CN109182369B - Multi-herbicide-resistant expression vector, transformant and application thereof - Google Patents

Multi-herbicide-resistant expression vector, transformant and application thereof Download PDF

Info

Publication number
CN109182369B
CN109182369B CN201810875895.1A CN201810875895A CN109182369B CN 109182369 B CN109182369 B CN 109182369B CN 201810875895 A CN201810875895 A CN 201810875895A CN 109182369 B CN109182369 B CN 109182369B
Authority
CN
China
Prior art keywords
leu
ala
arg
gly
herbicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810875895.1A
Other languages
Chinese (zh)
Other versions
CN109182369A (en
Inventor
肖珍珍
沈志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810875895.1A priority Critical patent/CN109182369B/en
Publication of CN109182369A publication Critical patent/CN109182369A/en
Application granted granted Critical
Publication of CN109182369B publication Critical patent/CN109182369B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a multi-herbicide-resistant expression vector, a transformant and application thereof. The carrier contains glyphosate resistance gene G10 and multi-resistance herbicide gene ZJ 3-1. The Escherichia coli is transformed by the plant polygene expression vector to obtain an Escherichia coli transformant containing the plasmid; agrobacterium transformants containing the plasmid can be obtained by transforming agrobacterium. The agrobacterium transformant can be used for transforming plants to obtain transgenic plants resistant to various herbicides.

Description

Multi-herbicide-resistant expression vector, transformant and application thereof
Technical Field
The invention belongs to the field of plant genetic engineering, and particularly relates to a high-efficiency plant polygene expression vector, a transformant containing the vector and application of the vector.
Technical Field
Glyphosate is a broad-spectrum biocidal herbicide, is convenient to use and safe to the environment, and has the action target of chloroplast 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which can condense shikimate-3-phosphate and phosphoenolpyruvate to generate 5-enolpyruvylshikimate-3-phosphate and inorganic phosphate, and can competitively bind with the phosphoenolpyruvate, a substrate of the EPSPS, to inhibit the shikimate synthesis pathway, resulting in the synthesis of essential amino acids such as aromatic amino acids, such as tryptophan, tyrosine, phenylalanine, etc. The glyphosate has the excellent characteristics of wide weed control spectrum, quick plant absorption, easy degradation in soil, safety to people, livestock and natural environment and the like, and is the herbicide type with the largest use amount at present.
In the last decade, due to the extensive spread of transgenic glyphosate resistant crops (e.g., "Roundup Ready" corn, soybean, "GA 21" corn from Syngenta, etc.) and the ever decreasing price of glyphosate, the use of glyphosate has reached an unprecedented level. However, within only a decade of commercial application of glyphosate, weeds are resistant to glyphosate (Green and Owen, 2011). At present, more and more weeds also develop glyphosate resistance, and the high efficiency and the service life of glyphosate are seriously threatened.
Cytochrome P450(Cytochrome P450) is a multifunctional heme oxidase system and widely exists in animals, plants and microorganisms. The compound is named because the compound can be combined with CO, and the formed compound has a characteristic absorption peak at 450 nm. P450 is composed of various isoenzymes, can catalyze the mono-oxygenation activity of various hydrophobic substances, enhances the water solubility of heterologous substances, and enables the heterologous substances to be easier to be discharged out of a body. Cytochrome P450 not only catalyzes the biosynthesis of some endogenous substances with important physiological functions, such as hormones, terpenes, fatty acids and the like, but also participates in the metabolism of many exogenous substances, such as drugs, herbicides, pesticides and the like, so that the toxicity of the substances is reduced. There are a large number of cytochrome P450 enzyme lines in higher plants, for example over 300 cytochrome P450 genes in the arabidopsis genome. Compared with the animal cytochrome P450 enzyme system, the plant cytochrome P450 enzyme system has higher herbicide metabolism capability and stricter substrate specificity. Frear et al first discovered that mixed function oxidase in cotton seed microsomes can metabolize meturon (monuron), and then a great deal of research shows that the plant cytochrome P450 enzyme system is involved in the metabolism and detoxification of various herbicides. For example, CYP73A1, CYP76B1, CYP81B1 from Jerusalem artichoke (Helianthus tuberosus), CYP81B2 and CYP71A11 from tobacco, and CYP71A10 from soybean are all involved in the detoxification of some sulfonylurea herbicides, such as chlortoluron (chlorotoluron) and linuron (linuron). In 2006, Pan and the like clone from rice to obtain a cytochrome P450 gene CYP81A6, and the transgenic plant is transferred into arabidopsis thaliana and tobacco to find that the resistance of the transgenic plant to bentazon and sulfonylurea herbicides is obviously improved, and the development of herbicide-resistant transgenic crops by using the cytochrome P450 gene has wider prospects along with further research.
The large-area planting of the glyphosate-resistant crops greatly changes a weed control management system, so that the weed control is simpler and more convenient. However, with the continuous reuse of glyphosate, the original efficiency of glyphosate is greatly reduced, many weeds have resistance to glyphosate, and a glyphosate-based weed management system is in an endangered state. Therefore, the novel herbicide resistance gene is excavated and combined with the existing resistance gene to culture the second generation of multi-herbicide-resistant transgenic crops, and the method has important significance for controlling the generation of weed resistance, prolonging the service life of glyphosate and realizing the sustainable development of a crop production system.
Disclosure of Invention
The invention aims to provide a novel high-efficiency plant polygene expression vector, a transformant containing the vector and application thereof in order to cultivate more ideal multi-herbicide-resistant crops. The engineering bacteria carrying the carrier is used for transforming plants, and the transgenic plants with high resistance to various herbicides can be obtained through screening.
The technical scheme adopted by the invention is as follows:
the invention provides a multi-herbicide-resistant expression vector, which simultaneously comprises an expression frame for expressing a glyphosate-resistant gene G10 and an expression frame for expressing a herbicide degradation gene ZJ 3-1.
Furthermore, the multi-herbicide-resistant vector of the invention is preferably formed by inserting an expression frame of a glyphosate-resistant gene G10 into an XhoI site of a basic vector pCAMBIA1300 and inserting an expression frame of a multi-herbicide-resistant gene ZJ3-1 into an MCS site.
Furthermore, the nucleotide sequence of the glyphosate resistant gene G10 is shown as SEQ ID NO. 1, and the amino acid sequence is shown as SEQ ID NO. 2.
Furthermore, the nucleotide sequence of the herbicide-resistant gene ZJ3-1 is shown as SEQ ID NO. 3, and the amino acid sequence is shown as SEQ ID NO. 4.
Furthermore, the expression cassette of the glyphosate-resistant gene G10 comprises: the promoter CaMV35S of the transcription regulation region shown by SEQ ID NO. 5, the 5 ' untranslated region (TEV 5 ' UTR) shown by SEQ ID NO. 6, the Arabidopsis thaliana transduction peptide sequence CTP shown by SEQ ID NO. 7, the glyphosate resistant gene G10 shown by SEQ ID NO. 1 and the CaMV35S terminator at the 3 ' end shown by SEQ ID NO. 8 are arranged in sequence from the 5 ' end to the 3 ' end.
Further, the expression cassette of the herbicide-resistant gene ZJ3-1 comprises: the promoter CSV of the transcription regulation region shown in SEQ ID NO. 9, the coding sequence of the multi-herbicide-resistant gene ZJ3-1 shown in SEQ ID NO. 3 and the NOS terminator sequence of the 3 ' end shown in SEQ ID NO. 10 are arranged in sequence from the 5 ' end to the 3 ' end.
The invention also provides a transformant containing the multi-herbicide-resistant expression vector.
The invention relates to application of a multi-resistance herbicide expression vector in transforming plant cells, wherein the plants are rice, soybean, corn, rape, cotton and arabidopsis thaliana.
The plant polygene expression vector can be formed by inserting a glyphosate resistance gene G10 expression frame into an XhoI site of a basic vector pCAMBIA1300 and inserting a polyherbicide resistance gene ZJ3-1 expression frame into an MCS site. The basic vector pCAMBIA1300 contains left and right border sequences (LB and RB) of T-DNA in Ti plasmid, the fragment contains hygromycin resistance gene expression frame with XhoI enzyme cutting sites at two ends, the hygromycin resistance gene expression frame is replaced by a glyphosate resistant gene G10 expression frame (SEQ ID NO:11) which is artificially synthesized and is preferred according to dicotyledon codon, meanwhile, the basic vector contains Multiple Cloning Sites (MCS), and a multiple herbicide resistant gene ZJ3-1 expression frame (SEQ ID NO:12) is inserted at the MCS sites. The obtained plant polygene expression vector is named as p1300-CSV/ZJ3-1-35s/G10, the carried glyphosate-resistant gene is G10, the polyherbicide-resistant gene is ZJ3-1, and the genes are positioned in the left and right border sequences LB and RB regions of the T-DNA of the vector.
Coli TG1 was transformed with the plant multi-expression vector of the present invention to obtain E.coli transformants containing the plasmid vector.
Agrobacterium transformants containing the plasmid can be obtained by transforming Agrobacterium LBA4404 with the plant polygene expression vector. The agrobacterium transformant can be used for transforming plants to obtain transgenic plants simultaneously resistant to herbicides such as glyphosate, flazasulfuron, mesotrione, dicamba and the like.
The agrobacterium transformant containing the plasmid vector obtained by transforming agrobacterium LBA4404 by the plant polygene expression vector is used for transforming soybean, corn, rice, rape, cotton or arabidopsis thaliana, and glyphosate is used as a screening marker for screening, so that soybean, corn, rice, rape, cotton or arabidopsis thaliana plants which simultaneously resist herbicides such as glyphosate, flazasulfuron, mesotrione, dicamba and the like can be obtained.
Compared with the prior art, the invention has the following beneficial effects:
the invention combines the glyphosate-resistant gene and the ZJP450 gene for use, and the obtained transgenic plant can weed by using the glyphosate, can use the herbicides which can be degraded by the ZJP450, such as the herbicides of flazasulfuron, mesotrione, dicamba and the like, and can also weed by using the mixed herbicides. The plant obtained by transformation can provide new resources for culturing new generation of transgenic herbicide-resistant crops, avoids the occurrence of weed resistance caused by large-scale long-time repeated use of the same herbicide, and has important significance for prolonging the service life of glyphosate and realizing the sustainable development of modern crop production systems.
Drawings
FIG. 1 is a schematic diagram of a p1300-CSV/ZJ3-1-35s/G10 plant polyvalent gene expression plasmid containing G10 gene and ZJ3-1 gene.
Detailed Description
EXAMPLE 1 construction of plant multivalent expression vectors
The plasmid pCAMBIA1300(NCBI gene bank Access: AF234296.1) is cut by XhoI according to the enzyme digestion reaction and electrophoresis system shown in Table 1 to remove hygromycin resistance gene, and FastAP is added to dephosphorize the enzyme digestion product, and the vector fragment is recovered after agarose gel electrophoresis: 1300-35S (X, AP).
The TEV 5' untranslated region (SEQ ID NO:6) and an Arabidopsis thaliana transduction peptide sequence CTP (SEQ ID NO:7) are functionally spliced together, namely TEV-CTP-G10(SEQ ID NO:11), a TEV-CTP-G10(SEQ ID NO:11) is artificially synthesized, the synthesized gene is cloned to a pUC57 vector, and the obtained vector is named pUC 57-G10.
TEV-CTP-G10 was excised from pUC57-G10 using XhoI, ligated to 1300-35S (XhoI, AP), the ligation product transformed E.coli strain TG1, clones were selected and correctly oriented clones identified as p 1300-35S/G10.
The functional splicing of ZJ3-1(SEQ ID NO:3) and the NOS terminator (SEQ ID NO:10) gave ZJ3-1-NOSter (SEQ ID NO:12), SEQ ID NO:12 was artificially synthesized and cloned into pUC57, and the resulting vector was designated as pUC57-ZJ 3-1-NOSter. ZJ3-1-NOSter was digested simultaneously with (BamHI, Kpn I) from pUC57-ZJ3-1-NOSter vector according to the double digestion reaction and electrophoresis conditions shown in Table 1, and the fragment ZJ3-1-NOSter (BamHI, Kpn I) was recovered by agarose gel electrophoresis.
The CSV promoter (SEQ ID NO:9) was synthesized and cloned into the pUC57 vector, designated pUC 57-CSV. The synthetic CSV promoter sequence was double-digested with (Hind III, BamHI) from pUC57 vector according to the double-digestion reaction and electrophoresis conditions shown in Table 1, and the fragment CSV (Hind III, BamHI) was recovered by agarose gel electrophoresis.
The plasmid p1300-35s/G10 was digested simultaneously with HindIII and KpnI according to the double digestion reaction and electrophoresis conditions shown in Table 1, and the vector fragment p1300-35s/G10(HindIII and KpnI) was recovered after agarose gel electrophoresis.
The final vector p1300-CSV-ZJ3-1-35S/G10 (see FIG. 1) was obtained by ligating the fragment ZJ3-1-NOSter (BamHI, Kpn I), CSV (Hind III, BamHI) and the vector fragment p1300-35S/G10(Hind III, Kpn I) with T4 ligase (see Table 3 for ligation reaction).
TABLE 1 digestion and electrophoresis System
Figure BDA0001753246030000051
After incubation at 37 ℃ for 1-1.5 hours, 1.0% agarose gel electrophoresis was performed using 1 XTAE (0.04mol/L Tris-acetate, 0.001mol/L EDTA) electrophoresis buffer, and EB (ethidium bromide) was added to the agarose gel electrophoresis to a final concentration of 0.5. mu.g/ml, followed by electrophoresis at a voltage of 3-5V/cm.
TABLE 2 two-segment ligation reaction System
Figure BDA0001753246030000052
Ligation was performed overnight at 16 ℃.
TABLE 3 three-fragment ligation reaction System
Figure BDA0001753246030000053
Ligation was performed overnight at 16 ℃.
Example 2 obtaining of E.coli transformant
E, transformation of escherichia coli: adding 10ul of the ligation product (multivalent plasmid vector p1300-CSV/ZJ3-1-35s/G10) in example 1 into an escherichia coli TG1 competent cell, gently mixing uniformly, and standing on ice for about 30 min; ② the heating is carried out for 90s at 42 ℃, and then the mixture is rapidly placed on ice for cooling for 2 min; ③ 1ml of antibiotic-free sterilized LB liquid Medium (10g of peptone, 5g of yeast extract, 10g of NaCl, 1L H)2O), placing the mixture into an incubator at 37 ℃ for about 1 hour; fourthly, centrifuging for 3min at 4000rpm, discarding the supernatant, and uniformly mixing the residual LB culture solution at the bottom of the centrifugal tube and the escherichia coli by using a gun head; evenly coating the bacterial liquid on an LB solid culture medium (containing 50 mug/L kanamycin) containing corresponding antibiotics, firstly placing the bacterial liquid in an incubator at 37 ℃ from the front side upwards for 1h until the bacterial liquid is completely absorbed, and then carrying out inverted culture for about 8-10h until white bacterial colonies appear.
And (3) selecting a single colony, shaking the bacteria overnight, extracting plasmids by adopting an Axygene Miniprep plasmid Miniprep kit, selecting positive plasmids after PCR and enzyme digestion detection, and storing corresponding colonies, namely transformants.
Example 3 transformation of Agrobacterium tumefaciens LBA4404
Electric shock transformation of agrobacterium tumefaciens: taking the multivalent plasmid vector p1300-CSV/ZJ3-1-35S/G10, 1ul in the example 2, adding the multivalent plasmid vector into the competent cells of the agrobacterium tumefaciens LBA4404, uniformly mixing, and adding into an electric shock cup (Eppendorf); secondly, the electric shock cup is put into a sample groove of the electric shock instrument according to the electric shock cup electrodesSelecting proper voltage electric shock (1.8mm 1800V, 2.0mm 2500V) from the size, and converting the electric shock; ③ to the shocked Agrobacterium cells, 1ml of YEP liquid medium (10g peptone, 10g yeast extract, 5g NaCl, 1L H) without antibiotics was added2O), mixing evenly, transferring the mixture into a sterilized 1.5ml centrifuge tube, and culturing for about 3 hours at the temperature of 28 ℃; fourthly, the bacterial liquid is centrifuged for 3min at 4000rpm, and the supernatant is discarded. The residual YEP liquid medium and the precipitated cells were mixed well and spread evenly on YEP solid medium plates (10g peptone, 10g yeast extract, 5g NaCl, 15g agar, 1L H) containing 12mg/L tetracycline and 50mg/L kanamycin2O), placing the mixture in an incubator at 28 ℃ for 1h with the front side facing upwards until the bacteria liquid is completely absorbed, and then carrying out inverted culture for about 36-48h until bacterial colonies appear.
A single colony is picked (which is confirmed to contain a multivalent plasmid vector p1300-CSV/ZJ3-1-35s/G10 by enzyme digestion and PCR detection), and the obtained agrobacterium strain is named as C3G.
Example 4 acquisition of transgenic plants
The arabidopsis transformation adopts an agrobacterium-mediated inflorescence dipping method: drawing lines on a YEP solid culture medium containing 50mg/L kanamycin and 12mg/L tetracycline for agrobacterium tumefaciens C3G with a T-DNA plasmid p1300-CSV/ZJ3-1-35S/G10, and carrying out dark culture at 28 ℃ for 2 d; selecting a single clone to 2-3ml of YEP liquid culture medium containing corresponding antibiotics, and carrying out dark culture at 28 ℃ and 220rpm for 24-27 h; ③ according to the volume ratio of 1: transferring the bacterial liquid to 250ml of YEP culture solution containing corresponding antibiotics according to a proportion of 100, carrying out dark culture at 28 ℃ and 220rpm for about 13-16h until OD600 reaches 1.5-2.0, and collecting the bacteria at 4 ℃, 5000rpm and 5 min; fourthly, the supernatant is poured off, the cells are resuspended in the transformation fluid, and OD is adjusted600About 0.8. Preparation of transformation liquid: 2.21g of MS powder, 5g of cane sugar, Silwet L-771 ml and H2O1L. Transforming Arabidopsis thaliana plant. The plant is watered thoroughly one day before transformation, inflorescences are immersed in transformation liquid for 20s, the plant is wrapped by a preservative film to preserve moisture, and then the plant is directly placed into an incubator with proper temperature for dark culture for 18-24h, watered and normally cultured, and the transformation is carried out once again after one week.
Example 5 herbicide resistance assay
The arabidopsis thaliana T0 generation seeds obtained by transformation in example 4 were germinated and harvested to obtain T1 generation seeds, which were sprayed with 1: the glyphosate resistance of transgenic plants was initially determined by 200 dilutions of agroda (41% aqueous glyphosate). Subsequently, the resistant plants were sprayed with different kinds of herbicides, respectively: mesotrione 200mg/L (10% suspending agent, piondard), dicamba 300mg/L (48% aqueous solution, sublimed bayer), and flazasulfuron 300mg/L (25% water dispersible granule, japaneth).
The results showed that 18 out of 20 transgenic arabidopsis lines had excellent resistance to glyphosate, and the controls sprayed with glyphosate all died. Of 18 well glyphosate resistant Arabidopsis lines: the 5 strains have good resistance to mesotrione, dicamba and flazasulfuron, and can tolerate 200mg/L of mesotrione, 300mg/L of dicamba and 300mg/L of flazasulfuron without influencing the growth; 10 strains show mild symptoms to mesotrione, dicamba and flazasulfuron, and can be recovered after a short period of time; there were 3 lines that were substantially non-resistant to mesotrione, dicamba, flazasulfuron and the non-transgenic controls to which the corresponding herbicide was applied.
The determination result shows that the resistance of the transgenic arabidopsis thaliana to glyphosate, mesotrione, dicamba and flazasulfuron is generally improved.
Example 7 resistance analysis of transgenic Arabidopsis thaliana to Mixed herbicides
The 18 transgenic arabidopsis thaliana with glyphosate resistance obtained in example 6 were sprayed with mixed herbicide (glyphosate diluted 200 times to the agricultural standard, flazasulfuron 100mg/L, dicamba 100mg/L) at the 3-4 leaf stage, and after 14 days, 5 strains were found to have no obvious phytotoxicity, 10 strains had mild phytotoxicity, 3 strains had serious phytotoxicity, and none of the transgenic controls were dead.
The determination result shows that the transgenic arabidopsis thaliana grows well generally under the condition of mixing and spraying different herbicides.
Finally, it is also noted that the above-mentioned lists merely illustrate a few specific embodiments of the invention. It is obvious that the invention is not limited to the above embodiments, but that many variations are possible. All modifications which can be derived or suggested by a person skilled in the art from the disclosure of the present invention are to be considered within the scope of the invention.
Sequence listing
<110> Zhejiang university
<120> multi-herbicide-resistant expression vector, transformant and application thereof
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1317
<212> DNA
<213> Unknown (Unknown)
<400> 1
gacgctcttc cagctacctt cgacgttatc gtgcatccag ctagagaact cagaggtgaa 60
cttagagcac agccatccaa gaactacacc actagatacc tcctcgccgc tgctctcgct 120
gagggtgaaa ccagagttgt tggtgtggct acctctgagg atgccgaagc tatgctcaga 180
tgcctcagag attggggtgc tggtgttgag cttgttggtg atgacgccgt gatcagaggt 240
ttcggtgcta gaccacaggc tggtgttacc cttaacccag gtaacgctgc tgcggtggcc 300
agactcctta tgggtgttgc tgctctcacc tctggtacaa ctttcgttac cgattaccct 360
gattcccttg gtaagagacc tcagggtgac cttcttgaag ccctcgaaag acttggtgct 420
tgggtgtcct ccaacgatgg tagactccct atctccgttt ccggtccagt tagaggtggt 480
acagtggagg tttccgccga aagatcctcc cagtacgctt ccgcccttat gttcctcggt 540
cctcttcttc ctgacggact cgaacttaga ctcaccggtg atatcaagtc ccacgctcct 600
cttagacaga cacttgacac cctctctgat ttcggtgtta gagctactgc ctccgatgac 660
cttagaagaa tctccatccc tggtggtcag aagtacagac caggtagagt gctcgttcct 720
ggtgattacc ctggttccgc tgctatcctt accgccgctg ctcttctccc aggtgaggtt 780
agactttcta accttagaga acacgacctc cagggtgaga aggaagctgt gaacgttctt 840
agagagatgg gtgctgatat cgttagagaa ggtgataccc ttaccgtgag aggtggtaga 900
cctctccacg ctgttactag agatggtgat tccttcaccg acgccgtgca agctcttacc 960
gctgctgctg ccttcgctga gggtgatacc acctgggaaa acgttgctac tcttagactc 1020
aaggaatgcg atagaatctc tgacaccaga gctgagcttg aaagacttgg tcttagagca 1080
agagagaccg ccgattctct ctccgttact ggttctgctc accttgctgg tggtatcacc 1140
gctgatggtc acggtgacca cagaatgatc atgcttctca cccttcttgg tctcagagca 1200
gatgctccac ttagaatcac cggtgcacac cacatcagaa agtcctaccc tcagttcttc 1260
gctcaccttg aagctcttgg tgctagattc gaatacgctg aggctaccgc ctaatag 1317
<210> 2
<211> 437
<212> PRT
<213> Unknown (Unknown)
<400> 2
Asp Ala Leu Pro Ala Thr Phe Asp Val Ile Val His Pro Ala Arg Glu
1 5 10 15
Leu Arg Gly Glu Leu Arg Ala Gln Pro Ser Lys Asn Tyr Thr Thr Arg
20 25 30
Tyr Leu Leu Ala Ala Ala Leu Ala Glu Gly Glu Thr Arg Val Val Gly
35 40 45
Val Ala Thr Ser Glu Asp Ala Glu Ala Met Leu Arg Cys Leu Arg Asp
50 55 60
Trp Gly Ala Gly Val Glu Leu Val Gly Asp Asp Ala Val Ile Arg Gly
65 70 75 80
Phe Gly Ala Arg Pro Gln Ala Gly Val Thr Leu Asn Pro Gly Asn Ala
85 90 95
Ala Ala Val Ala Arg Leu Leu Met Gly Val Ala Ala Leu Thr Ser Gly
100 105 110
Thr Thr Phe Val Thr Asp Tyr Pro Asp Ser Leu Gly Lys Arg Pro Gln
115 120 125
Gly Asp Leu Leu Glu Ala Leu Glu Arg Leu Gly Ala Trp Val Ser Ser
130 135 140
Asn Asp Gly Arg Leu Pro Ile Ser Val Ser Gly Pro Val Arg Gly Gly
145 150 155 160
Thr Val Glu Val Ser Ala Glu Arg Ser Ser Gln Tyr Ala Ser Ala Leu
165 170 175
Met Phe Leu Gly Pro Leu Leu Pro Asp Gly Leu Glu Leu Arg Leu Thr
180 185 190
Gly Asp Ile Lys Ser His Ala Pro Leu Arg Gln Thr Leu Asp Thr Leu
195 200 205
Ser Asp Phe Gly Val Arg Ala Thr Ala Ser Asp Asp Leu Arg Arg Ile
210 215 220
Ser Ile Pro Gly Gly Gln Lys Tyr Arg Pro Gly Arg Val Leu Val Pro
225 230 235 240
Gly Asp Tyr Pro Gly Ser Ala Ala Ile Leu Thr Ala Ala Ala Leu Leu
245 250 255
Pro Gly Glu Val Arg Leu Ser Asn Leu Arg Glu His Asp Leu Gln Gly
260 265 270
Glu Lys Glu Ala Val Asn Val Leu Arg Glu Met Gly Ala Asp Ile Val
275 280 285
Arg Glu Gly Asp Thr Leu Thr Val Arg Gly Gly Arg Pro Leu His Ala
290 295 300
Val Thr Arg Asp Gly Asp Ser Phe Thr Asp Ala Val Gln Ala Leu Thr
305 310 315 320
Ala Ala Ala Ala Phe Ala Glu Gly Asp Thr Thr Trp Glu Asn Val Ala
325 330 335
Thr Leu Arg Leu Lys Glu Cys Asp Arg Ile Ser Asp Thr Arg Ala Glu
340 345 350
Leu Glu Arg Leu Gly Leu Arg Ala Arg Glu Thr Ala Asp Ser Leu Ser
355 360 365
Val Thr Gly Ser Ala His Leu Ala Gly Gly Ile Thr Ala Asp Gly His
370 375 380
Gly Asp His Arg Met Ile Met Leu Leu Thr Leu Leu Gly Leu Arg Ala
385 390 395 400
Asp Ala Pro Leu Arg Ile Thr Gly Ala His His Ile Arg Lys Ser Tyr
405 410 415
Pro Gln Phe Phe Ala His Leu Glu Ala Leu Gly Ala Arg Phe Glu Tyr
420 425 430
Ala Glu Ala Thr Ala
435
<210> 3
<211> 1551
<212> DNA
<213> Unknown (Unknown)
<400> 3
atggataagg cttatgttgc tattctttct ttcgctttct tcttcgttct tcattatctt 60
attggaagag gaaacggaac ttggaaggct ggaaagggaa gacaacttcc accatctcca 120
ccagctcttc cacttattgg acatcttcat cttgttaaga ctccattcca tgctgctctt 180
gctagacttg ctgcttgcag aggaccagtt ttctctctta gaatgggatc tagaccagct 240
gttgtggttt cttctccaga ttgcgctaga gagtgcttca ctgatcatga tgttgctttc 300
gctaacagac cacttttccc aactcttcaa cttgtttctt tcaacggagc tgctctttct 360
actgcttctt atggaccata ttggagagat cttagaagag ttgcttctgt tcatctcctt 420
tctgctcata gagttaactg catggctgga actatttctg ctgaggttag agctatggtt 480
agaagaatgt ctagagctgc tgctgctgct ccaggaggag ctgctagaat tgagcttaag 540
agaagacttt tcgaggtttc tctttctgtt cttatggaga ctattgctag aactaagact 600
tctagaactg aggctgatga tgatactgat atgtctccag aggctagaga gttcaagcaa 660
attgttgatg agcttcttcc acatcttgga actgctaacc tttgggatta tatgccagtt 720
cttagatggt tcgatgtttt cggagttaga aagaagattg tttctgctgt tagaaggaga 780
gatgctttcc ttagacatct tgttgatgct gagagaacta gacttgatga tggaaacgat 840
gctggagaga agaagtctat tattgctatg cttctcactc ttcaaaagtc tgagccagat 900
gtttattctg atactatgat tatggctctt tgcggaaacc ttttcggagc tggaactgag 960
actacttcta ctacaactga gtgggctatg tctctccttc ttaaccatcc agagaagctc 1020
agaaaggctc aagctgagat tgatgctgtt gttggaactt ctagacttct tactgctgat 1080
gatatgccaa gacttactta tcttagatgc attattgatg agactatgag actttatcca 1140
gctgctccac ttctccttcc acatgagtct tctactcatt gcaaggttgg aggatatgat 1200
gttccagctg gaactatgct tcttgttaac gtttatgcta ttcatagaga tccagctgtt 1260
tgggatggac caactgagtt cgttccagag agattcgagg atggaaaggc tgagggaaga 1320
cttcttatgc cattcggaat gggaagaaga aagtgcccag gagagactct tgctcttaga 1380
actattggac ttgttcttgg aactcttatt caatgcttcg attgggatag agttgatgga 1440
cttgaggttg atatgactga gtctggagga cttactattc caagagctgt tccacttgag 1500
gctatgtgca gaccaagagc tactatgaga gaggttcttc aagagcttta a 1551
<210> 4
<211> 516
<212> PRT
<213> Unknown (Unknown)
<400> 4
Met Asp Lys Ala Tyr Val Ala Ile Leu Ser Phe Ala Phe Phe Phe Val
1 5 10 15
Leu His Tyr Leu Ile Gly Arg Gly Asn Gly Thr Trp Lys Ala Gly Lys
20 25 30
Gly Arg Gln Leu Pro Pro Ser Pro Pro Ala Leu Pro Leu Ile Gly His
35 40 45
Leu His Leu Val Lys Thr Pro Phe His Ala Ala Leu Ala Arg Leu Ala
50 55 60
Ala Cys Arg Gly Pro Val Phe Ser Leu Arg Met Gly Ser Arg Pro Ala
65 70 75 80
Val Val Val Ser Ser Pro Asp Cys Ala Arg Glu Cys Phe Thr Asp His
85 90 95
Asp Val Ala Phe Ala Asn Arg Pro Leu Phe Pro Thr Leu Gln Leu Val
100 105 110
Ser Phe Asn Gly Ala Ala Leu Ser Thr Ala Ser Tyr Gly Pro Tyr Trp
115 120 125
Arg Asp Leu Arg Arg Val Ala Ser Val His Leu Leu Ser Ala His Arg
130 135 140
Val Asn Cys Met Ala Gly Thr Ile Ser Ala Glu Val Arg Ala Met Val
145 150 155 160
Arg Arg Met Ser Arg Ala Ala Ala Ala Ala Pro Gly Gly Ala Ala Arg
165 170 175
Ile Glu Leu Lys Arg Arg Leu Phe Glu Val Ser Leu Ser Val Leu Met
180 185 190
Glu Thr Ile Ala Arg Thr Lys Thr Ser Arg Thr Glu Ala Asp Asp Asp
195 200 205
Thr Asp Met Ser Pro Glu Ala Arg Glu Phe Lys Gln Ile Val Asp Glu
210 215 220
Leu Leu Pro His Leu Gly Thr Ala Asn Leu Trp Asp Tyr Met Pro Val
225 230 235 240
Leu Arg Trp Phe Asp Val Phe Gly Val Arg Lys Lys Ile Val Ser Ala
245 250 255
Val Arg Arg Arg Asp Ala Phe Leu Arg His Leu Val Asp Ala Glu Arg
260 265 270
Thr Arg Leu Asp Asp Gly Asn Asp Ala Gly Glu Lys Lys Ser Ile Ile
275 280 285
Ala Met Leu Leu Thr Leu Gln Lys Ser Glu Pro Asp Val Tyr Ser Asp
290 295 300
Thr Met Ile Met Ala Leu Cys Gly Asn Leu Phe Gly Ala Gly Thr Glu
305 310 315 320
Thr Thr Ser Thr Thr Thr Glu Trp Ala Met Ser Leu Leu Leu Asn His
325 330 335
Pro Glu Lys Leu Arg Lys Ala Gln Ala Glu Ile Asp Ala Val Val Gly
340 345 350
Thr Ser Arg Leu Leu Thr Ala Asp Asp Met Pro Arg Leu Thr Tyr Leu
355 360 365
Arg Cys Ile Ile Asp Glu Thr Met Arg Leu Tyr Pro Ala Ala Pro Leu
370 375 380
Leu Leu Pro His Glu Ser Ser Thr His Cys Lys Val Gly Gly Tyr Asp
385 390 395 400
Val Pro Ala Gly Thr Met Leu Leu Val Asn Val Tyr Ala Ile His Arg
405 410 415
Asp Pro Ala Val Trp Asp Gly Pro Thr Glu Phe Val Pro Glu Arg Phe
420 425 430
Glu Asp Gly Lys Ala Glu Gly Arg Leu Leu Met Pro Phe Gly Met Gly
435 440 445
Arg Arg Lys Cys Pro Gly Glu Thr Leu Ala Leu Arg Thr Ile Gly Leu
450 455 460
Val Leu Gly Thr Leu Ile Gln Cys Phe Asp Trp Asp Arg Val Asp Gly
465 470 475 480
Leu Glu Val Asp Met Thr Glu Ser Gly Gly Leu Thr Ile Pro Arg Ala
485 490 495
Val Pro Leu Glu Ala Met Cys Arg Pro Arg Ala Thr Met Arg Glu Val
500 505 510
Leu Gln Glu Leu
515
<210> 5
<211> 799
<212> DNA
<213> Unknown (Unknown)
<400> 5
ctagagcagc ttgccaacat ggtggagcac gacactctcg tctactccaa gaatatcaaa 60
gatacagtct cagaagacca aagggctatt gagacttttc aacaaagggt aatatcggga 120
aacctcctcg gattccattg cccagctatc tgtcacttca tcaaaaggac agtagaaaag 180
gaaggtggca cctacaaatg ccatcattgc gataaaggaa aggctatcgt tcaagatgcc 240
tctgccgaca gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa 300
gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg ataacatggt ggagcacgac 360
actctcgtct actccaagaa tatcaaagat acagtctcag aagaccaaag ggctattgag 420
acttttcaac aaagggtaat atcgggaaac ctcctcggat tccattgccc agctatctgt 480
cacttcatca aaaggacagt agaaaaggaa ggtggcacct acaaatgcca tcattgcgat 540
aaaggaaagg ctatcgttca agatgcctct gccgacagtg gtcccaaaga tggaccccca 600
cccacgagga gcatcgtgga aaaagaagac gttccaacca cgtcttcaaa gcaagtggat 660
tgatgtgata tctccactga cgtaagggat gacgcacaat cccactatcc ttcgcaagac 720
cttcctctat ataaggaagt tcatttcatt tggagaggac acgctgaaat caccagtctc 780
tctctacaaa tctatctct 799
<210> 6
<211> 129
<212> DNA
<213> Unknown (Unknown)
<400> 6
tcaacacaac atatacaaaa caaacgaatc tcaagcaatc aagcattcta cttctattgc 60
agcaatttaa atcatttctt ttaaagcaaa agcaattttc tgaaaatttt caccatttac 120
gaacgatag 129
<210> 7
<211> 231
<212> DNA
<213> Unknown (Unknown)
<400> 7
atggctcaag ttagcagaat ctgcaatggt gtgcagaacc catctcttat ctccaatctc 60
tctaaatcca gtcaaaggaa atctccctta tcggtttctc tgaagactca gcagcatcca 120
cgagcttatc caatttcttc atcttgggga ttgaagaaga gtgggatgac tttaattggc 180
tctgagcttc gtcctcttaa ggtcatgtct tctgtttcca cggcggagaa g 231
<210> 8
<211> 185
<212> DNA
<213> Unknown (Unknown)
<400> 8
tttctccata ataatgtgtg agtagttccc agataaggga attagggttc ctatagggtt 60
tcgctcatgt gttgagcata taagaaaccc ttagtatgta tttgtatttg taaaatactt 120
ctatcaataa aatttctaat tcctaaaacc aaaatccagt actaaaatcc agatcccccg 180
aatta 185
<210> 9
<211> 700
<212> DNA
<213> Unknown (Unknown)
<400> 9
aagcttccag aaggtaatta tccaagatgt agcatcaaga atccaatgtt tacgggaaaa 60
actatggaag tattatgtga actcagcaag aagcagatca atatgcggca catatgcaac 120
ctatgttcaa aaatgaagaa tgtacagata caagatccta tactgccaga atacgaagaa 180
gaatacgtag aaattgaaaa agaagaacca ggcgaagaaa agaatcttga agacgtaagc 240
actgacgaca acaatgaaaa gaagaagata aggtcggtga ttgtgaaaga gacatagagg 300
acacatgtaa ggtggaaaat gtaagggcgg aaagtaacct tatcacaaag gaatcttatc 360
ccccactact tatcctttta tatttttccg tgtcactagt gaagacgtaa gcactgacga 420
caacaatgaa aagaagaaga taaggtcggt gattgtgaaa gagacataga ggacacatgt 480
aaggtggaaa atgtaagggc ggaaagtaac cttatcacaa aggaatctta tcccccacta 540
cttatccttt tatatttttc cgtgtcattt ttgcccttga gttttcctat ataaggaacc 600
aagttcggca tttgtgaaaa caagaaaaaa tttggtgtaa gctattttct ttgaagtact 660
gaggatacaa cttcagagaa atttgtaagt ttgtggatcc 700
<210> 10
<211> 266
<212> DNA
<213> Unknown (Unknown)
<400> 10
gtcgacgagc tcttcaaaca tttggcaata aagtttctta agattgaatc ctgttgccgg 60
tcttgcgatg attatcatat aatttctgtt gaattacgtt aagcatgtaa taattaacat 120
gtaatgcatg acgttattta tgagatgggt ttttatgatt agagtcccgc aattatacat 180
ttaatacgcg atagaaaaca aaatatagcg cgcaaactag gataaattat cgcgcgcggt 240
gtcatctatg ttactagatc ggtacc 266
<210> 11
<211> 1700
<212> DNA
<213> Unknown (Unknown)
<400> 11
ctcgagtcaa cacaacatat acaaaacaaa cgaatctcaa gcaatcaagc attctacttc 60
tattgcagca atttaaatca tttcttttaa agcaaaagca attttctgaa aattttcacc 120
atttacgaac gatagccatg gctcaagtta gcagaatctg caatggtgtg cagaacccat 180
ctcttatctc caatctctct aaatccagtc aaaggaaatc tcccttatcg gtttctctga 240
agactcagca gcatccacga gcttatccaa tttcttcatc ttggggattg aagaagagtg 300
ggatgacttt aattggctct gagcttcgtc ctcttaaggt catgtcttct gtttccacgg 360
cggagaaggg atccgacgct cttccagcta ccttcgacgt tatcgtgcat ccagctagag 420
aactcagagg tgaacttaga gcacagccat ccaagaacta caccactaga tacctcctcg 480
ccgctgctct cgctgagggt gaaaccagag ttgttggtgt ggctacctct gaggatgccg 540
aagctatgct cagatgcctc agagattggg gtgctggtgt tgagcttgtt ggtgatgacg 600
ccgtgatcag aggtttcggt gctagaccac aggctggtgt tacccttaac ccaggtaacg 660
ctgctgcggt ggccagactc cttatgggtg ttgctgctct cacctctggt acaactttcg 720
ttaccgatta ccctgattcc cttggtaaga gacctcaggg tgaccttctt gaagccctcg 780
aaagacttgg tgcttgggtg tcctccaacg atggtagact ccctatctcc gtttccggtc 840
cagttagagg tggtacagtg gaggtttccg ccgaaagatc ctcccagtac gcttccgccc 900
ttatgttcct cggtcctctt cttcctgacg gactcgaact tagactcacc ggtgatatca 960
agtcccacgc tcctcttaga cagacacttg acaccctctc tgatttcggt gttagagcta 1020
ctgcctccga tgaccttaga agaatctcca tccctggtgg tcagaagtac agaccaggta 1080
gagtgctcgt tcctggtgat taccctggtt ccgctgctat ccttaccgcc gctgctcttc 1140
tcccaggtga ggttagactt tctaacctta gagaacacga cctccagggt gagaaggaag 1200
ctgtgaacgt tcttagagag atgggtgctg atatcgttag agaaggtgat acccttaccg 1260
tgagaggtgg tagacctctc cacgctgtta ctagagatgg tgattccttc accgacgccg 1320
tgcaagctct taccgctgct gctgccttcg ctgagggtga taccacctgg gaaaacgttg 1380
ctactcttag actcaaggaa tgcgatagaa tctctgacac cagagctgag cttgaaagac 1440
ttggtcttag agcaagagag accgccgatt ctctctccgt tactggttct gctcaccttg 1500
ctggtggtat caccgctgat ggtcacggtg accacagaat gatcatgctt ctcacccttc 1560
ttggtctcag agcagatgct ccacttagaa tcaccggtgc acaccacatc agaaagtcct 1620
accctcagtt cttcgctcac cttgaagctc ttggtgctag attcgaatac gctgaggcta 1680
ccgcctaata ggagctcgag 1700
<210> 12
<211> 1827
<212> DNA
<213> Unknown (Unknown)
<400> 12
ggatccaaca atggataagg cttatgttgc tattctttct ttcgctttct tcttcgttct 60
tcattatctt attggaagag gaaacggaac ttggaaggct ggaaagggaa gacaacttcc 120
accatctcca ccagctcttc cacttattgg acatcttcat cttgttaaga ctccattcca 180
tgctgctctt gctagacttg ctgcttgcag aggaccagtt ttctctctta gaatgggatc 240
tagaccagct gttgtggttt cttctccaga ttgcgctaga gagtgcttca ctgatcatga 300
tgttgctttc gctaacagac cacttttccc aactcttcaa cttgtttctt tcaacggagc 360
tgctctttct actgcttctt atggaccata ttggagagat cttagaagag ttgcttctgt 420
tcatctcctt tctgctcata gagttaactg catggctgga actatttctg ctgaggttag 480
agctatggtt agaagaatgt ctagagctgc tgctgctgct ccaggaggag ctgctagaat 540
tgagcttaag agaagacttt tcgaggtttc tctttctgtt cttatggaga ctattgctag 600
aactaagact tctagaactg aggctgatga tgatactgat atgtctccag aggctagaga 660
gttcaagcaa attgttgatg agcttcttcc acatcttgga actgctaacc tttgggatta 720
tatgccagtt cttagatggt tcgatgtttt cggagttaga aagaagattg tttctgctgt 780
tagaaggaga gatgctttcc ttagacatct tgttgatgct gagagaacta gacttgatga 840
tggaaacgat gctggagaga agaagtctat tattgctatg cttctcactc ttcaaaagtc 900
tgagccagat gtttattctg atactatgat tatggctctt tgcggaaacc ttttcggagc 960
tggaactgag actacttcta ctacaactga gtgggctatg tctctccttc ttaaccatcc 1020
agagaagctc agaaaggctc aagctgagat tgatgctgtt gttggaactt ctagacttct 1080
tactgctgat gatatgccaa gacttactta tcttagatgc attattgatg agactatgag 1140
actttatcca gctgctccac ttctccttcc acatgagtct tctactcatt gcaaggttgg 1200
aggatatgat gttccagctg gaactatgct tcttgttaac gtttatgcta ttcatagaga 1260
tccagctgtt tgggatggac caactgagtt cgttccagag agattcgagg atggaaaggc 1320
tgagggaaga cttcttatgc cattcggaat gggaagaaga aagtgcccag gagagactct 1380
tgctcttaga actattggac ttgttcttgg aactcttatt caatgcttcg attgggatag 1440
agttgatgga cttgaggttg atatgactga gtctggagga cttactattc caagagctgt 1500
tccacttgag gctatgtgca gaccaagagc tactatgaga gaggttcttc aagagcttta 1560
agtcgacgag ctcttcaaac atttggcaat aaagtttctt aagattgaat cctgttgccg 1620
gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta ataattaaca 1680
tgtaatgcat gacgttattt atgagatggg tttttatgat tagagtcccg caattataca 1740
tttaatacgc gatagaaaac aaaatatagc gcgcaaacta ggataaatta tcgcgcgcgg 1800
tgtcatctat gttactagat cggtacc 1827

Claims (4)

1. A multi-herbicide-resistant expression vector is characterized in that the vector is formed by inserting an glyphosate-resistant gene G10 expression frame into an XhoI site of a basic vector pCAMBIA1300 and inserting a multi-herbicide-resistant gene ZJ3-1 expression frame into an MCS site; the expression cassette of the glyphosate-resistant gene G10 comprises: the promoter CaMV35S of the transcription regulation region shown by SEQ ID NO. 5, the 5 'untranslated region shown by SEQ ID NO. 6, the Arabidopsis thaliana transduction peptide sequence CTP shown by SEQ ID NO. 7, the glyphosate resistant gene G10 shown by SEQ ID NO. 1 and the CaMV35S terminator at the 3' end shown by SEQ ID NO. 8 are arranged in sequence from the 5 'end to the 3' end; the expression cassette of the herbicide-resistant gene ZJ3-1 comprises: the promoter CSV of the transcription regulation region shown in SEQ ID NO. 9, the coding sequence of the multi-herbicide-resistant gene ZJ3-1 shown in SEQ ID NO. 3 and the NOS terminator sequence of the 3 ' end shown in SEQ ID NO. 10 are arranged in sequence from the 5 ' end to the 3 ' end.
2. A transformant containing the multi-herbicide-resistant expression vector of claim 1.
3. Use of the multi-herbicide-resistant expression vector of claim 1 for transforming plant cells.
4. Use according to claim 3, characterized in that the plant is soybean, maize, rice, rape, cotton, Arabidopsis thaliana.
CN201810875895.1A 2018-08-03 2018-08-03 Multi-herbicide-resistant expression vector, transformant and application thereof Active CN109182369B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810875895.1A CN109182369B (en) 2018-08-03 2018-08-03 Multi-herbicide-resistant expression vector, transformant and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810875895.1A CN109182369B (en) 2018-08-03 2018-08-03 Multi-herbicide-resistant expression vector, transformant and application thereof

Publications (2)

Publication Number Publication Date
CN109182369A CN109182369A (en) 2019-01-11
CN109182369B true CN109182369B (en) 2021-01-12

Family

ID=64919999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810875895.1A Active CN109182369B (en) 2018-08-03 2018-08-03 Multi-herbicide-resistant expression vector, transformant and application thereof

Country Status (1)

Country Link
CN (1) CN109182369B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182370B (en) * 2018-08-03 2022-06-17 浙江大学 Plant polygene expression vector, transformant and application thereof
CN112626111B (en) * 2020-11-20 2023-06-20 浙江大学 Herbicide resistance gene expression vector and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146371A (en) * 2011-01-17 2011-08-10 杭州瑞丰生物科技有限公司 High glyphosate resistant variant gene and improvement method and application of high glyphosate resistant variant gene
US8501407B2 (en) * 2009-09-17 2013-08-06 Monsanto Technology Llc Soybean transgenic event MON 87708 and methods of use thereof
CN104726488A (en) * 2015-03-29 2015-06-24 河北科技大学 Method for culturing stress-resistance herbicide-resistance transgenic aerobic rice
CN106350532A (en) * 2016-08-28 2017-01-25 浙江大学 Glyphosate-resistant Fusion Gene, Encoding Protein and Application
CN106916844A (en) * 2016-12-31 2017-07-04 浙江大学 A kind of pest-resistant glyphosate tolerant expression vector, plasmid and its application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501407B2 (en) * 2009-09-17 2013-08-06 Monsanto Technology Llc Soybean transgenic event MON 87708 and methods of use thereof
CN102146371A (en) * 2011-01-17 2011-08-10 杭州瑞丰生物科技有限公司 High glyphosate resistant variant gene and improvement method and application of high glyphosate resistant variant gene
CN104726488A (en) * 2015-03-29 2015-06-24 河北科技大学 Method for culturing stress-resistance herbicide-resistance transgenic aerobic rice
CN106350532A (en) * 2016-08-28 2017-01-25 浙江大学 Glyphosate-resistant Fusion Gene, Encoding Protein and Application
CN106916844A (en) * 2016-12-31 2017-07-04 浙江大学 A kind of pest-resistant glyphosate tolerant expression vector, plasmid and its application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
全球抗除草剂转基因作物转化事件分析;王园园等;《农业生物技术学报》;20180131;第26卷(第1期);167-175 *
抗除草剂转基因作物;向文胜等;《东北农业大学学报》;19980630;第29卷(第2期);201-208 *
细胞色素P450与除草剂抗性转基因植物;邱星辉等;《生命科学》;20020630;第14卷(第34期);168-170 *
转G10evo-EPSPS基因棉花对除草剂草甘膦的抗性表现;马燕斌等;《中囯棉花学会2015年年会论文汇编》;20151231;119 *

Also Published As

Publication number Publication date
CN109182369A (en) 2019-01-11

Similar Documents

Publication Publication Date Title
CN102741415A (en) Soybean transformation using hppd inhibitors as selection agents
CZ29198A3 (en) Gene expression cassette providing inducible resistance to herbicides
RU2692553C2 (en) Herbicide resistance protein, its coding gene and application thereof
MX2008015741A (en) Modified dicamba monooxygenase enzyme and methods of its use.
WO2021051265A1 (en) Mutant hydroxyphenylpyruvate dioxygenase polypeptide, encoding gene thereof and use thereof
CN112080501B (en) Recombinant promoter, gene expression cassette and application of recombinant promoter and gene expression cassette in plant breeding
CN105779479B (en) A kind of ALS mutated genes and its application in terms of antiweed
CN109182369B (en) Multi-herbicide-resistant expression vector, transformant and application thereof
JP6486505B2 (en) Herbicide resistant proteins, their coding genes and uses
CN110628733B (en) Herbicide tolerance protein, coding gene and application thereof
Han et al. Overexpression of D-amino acid oxidase from Bradyrhizobium japonicum, enhances resistance to glyphosate in Arabidopsis thaliana
KR20150023643A (en) Methods of improving the yield of 2,4-d resistant crop plants
CN112626084B (en) Strawberry MYB transcription factor FvMYB24 gene, expression protein and application
CN111304178B (en) Herbicide tolerance protein, coding gene and application thereof
US11365425B2 (en) Resistant protein for use in herbicide, encoding gene and application thereof
CN110511941B (en) Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors
CN109182370B (en) Plant polygene expression vector, transformant and application thereof
AU2020101667A4 (en) Application of NAC091D transcription factor protein and its coding gene in inhibiting seed germination
CN107056907B (en) Application of NAC062D transcription factor protein and coding gene thereof in inhibiting seed germination
CN110628732B (en) Herbicide tolerance protein, coding gene and application thereof
Hadi et al. Glyphosate tolerance in transgenic canola by a modified glyphosate oxidoreductase (gox) gene
CN110656094B (en) Herbicide tolerance protein, coding gene and application thereof
CN111334484B (en) Herbicide tolerance protein, coding gene and application thereof
CN114507673A (en) Method for inhibiting or killing black cutworm and application
CN115340987B (en) Herbicide tolerance protein, coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant