CN109836481B - Gene for regulating fertility of female organ of rice, and coding protein and application thereof - Google Patents

Gene for regulating fertility of female organ of rice, and coding protein and application thereof Download PDF

Info

Publication number
CN109836481B
CN109836481B CN201711195274.0A CN201711195274A CN109836481B CN 109836481 B CN109836481 B CN 109836481B CN 201711195274 A CN201711195274 A CN 201711195274A CN 109836481 B CN109836481 B CN 109836481B
Authority
CN
China
Prior art keywords
ser
leu
asp
glu
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711195274.0A
Other languages
Chinese (zh)
Other versions
CN109836481A (en
Inventor
毛毕刚
赵炳然
彭彦
韶也
胡远艺
张丹
唐丽
李曜魁
袁智成
罗武中
袁隆平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Hybrid Rice Research Center
Original Assignee
Hunan Hybrid Rice Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Hybrid Rice Research Center filed Critical Hunan Hybrid Rice Research Center
Priority to CN201711195274.0A priority Critical patent/CN109836481B/en
Publication of CN109836481A publication Critical patent/CN109836481A/en
Application granted granted Critical
Publication of CN109836481B publication Critical patent/CN109836481B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a gene for regulating and controlling fertility of a rice female organ, and a coding protein and application thereof, wherein the gene for regulating and controlling the fertility of the rice female organ is an OsMLH3 gene; the sequence of the OsMLH3 gene is the nucleotide sequence of SEQ ID NO. 3. The amino acid sequence of the protein coded by the OsMLH3 gene is the nucleotide sequence of SEQ ID NO. 4. The OsMLH3 gene can be applied to regulating and controlling fertility of female organs of rice and breeding a new rice female sterile restorer line.

Description

Gene for regulating fertility of female organ of rice, and coding protein and application thereof
Technical Field
The invention relates to the technical field of genetic engineering, in particular to a gene for regulating and controlling fertility of female organs of rice, and a coding protein and application thereof.
Background
Heterosis utilization is a main way for improving the yield of rice, and is subject to the continuous development process from a three-line method to a two-line method and super hybrid rice cultivation in recent years; breeders are also expected to be able to exploit apomixis in the future to exploit and fix distant hybrid vigor (Yuanlongping, 1987). Fertility of the female reproductive system is the basis of yield formation and heterosis utilization and is also the core of research related to apomixis. The discovery and research of the female sterile gene have important scientific significance. The current hybrid seed production technology is mainly a manual fine operation type technology which is built and developed in the last 70 th century, has complicated procedures, wastes time and labor, and is increasingly not suitable for the development requirement of modern agricultural production modes. The method uses female sterile male fertile material as male parent (only solving the problem of self breeding), uses three-line or two-line sterile line as female parent, and adopts mixed sowing and mixed harvesting so as to create conditions for realizing whole-course mechanization of hybrid rice seed production. Therefore, the discovery of female sterile gene resources and basic research have important practical significance.
The pistil of rice is composed of stigmas, style and ovary. The female reproductive organ of rice mainly refers to the development of an ovary. The ovary has a raw ovule inside which the blastocyst will be formed. The ovule comprises a nucellus, a peripearl, a stigma, a closed point and a pearl hole. Female gametocyte formation is the end result of a series of cellular differentiation developmental processes, including differentiation of archesporial cells, meiosis of megasporocytes, mitosis of functional megaspores, selection of gametocyte fate and differentiation of its function, etc. (yankee and stony george, 2007). Errors in either step can lead to female sterility in rice. Little is currently known about the genes regulating the occurrence of plant female sporophytes, gametophytes and their function. The genes involved in the development of female gametophytes have been cloned mainly from Arabidopsis thaliana and maize (Yang et al, 2010).
The gene OsMLH3 for regulating rice female organ fertility is obtained by constructing an F2 positioning population by using a rice female sterile material (fsv1), and the genetic locus abortion is a main reason for mutant female sterility.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides an OsMLH3 gene for regulating and controlling rice female organ fertility and a protein coded by the OsMLH3 gene, and the OsMLH3 gene provided by the invention can be applied to regulating and controlling rice female organ fertility.
In order to solve the technical problems, the invention provides a gene for regulating and controlling fertility of female organs of rice, wherein the gene is OsMLH3 gene; the sequence of the OsMLH3 gene is a nucleotide sequence of SEQ ID NO. 3.
As a general technical concept, the invention also provides a protein, the protein is obtained by encoding the OsMLH3 gene, and the amino acid sequence of the protein is the nucleotide sequence of SEQ ID NO. 4.
As a general technical concept, the invention also provides application of the OsMLH3 gene in regulation and control of fertility of female organs of rice.
In the above application, preferably, the application method is: OsMLH3 gene is knocked out by Cas9 technology, and a new rice female sterile restorer line is cultivated.
In the above application, preferably, the application method is: by the aid of molecular marker, the rice variety with dark glume is bred through selective hybridization, and a new rice female sterility restoring line can be cultivated.
Compared with the prior art, the invention has the advantages that:
(1) the invention provides an OsMLH3 gene, the protein coded by the gene has obvious effect on controlling fertility of female organs of rice, and the gene can be used for generating a rice female sterile restorer line by means of genetic engineering to produce hybrid seeds and carry out recurrent selection, thereby having very important application prospect in agricultural production.
(2) The invention provides an application of OsMLH3 gene in regulation of rice female organ fertility, wherein the protein gene for regulating rice female organ fertility is utilized to select a dark glume rice variety (or a small-grain variety) through molecular marker assisted hybrid transformation, or the OsMLH3 gene of the variety is knocked out by using a Cas9 technology, so that a new rice female sterile restorer line can be cultivated, on one hand, the restorer line has a maturing rate of about 20 percent and can be used for self-propagation, on the other hand, the restorer line can be mixed-sown and mixed-harvested with a male sterile line according to a certain proportion, a small amount of restorer line selfed seeds are removed through mechanical color selection (grain selection), large-scale mixed-sowing mixed-harvesting mechanical seed production is realized, and the application in agricultural production is very important.
Drawings
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention.
FIG. 1 is a schematic diagram of morphological observations of fsv1 mutant plants, wherein A is wild type (G99) and mutant (fsv1) plants; b is wild type (G99) and mutant (fsv1) spike; c is wild type (G99) pollen; d is mutant (fsv1) pollen.
FIG. 2 is a schematic diagram showing the gene mapping of OsMLH 3.
FIG. 3 is a comparison graph of the sequencing of wild type (G99) and mutant (fsv1) plants in example 2 of the present invention.
FIG. 4 is a confocal laser microscopy of the ovary squashes of wild type (G99) and mutant (fsv1) plants.
FIG. 5 is a diagram showing the result of quantitative RT-PCR analysis of the roots, stems, leaves and ears of wild type plants.
Detailed Description
The invention is further described below with reference to the drawings and specific preferred embodiments of the description, without thereby limiting the scope of protection of the invention.
The materials and equipment used in the following examples are commercially available.
Example 1:
a protein coding sequence OsMLH3 for regulating and controlling fertility of female organs of rice is mainly obtained by adopting the following method:
(1) obtaining a mutant: introducing genome DNA of apomictic millet (Panicum maximum) into a hybrid rice restorer line Gui 99 by a spike-stem injection method, obtaining 1 female sterile male fertile variant strain from the offspring, selfing the variant strain for multiple generations, and temporarily naming the variant strain as fsv 1.
The mutant fsv1 is found to have the following characteristics: the female sterility character can be stably inherited, and the maturing rate of mutant parents in Changsha and Hainan is kept between 15 and 20 percent for years; the pollen is fertile, and is hybridized with a male sterile line, and F1 fertility is normal; an F2 genetic group is constructed by fsv1 and japonica rice 02428, the F1 generation is all fertile, the inbred F2 generation is separated, wherein the proportion of a normal plant and a mutant plant is close to 3: 1 (X), the normal plant is 593, the mutant plant is 207, and the normal plant and the mutant plant are in a ratio of 3: 12=0.454<3.84), indicating that the female sterility trait is controlled by a pair of recessive genes. The mutant fsv1 has been selfed continuously for more than 30 generations so far and is genetically stable.
Morphological observations of fsv1 mutant plants. As shown in FIG. 1, the wild type (G99) and mutant (fsv1) plants are compared with the ears in the mature period, and the comparison is mainly characterized by the reduction of the seed setting rate of the mutant.
(2) Extracting DNA of rice: hybridizing a parent of a mutant plant (fsv1) with a japonica rice variety 02428 to obtain an F1 generation, selfing an F1 generation to obtain an F2 generation, planting an F2 population, and selecting plants with a fruiting rate of less than 20% as a positioning population at a filling maturity stage. And extracting the rice DNA of the positioned population by adopting an improved CTAB small quantity extraction method.
The method comprises the following steps: taking 3-4 cm leaves of the fresh rice of the positioned group, putting the leaves into a 2ml centrifugal tube, adding steel beads, quickly freezing by liquid nitrogen, and mashing. Add 600. mu.L of DNA extraction buffer (2 × CTAB) to the tube and incubate in a 65 ℃ water bath for 30min, reversing 2 times during the incubation. Adding 600 μ l of mixed solution of chloroform and isoamyl alcohol (the volume ratio of chloroform to isoamyl alcohol is 24: 1), and turning upside down for several times until the lower layer liquid phase is dark green; then centrifuged at 12000rpm for 10 min. Taking 400 μ l of centrifuged supernatant, placing in a new 1.5ml centrifuge tube (adding 400 μ l of isopropanol at-20 deg.C, pre-cooling), mixing, standing at room temperature for 10min (or centrifuging at 12000rpm at-20 deg.C for 10 min). Taking the precipitate after standing, washing with 75% ethanol, and naturally drying overnight; then dissolved in double distilled water (or TE) and kept at 4 ℃ for later use.
(3) Molecular marker analysis: and (3) performing PCR amplification by taking the rice DNA extracted in the step (2) as a template to obtain a PCR amplification product.
The 10. mu.l PCR amplification reaction system was: 10 × Buffer: 1 mul;
MgCl2(25mM):0.6μl;
dNTP(1mM):0.2μl;
primer F (2 pmol/. mu.l): 1 mul;
primer R (2 pmol/. mu.l): 1 mul;
rTaq (5U/. mu.l) enzyme (TaKaRa, Dalian). 0.1 μ l;
rice DNA (20 ng/. mu.l): 1 mul;
ddH2O:6.1μl。
the amplification reaction was performed on a PTC-200(MJ Research Inc.) PCR instrument by the following procedure: pre-denaturation at 94 ℃ for 5 min; denaturation at 94 ℃ for 30s, annealing at 58 ℃ for 30s, extension at 72 ℃ for 30s, and 35 cycles of denaturation, annealing and extension; and (3) extending for 5min at 72 ℃ to obtain a PCR product.
And (3) carrying out 8% polyacrylamide gel electrophoresis on the PCR product for 80min at a constant voltage of 200V. Dyeing by a silver dyeing method, which comprises the following steps: 200ml of distilled water was added to the staining box, and then the gel was discharged into the box and rinsed once. Weighing 0.3g AgNO by using a special silver nitrate cup3Pouring the solution along the edge of the dyeing box after dissolution, and shaking for 5-8 min. Pouring out the fixing solution, adding distilled water, rinsing for 2 times, and pouring out the distilled water after cleaning. Weighing 3g of NaOH by using a special cup for developing solution, adding 200ml of distilled water for dissolving, adding 1.5ml of formaldehyde, uniformly mixing, pouring along the edge of a dyeing box, and shaking until a clear strip appears, wherein the time is about 8-10 minutes. After the development was clear, the developer was poured off, the gel was rinsed 2 times with tap water (tap water was added along the edge of the box), and the developer was completely removed. In order to avoid color change during storage, the preservative film is used for encapsulating, counting tape types and taking pictures for storage.
(4) Group segregation method for fine positioning female sterile gene: according to the molecular marker analysis method in the step (3), primers are selected firstly, PCR amplification is carried out, the banding patterns of each primer in two parents and population individuals are analyzed through gel electrophoresis, the genetic distance is calculated by utilizing Mapmarker3.0 according to the banding patterns, and the linkage relation is determined. The specific operation is as follows: is divided into two parts from 520Sub-tagged primers (from)www.gramene.org general SSRMolecular marker primers) 144 pairs of SSR, In/Del markers showing polymorphisms between fsv1 and 02428 were screened, with an average of 12 markers per chromosome and an average of 2.65M polymorphic markers across the whole genome. Constructing a mixed pool of 10 female sterile individuals, and screening 9 # chromosomes RM278 and RM3787 to be linked with target genes by using the 144 pairs of polymorphic markers.
Using the sterile 416 strain of the F2 population as the preliminary mapping population, the target gene was locked between RM24751 and RM24766 at a physical distance of 261 kb. In this section, the In/Del marker, SSR marker 9-22598, 9-22721, M1, M2, M3 and M4 are designed on NCBI by using nippon and 9311 sequence alignment and parent fsv1 and 02428 sequencing sequence alignment, the recessive mutation population is expanded to 3018 strains, the female sterile individuals In the population are located by using the molecular markers for genotype analysis, a linkage map of the molecular markers of the target gene region is constructed by using mapbrawv2.1, and finally the gene causing female sterility is finely located between the markers 9-22721 and M4 and respectively located on clones OJ1210_ a07 and P0489D11, and the physical distance is 20kb (see fig. 2 for specific location). See table 1 for primer sequences:
table 1: primer sequence Listing
Figure BDA0001481839750000041
Figure BDA0001481839750000051
(5) Cloning of OsMLH3 gene. Sequencing of 4 genes in the 20kb range separately revealed that ORF1(OsMLH3 gene; Os09g0551900) had a single base mutation in the longest exon and that there was a single base mutation from TGC (WT) to TGA (fsv1) which resulted in the formation of a stop codon during translation leading to premature termination of protein translation and loss of protein function. The OsMLH3 gene is cloned, and the specific steps are as follows:
extracting wild type Gui 99 young ear RNA, reverse transcribing into cDNA, and performing PCR amplification by using the cDNA as a template, wherein the specific steps are as follows:
designing a PCR primer: OsMLH 3-F: 5'-ATGATGGTATGCCTTTATAGCTTTGTACC-3', respectively;
OsMLH3-R:5’-CTACAGGCCACCACGTAGCTTTCT-3’。
and (3) PCR reaction system:
OsMLH3-F(10pmol/μl):1.5μl;
OsMLH3-F(10pmol/μl):1.5μl;
KOD FXneo Hi-Enzyme (1.0U/. mu.l): 1 mul;
2×KOD FX neo buffer:25μl
dNTP(2mM):10μl
cDNA(200ng/μl):1.5μl;
ddH2O:9.5μl。
reaction procedure: 94 ℃ for 2 min; 1 time; 98 deg.C, 10sec, 68 deg.C, 2 min; 40 times; at 68 deg.C for 5min, 1 time. And (3) sending the PCR product to a biological company for sequencing to obtain the coding region sequence of the OsMLH3 gene.
The full-length CDS (3588bp) sequence of the OsMLH3 gene is shown in SEQ ID No.1, and the specific sequence is as follows:
atgcagacaataaaacggttgccgaaaagtgtccatagctcgttgcgctcaagcattgttctatttgacctatcaagggttgttgaggagctggtatataatagcattgacgcaaatgcgagcaagattgacatctcagtgaatgccagagcatgttatgttaaagtggaagatgatggctgtggtattactcgtgacgaactggttcttgtaggagaaaaatatgcaacatccaagtttcataatgtcatggttgatggggaacctagttccagaagttttggattaaatggcgaagcactcgcatcactatctgatatctctgttgttgaagtcaggacaaaagctcgcgggcgaccaaattcatattgcaagataataaagggatccaaatgctcacacctgggaatagatgagcagagggaagttgttggaaccacagttattgttcgcgagcttttttacaatcaacctgtacgcaggaaacaaatgcaatctagttacaaaagagaactacatcttgtgaagaagtctgttctgcgagttgcactcattcatccacaagtttcactcagactttttgatattgagagtgaagatgagttgctatacacgattccttcatcctcccccttgactcttgtatcaaacattttggggaaaaatgtctccagctgtcttcatgagatagctacctctgacaagcattttgctctttcagggcacatctccagaccaacagatgtgttctgtaataaggatttccagtacttgtatatcaactcaagattcgtcagtaaaagcccaatccacaatatgctcaataacctggcatctagttttcaatcttctgcaaggaatgaggaaattgatgttcggagtaagaagaggcagaagaatgaagtctaccctgcatatctgctaaacttgtgctgtcctagatcaagctatgatctacattttgagccttcacagactattgtggaattcaaggattggcaaactgtcatgtatttctttgaacgaactatcacagactattggaagaagcatgcacctcaactgccagaagtgaaagctattggcaatgatacctgtgtgcctttggaaagagatgtgaaatcaagtcaggaactgttaaggcgtcatggtgtgcagaagaaagaagatgtcgctgaattgtaccaaacagctctgcagaagaatacagtacgagacatgaattttgatacagctgccccagcagaacctaaagacaattacctttctttggatatggagccatccacatggcgtgcctgctatgaccagatcagtgatgcatcccacacagatgatgttgctaggaatggtcggaaatttggtcataagcaaatatgttcccttcaaagttatagttatcagtggttagaggacggctcttccctgttagaagactctgatctttcaagtgctaacccaactatttgtaaaatgcaaaagacagaagatatattccatgggcatgcatattctggtaagtttggactgctacaagatgcagaaatcgaaatcggtccagaaattaaactccaagaatattgctttgaatctcccaataaactgaacagaatgacctgcgattttgtgcaaaagcaaaccaaaatagaggcacacatttcaggccgtgatggattctatgttgattttgataaattgaacgaggactgtctactcaatgagatatcaaagacaatcactgatgtttcctgccctcaaatgccacactttaatgatggactctgtcctgaggacgttggctcctccaagagttcctgtagtgtcaggaagtctagtaaaaggcaaaatagtgctaatgcaattgcccagatgaagttccatgatatgcaagcagtttgcgaaagtggttacatggataggtccttcatcaaggatacatgtggccttcatttctttcatccattctcgttggctgatacacctcgcagtcacagtcgtgcaaggattgacttggaattgcatggaaggtcaaatgaaagcattaacagttggaaccgtgaaaatattggcactgattttggatttacttcagacaggtttaatattgattcatcaatgatttttgaaggaagcaaacatctcaataactttggcaatggaactcaatctcctagttacttcaatcatgaatattgttctgtcggtcagtttgcttccaaacaggatcggatacccttgaaatcaaaacatgatgcaagaatgtcatatgatatttctcctgagaaaagttctactggttgtcatttgaatgtttctttttcccaagtggcaaaaagcagcaagcttactgaagatcagtatggatgcagtcagaggcccaggctttccagaggtagatataggagtcgttctgcaccaccattttacagaggcaaaagaaaattccctagattaaacgaaccactaaccaaattgactacagaaggtggtaaatataccactgttaatgactcaggagatgcagatatcacacctgttcaggagtatacatcacatatgaacgcaacccaacctattcctgagacctttagcaatgacttttctgacctaaatttcagcttgaagggaaatgtcaaaatgtgcgaagagaaatgttctgatgaactcgaagattctactgcttcagatgaaataacaaaatggcgtgatgactctgaccatcatgcagtttcggagttgcaacatggtccttttgaacacgatgatgatgtacttagcatttcttatgggcccttacacctctcatgcagtgttctagttcctgaatgtattgataaaaattgctttgaggaggcaagagttttgttgcagctggataagaaatttattcctgtcatatctggggaagtactactccttgttgatcagcatgcagctgatgaaaggatacgtttggaggaactccgtcgaaaggttttatcagatgatggcagagggattacttacttggactctgaggaggacttagttctccctgagactggatttcaattgttccaaaagtatatgcaacagatccaaagttggggctggatcatcaacagtactaattcctgtgaatcattcaaaaagaacatgaacgttctgaggagacaatcgcgccgtcttactcttgctgctgttccatgtattttgggcgtcactttaacaggaaaagatcttatggacttcattcagcagcttgatgacacagatgggtcgtcagctatccccccagcggtcattcgtattctcaatttcaaggcttgcagaggtgcgatcatgtttggcgatcctctgctaccatcggagtgctctctgattatcgaagaactgaaagcaacatctctatgtttccagtgtgctcatggacgtccgaccaccgtgccgattgtgaacgtcgcatctctccgcggcgagttggcgaggctcggagcggtgaacggaaggcaagaagagacctggcatggtctctcgcaccatggacccagccttgagcgtgctcgaacgcgcctcagagaactgagaaagctacgtggtggcctgtag。
the protein sequence (1195) of OsMLH3 gene is shown in SEQ ID No.2, and is as follows:
MQTIKRLPKSVHSSLRSSIVLFDLSRVVEELVYNSIDANASKIDISVNARACYVKVEDDGCGITRDELVLVGEKYATSKFHNVMVDGEPSSRSFGLNGEALASLSDISVVEVRTKARGRPNSYCKIIKGSKCSHLGIDEQREVVGTTVIVRELFYNQPVRRKQMQSSYKRELHLVKKSVLRVALIHPQVSLRLFDIESEDELLYTIPSSSPLTLVSNILGKNVSSCLHEIATSDKHFALSGHISRPTDVFCNKDFQYLYINSRFVSKSPIHNMLNNLASSFQSSARNEEIDVRSKKRQKNEVYPAYLLNLCCPRSSYDLHFEPSQTIVEFKDWQTVMYFFERTITDYWKKHAPQLPEVKAIGNDTCVPLERDVKSSQELLRRHGVQKKEDVAELYQTALQKNTVRDMNFDTAAPAEPKDNYLSLDMEPSTWRACYDQISDASHTDDVARNGRKFGHKQICSLQSYSYQWLEDGSSLLEDSDLSSANPTICKMQKTEDIFHGHAYSGKFGLLQDAEIEIGPEIKLQEYCFESPNKLNRMTCDFVQKQTKIEAHISGRDGFYVDFDKLNEDCLLNEISKTITDVSCPQMPHFNDGLCPEDVGSSKSSCSVRKSSKRQNSANAIAQMKFHDMQAVCESGYMDRSFIKDTCGLHFFHPFSLADTPRSHSRARIDLELHGRSNESINSWNRENIGTDFGFTSDRFNIDSSMIFEGSKHLNNFGNGTQSPSYFNHEYCSVGQFASKQDRIPLKSKHDARMSYDISPEKSSTGCHLNVSFSQVAKSSKLTEDQYGCSQRPRLSRGRYRSRSAPPFYRGKRKFPRLNEPLTKLTTEGGKYTTVNDSGDADITPVQEYTSHMNATQPIPETFSNDFSDLNFSLKGNVKMCEEKCSDELEDSTASDEITKWRDDSDHHAVSELQHGPFEHDDDVLSISYGPLHLSCSVLVPECIDKNCFEEARVLLQLDKKFIPVISGEVLLLVDQHAADERIRLEELRRKVLSDDGRGITYLDSEEDLVLPETGFQLFQKYMQQIQSWGWIINSTNSCESFKKNMNVLRRQSRRLTLAAVPCILGVTLTGKDLMDFIQQLDDTDGSSAIPPAVIRILNFKACRGAIMFGDPLLPSECSLIIEELKATSLCFQCAHGRPTTVPIVNVASLRGELARLGAVNGRQEETWHGLSHHGPSLERARTRLRELRKLRGGL。
the mutation position is 1899 base of CDS sequence, wild type is C, mutant is A, TGA formed after mutation is stop codon, protein translation is terminated, and protein size is truncated from 1195 amino acids to only 632 amino acids, thus forming unknown protein with loss of function.
The nucleotide sequence of the OsMLH3 gene after mutation is shown in SEQ ID No.3, and specifically comprises the following steps:
atgcagacaataaaacggttgccgaaaagtgtccatagctcgttgcgctcaagcattgttctatttgacctatcaagggttgttgaggagctggtatataatagcattgacgcaaatgcgagcaagattgacatctcagtgaatgccagagcatgttatgttaaagtggaagatgatggctgtggtattactcgtgacgaactggttcttgtaggagaaaaatatgcaacatccaagtttcataatgtcatggttgatggggaacctagttccagaagttttggattaaatggcgaagcactcgcatcactatctgatatctctgttgttgaagtcaggacaaaagctcgcgggcgaccaaattcatattgcaagataataaagggatccaaatgctcacacctgggaatagatgagcagagggaagttgttggaaccacagttattgttcgcgagcttttttacaatcaacctgtacgcaggaaacaaatgcaatctagttacaaaagagaactacatcttgtgaagaagtctgttctgcgagttgcactcattcatccacaagtttcactcagactttttgatattgagagtgaagatgagttgctatacacgattccttcatcctcccccttgactcttgtatcaaacattttggggaaaaatgtctccagctgtcttcatgagatagctacctctgacaagcattttgctctttcagggcacatctccagaccaacagatgtgttctgtaataaggatttccagtacttgtatatcaactcaagattcgtcagtaaaagcccaatccacaatatgctcaataacctggcatctagttttcaatcttctgcaaggaatgaggaaattgatgttcggagtaagaagaggcagaagaatgaagtctaccctgcatatctgctaaacttgtgctgtcctagatcaagctatgatctacattttgagccttcacagactattgtggaattcaaggattggcaaactgtcatgtatttctttgaacgaactatcacagactattggaagaagcatgcacctcaactgccagaagtgaaagctattggcaatgatacctgtgtgcctttggaaagagatgtgaaatcaagtcaggaactgttaaggcgtcatggtgtgcagaagaaagaagatgtcgctgaattgtaccaaacagctctgcagaagaatacagtacgagacatgaattttgatacagctgccccagcagaacctaaagacaattacctttctttggatatggagccatccacatggcgtgcctgctatgaccagatcagtgatgcatcccacacagatgatgttgctaggaatggtcggaaatttggtcataagcaaatatgttcccttcaaagttatagttatcagtggttagaggacggctcttccctgttagaagactctgatctttcaagtgctaacccaactatttgtaaaatgcaaaagacagaagatatattccatgggcatgcatattctggtaagtttggactgctacaagatgcagaaatcgaaatcggtccagaaattaaactccaagaatattgctttgaatctcccaataaactgaacagaatgacctgcgattttgtgcaaaagcaaaccaaaatagaggcacacatttcaggccgtgatggattctatgttgattttgataaattgaacgaggactgtctactcaatgagatatcaaagacaatcactgatgtttcctgccctcaaatgccacactttaatgatggactctgtcctgaggacgttggctcctccaagagttcctgtagtgtcaggaagtctagtaaaaggcaaaatagtgctaatgcaattgcccagatgaagttccatgatatgcaagcagtttgagaaagtggttacatggataggtccttcatcaaggatacatgtggccttcatttctttcatccattctcgttggctgatacacctcgcagtcacagtcgtgcaaggattgacttggaattgcatggaaggtcaaatgaaagcattaacagttggaaccgtgaaaatattggcactgattttggatttacttcagacaggtttaatattgattcatcaatgatttttgaaggaagcaaacatctcaataactttggcaatggaactcaatctcctagttacttcaatcatgaatattgttctgtcggtcagtttgcttccaaacaggatcggatacccttgaaatcaaaacatgatgcaagaatgtcatatgatatttctcctgagaaaagttctactggttgtcatttgaatgtttctttttcccaagtggcaaaaagcagcaagcttactgaagatcagtatggatgcagtcagaggcccaggctttccagaggtagatataggagtcgttctgcaccaccattttacagaggcaaaagaaaattccctagattaaacgaaccactaaccaaattgactacagaaggtggtaaatataccactgttaatgactcaggagatgcagatatcacacctgttcaggagtatacatcacatatgaacgcaacccaacctattcctgagacctttagcaatgacttttctgacctaaatttcagcttgaagggaaatgtcaaaatgtgcgaagagaaatgttctgatgaactcgaagattctactgcttcagatgaaataacaaaatggcgtgatgactctgaccatcatgcagtttcggagttgcaacatggtccttttgaacacgatgatgatgtacttagcatttcttatgggcccttacacctctcatgcagtgttctagttcctgaatgtattgataaaaattgctttgaggaggcaagagttttgttgcagctggataagaaatttattcctgtcatatctggggaagtactactccttgttgatcagcatgcagctgatgaaaggatacgtttggaggaactccgtcgaaaggttttatcagatgatggcagagggattacttacttggactctgaggaggacttagttctccctgagactggatttcaattgttccaaaagtatatgcaacagatccaaagttggggctggatcatcaacagtactaattcctgtgaatcattcaaaaagaacatgaacgttctgaggagacaatcgcgccgtcttactcttgctgctgttccatgtattttgggcgtcactttaacaggaaaagatcttatggacttcattcagcagcttgatgacacagatgggtcgtcagctatccccccagcggtcattcgtattctcaatttcaaggcttgcagaggtgcgatcatgtttggcgatcctctgctaccatcggagtgctctctgattatcgaagaactgaaagcaacatctctatgtttccagtgtgctcatggacgtccgaccaccgtgccgattgtgaacgtcgcatctctccgcggcgagttggcgaggctcggagcggtgaacggaaggcaagaagagacctggcatggtctctcgcaccatggacccagccttgagcgtgctcgaacgcgcctcagagaactgagaaagctacgtggtggcctgtag。
the protein sequence after OsMLH3 gene mutation is shown in SEQ ID No.4, and specifically comprises the following steps:
MQTIKRLPKSVHSSLRSSIVLFDLSRVVEELVYNSIDANASKIDISVNARACYVKVEDDGCGITRDELVLVGEKYATSKFHNVMVDGEPSSRSFGLNGEALASLSDISVVEVRTKARGRPNSYCKIIKGSKCSHLGIDEQREVVGTTVIVRELFYNQPVRRKQMQSSYKRELHLVKKSVLRVALIHPQVSLRLFDIESEDELLYTIPSSSPLTLVSNILGKNVSSCLHEIATSDKHFALSGHISRPTDVFCNKDFQYLYINSRFVSKSPIHNMLNNLASSFQSSARNEEIDVRSKKRQKNEVYPAYLLNLCCPRSSYDLHFEPSQTIVEFKDWQTVMYFFERTITDYWKKHAPQLPEVKAIGNDTCVPLERDVKSSQELLRRHGVQKKEDVAELYQTALQKNTVRDMNFDTAAPAEPKDNYLSLDMEPSTWRACYDQISDASHTDDVARNGRKFGHKQICSLQSYSYQWLEDGSSLLEDSDLSSANPTICKMQKTEDIFHGHAYSGKFGLLQDAEIEIGPEIKLQEYCFESPNKLNRMTCDFVQKQTKIEAHISGRDGFYVDFDKLNEDCLLNEISKTITDVSCPQMPHFNDGLCPEDVGSSKSSCSVRKSSKRQNSANAIAQMKFHDMQAV。
example 2
The wild type plant (G99) and the mutant plant (fsv1) were sequenced, and the sequencing results are shown in FIG. 3. As can be seen from fig. 3: the presence of a single base mutation from TGC (WT) to TGA (fsv1) in exon 13 of the OsMLH3 gene of the mutant plant (fsv1) will form a stop codon, causing premature termination of protein translation.
Example 3
Through observation of an ovary tabletting laser confocal microscope of a wild-type plant (G99) and a mutant plant (fsv1) at different development stages, the development processes of embryo sacs of the wild-type plant (G99) and the mutant plant (fsv1) are compared, and fig. 4 is an ovary picture of the wild-type plant (G99) and the mutant plant (fsv1) at different development stages, and it is found that the wild-type plant (G99) and the mutant plant (fsv1) have no difference before functional megaspores but enter the mitotic stage of the functional megaspores, the functional megaspores of the mutant plant (fsv1) gradually degenerate and can not form normal octanuclear embryo sacs.
Example 4
Quantitative RT-PCR analysis of the expression profile in wild type plants, the results are shown in FIG. 5. As can be seen from fig. 5: OsMLH3 is constitutively expressed and is expressed in roots, stems, leaves and ears. The GUS tissue staining result of the transgenic plant with the promoter connected with the GUS reporter gene is consistent with the RT-PCR result, but the expression part in the glumous flower is mainly concentrated in the ovary.
Example 5
The function of the OsMLH3 gene for regulating the fertility of rice female organs is verified through a genome complementation experiment:
amplifying 12835b genome complementary fragments comprising candidate genes and promoter regions of the genes with about 2.5kb and downstream 0.5kb by using KOD FXneo enzyme,
the primers are as follows: cMLH3F 1: aattcgagctcggtacccggggatccCTGTGATTCGAGCTGTAACCTGTCC (containing BamHI endonuclease sites);
cMLH3R 1: aacgacggccagtgccaagcttGTGGAGGAGAGAGAGATGGGGAATT (containing HindIII endonuclease sites);
the expression vector pCAMBIA1300 was digested with BamHI and HindIII, and then the genome complementary fragment and the digested pCAMBIA1300 vector fragment were recombinantly ligated with an In-fusion kit (Clontech) to construct a genome complementary expression vector. The mutant parent fsv1 is transformed by the recombinant vector, and the seed setting rate of the T0 generation plant is obviously recovered and is close to that of the wild cinnamon 99. The setting rate of the contrast osmanthus fragrans 99 is 82%, the setting rate of the complementary single plant of the T0 generation is 77%, and the setting rate of the mutant is 18%.
In addition, an overexpression vector containing the full-length cDNA of the wild type OsMLH3 gene is constructed, the seed setting rate of a positive transgenic plant of the T0 generation is obviously recovered by transforming the mutant parent fsv 1. The setting rate of the contrast osmanthus fragrans 99 is 87%, the setting rate of the transgenic plants of the T0 generation is 80%, and the setting rate of the mutant is 17%.
The OsMLH3 gene is shown to be a gene for controlling the development of female organs of rice.
The foregoing is merely a preferred embodiment of the invention and is not intended to limit the invention in any manner. Although the present invention has been described with reference to the preferred embodiments, it is not intended to be limited thereto. Those skilled in the art can make many possible variations and modifications to the disclosed embodiments, or equivalent modifications, without departing from the spirit and scope of the invention, using the methods and techniques disclosed above. Therefore, any simple modification, equivalent replacement, equivalent change and modification made to the above embodiments according to the technical essence of the present invention are still within the scope of the protection of the technical solution of the present invention.
<110> research center for hybrid rice in Hunan province
<120> gene for regulating fertility of rice female organ, and coding protein and application thereof
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3588
<212> DNA
<213> Rice (Rice)
<400> 1
atgcagacaa taaaacggtt gccgaaaagt gtccatagct cgttgcgctc aagcattgtt 60
ctatttgacc tatcaagggt tgttgaggag ctggtatata atagcattga cgcaaatgcg 120
agcaagattg acatctcagt gaatgccaga gcatgttatg ttaaagtgga agatgatggc 180
tgtggtatta ctcgtgacga actggttctt gtaggagaaa aatatgcaac atccaagttt 240
cataatgtca tggttgatgg ggaacctagt tccagaagtt ttggattaaa tggcgaagca 300
ctcgcatcac tatctgatat ctctgttgtt gaagtcagga caaaagctcg cgggcgacca 360
aattcatatt gcaagataat aaagggatcc aaatgctcac acctgggaat agatgagcag 420
agggaagttg ttggaaccac agttattgtt cgcgagcttt tttacaatca acctgtacgc 480
aggaaacaaa tgcaatctag ttacaaaaga gaactacatc ttgtgaagaa gtctgttctg 540
cgagttgcac tcattcatcc acaagtttca ctcagacttt ttgatattga gagtgaagat 600
gagttgctat acacgattcc ttcatcctcc cccttgactc ttgtatcaaa cattttgggg 660
aaaaatgtct ccagctgtct tcatgagata gctacctctg acaagcattt tgctctttca 720
gggcacatct ccagaccaac agatgtgttc tgtaataagg atttccagta cttgtatatc 780
aactcaagat tcgtcagtaa aagcccaatc cacaatatgc tcaataacct ggcatctagt 840
tttcaatctt ctgcaaggaa tgaggaaatt gatgttcgga gtaagaagag gcagaagaat 900
gaagtctacc ctgcatatct gctaaacttg tgctgtccta gatcaagcta tgatctacat 960
tttgagcctt cacagactat tgtggaattc aaggattggc aaactgtcat gtatttcttt 1020
gaacgaacta tcacagacta ttggaagaag catgcacctc aactgccaga agtgaaagct 1080
attggcaatg atacctgtgt gcctttggaa agagatgtga aatcaagtca ggaactgtta 1140
aggcgtcatg gtgtgcagaa gaaagaagat gtcgctgaat tgtaccaaac agctctgcag 1200
aagaatacag tacgagacat gaattttgat acagctgccc cagcagaacc taaagacaat 1260
tacctttctt tggatatgga gccatccaca tggcgtgcct gctatgacca gatcagtgat 1320
gcatcccaca cagatgatgt tgctaggaat ggtcggaaat ttggtcataa gcaaatatgt 1380
tcccttcaaa gttatagtta tcagtggtta gaggacggct cttccctgtt agaagactct 1440
gatctttcaa gtgctaaccc aactatttgt aaaatgcaaa agacagaaga tatattccat 1500
gggcatgcat attctggtaa gtttggactg ctacaagatg cagaaatcga aatcggtcca 1560
gaaattaaac tccaagaata ttgctttgaa tctcccaata aactgaacag aatgacctgc 1620
gattttgtgc aaaagcaaac caaaatagag gcacacattt caggccgtga tggattctat 1680
gttgattttg ataaattgaa cgaggactgt ctactcaatg agatatcaaa gacaatcact 1740
gatgtttcct gccctcaaat gccacacttt aatgatggac tctgtcctga ggacgttggc 1800
tcctccaaga gttcctgtag tgtcaggaag tctagtaaaa ggcaaaatag tgctaatgca 1860
attgcccaga tgaagttcca tgatatgcaa gcagtttgcg aaagtggtta catggatagg 1920
tccttcatca aggatacatg tggccttcat ttctttcatc cattctcgtt ggctgataca 1980
cctcgcagtc acagtcgtgc aaggattgac ttggaattgc atggaaggtc aaatgaaagc 2040
attaacagtt ggaaccgtga aaatattggc actgattttg gatttacttc agacaggttt 2100
aatattgatt catcaatgat ttttgaagga agcaaacatc tcaataactt tggcaatgga 2160
actcaatctc ctagttactt caatcatgaa tattgttctg tcggtcagtt tgcttccaaa 2220
caggatcgga tacccttgaa atcaaaacat gatgcaagaa tgtcatatga tatttctcct 2280
gagaaaagtt ctactggttg tcatttgaat gtttcttttt cccaagtggc aaaaagcagc 2340
aagcttactg aagatcagta tggatgcagt cagaggccca ggctttccag aggtagatat 2400
aggagtcgtt ctgcaccacc attttacaga ggcaaaagaa aattccctag attaaacgaa 2460
ccactaacca aattgactac agaaggtggt aaatatacca ctgttaatga ctcaggagat 2520
gcagatatca cacctgttca ggagtataca tcacatatga acgcaaccca acctattcct 2580
gagaccttta gcaatgactt ttctgaccta aatttcagct tgaagggaaa tgtcaaaatg 2640
tgcgaagaga aatgttctga tgaactcgaa gattctactg cttcagatga aataacaaaa 2700
tggcgtgatg actctgacca tcatgcagtt tcggagttgc aacatggtcc ttttgaacac 2760
gatgatgatg tacttagcat ttcttatggg cccttacacc tctcatgcag tgttctagtt 2820
cctgaatgta ttgataaaaa ttgctttgag gaggcaagag ttttgttgca gctggataag 2880
aaatttattc ctgtcatatc tggggaagta ctactccttg ttgatcagca tgcagctgat 2940
gaaaggatac gtttggagga actccgtcga aaggttttat cagatgatgg cagagggatt 3000
acttacttgg actctgagga ggacttagtt ctccctgaga ctggatttca attgttccaa 3060
aagtatatgc aacagatcca aagttggggc tggatcatca acagtactaa ttcctgtgaa 3120
tcattcaaaa agaacatgaa cgttctgagg agacaatcgc gccgtcttac tcttgctgct 3180
gttccatgta ttttgggcgt cactttaaca ggaaaagatc ttatggactt cattcagcag 3240
cttgatgaca cagatgggtc gtcagctatc cccccagcgg tcattcgtat tctcaatttc 3300
aaggcttgca gaggtgcgat catgtttggc gatcctctgc taccatcgga gtgctctctg 3360
attatcgaag aactgaaagc aacatctcta tgtttccagt gtgctcatgg acgtccgacc 3420
accgtgccga ttgtgaacgt cgcatctctc cgcggcgagt tggcgaggct cggagcggtg 3480
aacggaaggc aagaagagac ctggcatggt ctctcgcacc atggacccag ccttgagcgt 3540
gctcgaacgc gcctcagaga actgagaaag ctacgtggtg gcctgtag 3588
<210> 2
<211> 1195
<212> PRT
<213> Rice (Rice)
<400> 2
Met Gln Thr Ile Lys Arg Leu Pro Lys Ser Val His Ser Ser Leu Arg
1 5 10 15
Ser Ser Ile Val Leu Phe Asp Leu Ser Arg Val Val Glu Glu Leu Val
20 25 30
Tyr Asn Ser Ile Asp Ala Asn Ala Ser Lys Ile Asp Ile Ser Val Asn
35 40 45
Ala Arg Ala Cys Tyr Val Lys Val Glu Asp Asp Gly Cys Gly Ile Thr
50 55 60
Arg Asp Glu Leu Val Leu Val Gly Glu Lys Tyr Ala Thr Ser Lys Phe
65 70 75 80
His Asn Val Met Val Asp Gly Glu Pro Ser Ser Arg Ser Phe Gly Leu
85 90 95
Asn Gly Glu Ala Leu Ala Ser Leu Ser Asp Ile Ser Val Val Glu Val
100 105 110
Arg Thr Lys Ala Arg Gly Arg Pro Asn Ser Tyr Cys Lys Ile Ile Lys
115 120 125
Gly Ser Lys Cys Ser His Leu Gly Ile Asp Glu Gln Arg Glu Val Val
130 135 140
Gly Thr Thr Val Ile Val Arg Glu Leu Phe Tyr Asn Gln Pro Val Arg
145 150 155 160
Arg Lys Gln Met Gln Ser Ser Tyr Lys Arg Glu Leu His Leu Val Lys
165 170 175
Lys Ser Val Leu Arg Val Ala Leu Ile His Pro Gln Val Ser Leu Arg
180 185 190
Leu Phe Asp Ile Glu Ser Glu Asp Glu Leu Leu Tyr Thr Ile Pro Ser
195 200 205
Ser Ser Pro Leu Thr Leu Val Ser Asn Ile Leu Gly Lys Asn Val Ser
210 215 220
Ser Cys Leu His Glu Ile Ala Thr Ser Asp Lys His Phe Ala Leu Ser
225 230 235 240
Gly His Ile Ser Arg Pro Thr Asp Val Phe Cys Asn Lys Asp Phe Gln
245 250 255
Tyr Leu Tyr Ile Asn Ser Arg Phe Val Ser Lys Ser Pro Ile His Asn
260 265 270
Met Leu Asn Asn Leu Ala Ser Ser Phe Gln Ser Ser Ala Arg Asn Glu
275 280 285
Glu Ile Asp Val Arg Ser Lys Lys Arg Gln Lys Asn Glu Val Tyr Pro
290 295 300
Ala Tyr Leu Leu Asn Leu Cys Cys Pro Arg Ser Ser Tyr Asp Leu His
305 310 315 320
Phe Glu Pro Ser Gln Thr Ile Val Glu Phe Lys Asp Trp Gln Thr Val
325 330 335
Met Tyr Phe Phe Glu Arg Thr Ile Thr Asp Tyr Trp Lys Lys His Ala
340 345 350
Pro Gln Leu Pro Glu Val Lys Ala Ile Gly Asn Asp Thr Cys Val Pro
355 360 365
Leu Glu Arg Asp Val Lys Ser Ser Gln Glu Leu Leu Arg Arg His Gly
370 375 380
Val Gln Lys Lys Glu Asp Val Ala Glu Leu Tyr Gln Thr Ala Leu Gln
385 390 395 400
Lys Asn Thr Val Arg Asp Met Asn Phe Asp Thr Ala Ala Pro Ala Glu
405 410 415
Pro Lys Asp Asn Tyr Leu Ser Leu Asp Met Glu Pro Ser Thr Trp Arg
420 425 430
Ala Cys Tyr Asp Gln Ile Ser Asp Ala Ser His Thr Asp Asp Val Ala
435 440 445
Arg Asn Gly Arg Lys Phe Gly His Lys Gln Ile Cys Ser Leu Gln Ser
450 455 460
Tyr Ser Tyr Gln Trp Leu Glu Asp Gly Ser Ser Leu Leu Glu Asp Ser
465 470 475 480
Asp Leu Ser Ser Ala Asn Pro Thr Ile Cys Lys Met Gln Lys Thr Glu
485 490 495
Asp Ile Phe His Gly His Ala Tyr Ser Gly Lys Phe Gly Leu Leu Gln
500 505 510
Asp Ala Glu Ile Glu Ile Gly Pro Glu Ile Lys Leu Gln Glu Tyr Cys
515 520 525
Phe Glu Ser Pro Asn Lys Leu Asn Arg Met Thr Cys Asp Phe Val Gln
530 535 540
Lys Gln Thr Lys Ile Glu Ala His Ile Ser Gly Arg Asp Gly Phe Tyr
545 550 555 560
Val Asp Phe Asp Lys Leu Asn Glu Asp Cys Leu Leu Asn Glu Ile Ser
565 570 575
Lys Thr Ile Thr Asp Val Ser Cys Pro Gln Met Pro His Phe Asn Asp
580 585 590
Gly Leu Cys Pro Glu Asp Val Gly Ser Ser Lys Ser Ser Cys Ser Val
595 600 605
Arg Lys Ser Ser Lys Arg Gln Asn Ser Ala Asn Ala Ile Ala Gln Met
610 615 620
Lys Phe His Asp Met Gln Ala Val Cys Glu Ser Gly Tyr Met Asp Arg
625 630 635 640
Ser Phe Ile Lys Asp Thr Cys Gly Leu His Phe Phe His Pro Phe Ser
645 650 655
Leu Ala Asp Thr Pro Arg Ser His Ser Arg Ala Arg Ile Asp Leu Glu
660 665 670
Leu His Gly Arg Ser Asn Glu Ser Ile Asn Ser Trp Asn Arg Glu Asn
675 680 685
Ile Gly Thr Asp Phe Gly Phe Thr Ser Asp Arg Phe Asn Ile Asp Ser
690 695 700
Ser Met Ile Phe Glu Gly Ser Lys His Leu Asn Asn Phe Gly Asn Gly
705 710 715 720
Thr Gln Ser Pro Ser Tyr Phe Asn His Glu Tyr Cys Ser Val Gly Gln
725 730 735
Phe Ala Ser Lys Gln Asp Arg Ile Pro Leu Lys Ser Lys His Asp Ala
740 745 750
Arg Met Ser Tyr Asp Ile Ser Pro Glu Lys Ser Ser Thr Gly Cys His
755 760 765
Leu Asn Val Ser Phe Ser Gln Val Ala Lys Ser Ser Lys Leu Thr Glu
770 775 780
Asp Gln Tyr Gly Cys Ser Gln Arg Pro Arg Leu Ser Arg Gly Arg Tyr
785 790 795 800
Arg Ser Arg Ser Ala Pro Pro Phe Tyr Arg Gly Lys Arg Lys Phe Pro
805 810 815
Arg Leu Asn Glu Pro Leu Thr Lys Leu Thr Thr Glu Gly Gly Lys Tyr
820 825 830
Thr Thr Val Asn Asp Ser Gly Asp Ala Asp Ile Thr Pro Val Gln Glu
835 840 845
Tyr Thr Ser His Met Asn Ala Thr Gln Pro Ile Pro Glu Thr Phe Ser
850 855 860
Asn Asp Phe Ser Asp Leu Asn Phe Ser Leu Lys Gly Asn Val Lys Met
865 870 875 880
Cys Glu Glu Lys Cys Ser Asp Glu Leu Glu Asp Ser Thr Ala Ser Asp
885 890 895
Glu Ile Thr Lys Trp Arg Asp Asp Ser Asp His His Ala Val Ser Glu
900 905 910
Leu Gln His Gly Pro Phe Glu His Asp Asp Asp Val Leu Ser Ile Ser
915 920 925
Tyr Gly Pro Leu His Leu Ser Cys Ser Val Leu Val Pro Glu Cys Ile
930 935 940
Asp Lys Asn Cys Phe Glu Glu Ala Arg Val Leu Leu Gln Leu Asp Lys
945 950 955 960
Lys Phe Ile Pro Val Ile Ser Gly Glu Val Leu Leu Leu Val Asp Gln
965 970 975
His Ala Ala Asp Glu Arg Ile Arg Leu Glu Glu Leu Arg Arg Lys Val
980 985 990
Leu Ser Asp Asp Gly Arg Gly Ile Thr Tyr Leu Asp Ser Glu Glu Asp
995 1000 1005
Leu Val Leu Pro Glu Thr Gly Phe Gln Leu Phe Gln Lys Tyr Met Gln
1010 1015 1020
Gln Ile Gln Ser Trp Gly Trp Ile Ile Asn Ser Thr Asn Ser Cys Glu
1025 1030 1035 1040
Ser Phe Lys Lys Asn Met Asn Val Leu Arg Arg Gln Ser Arg Arg Leu
1045 1050 1055
Thr Leu Ala Ala Val Pro Cys Ile Leu Gly Val Thr Leu Thr Gly Lys
1060 1065 1070
Asp Leu Met Asp Phe Ile Gln Gln Leu Asp Asp Thr Asp Gly Ser Ser
1075 1080 1085
Ala Ile Pro Pro Ala Val Ile Arg Ile Leu Asn Phe Lys Ala Cys Arg
1090 1095 1100
Gly Ala Ile Met Phe Gly Asp Pro Leu Leu Pro Ser Glu Cys Ser Leu
1105 1110 1115 1120
Ile Ile Glu Glu Leu Lys Ala Thr Ser Leu Cys Phe Gln Cys Ala His
1125 1130 1135
Gly Arg Pro Thr Thr Val Pro Ile Val Asn Val Ala Ser Leu Arg Gly
1140 1145 1150
Glu Leu Ala Arg Leu Gly Ala Val Asn Gly Arg Gln Glu Glu Thr Trp
1155 1160 1165
His Gly Leu Ser His His Gly Pro Ser Leu Glu Arg Ala Arg Thr Arg
1170 1175 1180
Leu Arg Glu Leu Arg Lys Leu Arg Gly Gly Leu
1185 1190 1195
<210> 3
<211> 3588
<212> DNA
<213> Rice (Rice)
<400> 3
atgcagacaa taaaacggtt gccgaaaagt gtccatagct cgttgcgctc aagcattgtt 60
ctatttgacc tatcaagggt tgttgaggag ctggtatata atagcattga cgcaaatgcg 120
agcaagattg acatctcagt gaatgccaga gcatgttatg ttaaagtgga agatgatggc 180
tgtggtatta ctcgtgacga actggttctt gtaggagaaa aatatgcaac atccaagttt 240
cataatgtca tggttgatgg ggaacctagt tccagaagtt ttggattaaa tggcgaagca 300
ctcgcatcac tatctgatat ctctgttgtt gaagtcagga caaaagctcg cgggcgacca 360
aattcatatt gcaagataat aaagggatcc aaatgctcac acctgggaat agatgagcag 420
agggaagttg ttggaaccac agttattgtt cgcgagcttt tttacaatca acctgtacgc 480
aggaaacaaa tgcaatctag ttacaaaaga gaactacatc ttgtgaagaa gtctgttctg 540
cgagttgcac tcattcatcc acaagtttca ctcagacttt ttgatattga gagtgaagat 600
gagttgctat acacgattcc ttcatcctcc cccttgactc ttgtatcaaa cattttgggg 660
aaaaatgtct ccagctgtct tcatgagata gctacctctg acaagcattt tgctctttca 720
gggcacatct ccagaccaac agatgtgttc tgtaataagg atttccagta cttgtatatc 780
aactcaagat tcgtcagtaa aagcccaatc cacaatatgc tcaataacct ggcatctagt 840
tttcaatctt ctgcaaggaa tgaggaaatt gatgttcgga gtaagaagag gcagaagaat 900
gaagtctacc ctgcatatct gctaaacttg tgctgtccta gatcaagcta tgatctacat 960
tttgagcctt cacagactat tgtggaattc aaggattggc aaactgtcat gtatttcttt 1020
gaacgaacta tcacagacta ttggaagaag catgcacctc aactgccaga agtgaaagct 1080
attggcaatg atacctgtgt gcctttggaa agagatgtga aatcaagtca ggaactgtta 1140
aggcgtcatg gtgtgcagaa gaaagaagat gtcgctgaat tgtaccaaac agctctgcag 1200
aagaatacag tacgagacat gaattttgat acagctgccc cagcagaacc taaagacaat 1260
tacctttctt tggatatgga gccatccaca tggcgtgcct gctatgacca gatcagtgat 1320
gcatcccaca cagatgatgt tgctaggaat ggtcggaaat ttggtcataa gcaaatatgt 1380
tcccttcaaa gttatagtta tcagtggtta gaggacggct cttccctgtt agaagactct 1440
gatctttcaa gtgctaaccc aactatttgt aaaatgcaaa agacagaaga tatattccat 1500
gggcatgcat attctggtaa gtttggactg ctacaagatg cagaaatcga aatcggtcca 1560
gaaattaaac tccaagaata ttgctttgaa tctcccaata aactgaacag aatgacctgc 1620
gattttgtgc aaaagcaaac caaaatagag gcacacattt caggccgtga tggattctat 1680
gttgattttg ataaattgaa cgaggactgt ctactcaatg agatatcaaa gacaatcact 1740
gatgtttcct gccctcaaat gccacacttt aatgatggac tctgtcctga ggacgttggc 1800
tcctccaaga gttcctgtag tgtcaggaag tctagtaaaa ggcaaaatag tgctaatgca 1860
attgcccaga tgaagttcca tgatatgcaa gcagtttgag aaagtggtta catggatagg 1920
tccttcatca aggatacatg tggccttcat ttctttcatc cattctcgtt ggctgataca 1980
cctcgcagtc acagtcgtgc aaggattgac ttggaattgc atggaaggtc aaatgaaagc 2040
attaacagtt ggaaccgtga aaatattggc actgattttg gatttacttc agacaggttt 2100
aatattgatt catcaatgat ttttgaagga agcaaacatc tcaataactt tggcaatgga 2160
actcaatctc ctagttactt caatcatgaa tattgttctg tcggtcagtt tgcttccaaa 2220
caggatcgga tacccttgaa atcaaaacat gatgcaagaa tgtcatatga tatttctcct 2280
gagaaaagtt ctactggttg tcatttgaat gtttcttttt cccaagtggc aaaaagcagc 2340
aagcttactg aagatcagta tggatgcagt cagaggccca ggctttccag aggtagatat 2400
aggagtcgtt ctgcaccacc attttacaga ggcaaaagaa aattccctag attaaacgaa 2460
ccactaacca aattgactac agaaggtggt aaatatacca ctgttaatga ctcaggagat 2520
gcagatatca cacctgttca ggagtataca tcacatatga acgcaaccca acctattcct 2580
gagaccttta gcaatgactt ttctgaccta aatttcagct tgaagggaaa tgtcaaaatg 2640
tgcgaagaga aatgttctga tgaactcgaa gattctactg cttcagatga aataacaaaa 2700
tggcgtgatg actctgacca tcatgcagtt tcggagttgc aacatggtcc ttttgaacac 2760
gatgatgatg tacttagcat ttcttatggg cccttacacc tctcatgcag tgttctagtt 2820
cctgaatgta ttgataaaaa ttgctttgag gaggcaagag ttttgttgca gctggataag 2880
aaatttattc ctgtcatatc tggggaagta ctactccttg ttgatcagca tgcagctgat 2940
gaaaggatac gtttggagga actccgtcga aaggttttat cagatgatgg cagagggatt 3000
acttacttgg actctgagga ggacttagtt ctccctgaga ctggatttca attgttccaa 3060
aagtatatgc aacagatcca aagttggggc tggatcatca acagtactaa ttcctgtgaa 3120
tcattcaaaa agaacatgaa cgttctgagg agacaatcgc gccgtcttac tcttgctgct 3180
gttccatgta ttttgggcgt cactttaaca ggaaaagatc ttatggactt cattcagcag 3240
cttgatgaca cagatgggtc gtcagctatc cccccagcgg tcattcgtat tctcaatttc 3300
aaggcttgca gaggtgcgat catgtttggc gatcctctgc taccatcgga gtgctctctg 3360
attatcgaag aactgaaagc aacatctcta tgtttccagt gtgctcatgg acgtccgacc 3420
accgtgccga ttgtgaacgt cgcatctctc cgcggcgagt tggcgaggct cggagcggtg 3480
aacggaaggc aagaagagac ctggcatggt ctctcgcacc atggacccag ccttgagcgt 3540
gctcgaacgc gcctcagaga actgagaaag ctacgtggtg gcctgtag 3588
<210> 4
<211> 632
<212> PRT
<213> Rice (Rice)
<400> 4
Met Gln Thr Ile Lys Arg Leu Pro Lys Ser Val His Ser Ser Leu Arg
1 5 10 15
Ser Ser Ile Val Leu Phe Asp Leu Ser Arg Val Val Glu Glu Leu Val
20 25 30
Tyr Asn Ser Ile Asp Ala Asn Ala Ser Lys Ile Asp Ile Ser Val Asn
35 40 45
Ala Arg Ala Cys Tyr Val Lys Val Glu Asp Asp Gly Cys Gly Ile Thr
50 55 60
Arg Asp Glu Leu Val Leu Val Gly Glu Lys Tyr Ala Thr Ser Lys Phe
65 70 75 80
His Asn Val Met Val Asp Gly Glu Pro Ser Ser Arg Ser Phe Gly Leu
85 90 95
Asn Gly Glu Ala Leu Ala Ser Leu Ser Asp Ile Ser Val Val Glu Val
100 105 110
Arg Thr Lys Ala Arg Gly Arg Pro Asn Ser Tyr Cys Lys Ile Ile Lys
115 120 125
Gly Ser Lys Cys Ser His Leu Gly Ile Asp Glu Gln Arg Glu Val Val
130 135 140
Gly Thr Thr Val Ile Val Arg Glu Leu Phe Tyr Asn Gln Pro Val Arg
145 150 155 160
Arg Lys Gln Met Gln Ser Ser Tyr Lys Arg Glu Leu His Leu Val Lys
165 170 175
Lys Ser Val Leu Arg Val Ala Leu Ile His Pro Gln Val Ser Leu Arg
180 185 190
Leu Phe Asp Ile Glu Ser Glu Asp Glu Leu Leu Tyr Thr Ile Pro Ser
195 200 205
Ser Ser Pro Leu Thr Leu Val Ser Asn Ile Leu Gly Lys Asn Val Ser
210 215 220
Ser Cys Leu His Glu Ile Ala Thr Ser Asp Lys His Phe Ala Leu Ser
225 230 235 240
Gly His Ile Ser Arg Pro Thr Asp Val Phe Cys Asn Lys Asp Phe Gln
245 250 255
Tyr Leu Tyr Ile Asn Ser Arg Phe Val Ser Lys Ser Pro Ile His Asn
260 265 270
Met Leu Asn Asn Leu Ala Ser Ser Phe Gln Ser Ser Ala Arg Asn Glu
275 280 285
Glu Ile Asp Val Arg Ser Lys Lys Arg Gln Lys Asn Glu Val Tyr Pro
290 295 300
Ala Tyr Leu Leu Asn Leu Cys Cys Pro Arg Ser Ser Tyr Asp Leu His
305 310 315 320
Phe Glu Pro Ser Gln Thr Ile Val Glu Phe Lys Asp Trp Gln Thr Val
325 330 335
Met Tyr Phe Phe Glu Arg Thr Ile Thr Asp Tyr Trp Lys Lys His Ala
340 345 350
Pro Gln Leu Pro Glu Val Lys Ala Ile Gly Asn Asp Thr Cys Val Pro
355 360 365
Leu Glu Arg Asp Val Lys Ser Ser Gln Glu Leu Leu Arg Arg His Gly
370 375 380
Val Gln Lys Lys Glu Asp Val Ala Glu Leu Tyr Gln Thr Ala Leu Gln
385 390 395 400
Lys Asn Thr Val Arg Asp Met Asn Phe Asp Thr Ala Ala Pro Ala Glu
405 410 415
Pro Lys Asp Asn Tyr Leu Ser Leu Asp Met Glu Pro Ser Thr Trp Arg
420 425 430
Ala Cys Tyr Asp Gln Ile Ser Asp Ala Ser His Thr Asp Asp Val Ala
435 440 445
Arg Asn Gly Arg Lys Phe Gly His Lys Gln Ile Cys Ser Leu Gln Ser
450 455 460
Tyr Ser Tyr Gln Trp Leu Glu Asp Gly Ser Ser Leu Leu Glu Asp Ser
465 470 475 480
Asp Leu Ser Ser Ala Asn Pro Thr Ile Cys Lys Met Gln Lys Thr Glu
485 490 495
Asp Ile Phe His Gly His Ala Tyr Ser Gly Lys Phe Gly Leu Leu Gln
500 505 510
Asp Ala Glu Ile Glu Ile Gly Pro Glu Ile Lys Leu Gln Glu Tyr Cys
515 520 525
Phe Glu Ser Pro Asn Lys Leu Asn Arg Met Thr Cys Asp Phe Val Gln
530 535 540
Lys Gln Thr Lys Ile Glu Ala His Ile Ser Gly Arg Asp Gly Phe Tyr
545 550 555 560
Val Asp Phe Asp Lys Leu Asn Glu Asp Cys Leu Leu Asn Glu Ile Ser
565 570 575
Lys Thr Ile Thr Asp Val Ser Cys Pro Gln Met Pro His Phe Asn Asp
580 585 590
Gly Leu Cys Pro Glu Asp Val Gly Ser Ser Lys Ser Ser Cys Ser Val
595 600 605
Arg Lys Ser Ser Lys Arg Gln Asn Ser Ala Asn Ala Ile Ala Gln Met
610 615 620
Lys Phe His Asp Met Gln Ala Val
625 630

Claims (5)

1. A gene for regulating fertility of female organs of rice, wherein the gene is OsMLH3 gene; the sequence of the OsMLH3 gene is a nucleotide sequence of SEQ ID NO. 3.
2. A protein encoded by the OsMLH3 gene of claim 1, wherein the amino acid sequence of the protein is the amino acid sequence of SEQ ID No. 4.
3. Use of the gene of claim 1 for regulating fertility of rice female organs.
4. The application according to claim 3, wherein the application method is as follows: OsMLH3 gene is knocked out by Cas9 technology, and a new rice female sterile restorer line is cultivated.
5. The application according to claim 3, wherein the application method is as follows: the molecular marker is used to assist in selecting, hybridizing and transferring to dark glume rice variety, so as to cultivate new rice female sterile restoring line.
CN201711195274.0A 2017-11-24 2017-11-24 Gene for regulating fertility of female organ of rice, and coding protein and application thereof Active CN109836481B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711195274.0A CN109836481B (en) 2017-11-24 2017-11-24 Gene for regulating fertility of female organ of rice, and coding protein and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711195274.0A CN109836481B (en) 2017-11-24 2017-11-24 Gene for regulating fertility of female organ of rice, and coding protein and application thereof

Publications (2)

Publication Number Publication Date
CN109836481A CN109836481A (en) 2019-06-04
CN109836481B true CN109836481B (en) 2022-01-14

Family

ID=66878026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711195274.0A Active CN109836481B (en) 2017-11-24 2017-11-24 Gene for regulating fertility of female organ of rice, and coding protein and application thereof

Country Status (1)

Country Link
CN (1) CN109836481B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046359B (en) * 2019-12-28 2022-09-09 湖南杂交水稻研究中心 Mutant gene for regulating and controlling female development of rice, protein coded by mutant gene, application and primer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863969A (en) * 2010-06-04 2010-10-20 四川农业大学 Separated rice female fertility relevant protein as well as encoding gene and application thereof
EP2554045A1 (en) * 2011-08-04 2013-02-06 Rijk Zwaan Zaadteelt en Zaadhandel B.V. Method for systemically influencing processes in the male meiocyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863969A (en) * 2010-06-04 2010-10-20 四川农业大学 Separated rice female fertility relevant protein as well as encoding gene and application thereof
EP2554045A1 (en) * 2011-08-04 2013-02-06 Rijk Zwaan Zaadteelt en Zaadhandel B.V. Method for systemically influencing processes in the male meiocyte

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IDENTIFICATION OF RESTORERS AND MAINTAINERS FOR DIFFERENT WILD ABORTIVE CYTOPLASMIC MALE STERILE LINES IN RICE (ORYZA SATIVA L.);Bhati PK et.al;《BANGLADESH JOURNAL OF BOTANY》;20170630;第46卷(第2期);第607-614页 *
三系杂交水稻育种研究的回顾与展望;任光俊等;《科学通报》;20161220;第61卷(第35期);第3748-3760页 *
水稻雌性不育分子机理研究进展;官文祥等;《分子植物育种》;20170228;第15卷(第2期);第672-684页 *

Also Published As

Publication number Publication date
CN109836481A (en) 2019-06-04

Similar Documents

Publication Publication Date Title
CN108239647B (en) Gene and molecular marker for controlling rape plant type and application
WO2013023623A1 (en) Isolation, cloning and application of pms3, a gene for photoperiod-sensitive genic male-sterility in rice
CN111333707B (en) Plant grain type related protein and coding gene and application thereof
CN109207513B (en) Application of DCM1 protein and coding gene thereof in regulation and control of male fertility of plant
CN112899247B (en) Male sterile gene ZmTKPR1 and application thereof in creating male sterile line of corn
CN112961231A (en) Male sterile gene ZmbHLH122 and application thereof in creating male sterile line of corn
CN105695477B (en) Male sterile mutant oss125 and uses thereof
CN112250741B (en) Use of protein derived from rice
CN112680461B (en) Male sterile gene ZmPHD11 and application thereof in creating male sterile line of corn
CN108570474B (en) Rice flower development gene EH1 and application thereof
CN112680459B (en) Male sterile gene ZmTGA10 and application thereof in creating male sterile line of corn
CN109836481B (en) Gene for regulating fertility of female organ of rice, and coding protein and application thereof
CN116769796B (en) ZmENR1 and application of coded protein thereof in corn fertility control
CN111286504A (en) Gene orf188 for regulating and controlling oil content of rape seeds
CN110484555B (en) Construction method of transgenic rice with multi-seed cluster character
CN107573411B (en) Application of wheat TaZIM1-7A protein in regulation and control of crop heading period
CN112195188B (en) Application of rice gene OsDES1
CN114230648B (en) Application of rice gene PANDA in improving plant yield
CN112501178B (en) Rice temperature-sensitive sterile mutant tms18 and application thereof
CN111153980B (en) Plant grain type related protein OsSDSG and coding gene and application thereof
CN110628737B (en) Related gene for regulating cucumber dwarfing character and application thereof
WO2017049834A1 (en) Photo-thermo-sensitive genic male sterile line development method by using npu gene mutation and application of photo-thermo-sensitive genic male sterile line
CN114672492B (en) Gene for regulating rice plant type and application thereof
CN112680458B (en) Male sterile gene ZmMYB33 and application thereof in creating male sterile line of corn
CN108315336B (en) Application of gene PIS1 for controlling development of rice spikelets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant