixed reverse primer is designed at the 3' end of a gene.
TABLE 3 Gene-specific forward nested primers for amplification of the 3' sequence of the sugarcane P450 Gene
Primer name Sequence 5'to 3'
3SF1 ACCTCCTGTCCGCTCACCGTGTGAGGT
3SF2 CCCTTATGGAAACCATCGCGCAAAC
48SF1 CATGGAGACCATCGCGCAGACCAAGA
48SF2 TGTTGCGGTGGTTCTACGTGTACGGC
CF48SF1 CATGGAGACAATCGCGCAGACCAAGA
CF48SF2 TGTTGCGGTGGTTCGACGTGTACGGC
49SF1 GTCGCCTGCATGTCCTCCGTTATCTC
49SF2 TGCTCATGGAGACCATCGCGCAGAC
Reverse primer:
ANCHOR:5’-GACCACGCGTATCGATGT-3’
P450-3-R:5’-TCAGAGCTYCTSCAAAACCTCACGCAT-3’
extracting sugarcane bud total RNA as a template, and using the following primers:
DTANCHOR:5’-GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV-3’
cDNA was synthesized using the Primescript RT reagent kit from TAKARA. The reaction system is as follows:
Figure BDA0002019388750000053
the first round of PCR was performed using cDNA as a template, and the second round of PCR was performed using the first round of PCR product diluted 200 times as a template. The 3' portion of the candidate P450 gene was obtained by amplification using the primer combinations of Table 4.
TABLE 4 primer combinations for amplifying the 3' end portion nucleic acid sequences of candidate sugarcane P450 s
Figure BDA0002019388750000054
Figure BDA0002019388750000061
The obtained PCR product sequences were 3-3 '(SEQ ID NO.9), 48-3' (SEQ ID NO.10), CF48-3 '(SEQ ID NO.11), and 49-3' (SEQ ID NO.12), respectively.
1.4 determination of candidate P450 Gene cds
The sequences 3(SEQ ID NO.13), 48(SEQ ID NO.14), CF48(SEQ ID NO.15), 49(SEQ ID NO.16) were obtained by splicing nucleic acid sequences encoding the N-terminal and C-terminal of each candidate gene and cutting the cds portion. Designing a table primer according to the spliced sequence, taking sugarcane bud cDNA as a template, and amplifying the full length of four candidate genes cds by using the primer in the table 5, wherein the reaction system is as follows:
Figure BDA0002019388750000062
the reaction procedure was as follows:
94℃,3min;(98℃10s,56℃10s,72℃1min 45s),32cycles;72℃,5min。
obtaining gene 3, gene 48, gene CF48 and gene 49; the sequencing result confirms that the spliced sequence is error-free and exists really instead of being generated by artificial splicing.
TABLE 5 primers for amplification of full length candidate sugarcane P450cds
Primer name Sequence 5'to 3'
3-F ATGGATAAGGCCTACGTTGTCGTCCTCTCG
3-R TCACAACTTCTGAAGGACATCAAGCATGACTT
48-F ATGGATAAGGCCTATATCGCCGTCCTCTCC
48-R TCAGAGCTCCTGAAGAACATCACGCATAGCTG
CF48-F ATGGATAAGGCCTATATCGCCGTCCTCT
CF48-R TCAGAGCTCCTGAAGAACATCACGCATAGCT
49-F ATGGATAAGGCCTACGTGGCCGTGCTCTCC
49-R TCAGAGCTCCAGAAGAACATCGCGCATAGCTG
Example 2 construction of expression vectors for expressing 3, 48, CF48, 49 in Rice
The primers in Table 6 were synthesized for the construction of plant expression vectors.
The fragment p35S-TEV-r was obtained by amplifying the artificially synthesized p35S-TEV 5' UTR (SEQ ID NO: 17) as a template with primers (35S-r-FP, TEV-r-RP).
3(SEQ ID NO.13) was used as a template, and a fragment 3-r was obtained by amplification using a primer (3-r-FP, 3-r-RP).
A fragment 48-r was obtained by amplification using a primer (48-r-FP,48-r-RP) using 48(SEQ ID NO.14) as a template.
Using CF48(SEQ ID NO.15) as a template and primers (CF48-r-FP, CF48-r-RP), fragment CF48-r was amplified.
A fragment 49-r was amplified using 49(SEQ ID NO.16) as a template and primers (49-r-FP, 49-r-RP).
pCAMBIA1300(gene bank access: AF234296.1) was digested simultaneously with KpnI and XhoI to recover the vector FV.
FV, 35S-TEV-r, 3-r were spliced using a seamless cloning approach such that 3 was functionally linked to the 35S promoter and TEV 5' UTR at 5' and CaMV35S terminator at 3', and the resulting vector was named 1300-3.
FV, 35S-TEV-r, 48-r were spliced using a seamless cloning approach such that 48 was functionally linked to the 35S promoter and TEV 5' UTR at 5' and CaMV35S terminator at 3', and the resulting vector was named 1300-48.
FV, 35S-TEV-r, CF48-r were spliced using a seamless cloning approach such that CF48 was functionally linked 5' to the 35S promoter and TEV 5' UTR, and 3' to the CaMV35S terminator, and the resulting vector was named 1300-CF 48.
FV, 35S-TEV-r, 49-r were spliced using a seamless cloning approach such that 49 was functionally linked to the 35S promoter and TEV 5' UTR at 5' and CaMV35S terminator at 3', and the resulting vector was named 1300-49.
The artificially synthesized fragment pH4A748-H3.3intron-CP4-H4A748terminator (SEQ ID NO.18) was inserted between the (HindIII, KpnI) multiple cloning sites of 1300-3, 1300-48, 1300-CF48, 1300-49, respectively, by means of (HindIII, KpnI) digestion. The final plant transformation vectors 1300-CP4-3, 1300-CP4-48, 1300-CP4-CF48, 1300-CP4-49 were obtained. The resulting final support structure is shown in fig. 1 to 4. The plant transformation vector was transformed to agrobacterium strain LBA4404 by electric shock.
TABLE 6 primer sequences used in the construction of sugarcane P450 plant expression vectors
Primer name Sequence 5'to 3'
35S-r-FP AGAAAAGGATCCCCGGGTACCGTAATCATGGTCATAGCTGTTTCCTGTG
TEV-r-RP GGCTATCGTTCGTAAATGGTGAAAATTTT
3-r-FP TTACGAACGATAGCCAGATCTATGGATAAGGCCTACGTTGTCGTCCTCT
3-r-RP ATTATTATGGAGAAACTCGAAGAATTCTCACAACTTCTGAAGGACATCAAGCATG
48-r-FP TTACGAACGATAGCCAGATCTATGGATAAGGCCTATATCGCCGTCCTCT
48-r-RP ATTATTATGGAGAAACTCGAAGAATTCTCAGAGCTCCTGAAGAACATCACGCATA
CF48-r-FP TTACGAACGATAGCCAGATCTATGGATAAGGCCTATATCGCCGTCCTCT
CF48-r-RP ATTATTATGGAGAAACTCGAAGAATTCTCAGAGCTCCTGAAGAACATCACGCATA
49-r-FP TTACGAACGATAGCCAGATCTATGGATAAGGCCTACGTGGCCGTGCTCT
49-r-RP ATTATTATGGAGAAACTCGAAGAATTCTCAGAGCTCCAGAAGAACATCGCGCATA
Example 3 transformation of Rice
The transgenic rice is obtained by adopting the prior art (Luandroster Gong Xun 1998 life science 10: 125-. Mature and full 'Xishui 134' seeds are selected to be hulled, and callus is generated by induction and is used as a transformation material. Respectively taking agrobacterium slide plates containing target gene vectors 1300-CP4-3, 1300-CP4-48, 1300-CP4-CF48 and 1300-CP4-49, and selecting a single colony to inoculate agrobacterium for transformation. Putting the callus to be transformed into an agrobacterium liquid (containing acetosyringone) with a proper concentration, allowing agrobacterium to be combined to the surface of the callus, transferring the callus into a co-culture medium, and culturing for 2-3 days. The transformed calli were rinsed with sterile water, transferred to selection medium containing appropriate glyphosate, and selected for two months (one intermediate subculture). Transferring the selected callus with good growth activity to a pre-differentiation culture medium for about 20 days, transferring the pre-differentiated callus to the differentiation culture medium, and irradiating for 14 hours to differentiate and germinate. After 2-3 weeks, the resistant regenerated plants are transferred to a rooting culture medium containing glyphosate (0.1mg/L) for strong seedling and rooting, and finally the regenerated plants are washed off and agar is transplanted to a greenhouse to be used as an identification material.
Example 4 herbicide resistance assay of transgenic Rice
10 transformants obtained by transformation with the vectors 1300-CP4-3, 1300-CP4-48, 1300-CP4-CF48 and 1300-CP4-49, respectively, and a non-transgenic strain of the same variety "Xiuishui 134" were planted in a greenhouse (temperature 15-25 ℃), and the flazasulfuron-methyl (Xibaigong, Nippon stone Seiko Co., Ltd.) was sprayed at a dose of 5.6 mg/m at a seedling height of about 10 cm. The results of the examination after 10 days are shown in Table 7. It can be seen that most of the 4 genes transformed with CF48 gene showed good resistance to flazasulfuron, while the other three genes 3, 48, 49 showed no difference in flazasulfuron resistance from the control.
TABLE 7 resistance of rice transgenic for different sugarcane P450 genes to flazasulfuron
Transformation vector No chemical injury Slight damage Severe damage Death was caused by death
1300-CP4-3 0 0 0 10
1300-CP4-48 0 0 0 10
1300-CP4-CF48 3 5 1 1
1300-CP4-49 0 0 0 10
CK 0 0 0 10
Example 6: determination of resistance of rice transformant with transferred CF48 gene to HPPD inhibitor herbicides:
10 different transgenic rice plants transformed with 1300-CP4-CF48 vector and non-transgenic rice plants of the same variety "Xiushui 134" were selected and planted in the greenhouse (temperature 15-25 deg.C), and sprayed with mesotrione at a concentration of 15 mg/m at a seedling height of about 10 cm. After 10 days of examination, all non-transgenic plants were found dead, whereas the mortality rate for transgenic rice plants was 0%, of which 3 transgenic lines did not have any visible growth inhibition and 5 lines grew slowly.
Example 7: gene with herbicide resistance function obtained by replacing protein structural domain
The amino acid sequence of CF48(SEQ ID NO.19) and the amino acid sequence of cytochrome P450 gene Zm-513 (the nucleotide sequence is SEQ ID NO.21, the amino acid sequence is SEQ ID NO.22) of a corn species have 81 percent of identity. However, the resistance of rice expressing Zm-513 to herbicides such as nicosulfuron, mesotrione, etc. was not improved (U.S. Pat. No.5,965,7307). In order to determine the region of CF48 protein sequence which determines the function of herbicide resistance, 67 amino acids (amino acid sequence SEQ ID NO.20) from 104 to 170 of its sequence were used to replace the corresponding polypeptide fragment (67 amino acids from 107 to 173 of Zm-513) in Zm-513 to obtain 513-CF48SW (SEQ ID NO.23), and the gene SEQ ID NO.24 encoding 513-CF48SW protein was artificially synthesized. This synthetic gene was mutated in only 14 of 73 amino acids from 107 to 173, as compared with Zm-513.
The T-DNA vector 1300-513-CF48SW was obtained by functionally linking the DNA fragment encoding 513-CF48SW at the 5 'end with the 35S promoter and at the 3' end with the 35S terminator in the same manner as in example 2. This vector was used to transform rice to obtain transgenic rice (the same method as in example 3). As a control, Zm-513(SEQ ID NO.21) was cloned under the control of the same promoter and terminator into the same transformation vector to obtain the T-DNA vector 1300-513, which was used to transform rice to obtain transgenic rice (same method as in example 3).
Example 8: determination of resistance of P450 transgenic rice by protein structure replacement:
10 different transgenic rice strains obtained by transforming 1300-513-CF48SW vectors and non-transgenic strains of the same variety 'Xiushui 134' are selected to be planted in a greenhouse (temperature is 15-25 ℃), and when the height of a seedling is about 10cm, flazasulfuron with the concentration of 6 mg/square meter is sprayed. After 10 days of examination, all non-transgenic plants were found dead, whereas the mortality rate for transgenic rice plants was 0%, with 6 transgenic lines without any visible growth inhibition and 4 lines with reduced growth.
10 different transgenic rice plants transformed with 1300-513-CF48SW vector and a non-transgenic plant of the same variety "Xiushui 134" were selected and planted in the greenhouse (temperature 15-25 ℃) and sprayed with mesotrione at a concentration of 6 mg/m at a seedling height of about 10 cm. After 10 days of examination, all non-transgenic plants were found dead, whereas the mortality rate for transgenic rice plants was 0%, with 5 transgenic lines without any visible growth inhibition and 5 lines with slow growth.
10 different transgenic rice strains obtained by transforming 1300-513 vector and non-transgenic strains of the same variety 'Xiushui 134' are selected to be planted in a greenhouse (the temperature is 15-25 ℃), and when the height of a seedling is about 10cm, the flazasulfuron with the concentration of 6 mg/square meter is sprayed. After 10 days of examination, all the non-transgenic strains and the transgenic strains are dead, which indicates that Zm-513 has no nicosulfuron resistance.
10 different transgenic rice plants obtained by transforming 1300-513 vector and non-transgenic plants of the same variety 'Xiushui 134' are selected and planted in a greenhouse (temperature is 15-25 ℃), and when the height of a seedling is about 10cm, mesotrione with the concentration of 15 mg/square meter is sprayed. Examination after 10 days revealed that all of the non-transgenic and transgenic lines died, indicating that Zm-513 did not have mesotrione resistance.
Sequence listing
<110> Hangzhou Ruifeng Biotechnology Ltd
<120> herbicide-resistant gene and application thereof
<160> 24
<170> SIPOSequenceListing 1.0
<210> 1
<211> 642
<212> DNA
<213> Unknown (Unknown)
<400> 1
cgccagggag tgcctcacag agcacgacgt gaccttcgcg aaccgcccga ccttccccac 60
gttgcatctc atgacctatg ggagcaccac ggtcggcacc tgcgcctacg ggccgtactg 120
gcgccacatg cgccgcgtca tcacggtgca cctcctgtcc gctcaccgtg tgaggtccat 180
gctccccgcc atcgaagcac aggtgcgcgc catggcgcgg agtatgtacc gtgctgccgc 240
ggccgctccc ggcggcaccg gcggcgccgc gagggtggaa cagaggggga ggctgttcga 300
gctcgccatc agcgccctta tggaaaccat cgcgcaaacc aagacatccc gtgccgtgga 360
tgacgcggac acgggcatgt caccggaggc gcaggagttc aaggagtcga tggatgttat 420
ggttccgctt ctcggcacgg ccaatatgtg ggatttcctg cccatcctac agaggttcga 480
cgtgtccggc gtgaagaaca agatcgcggc ctctgtaaac agcagggacg cgttctttcg 540
gcggctgatt gacgcggagc ggcggaggct ggacgacggc gttaagagcg agaacaaaag 600
catgatggcc gtgctgctca ctttgcagaa gtcagagccg ga 642
<210> 2
<211> 633
<212> DNA
<213> Unknown (Unknown)
<400> 2
cgccaagggg tgcttcacgg agcacgacgt gaacttcgcc aaccgcccga tgttcccgtc 60
gatgcggctc gtgtccttcg acggcgcctt gctctccgtg tccagctacg gcccgtactg 120
gcgcaacctc cgccgcgtcg ccaccgtcca gctgctctcc gcgcaccgcg tcgcgtgcat 180
gacccccgtc atcgccgcgg aggtgcgcgc catggtgcgg aggatggacc acgccgccgc 240
ggccgtccca ggcggcgccg cgcgcatcca gctgaagcgg aggctgttcg agctctccct 300
cagcgtcctc atggagacca tcgcgcagac caagacgtcc cgcaccgagg ccaacgccga 360
cacggacatg tcgcccgagg cgcacgagtt caagcagatc atcgacgagc tcgtgccgta 420
cctcggcacg gccaaccggt gggattacct gccggtgttg cggtggttct acgtgtacgg 480
cgtgaggaac aggatcctcg atgctgtgag cagaagagac gcgttcttga agcgactcat 540
cgacggggag cggcggaggc tcgacgatgg caaggagagc gaaaataaga gcatgattgc 600
ggtgctgctc actttgcaga agtctgagcc aga 633
<210> 3
<211> 633
<212> DNA
<213> Unknown (Unknown)
<400> 3
cgccaaggag tgcttcacgg agcacgacgt gaacttcgcc aaccgcccga tgttcccgtc 60
gatgcggctc gtgtccttcg acggcgcctt gctctccatg tccagctacg gcccgtactg 120
gcgcaacctc cgccgcgtcg ccaccgtcca gctgctctcc gcgcaccgcg tcgcgtgcat 180
gacccccgtc atcgccgcgg aggtgcgcgc catggtgcgg aggatggacc acgccgccgc 240
ggccgcccca ggcggcgccg cgcgcatcca gatgaagcgg aggctgttcg agctctccct 300
cagcgtcctc atggagacaa tcgcgcagac caagacgtcc cgcaccgagg ccaacgccga 360
cacggacatg tcgcccgagg cgcacgagtt caagcagatc atcgacgagc tcgtgccata 420
cctcggcacg gccaaccggt gggattacct gccggtgttg cggtggttcg acgtgtacgg 480
cgtgaggaac aggatcctcg atgctgtgag cagaagagac gcgttcttga agcgactcat 540
cgacggggag cggcggaggc tccacgatgg caaggagagc gaaaataaga gcatgatcgc 600
ggtgctgctc actttgcaga agtctgagcc aga 633
<210> 4
<211> 633
<212> DNA
<213> Unknown (Unknown)
<400> 4
cgccaaggag tgcttcacgg agcacgacgt ggccttcgcc aaccgcccca ggttcgccac 60
gcaggagctc gtgtccttcg gcggcgccgc gctcgccacg gccagctacg ggccctactg 120
gcgcaacctc cgccgcgtcg ccgccgtgca gctcctctcc gcgcaccgcg tcgcctgcat 180
gtcctccgtt atctccgccg aggtgcgcgc catggtgcgc cggatgagcc acgcggccgc 240
ggcggcgccc gacggcgccg cgcgcatcca gctcaagcgg aggctgttcg aggtctccct 300
cagcgtgctc atggagacca tcgcgcagac caagacctcc cgcaccgagg ccaacgccga 360
cacggacatg tcgcccgagg cgcacgagtt caagcagatc gtcgacgaga tcgtgccgca 420
cctcggcacg gccaacctgt gggactacct gcccgtgctg cagtggttcg acgtgttcgg 480
cgtgaggaac aagatcatgg ccgctgtgag caggagggac gcgttcctac ggaggctcat 540
cgacgccgag cggcagagga tggacgacgg cggcgacagc gataagaaga gcatgatcgc 600
cgtgctgctc tcgttgcaga agtcagagcc gga 633
<210> 5
<211> 596
<212> DNA
<213> Unknown (Unknown)
<400> 5
atggataagg cctacgttgt cgtcctctcg ttcttcttca tctttgcaat ccaccgcctc 60
ctcaaccgcg gtcatagcaa aaatacgagc atgcagcagc tgccaccggg gcctctcgcc 120
gtcccggtcc tcggccactt acacctcctc gagaagccgt tccaccacgc gtttatgcgc 180
ctcgccgcgt gctacgggcc tgtggtctcc ctccggctcg gctcgcgcga cgctgtggtc 240
gtgtcctccg cggactgcgc cagggagtgc ctcacagagc acgacgtgac cttcgcgaac 300
cgcccgacct tccccacgtt gcatctcatg acctatggga gcaccacggt cggcacctgc 360
gcctacgggc cgtactggcg ccacatgcgc cgcgtcatca cggtgcacct cctgtccgct 420
caccgtgtga ggtccatgct ccccgccatc gaagcacagg tgcgcgccat ggcgcggagt 480
atgtaccgtg ctgccgcggc cgctcccggc ggcaccggcg gcgccgcgag ggtggaacag 540
agggggaggc tgttcgagct cgccatcagc gcccttatgg aaaccatcgc gcaaac 596
<210> 6
<211> 741
<212> DNA
<213> Unknown (Unknown)
<400> 6
atggataagg cctatatcgc cgtcctctcc ggcgccttcc tattcttgct ccactacctc 60
gtgggccgtg ccagcggcgg cggcaagggc aagggccaac agcttccgcc gagccctccg 120
gccatcccgt tcctcggcca cctccatctt atcaagactc cgttccacgc ggcgctgacc 180
cggctcgcgg cgcgccatgg cccggtgttc tccatgcgca tggggtcccg ccgcgccgtg 240
gtcgtgtcct cgccggagtg cgccaagggg tgcttcacgg agcacgacgt gaacttcgcc 300
aaccgcccga tgttcccgtc gatgcggctc gtgtccttcg acggcgcctt gctctccgtg 360
tccagctacg gcccgtactg gcgcaacctc cgccgcgtcg ccaccgtcca gctgctctcc 420
gcgcaccgcg tcgcgtgcat gacccccgtc atcgccgcgg aggtgcgcgc catggtgcgg 480
aggatggacc acgccgccgc ggccgtccca ggcggcgccg cgcgcatcca gctgaagcgg 540
aggctgttcg agctctccct cagcgtcctc atggagacca tcgcgcagac caagacgtcc 600
cgcaccgagg ccaacgccga cacggacatg tcgcccgagg cgcacgagtt caagcagatc 660
atcgacgagc tcgtgccgta cctcggcacg gccaaccggt gggattacct gccggtgttg 720
cggtggttct acgtgtacgg c 741
<210> 7
<211> 741
<212> DNA
<213> Unknown (Unknown)
<400> 7
atggataagg cctatatcgc cgtcctctcc ggcgccttcc tattcttgct ccactacctc 60
gtgggccgtg ccagcggcgg cggcaagggc aagggccaac agcttccgcc gagccctccg 120
gccatcccgt tcctcggcca cctccatctt gtcaagactc cgttccacgc ggcgctgacc 180
cggctggcgg cgcgccatgg cccggtgttc tccatgcgca tggggtcccg ccgcgccgtg 240
gtcgtgtcct cgccggagtg cgccaaggag tgcttcacgg agcacgacgt gaacttcgcc 300
aaccgcccga tgttcccgtc gatgcggctc gtgtccttcg acggcgcctt gctctccatg 360
tccagctacg gcccgtactg gcgcaacctc cgccgcgtcg ccaccgtcca gctgctctcc 420
gcgcaccgcg tcgcgtgcat gacccccgtc atcgccgcgg aggtgcgcgc catggtgcgg 480
aggatggacc acgccgccgc ggccgcccca ggcggcgccg cgcgcatcca gatgaagcgg 540
aggctgttcg agctctccct cagcgtcctc atggagacaa tcgcgcagac caagacgtcc 600
cgcaccgagg ccaacgccga cacggacatg tcgcccgagg cgcacgagtt caagcagatc 660
atcgacgagc tcgtgccata cctcggcacg gccaaccggt gggattacct gccggtgttg 720
cggtggttcg acgtgtacgg c 741
<210> 8
<211> 611
<212> DNA
<213> Unknown (Unknown)
<400> 8
atggataagg cctacgtggc cgtgctctcc ttcgccttcc tcttcgtgct ccactacctc 60
gtcggccgtg ctggcggcaa cggccgcaag ggagataatg gcaaggggaa ggcagcgcag 120
cggctgcctc ccagccctcc cgccgtcccg ttcctcggcc acctccacct cgtcaagacg 180
ccattccacg aggcgctggc cggcctcgcc gcgcgccacg gcccggtgtt ctccatgcgc 240
atgggctccc gcggcgcggt ggtcgtgtcc tcgcccgagt gcgccaagga gtgcttcacg 300
gagcacgacg tggccttcgc caaccgcccc aggttcgcca cgcaggagct cgtgtccttc 360
ggcggcgccg cgctcgccac ggccagctac gggccctact ggcgcaacct ccgccgcgtc 420
gccgccgtgc agctcctctc cgcgcaccgc gtcgcctgca tgtcctccgt tatctccgcc 480
gaggtgcgcg ccatggtgcg ccggatgagc cacgcggccg cggcggcgcc cgacggcgcc 540
gcgcgcatcc agctcaagcg gaggctgttc gaggtctccc tcagcgtgct catggagacc 600
atcgcgcaga c 611
<210> 9
<211> 1251
<212> DNA
<213> Unknown (Unknown)
<400> 9
cccttatgga aaccatcgcg caaaccaaga catcccgtgc cgtggatgac gcggacacgg 60
gcatgtcacc ggaggcgcag gagttcaagg agtcgatgga tgttatggtt ccgcttctcg 120
gcacggccaa tatgtgggat ttcctgccca tcctacagag gttcgacgtg tccggcgtga 180
agaacaagat cgcggcctct gtaaacagca gggacgcgtt ctttcggcgg ctgattgacg 240
cggagcggcg gaggctggac gacggcgtta agagcgagaa caaaagcatg atggccgtgc 300
tgctcacttt gcagaagtca gagccggaga attacaatga tgacatgatc atgtctttat 360
gcttctccat gttctctgcg ggaacggaaa cctcggcgac cacggcggaa tgggcgatgt 420
cgctgctcct gaaccacccc gaggccctga agaaagcaca gggggaaatt gacgcgtacg 480
tggggaattc ccgcctgcta ggcgccgacg acatgccggg cctcagctac ctccagtgca 540
tcctcaccga gacgctccgg ctgtacccgg tcgtgccgac gctgatcccg cacgagtcca 600
ccgcagactc cacggtcggc ggccaccacg tgccaagcgg cacgatgctg ttcgtcaacg 660
tgtacgccat ccacagggat cccgcggcgt ggacggaccc ggccgtcttc aggcctgagc 720
gattcgagga cggcagcgcc gaagggaggc tcctgatgcc gttcgggatg gagcgtcgca 780
agtgtcccgg ggagaccatg gcgctgcgaa ccctggggct ggtcctgggg acgttgatcc 840
agtgcttcga ctgggacact gtcggcggcg tccccaaagt tgacatggcc gaaggggctg 900
gactcaccct cccgaaggct gtttctcttg acgccatgtg caaaccgcgc caagtcatgc 960
ttgatgtcct tcagaagttg tgagcgcctt taataatcta ctctgcgcac agaagaagtt 1020
gagcatcatc acaaaatctc tgtggggcta tgtttatccc acttttaata acagaagatt 1080
taactatcta tatctactcg caaacatgtc cgtacgttgc aacaacgtat ggcttgtatt 1140
ttctgttgta ataagcttta gagtataaaa ctctatcacc ctgttcgttt aagctattca 1200
gcgaaatcag caatcaaaaa aaaaaaaaag tcgacatcga tacgcgtggt c 1251
<210> 10
<211> 833
<212> DNA
<213> Unknown (Unknown)
<400> 10
tgttgcggtg gttctacgtg tacggcgtga ggaacaggat cctcgatgct gtgagcagaa 60
gagacgcgtt cttgaagcga ctcatcgacg gggagcggcg gaggctcgac gatggcaagg 120
agagcgaaaa taagagcatg attgcggtgc tgctcacttt gcagaagtct gagccagagg 180
tctacactga cactatgatc atagctctgt gcgcgaactt atttggcgcc ggaacggaga 240
ccacgtccac cacgacggaa tgggccatgt cgctcctgct gaaccacccg gaggccctca 300
agaaggcgca ggccgagatc gacgccgccg tgggaacctc ccgcctggtg accgcggacg 360
acgtgtctca cctcgcctac ctgcagtgca tcatgaacga gacgctgcgc ctgtaccctg 420
ccgcgccgct gctgctgccg cacgagtcct ccgcagattg caaggtcggc ggctacgacg 480
tgccccgcgg cacgatgctg ctggtgaacg cgtacgccat ccacagggac ccggcggtgt 540
gggaggaccc ggccgagttc aggccggagc ggttcgagga cgacggaaag gccgaggggc 600
ggctgctgat gccgttcggg atggggcggc gcaagtgccc cggggaggcg ctcgcgctgc 660
ggaccattgg gctggtgctc ggaacgctga tccagtgttt cgactgggac agggttgatg 720
gagttgaggt cgacatggcc gagagcggcg ggctgaccat atccagggcc gtcccgttgg 780
aggccatgtg caagccgcgt gcagctatgc gtgatgttct tcaggagctc tga 833
<210> 11
<211> 989
<212> DNA
<213> Unknown (Unknown)
<400> 11
tgttgcggtg gttcgacgtg tacggcgtga ggaacaggat cctcgatgct gtgagcagaa 60
gagacgcgtt cttgaagcga ctcatcgacg gggagcggcg gaggctccac gatggcaagg 120
agagcgaaaa taagagcatg atcgcggtgc tgctcacttt gcagaagtct gagccagagg 180
tctacactga cactatgatc atagctctgt gcgcgaactt atttggcgcc ggaacggaga 240
ccacgtccac cacgacggaa tgggccatgt cgctcctgct gaaccacccg gaggccctca 300
agaaggcgca ggccgagatc gacgccgccg tgggaacctc ccgcctggtg accgcggacg 360
acgtgtctca cctcgcctac ctgcagtgca tcatgaacga gacgctgcgc ctgtaccctg 420
ccgcgccgct gctgctgccg cacgagtcct ccgcagattg caaggtcggc ggctacgacg 480
tgccccgcgg cacgatgctg ctggtgaacg cgtacgccat ccacagggac ccggcggtgt 540
gggaggaccc ggccgagttc aggccggagc ggttcgagga cgacggaaag gccgaggggc 600
ggctgctgat gccgttcggg atggggcggc gcaagtgccc cggggaggcg ctcgcgctgc 660
ggaccattgg gatggtgctc ggaacgctga tccagtgttt cgactgggac agggttgatg 720
gagttgaggt cgacatggcc gagagcggcg ggctgaccat atccagggcc gtcccgttgg 780
aggccatgtg caagccgcgt gcagctatgc gtgatgttct tcaggagctc tgaccatctc 840
atggagcgac ttgttggcat cgtctagtcg agtctgatag tgtgtgacgt agctacatgg 900
gttgtacatg gaacatgggt ttatataagt tcgagtacaa gatgccctat gaacaaaaaa 960
aaaaaaagtc gacatcgata cgcgtggtc 989
<210> 12
<211> 1313
<212> DNA
<213> Unknown (Unknown)
<400> 12
tgctcatgga gaccatcgcg cagaccaaga cctcccgcac cgaggccaac gccgacacgg 60
acatgtcgcc cgaggcgcac gagttcaagc agatcgtcga cgagatcgtg ccgcacctcg 120
gcacggccaa cctgtgggac tacctgcccg tgctgcagtg gttcgacgtg ttcggcgtga 180
ggaacaagat catggccgct gtgagcagga gggacgcgtt cctacggagg ctcatcgacg 240
ccgagcggca gaggatggac gacggcggcg acagcgataa gaagagcatg atcgccgtgc 300
tgctctcgtt gcagaagtca gagccggagg tgtacacgga taccatgatc atggcacttt 360
gcgggaactt atttggcgcg ggaacggaga ccacatcgtc cacgacagaa tgggccatgt 420
cgcttcttct gaaccacccg gaggcgctca agaaggcaca ggcagagatc gacggcgtcg 480
tgggcaactc ccgcctgatc actgcagaag acgtgccccg cctcggctac ctgcactgca 540
tcatcaacga gaccgtgcgc atgtacccgg ccgctccgct gctcctgccg cacgagtcgt 600
ccgcggactg caaggtcggc ggctacgacg tgccccgcgg cacgctgctg atcgtgaacg 660
cgtacgccat ccacagggac ccggctgtgt gggaggaccc tgccgagttc aggccggagc 720
ggttcgagga cgggaaggcc gaggggcggc tcctgatgcc gttcgggatg gggcggcgca 780
agtgccccgg ggagacgctc gcgctgcgga ccatcggcct ggtgctcggc acgctgatcc 840
agtgcttcga ctgggaccga gtcgatggcc tcgagattga catgaccgcg ggtggcgggc 900
tgaccatgcc cagggccgtc ccgttggagg ccacgtgcaa gcctcgtgca gctatgcgcg 960
atgttcttct ggagctctga tggagtaaca tcttggcata tgatccctag ttctcactcc 1020
gcggtaaaag gttcaaccag tactagtgtg taggtgtgta gcagtatgct ttggcttatg 1080
gtgtgtgctg aactaaataa gcttgggtgc gtaataccct cgtacgtttt atctcttcgg 1140
taaaatgtat gtacagtcgt ttgtatgagc aattagaagt tgtttcacaa ttcacagtat 1200
ggtttagcaa attgtaatct tctgcaggtt atcttgtata gtattcagga tataaaatgc 1260
acggtgtttt tgctcaaaaa aaaaaaaaaa agtcgacatc gatacgcgtg gtc 1313
<210> 13
<211> 1554
<212> DNA
<213> Unknown (Unknown)
<400> 13
atggataagg cctacgttgt cgtcctctcg ttcttcttca tctttgcaat ccaccgcctc 60
ctcaaccgcg gtcatagcaa aaatacgagc atgcagcagc tgccaccggg gcctctcgcc 120
gtcccggtcc tcggccactt acacctcctc gagaagccgt tccaccacgc gtttatgcgc 180
ctcgccgcgt gctacgggcc tgtggtctcc ctccggctcg gctcgcgcga cgctgtggtc 240
gtgtcctccg cggactgcgc cagggagtgc ctcacagagc acgacgtgac cttcgcgaac 300
cgcccgacct tccccacgtt gcatctcatg acctatggga gcaccacggt cggcacctgc 360
gcctacgggc cgtactggcg ccacatgcgc cgcgtcatca cggtgcacct cctgtccgct 420
caccgtgtga ggtccatgct ccccgccatc gaagcacagg tgcgcgccat ggcgcggagt 480
atgtaccgtg ctgccgcggc cgctcccggc ggcaccggcg gcgccgcgag ggtggaacag 540
agggggaggc tgttcgagct cgccatcagc gcccttatgg aaaccatcgc gcaaaccaag 600
acatcccgtg ccgtggatga cgcggacacg ggcatgtcac cggaggcgca ggagttcaag 660
gagtcgatgg atgttatggt tccgcttctc ggcacggcca atatgtggga tttcctgccc 720
atcctacaga ggttcgacgt gtccggcgtg aagaacaaga tcgcggcctc tgtaaacagc 780
agggacgcgt tctttcggcg gctgattgac gcggagcggc ggaggctgga cgacggcgtt 840
aagagcgaga acaaaagcat gatggccgtg ctgctcactt tgcagaagtc agagccggag 900
aattacaatg atgacatgat catgtcttta tgcttctcca tgttctctgc gggaacggaa 960
acctcggcga ccacggcgga atgggcgatg tcgctgctcc tgaaccaccc cgaggccctg 1020
aagaaagcac agggggaaat tgacgcgtac gtggggaatt cccgcctgct aggcgccgac 1080
gacatgccgg gcctcagcta cctccagtgc atcctcaccg agacgctccg gctgtacccg 1140
gtcgtgccga cgctgatccc gcacgagtcc accgcagact ccacggtcgg cggccaccac 1200
gtgccaagcg gcacgatgct gttcgtcaac gtgtacgcca tccacaggga tcccgcggcg 1260
tggacggacc cggccgtctt caggcctgag cgattcgagg acggcagcgc cgaagggagg 1320
ctcctgatgc cgttcgggat ggagcgtcgc aagtgtcccg gggagaccat ggcgctgcga 1380
accctggggc tggtcctggg gacgttgatc cagtgcttcg actgggacac tgtcggcggc 1440
gtccccaaag ttgacatggc cgaaggggct ggactcaccc tcccgaaggc tgtttctctt 1500
gacgccatgt gcaaaccgcg ccaagtcatg cttgatgtcc ttcagaagtt gtga 1554
<210> 14
<211> 1548
<212> DNA
<213> Unknown (Unknown)
<400> 14
atggataagg cctatatcgc cgtcctctcc ggcgccttcc tattcttgct ccactacctc 60
gtgggccgtg ccagcggcgg cggcaagggc aagggccaac agcttccgcc gagccctccg 120
gccatcccgt tcctcggcca cctccatctt atcaagactc cgttccacgc ggcgctgacc 180
cggctcgcgg cgcgccatgg cccggtgttc tccatgcgca tggggtcccg ccgcgccgtg 240
gtcgtgtcct cgccggagtg cgccaagggg tgcttcacgg agcacgacgt gaacttcgcc 300
aaccgcccga tgttcccgtc gatgcggctc gtgtccttcg acggcgcctt gctctccgtg 360
tccagctacg gcccgtactg gcgcaacctc cgccgcgtcg ccaccgtcca gctgctctcc 420
gcgcaccgcg tcgcgtgcat gacccccgtc atcgccgcgg aggtgcgcgc catggtgcgg 480
aggatggacc acgccgccgc ggccgtccca ggcggcgccg cgcgcatcca gctgaagcgg 540
aggctgttcg agctctccct cagcgtcctc atggagacca tcgcgcagac caagacgtcc 600
cgcaccgagg ccaacgccga cacggacatg tcgcccgagg cgcacgagtt caagcagatc 660
atcgacgagc tcgtgccgta cctcggcacg gccaaccggt gggattacct gccggtgttg 720
cggtggttct acgtgtacgg cgtgaggaac aggatcctcg atgctgtgag cagaagagac 780
gcgttcttga agcgactcat cgacggggag cggcggaggc tcgacgatgg caaggagagc 840
gaaaataaga gcatgattgc ggtgctgctc actttgcaga agtctgagcc agaggtctac 900
actgacacta tgatcatagc tctgtgcgcg aacttatttg gcgccggaac ggagaccacg 960
tccaccacga cggaatgggc catgtcgctc ctgctgaacc acccggaggc cctcaagaag 1020
gcgcaggccg agatcgacgc cgccgtggga acctcccgcc tggtgaccgc ggacgacgtg 1080
tctcacctcg cctacctgca gtgcatcatg aacgagacgc tgcgcctgta ccctgccgcg 1140
ccgctgctgc tgccgcacga gtcctccgca gattgcaagg tcggcggcta cgacgtgccc 1200
cgcggcacga tgctgctggt gaacgcgtac gccatccaca gggacccggc ggtgtgggag 1260
gacccggccg agttcaggcc ggagcggttc gaggacgacg gaaaggccga ggggcggctg 1320
ctgatgccgt tcgggatggg gcggcgcaag tgccccgggg aggcgctcgc gctgcggacc 1380
attgggctgg tgctcggaac gctgatccag tgtttcgact gggacagggt tgatggagtt 1440
gaggtcgaca tggccgagag cggcgggctg accatatcca gggccgtccc gttggaggcc 1500
atgtgcaagc cgcgtgcagc tatgcgtgat gttcttcagg agctctga 1548
<210> 15
<211> 1548
<212> DNA
<213> Unknown (Unknown)
<400> 15
atggataagg cctatatcgc cgtcctctcc ggcgccttcc tattcttgct ccactacctc 60
gtgggccgtg ccagcggcgg cggcaagggc aagggccaac agcttccgcc gagccctccg 120
gccatcccgt tcctcggcca cctccatctt gtcaagactc cgttccacgc ggcgctgacc 180
cggctggcgg cgcgccatgg cccggtgttc tccatgcgca tggggtcccg ccgcgccgtg 240
gtcgtgtcct cgccggagtg cgccaaggag tgcttcacgg agcacgacgt gaacttcgcc 300
aaccgcccga tgttcccgtc gatgcggctc gtgtccttcg acggcgcctt gctctccatg 360
tccagctacg gcccgtactg gcgcaacctc cgccgcgtcg ccaccgtcca gctgctctcc 420
gcgcaccgcg tcgcgtgcat gacccccgtc atcgccgcgg aggtgcgcgc catggtgcgg 480
aggatggacc acgccgccgc ggccgcccca ggcggcgccg cgcgcatcca gatgaagcgg 540
aggctgttcg agctctccct cagcgtcctc atggagacaa tcgcgcagac caagacgtcc 600
cgcaccgagg ccaacgccga cacggacatg tcgcccgagg cgcacgagtt caagcagatc 660
atcgacgagc tcgtgccata cctcggcacg gccaaccggt gggattacct gccggtgttg 720
cggtggttcg acgtgtacgg cgtgaggaac aggatcctcg atgctgtgag cagaagagac 780
gcgttcttga agcgactcat cgacggggag cggcggaggc tccacgatgg caaggagagc 840
gaaaataaga gcatgatcgc ggtgctgctc actttgcaga agtctgagcc agaggtctac 900
actgacacta tgatcatagc tctgtgcgcg aacttatttg gcgccggaac ggagaccacg 960
tccaccacga cggaatgggc catgtcgctc ctgctgaacc acccggaggc cctcaagaag 1020
gcgcaggccg agatcgacgc cgccgtggga acctcccgcc tggtgaccgc ggacgacgtg 1080
tctcacctcg cctacctgca gtgcatcatg aacgagacgc tgcgcctgta ccctgccgcg 1140
ccgctgctgc tgccgcacga gtcctccgca gattgcaagg tcggcggcta cgacgtgccc 1200
cgcggcacga tgctgctggt gaacgcgtac gccatccaca gggacccggc ggtgtgggag 1260
gacccggccg agttcaggcc ggagcggttc gaggacgacg gaaaggccga ggggcggctg 1320
ctgatgccgt tcgggatggg gcggcgcaag tgccccgggg aggcgctcgc gctgcggacc 1380
attgggatgg tgctcggaac gctgatccag tgtttcgact gggacagggt tgatggagtt 1440
gaggtcgaca tggccgagag cggcgggctg accatatcca gggccgtccc gttggaggcc 1500
atgtgcaagc cgcgtgcagc tatgcgtgat gttcttcagg agctctga 1548
<210> 16
<211> 1566
<212> DNA
<213> Unknown (Unknown)
<400> 16
atggataagg cctacgtggc cgtgctctcc ttcgccttcc tcttcgtgct ccactacctc 60
gtcggccgtg ctggcggcaa cggccgcaag ggagataatg gcaaggggaa ggcagcgcag 120
cggctgcctc ccagccctcc cgccgtcccg ttcctcggcc acctccacct cgtcaagacg 180
ccattccacg aggcgctggc cggcctcgcc gcgcgccacg gcccggtgtt ctccatgcgc 240
atgggctccc gcggcgcggt ggtcgtgtcc tcgcccgagt gcgccaagga gtgcttcacg 300
gagcacgacg tggccttcgc caaccgcccc aggttcgcca cgcaggagct cgtgtccttc 360
ggcggcgccg cgctcgccac ggccagctac gggccctact ggcgcaacct ccgccgcgtc 420
gccgccgtgc agctcctctc cgcgcaccgc gtcgcctgca tgtcctccgt tatctccgcc 480
gaggtgcgcg ccatggtgcg ccggatgagc cacgcggccg cggcggcgcc cgacggcgcc 540
gcgcgcatcc agctcaagcg gaggctgttc gaggtctccc tcagcgtgct catggagacc 600
atcgcgcaga ccaagacctc ccgcaccgag gccaacgccg acacggacat gtcgcccgag 660
gcgcacgagt tcaagcagat cgtcgacgag atcgtgccgc acctcggcac ggccaacctg 720
tgggactacc tgcccgtgct gcagtggttc gacgtgttcg gcgtgaggaa caagatcatg 780
gccgctgtga gcaggaggga cgcgttccta cggaggctca tcgacgccga gcggcagagg 840
atggacgacg gcggcgacag cgataagaag agcatgatcg ccgtgctgct ctcgttgcag 900
aagtcagagc cggaggtgta cacggatacc atgatcatgg cactttgcgg gaacttattt 960
ggcgcgggaa cggagaccac atcgtccacg acagaatggg ccatgtcgct tcttctgaac 1020
cacccggagg cgctcaagaa ggcacaggca gagatcgacg gcgtcgtggg caactcccgc 1080
ctgatcactg cagaagacgt gccccgcctc ggctacctgc actgcatcat caacgagacc 1140
gtgcgcatgt acccggccgc tccgctgctc ctgccgcacg agtcgtccgc ggactgcaag 1200
gtcggcggct acgacgtgcc ccgcggcacg ctgctgatcg tgaacgcgta cgccatccac 1260
agggacccgg ctgtgtggga ggaccctgcc gagttcaggc cggagcggtt cgaggacggg 1320
aaggccgagg ggcggctcct gatgccgttc gggatggggc ggcgcaagtg ccccggggag 1380
acgctcgcgc tgcggaccat cggcctggtg ctcggcacgc tgatccagtg cttcgactgg 1440
gaccgagtcg atggcctcga gattgacatg accgcgggtg gcgggctgac catgcccagg 1500
gccgtcccgt tggaggccac gtgcaagcct cgtgcagcta tgcgcgatgt tcttctggag 1560
ctctga 1566
<210> 17
<211> 1171
<212> DNA
<213> Unknown (Unknown)
<400> 17
ggtaccgtaa tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc 60
acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta 120
actcacatta attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca 180
gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg gctagagcag 240
cttgccaaca tggtggagca cgacactctc gtctactcca agaatatcaa agatacagtc 300
tcagaagacc aaagggctat tgagactttt caacaaaggg taatatcggg aaacctcctc 360
ggattccatt gcccagctat ctgtcacttc atcaaaagga cagtagaaaa ggaaggtggc 420
acctacaaat gccatcattg cgataaagga aaggctatcg ttcaagatgc ctctgccgac 480
agtggtccca aagatggacc cccacccacg aggagcatcg tggaaaaaga agacgttcca 540
accacgtctt caaagcaagt ggattgatgt gaacatggtg gagcacgaca ctctcgtcta 600
ctccaagaat atcaaagata cagtctcaga agaccaaagg gctattgaga cttttcaaca 660
aagggtaata tcgggaaacc tcctcggatt ccattgccca gctatctgtc acttcatcaa 720
aaggacagta gaaaaggaag gtggcaccta caaatgccat cattgcgata aaggaaaggc 780
tatcgttcaa gatgcctctg ccgacagtgg tcccaaagat ggacccccac ccacgaggag 840
catcgtggaa aaagaagacg ttccaaccac gtcttcaaag caagtggatt gatgtgatat 900
ctccactgac gtaagggatg acgcacaatc ccactatcct tcgcaagacc ttcctctata 960
taaggaagtt catttcattt ggagaggaca cgctgaaatc accagtctct ctctacaaat 1020
ctatctctct cgagtcaaca caacatatac aaaacaaacg aatctcaagc aatcaagcat 1080
tctacttcta ttgcagcaat ttaaatcatt tcttttaaag caaaagcaat tttctgaaaa 1140
ttttcaccat ttacgaacga tagccagatc t 1171
<210> 18
<211> 3693
<212> DNA
<213> Unknown (Unknown)
<400> 18
aagcttgaga aatatgagtc gaggcatgga tacactaagt tcccctgaag tgagcatgat 60
ctttgatgct gagatgattc ccagagcaag atagtttgtg ctgcaagtga cacaattgta 120
atgaaaccac cactcaacga atttacttgt ggctttgaca tgtcgtgtgc tctgtttgta 180
tttgtgagtg ccggttggta attatttttg ttaatgtgat tttaaaacct cttatgtaaa 240
tagttacttt atctattgaa gtgtgttctt gtggtctata gtttctcaaa gggaaattaa 300
aatgttgaca tcccatttac aattgataac ttggtataca caaactttgt aaatttggtg 360
atatttatgg tcgaaagaag gcaataccca ttgtatgttc caatatcaat atcaatacga 420
taacttgata atactaacat atgattgtca ttgtttttcc agtatcaata tacattaagc 480
tactacaaaa ttagtataaa tcactatatt ataaatcttt ttcggttgta acttgtaatt 540
cgtgggtttt taaaataaaa gcatgtgaaa attttcaaat aatgtgatgg cgcaatttta 600
ttttccgagt tccaaaatat tgccgcttca ttaccctaat ttgtggcgcc acatgtaaaa 660
caaaagacga ttcttagtgg ctatcactgc catcacgcgg atcactaata tgaaccgtcg 720
attaaaacag atcgacggtt tatacatcat tttattgtac acacggatcg atatctcagc 780
cgttagattt aatatgcgat ctgattgctc aaaaaataga ctctccgtct ttgcctataa 840
aaacaatttc acatctttct cacccaaatc tactcttaac cgttcttctt cttctacaga 900
catcaatttc tctcgagagc tcaggcgaag aacaggtatg atttgtttgt aattagatca 960
ggggtttagg tctttccatt actttttaat gttttttctg ttactgtctc cgcgatctga 1020
ttttacgaca atagagtttc gggttttgtc ccattccagt ttgaaaataa aggtccgtct 1080
tttaagtttg ctggatcgat aaacctgtga agattgagtc tagtcgattt attggatgat 1140
ccattcttca tcgttttttt cttgcttcga agttctgtat aaccagattt gtctgtgtgc 1200
gattgtcatt acctagccgt gtatcgagaa ctagggtttt cgagtcaatt ttgccccttt 1260
tggttatatc tggttcgata acgattcatc tggattaggg ttttaagtgg tgacgtttag 1320
tattccaatt tcttcaaaat ttagttatgg ataatgaaaa tccccaattg actgttcaat 1380
ttcttgttaa atgcgcagat ggcggcgacc atggcgtcca acgctgcggc tgcggctgcg 1440
gtgtccctgg accaggccgt ggctgcgtcg gcagcgttct cgtcgcggaa gcagctgcgg 1500
ctgcctgccg cagcgcgcgg agggatgcgg gtgcgggtgc gggcgcgggg tcggcgggag 1560
gcggtggtgg tggcgtccgc gtcgtcgtcg tcggtggcag cgccggcggc gaaggctgag 1620
atgctacacg gtgcaagcag ccggccggca accgctcgca aatcttccgg cctttcggga 1680
acggtcagga ttccgggcga taagtccata tcccaccggt cgttcatgtt cggcggtctt 1740
gccagcggtg agacgcgcat cacgggcctg cttgaaggtg aggacgtgat caataccggg 1800
aaggccatgc aggctatggg agcgcgtatc cgcaaggaag gtgacacatg gatcattgac 1860
ggcgttggga atggcggtct gctcgcccct gaggcccctc tcgacttcgg caatgcggcg 1920
acgggctgca ggctcactat gggactggtc ggggtgtacg acttcgatag cacgttcatc 1980
ggagacgcct cgctcacaaa gcgcccaatg ggccgcgttc tgaacccgtt gcgcgagatg 2040
ggcgtacagg tcaaatccga ggatggtgac cgtttgcccg ttacgctgcg cgggccgaag 2100
acgcctaccc cgattaccta ccgcgtgcca atggcatccg cccaggtcaa gtcagccgtg 2160
ctcctcgccg gactgaacac tccgggcatc accacggtga tcgagcccat catgaccagg 2220
gatcataccg aaaagatgct tcaggggttt ggcgccaacc tgacggtcga gacggacgct 2280
gacggcgtca ggaccatccg ccttgagggc aggggtaaac tgactggcca agtcatcgat 2340
gttccgggag acccgtcgtc cacggccttc ccgttggttg cggcgctgct cgtgccgggg 2400
agtgacgtga ccatcctgaa cgtcctcatg aacccgacca ggaccggcct gatcctcacg 2460
cttcaggaga tgggagccga catcgaggtg atcaacccgc gcctggcagg cggtgaagac 2520
gttgcggatc tgcgcgtgcg ctcctctacc ctgaagggcg tgacggtccc ggaagatcgc 2580
gcgccgtcca tgatagacga gtatcctatt ctggccgtcg ccgctgcgtt cgccgaaggg 2640
gccacggtca tgaacggtct tgaggaactc cgcgtgaagg aatcggatcg cctgtcggcg 2700
gtggccaatg gcctgaagct caacggtgtt gactgcgacg agggtgagac ctcactcgtg 2760
gtccgtggcc ggcctgatgg caagggcctc ggcaacgcca gtggagcggc cgtcgccacg 2820
cacctcgatc atcgcatcgc gatgtccttc ttggtgatgg gtctcgtctc agagaacccg 2880
gtgaccgtcg atgacgccac gatgatagcg acgagcttcc cagagttcat ggatctgatg 2940
gcgggcctcg gggccaagat cgaactgtct gacacgaagg ccgcttgata attagagttt 3000
ttcagatccg cgtttgtgtt ttctgggttt ctcacttaag cgtctgcgtt ttacttttgt 3060
attgggtttg gcgtttagta gtttgcggta gcgttcttgt tatgtgtaat tacgcttttt 3120
cttcttgctt cagcagtttc ggttgaaata taaatcgaat caagtttcac tttatcagcg 3180
ttgttttaaa ttttggcatt aaattggtga aaattgcttc aattttgtat ctaaatagaa 3240
gagacaacat gaaattcgac ttttgacctc aaatcttcga acatttattt cctgatttca 3300
cgatggatga ggataacgaa agggcggttc ctatgtccgg gaaagttccc gtagaagaca 3360
atgagcaaag ctactgaaac gcggacacga cgtcgcattg gtacggatat gagttaaacc 3420
gactcaattc ctttattaag acataaaccg attttggtta aagtgtaaca gtgagctgat 3480
ataaaaccga aacaaaccgg tacaagtttg attgagcaac ttgatgacaa acttcagaat 3540
tttggttatt gaatgaaaat catagtctaa tcgtaaaaaa tgtacagaag aaaagctaga 3600
gcagaacaaa gattctatat tctggttcca atttatcatc gctttaacgt ccctcagatt 3660
tgatcagctg cgagaaaagg atccccgggt acc 3693
<210> 19
<211> 515
<212> PRT
<213> Unknown (Unknown)
<400> 19
Met Asp Lys Ala Tyr Ile Ala Val Leu Ser Gly Ala Phe Leu Phe Leu
1 5 10 15
Leu His Tyr Leu Val Gly Arg Ala Ser Gly Gly Gly Lys Gly Lys Gly
20 25 30
Gln Gln Leu Pro Pro Ser Pro Pro Ala Ile Pro Phe Leu Gly His Leu
35 40 45
His Leu Val Lys Thr Pro Phe His Ala Ala Leu Thr Arg Leu Ala Ala
50 55 60
Arg His Gly Pro Val Phe Ser Met Arg Met Gly Ser Arg Arg Ala Val
65 70 75 80
Val Val Ser Ser Pro Glu Cys Ala Lys Glu Cys Phe Thr Glu His Asp
85 90 95
Val Asn Phe Ala Asn Arg Pro Met Phe Pro Ser Met Arg Leu Val Ser
100 105 110
Phe Asp Gly Ala Leu Leu Ser Met Ser Ser Tyr Gly Pro Tyr Trp Arg
115 120 125
Asn Leu Arg Arg Val Ala Thr Val Gln Leu Leu Ser Ala His Arg Val
130 135 140
Ala Cys Met Thr Pro Val Ile Ala Ala Glu Val Arg Ala Met Val Arg
145 150 155 160
Arg Met Asp His Ala Ala Ala Ala Ala Pro Gly Gly Ala Ala Arg Ile
165 170 175
Gln Met Lys Arg Arg Leu Phe Glu Leu Ser Leu Ser Val Leu Met Glu
180 185 190
Thr Ile Ala Gln Thr Lys Thr Ser Arg Thr Glu Ala Asn Ala Asp Thr
195 200 205
Asp Met Ser Pro Glu Ala His Glu Phe Lys Gln Ile Ile Asp Glu Leu
210 215 220
Val Pro Tyr Leu Gly Thr Ala Asn Arg Trp Asp Tyr Leu Pro Val Leu
225 230 235 240
Arg Trp Phe Asp Val Tyr Gly Val Arg Asn Arg Ile Leu Asp Ala Val
245 250 255
Ser Arg Arg Asp Ala Phe Leu Lys Arg Leu Ile Asp Gly Glu Arg Arg
260 265 270
Arg Leu His Asp Gly Lys Glu Ser Glu Asn Lys Ser Met Ile Ala Val
275 280 285
Leu Leu Thr Leu Gln Lys Ser Glu Pro Glu Val Tyr Thr Asp Thr Met
290 295 300
Ile Ile Ala Leu Cys Ala Asn Leu Phe Gly Ala Gly Thr Glu Thr Thr
305 310 315 320
Ser Thr Thr Thr Glu Trp Ala Met Ser Leu Leu Leu Asn His Pro Glu
325 330 335
Ala Leu Lys Lys Ala Gln Ala Glu Ile Asp Ala Ala Val Gly Thr Ser
340 345 350
Arg Leu Val Thr Ala Asp Asp Val Ser His Leu Ala Tyr Leu Gln Cys
355 360 365
Ile Met Asn Glu Thr Leu Arg Leu Tyr Pro Ala Ala Pro Leu Leu Leu
370 375 380
Pro His Glu Ser Ser Ala Asp Cys Lys Val Gly Gly Tyr Asp Val Pro
385 390 395 400
Arg Gly Thr Met Leu Leu Val Asn Ala Tyr Ala Ile His Arg Asp Pro
405 410 415
Ala Val Trp Glu Asp Pro Ala Glu Phe Arg Pro Glu Arg Phe Glu Asp
420 425 430
Asp Gly Lys Ala Glu Gly Arg Leu Leu Met Pro Phe Gly Met Gly Arg
435 440 445
Arg Lys Cys Pro Gly Glu Ala Leu Ala Leu Arg Thr Ile Gly Met Val
450 455 460
Leu Gly Thr Leu Ile Gln Cys Phe Asp Trp Asp Arg Val Asp Gly Val
465 470 475 480
Glu Val Asp Met Ala Glu Ser Gly Gly Leu Thr Ile Ser Arg Ala Val
485 490 495
Pro Leu Glu Ala Met Cys Lys Pro Arg Ala Ala Met Arg Asp Val Leu
500 505 510
Gln Glu Leu
515
<210> 20
<211> 67
<212> PRT
<213> Unknown (Unknown)
<400> 20
Met Phe Pro Ser Met Arg Leu Val Ser Phe Asp Gly Ala Leu Leu Ser
1 5 10 15
Met Ser Ser Tyr Gly Pro Tyr Trp Arg Asn Leu Arg Arg Val Ala Thr
20 25 30
Val Gln Leu Leu Ser Ala His Arg Val Ala Cys Met Thr Pro Val Ile
35 40 45
Ala Ala Glu Val Arg Ala Met Val Arg Arg Met Asp His Ala Ala Ala
50 55 60
Ala Ala Pro
65
<210> 21
<211> 1563
<212> DNA
<213> Unknown (Unknown)
<400> 21
atggataagg cctacgtggc cgtgctctcc ttcgccttcc tcttcgtgat ccactacctc 60
gtgggacgtg ctggccgcaa gggcaatggc aagggcaagg gaacgcagcg gttgcctccc 120
agccctccgg ccgtcccgtt cctcggccac ctccacctcg tcaagacgcc gttccacgag 180
gcgctggccg gcctcgccgc gcgccacggg ccggtgttct ccatgcgcat ggggtcccgc 240
cgcgcgctgg tcgtgtcctc gcccgagtgc gccaaggagt gcttcacgga gcacgacgtg 300
gtgttcgcca accggccgag gttcgccacg caggacctcg tgtccttcgg gggcgccgcg 360
ctcgccgcgg ccagctacgg gccctactgg cgcaacctcc ggcgcgtggc caccgtgcag 420
ctcctctccg cgcaccgcgt cgcctgcatg tccgccgtcg tcgccgccga ggtgcgcgcc 480
atggcgcgcc gcatgggccg cgcggccgcg gcggcgcccg gcggcgccgc gcgcgtccag 540
ctcaagcgga ggctgttcga ggtctccctc agcgtgctca tggagaccat cgcgcgcacc 600
aagacgtccc gcgccgaggc ggacgccgac tcggacatgt cgcccgaggc gcacgaattc 660
aagcagatcg tcgacgagat cgtgccgcac ctcggcacgg ccaacctgtg ggactacctg 720
ccggtgctgc ggtggctcga cgtgttcggc gtgaggaaca agatcacggc cgctgtgggc 780
aggagggacg cgttcctgcg gcggctcatc gacgcggagc ggcggaggct ggacgacggc 840
ggcggcgaca gcgacagcga caagaagagc atgatagccg tgctgctctc gttgcagaag 900
tcagagccgg aggtgtacac ggataccatg atcatggcac tttgcgggaa cttatttggc 960
gccggaacgg agaccacgtc gaccacgaca gaatgggcca tgtcgctcct cctgaaccac 1020
ccggaggcgc tgaagaaggc acaggcagag atcgacgcag tcgtgggcac ctcccgccta 1080
ctcgccgcag aggacgtgcc ccgactcggc tacctgcacc gcgtcatcag cgagaccctg 1140
cgcatgtacc cggccgcccc gctgctcctg ccgcacgagt cgtcggcgga ctgcaaggtc 1200
ggcggctacg acgtggcccg cggcacgctg ctcatcgtga acgcgtacgc catccacagg 1260
gacccgctgg tgtgggagga cccggacgag ttcaggccgg agcggttcga ggacggcaag 1320
gccgaggggc ggctcctgat gccgttcggg atggggcggc gcaagtgccc tggggagacc 1380
ctcgcgctgc ggaccatcag cctggtgctc ggcacgctga tccagtgctt cgactgggac 1440
cgagtcgacg gcctcgagat cgacatggcc gcgggcggcg ggctcactct gcccagggcc 1500
gtcccgttgg aggccacgtg caagcctcgt gcagctgtgc gccatcttct tctggagctt 1560
tga 1563
<210> 22
<211> 520
<212> PRT
<213> Unknown (Unknown)
<400> 22
Met Asp Lys Ala Tyr Val Ala Val Leu Ser Phe Ala Phe Leu Phe Val
1 5 10 15
Ile His Tyr Leu Val Gly Arg Ala Gly Arg Lys Gly Asn Gly Lys Gly
20 25 30
Lys Gly Thr Gln Arg Leu Pro Pro Ser Pro Pro Ala Val Pro Phe Leu
35 40 45
Gly His Leu His Leu Val Lys Thr Pro Phe His Glu Ala Leu Ala Gly
50 55 60
Leu Ala Ala Arg His Gly Pro Val Phe Ser Met Arg Met Gly Ser Arg
65 70 75 80
Arg Ala Leu Val Val Ser Ser Pro Glu Cys Ala Lys Glu Cys Phe Thr
85 90 95
Glu His Asp Val Val Phe Ala Asn Arg Pro Arg Phe Ala Thr Gln Asp
100 105 110
Leu Val Ser Phe Gly Gly Ala Ala Leu Ala Ala Ala Ser Tyr Gly Pro
115 120 125
Tyr Trp Arg Asn Leu Arg Arg Val Ala Thr Val Gln Leu Leu Ser Ala
130 135 140
His Arg Val Ala Cys Met Ser Ala Val Val Ala Ala Glu Val Arg Ala
145 150 155 160
Met Ala Arg Arg Met Gly Arg Ala Ala Ala Ala Ala Pro Gly Gly Ala
165 170 175
Ala Arg Val Gln Leu Lys Arg Arg Leu Phe Glu Val Ser Leu Ser Val
180 185 190
Leu Met Glu Thr Ile Ala Arg Thr Lys Thr Ser Arg Ala Glu Ala Asp
195 200 205
Ala Asp Ser Asp Met Ser Pro Glu Ala His Glu Phe Lys Gln Ile Val
210 215 220
Asp Glu Ile Val Pro His Leu Gly Thr Ala Asn Leu Trp Asp Tyr Leu
225 230 235 240
Pro Val Leu Arg Trp Leu Asp Val Phe Gly Val Arg Asn Lys Ile Thr
245 250 255
Ala Ala Val Gly Arg Arg Asp Ala Phe Leu Arg Arg Leu Ile Asp Ala
260 265 270
Glu Arg Arg Arg Leu Asp Asp Gly Gly Gly Asp Ser Asp Ser Asp Lys
275 280 285
Lys Ser Met Ile Ala Val Leu Leu Ser Leu Gln Lys Ser Glu Pro Glu
290 295 300
Val Tyr Thr Asp Thr Met Ile Met Ala Leu Cys Gly Asn Leu Phe Gly
305 310 315 320
Ala Gly Thr Glu Thr Thr Ser Thr Thr Thr Glu Trp Ala Met Ser Leu
325 330 335
Leu Leu Asn His Pro Glu Ala Leu Lys Lys Ala Gln Ala Glu Ile Asp
340 345 350
Ala Val Val Gly Thr Ser Arg Leu Leu Ala Ala Glu Asp Val Pro Arg
355 360 365
Leu Gly Tyr Leu His Arg Val Ile Ser Glu Thr Leu Arg Met Tyr Pro
370 375 380
Ala Ala Pro Leu Leu Leu Pro His Glu Ser Ser Ala Asp Cys Lys Val
385 390 395 400
Gly Gly Tyr Asp Val Ala Arg Gly Thr Leu Leu Ile Val Asn Ala Tyr
405 410 415
Ala Ile His Arg Asp Pro Leu Val Trp Glu Asp Pro Asp Glu Phe Arg
420 425 430
Pro Glu Arg Phe Glu Asp Gly Lys Ala Glu Gly Arg Leu Leu Met Pro
435 440 445
Phe Gly Met Gly Arg Arg Lys Cys Pro Gly Glu Thr Leu Ala Leu Arg
450 455 460
Thr Ile Ser Leu Val Leu Gly Thr Leu Ile Gln Cys Phe Asp Trp Asp
465 470 475 480
Arg Val Asp Gly Leu Glu Ile Asp Met Ala Ala Gly Gly Gly Leu Thr
485 490 495
Leu Pro Arg Ala Val Pro Leu Glu Ala Thr Cys Lys Pro Arg Ala Ala
500 505 510
Val Arg His Leu Leu Leu Glu Leu
515 520
<210> 23
<211> 520
<212> PRT
<213> Unknown (Unknown)
<400> 23
Met Asp Lys Ala Tyr Val Ala Val Leu Ser Phe Ala Phe Leu Phe Val
1 5 10 15
Ile His Tyr Leu Val Gly Arg Ala Gly Arg Lys Gly Asn Gly Lys Gly
20 25 30
Lys Gly Thr Gln Arg Leu Pro Pro Ser Pro Pro Ala Val Pro Phe Leu
35 40 45
Gly His Leu His Leu Val Lys Thr Pro Phe His Glu Ala Leu Ala Gly
50 55 60
Leu Ala Ala Arg His Gly Pro Val Phe Ser Met Arg Met Gly Ser Arg
65 70 75 80
Arg Ala Leu Val Val Ser Ser Pro Glu Cys Ala Lys Glu Cys Phe Thr
85 90 95
Glu His Asp Val Val Phe Ala Asn Arg Pro Met Phe Pro Ser Met Arg
100 105 110
Leu Val Ser Phe Asp Gly Ala Leu Leu Ser Met Ser Ser Tyr Gly Pro
115 120 125
Tyr Trp Arg Asn Leu Arg Arg Val Ala Thr Val Gln Leu Leu Ser Ala
130 135 140
His Arg Val Ala Cys Met Thr Pro Val Ile Ala Ala Glu Val Arg Ala
145 150 155 160
Met Val Arg Arg Met Asp His Ala Ala Ala Ala Ala Pro Gly Gly Ala
165 170 175
Ala Arg Val Gln Leu Lys Arg Arg Leu Phe Glu Val Ser Leu Ser Val
180 185 190
Leu Met Glu Thr Ile Ala Arg Thr Lys Thr Ser Arg Ala Glu Ala Asp
195 200 205
Ala Asp Ser Asp Met Ser Pro Glu Ala His Glu Phe Lys Gln Ile Val
210 215 220
Asp Glu Ile Val Pro His Leu Gly Thr Ala Asn Leu Trp Asp Tyr Leu
225 230 235 240
Pro Val Leu Arg Trp Leu Asp Val Phe Gly Val Arg Asn Lys Ile Thr
245 250 255
Ala Ala Val Gly Arg Arg Asp Ala Phe Leu Arg Arg Leu Ile Asp Ala
260 265 270
Glu Arg Arg Arg Leu Asp Asp Gly Gly Gly Asp Ser Asp Ser Asp Lys
275 280 285
Lys Ser Met Ile Ala Val Leu Leu Ser Leu Gln Lys Ser Glu Pro Glu
290 295 300
Val Tyr Thr Asp Thr Met Ile Met Ala Leu Cys Gly Asn Leu Phe Gly
305 310 315 320
Ala Gly Thr Glu Thr Thr Ser Thr Thr Thr Glu Trp Ala Met Ser Leu
325 330 335
Leu Leu Asn His Pro Glu Ala Leu Lys Lys Ala Gln Ala Glu Ile Asp
340 345 350
Ala Val Val Gly Thr Ser Arg Leu Leu Ala Ala Glu Asp Val Pro Arg
355 360 365
Leu Gly Tyr Leu His Arg Val Ile Ser Glu Thr Leu Arg Met Tyr Pro
370 375 380
Ala Ala Pro Leu Leu Leu Pro His Glu Ser Ser Ala Asp Cys Lys Val
385 390 395 400
Gly Gly Tyr Asp Val Ala Arg Gly Thr Leu Leu Ile Val Asn Ala Tyr
405 410 415
Ala Ile His Arg Asp Pro Leu Val Trp Glu Asp Pro Asp Glu Phe Arg
420 425 430
Pro Glu Arg Phe Glu Asp Gly Lys Ala Glu Gly Arg Leu Leu Met Pro
435 440 445
Phe Gly Met Gly Arg Arg Lys Cys Pro Gly Glu Thr Leu Ala Leu Arg
450 455 460
Thr Ile Ser Leu Val Leu Gly Thr Leu Ile Gln Cys Phe Asp Trp Asp
465 470 475 480
Arg Val Asp Gly Leu Glu Ile Asp Met Ala Ala Gly Gly Gly Leu Thr
485 490 495
Leu Pro Arg Ala Val Pro Leu Glu Ala Thr Cys Lys Pro Arg Ala Ala
500 505 510
Val Arg His Leu Leu Leu Glu Leu
515 520
<210> 24
<211> 1563
<212> DNA
<213> Unknown (Unknown)
<400> 24
atggacaagg cctacgtggc cgtgctcctg ttcgccttcc tcttcgtgat ccactacctc 60
gtgggccgcg ccggccgcaa gggcaacggc aagggcaagg gcacccagcg cctcccgccg 120
ctgccgccgg ccgtgccgtt cctcggccac ctccacctcg tgaagacccc gttccacgag 180
gccctcgccg gcctcgccgc ccgccacggc ccggtgttcc tgatgcgcat gggcctgcgc 240
cgcgccctcg tggtgctgct gccggagtgc gccaaggagt gcttcaccga gcacgacgtg 300
gtgttcgcca accgcccgat gttcccgctg atgcgcctcg tgctgttcga cggcgccctc 360
ctcctgatgc tgctgtacgg cccgtactgg cgcaacctcc gccgcgtggc caccgtgcag 420
ctcctcctgg cccaccgcgt ggcctgcatg accccggtga tcgccgccga ggtgcgcgcc 480
atggtgcgcc gcatggacca cgccgccgcc gccgccccgg gcggcgccgc ccgcgtgcag 540
ctcaagcgcc gcctcttcga ggtgctgctc ctggtgctca tggagaccat cgcccgcacc 600
aagaccctgc gcgccgaggc cgacgccgac ctggacatgc tgccggaggc ccacgagttc 660
aagcagatcg tggacgagat cgtgccgcac ctcggcaccg ccaacctctg ggactacctc 720
ccggtgctcc gctggctcga cgtgttcggc gtgcgcaaca agatcaccgc cgccgtgggc 780
cgccgcgacg ccttcctccg ccgcctcatc gacgccgagc gccgccgcct cgacgacggc 840
ggcggcgacc tggacctgga caagaagctg atgatcgccg tgctcctcct gctccagaag 900
ctggagccgg aggtgtacac cgacaccatg atcatggccc tctgcggcaa cctcttcggc 960
gccggcaccg agaccaccct gaccaccacc gagtgggcca tgctgctcct cctcaaccac 1020
ccggaggccc tcaagaaggc ccaggccgag atcgacgccg tggtgggcac cctgcgcctc 1080
ctcgccgccg aggacgtgcc gcgcctcggc tacctccacc gcgtgatcct ggagaccctc 1140
cgcatgtacc cggccgcccc gctcctcctc ccgcacgagc tgctggccga ctgcaaggtg 1200
ggcggctacg acgtggcccg cggcaccctc ctcatcgtga acgcctacgc catccaccgc 1260
gacccgctcg tgtgggagga cccggacgag ttccgcccgg agcgcttcga ggacggcaag 1320
gccgagggcc gcctcctcat gccgttcggc atgggccgcc gcaagtgccc gggcgagacc 1380
ctcgccctcc gcaccatcct gctcgtgctc ggcaccctca tccagtgctt cgactgggac 1440
cgcgtggacg gcctcgagat cgacatggcc gccggcggcg gcctcaccct cccgcgcgcc 1500
gtgccgctcg aggccacctg caagccgcgc gccgccgtgc gccacctcct cctcgagctc 1560
tga 1563

Claims (5)

1. A herbicide-resistant gene is characterized in that the nucleotide sequence of the herbicide-resistant gene is shown in SEQ ID No. 15.
2. The herbicide-resistant gene of claim 1, wherein the amino acid sequence of the protein encoded by the herbicide-resistant gene is represented by SEQ ID No. 19.
3. Use of the herbicide-resistant gene of claim 1 for the preparation of herbicide-resistant plant cells, wherein said plant is rice.
4. The use according to claim 3, wherein said use is obtained by constructing a T-DNA expression cassette comprising a herbicide-resistant gene and then transforming a plant gene with said T-DNA expression cassette by: the promoter, the herbicide resistant gene shown in SEQ ID NO.15 and the terminator are functionally connected.
5. The use according to claim 4, wherein the promoter is the CaMV35S promoter and the terminator is the CaMV35S terminator.
CN201910274119.0A 2019-04-08 2019-04-08 Herbicide-resistant gene and application thereof Active CN110106183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910274119.0A CN110106183B (en) 2019-04-08 2019-04-08 Herbicide-resistant gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910274119.0A CN110106183B (en) 2019-04-08 2019-04-08 Herbicide-resistant gene and application thereof

Publications (2)

Publication Number Publication Date
CN110106183A CN110106183A (en) 2019-08-09
CN110106183B true CN110106183B (en) 2021-05-11

Family

ID=67485254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910274119.0A Active CN110106183B (en) 2019-04-08 2019-04-08 Herbicide-resistant gene and application thereof

Country Status (1)

Country Link
CN (1) CN110106183B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182370B (en) * 2018-08-03 2022-06-17 浙江大学 Plant polygene expression vector, transformant and application thereof
CN113122567B (en) * 2019-12-31 2023-08-01 杭州瑞丰生物科技有限公司 Method for controlling male sterility of corn by herbicide
CN112626111B (en) * 2020-11-20 2023-06-20 浙江大学 Herbicide resistance gene expression vector and application thereof
CN113106118B (en) * 2021-05-14 2023-05-12 浙江大学 Method for screening cowpea genetic transformant by using glyphosate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302915A (en) * 2016-04-18 2017-10-31 杭州瑞丰生物科技有限公司 A kind of crop weeds prevention and controls

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR066787A1 (en) * 2007-05-30 2009-09-09 Syngenta Participations Ag GENES OF THE CYCROCHROME P450 THAT CONFERENCE RESISTANCE TO HERBICIDES
CN102946715A (en) * 2010-01-07 2013-02-27 巴斯福农业有限责任公司阿纳姆(荷兰)韦登斯维尔分公司 Herbicide-tolerant plants
BR112013012678B1 (en) * 2010-11-22 2020-09-29 Hangzhou Leadgene Limited Inc RECOMBINANT DNA MOLECULE, DNA VECTOR, METHOD FOR OBTAINING HERBICIDE-RESISTANT TRANSGENIC PLANTS AND METHOD FOR CULTIVATING A TRANSGENIC PLANT
CN102321640B (en) * 2011-08-18 2013-08-07 杭州瑞丰生物科技有限公司 Herbicide resistant gene, and application of herbicide resistant gene in genetically modified crops

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302915A (en) * 2016-04-18 2017-10-31 杭州瑞丰生物科技有限公司 A kind of crop weeds prevention and controls

Also Published As

Publication number Publication date
CN110106183A (en) 2019-08-09

Similar Documents

Publication Publication Date Title
CN110106183B (en) Herbicide-resistant gene and application thereof
US7282359B2 (en) Plant 1-deoxy-D-xylulose 5-phosphate reductoisomerase
AU2007252854A1 (en) Compositions for silencing the expression of gibberellin 2-oxidase and uses thereof
US7943753B2 (en) Auxin transport proteins
EP1849868B1 (en) Plant defensins
CN112011557B (en) Rice gene OsRMT1 and application thereof in preparation of transgenic plant with high-temperature stress tolerance
CN106834305B (en) Rice male fertility regulation gene OsSTRL2 and application thereof
CN101583718B (en) Cytochrome p450 gene for increasing seed size or water stress resistance of plant
CN115466747B (en) Glycosyltransferase ZmKOB1 gene and application thereof in regulation and control of maize female ear set character or development
US6475734B1 (en) Polyhydroxyalkanoate synthase genes
US7271318B2 (en) Plant genes encoding pantothenate synthetase
US7132250B2 (en) Soybean 1-deoxy-D-xylulose 5-phosphate synthase and DNA encoding thereof
CN108841840B (en) Application of protein TaNADH-GoGAT in regulation and control of plant yield
CN108841861B (en) Application of protein TaNADH-GoGAT in regulation and control of plant root system development
CN112813074B (en) Method for specifically regulating and controlling rice CYP78A11 gene expression and plant transformation vector
CN113416747B (en) Method for creating temperature-sensitive male sterile plant
CN113667675B (en) Plant disease resistance improvement using soybean FLS2/BAK1 gene
CN114591927B (en) Sweet potato block bar development related protein IbPRX17, and coding gene and application thereof
CN114539373B (en) IbPIF1 related to sweet potato stem nematode resistance as well as encoding gene and application thereof
US7176353B2 (en) Genes encoding sulfate assimilation proteins
WO2000028006A2 (en) Plant nadp-specific glutamate dehydrogenase
CA2424974A1 (en) A nitrate-responsive plant root specific transcriptional factor
US7122723B2 (en) Plant recombination proteins
US6316698B1 (en) Plant alpha-glucosidase II homologs
US7186885B1 (en) Plant viral movement protein genes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant