CN107703740A - A kind of robust interval sensor fault diagnosis method of bullet train critical system - Google Patents

A kind of robust interval sensor fault diagnosis method of bullet train critical system Download PDF

Info

Publication number
CN107703740A
CN107703740A CN201710554307.XA CN201710554307A CN107703740A CN 107703740 A CN107703740 A CN 107703740A CN 201710554307 A CN201710554307 A CN 201710554307A CN 107703740 A CN107703740 A CN 107703740A
Authority
CN
China
Prior art keywords
mrow
msub
msup
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710554307.XA
Other languages
Chinese (zh)
Inventor
周东华
张峻峰
何潇
卢晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201710554307.XA priority Critical patent/CN107703740A/en
Publication of CN107703740A publication Critical patent/CN107703740A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention discloses a kind of robust interval sensor fault diagnosis method of bullet train critical system, belong to field of signal processing, this method includes:Establish bullet train critical system discrete-time state-space model step;Design bullet train critical system robust Residual Generation device step;Design bullet train critical system robust interval Transducer-fault Detecting Method step;Design the separation of bullet train critical system robust interval sensor fault and method of estimation step.The effective guarantee of the present invention practical application request of bullet train critical system interval sensor fault diagnosis.

Description

A kind of robust interval sensor fault diagnosis method of bullet train critical system
Technical field
The invention belongs to field of signal processing, and in particular to a kind of robust interval sensor event of bullet train critical system Hinder diagnostic method.
Background technology
Bullet train be in high ferro technology with the most close system of passenger's relation, its safety, even running be high ferro health, Fast-developing basis and premise.Fault diagnosis technology is the key technology for ensureing bullet train safe operation.At present, arrange at a high speed Car has taken many technical measures and system to improve the reliability of train operation and security.
However, existing bullet train fault diagnosis technology has many limitations, such as mostly simple threshold value compares, and arranges in pairs or groups Tactic operating procedure, without the redundancy fully excavated available for fault diagnosis;Diagnostic function heavy dependence failure code The richness of table, can only existing most common failure in DTC table, can not diagnose caused new in train actual motion Failure;Reply situation considers permanent fault more, and does not consider the interval sensor fault as caused by the factors such as electromagnetic interference.
Based on the above situation, a kind of robust interval sensor fault diagnosis method of bullet train critical system is needed badly, with Realize that fault diagnosis system carries out real-time online diagnosis to bullet train critical system interval sensor fault.
The content of the invention
For above-mentioned technical problem present in prior art, the present invention proposes a kind of Shandong of bullet train critical system Rod interval sensor fault diagnosis method, it is reasonable in design, the deficiencies in the prior art are overcome, there is good effect.
To achieve these goals, the present invention adopts the following technical scheme that:
A kind of robust interval sensor fault diagnosis method of bullet train critical system, specifically comprises the following steps:
Step 1:Establish bullet train critical system discrete-time state-space model and identification model parameter
Wherein,Respectively system mode, control input, measurement output; Respectively process noise, measurement noise;For sensor fault; For systematic parameter; For parameter uncertainty;Meet following condition:Original state x (0) average, covariance, second moment are respectivelyP0, Σ0;Make an uproar Sound w (k), v (k) average are zero, and covariance matrix is respectively Σw(k), Σv(k);Parameter uncertainty Aδ(k),Bδ(k),Cδ(k) Average be zero, covariance matrix is respectively
Step 2:Bullet train critical system robust Residual Generation device is designed, is specifically comprised the following steps:
Step 2.1:Off-line calculation gain matrix K (k)
K (k)=G (k) Cc(k)TQ(k)-1, (2);
Wherein,
Rapid 2.2:In line computation robust residual error r (k)
Wherein,
Step 3:Bullet train critical system robust interval Transducer-fault Detecting Method is designed, specifically includes following step Suddenly:
Step 3.1:Calculate intermittent fault detection statistic TD(k)
Step 3.2:Set intermittent fault detection rate of false alarm Pfa
Pfafa, (12);
Step 3.3:Design intermittent fault detection threshold value JD
Wherein,
Step 3.4:Intermittent fault detection is carried out according to following criterions
If TD(k-1)≤JD,TD(k) > JD, then the k moment break down, fault warning indicatrix Ia=1;
If TD(k-1) > JD,TD(k)≤JD, then k moment failure vanishes, trouble shooting indicatrix Ir=1;
Correspondingly, the fault warning time of i-th intermittent fault and trouble shooting time are respectively
kalarm,i=min (k | TD(k) > JD,k≥krelease,i-1+1), (15);
krelease,i=min (k | TD(k)≤JD,k≥kalarm,i+1), (16);
Step 4:Design the separation of bullet train critical system robust interval sensor fault and method of estimation, specifically include as Lower step:
Step 4.1:Calculate intermittent fault separation statistic TI(i,j)
Wherein,
L(i,j)11=G (i, j)11 TT(i)-1G(i,j)11, (18);
L(i,j)12=G (i, j)11 TT(i)-1G(i,j)12, (19);
L(i,j)21=G (i, j)12 TT(i)-1G(i,j)11, (20);
L(i,j)22=G (i, j)12 TT(i)-1G(i,j)12, (21);
d(i,j)1=G (i, j)11 TT(i)-1r(kalarm,i,krelease,i-1), (22);
d(i,j)2=G (i, j)12 TT(i)-1r(kalarm,i,krelease,i-1), (23);
r(kalarm,i,krelease,i- 1)=[r (kalarm,i)T r(kalarm,i+1)T … r(krelease,i-1)T], (24);
T (i)=diag (S (kalarm,i) S(kalarm,i+1) … S(krelease,i-1)), (26);
G(i,j)11=G (i, j) { 1:ny(krelease,i-kalarm,i),1}, (27);
G(i,j)12=G (i, j) { 1:ny(krelease,i-kalarm,i),2:ny}, (28);
Step 4.2:Set intermittent fault separation false segmentation rate
Step 4.3:Design intermittent fault separation threshold value JI(j)
Wherein,
Step 4.4:Intermittent fault separation is carried out according to following criterions
If TI(i, j) > JI(j), then sensor j is faulty;
If TI(i,j)≤JI(j), then sensor j fault-frees;
Step 4.5:Calculate intermittent fault estimate
Wherein,
Advantageous effects caused by the present invention:
The redundancy of the invention fully excavated available for fault diagnosis, can be between real-time online detection, separation and estimation Have a rest sensor fault, independent of failure code table, effective guarantee bullet train critical system interval sensor fault diagnosis Practical application request.
Brief description of the drawings
Fig. 1 is the flow chart of the inventive method.
Fig. 2 is the damage curve schematic diagram of bullet train critical system interval sensor of the present invention.
Fig. 3 is the failure detection result schematic diagram of bullet train critical system interval sensor of the present invention.
Fig. 4 is the fault reconstruction result schematic diagram of bullet train critical system interval sensor of the present invention.
Fig. 5 is the Fault Estimation result schematic diagram of bullet train critical system interval sensor of the present invention.
Embodiment
Below in conjunction with the accompanying drawings and embodiment is described in further detail to the present invention:
A kind of robust interval sensor fault diagnosis method of bullet train critical system, its flow is as shown in figure 1, specific Comprise the following steps:
Step 1:Establish bullet train critical system discrete-time state-space model and identification model parameter
Wherein,Respectively system mode, control input, measurement output; Respectively process noise, measurement noise;For sensor fault; For systematic parameter; For parameter uncertainty;Meet following condition:Original state x (0) average, covariance, second moment are respectivelyP0, Σ0;Make an uproar Sound w (k), v (k) average are zero, and covariance matrix is respectively Σw(k), Σv(k);Parameter uncertainty Aδ(k),Bδ(k),Cδ(k) Average be zero, covariance matrix is respectively
Step 2:Bullet train critical system robust Residual Generation device is designed, is specifically comprised the following steps:
Step 2.1:Off-line calculation gain matrix K (k)
K (k)=G (k) Cc(k)TQ(k)-1, (2);
Wherein,
Rapid 2.2:In line computation robust residual error r (k)
Wherein,
Step 3:Bullet train critical system robust interval Transducer-fault Detecting Method is designed, specifically includes following step Suddenly:
Step 3.1:Calculate intermittent fault detection statistic TD(k)
Step 3.2:Set intermittent fault detection rate of false alarm Pfa
Pfafa, (12);
Step 3.3:Design intermittent fault detection threshold value JD
Wherein,
Step 3.4:Intermittent fault detection is carried out according to following criterions
If TD(k-1)≤JD,TD(k) > JD, then the k moment break down, fault warning indicatrix Ia=1;
If TD(k-1) > JD,TD(k)≤JD, then k moment failure vanishes, trouble shooting indicatrix Ir=1;
Correspondingly, the fault warning time of i-th intermittent fault and trouble shooting time are respectively
kalarm,i=min (k | TD(k) > JD,k≥krelease,i-1+1), (15);
krelease,i=min (k | TD(k)≤JD,k≥kalarm,i+1), (16);
Failure is as shown in Fig. 2 failure detection result is as shown in Figure 3.
Step 4:Design the separation of bullet train critical system robust interval sensor fault and method of estimation, specifically include as Lower step:
Step 4.1:Calculate intermittent fault separation statistic TI(i,j)
Wherein,
L(i,j)11=G (i, j)11 TT(i)-1G(i,j)11, (18);
L(i,j)12=G (i, j)11 TT(i)-1G(i,j)12, (19);
L(i,j)21=G (i, j)12 TT(i)-1G(i,j)11, (20);
L(i,j)22=G (i, j)12 TT(i)-1G(i,j)12, (21);
d(i,j)1=G (i, j)11 TT(i)-1r(kalarm,i,krelease,i-1), (22);
d(i,j)2=G (i, j)12 TT(i)-1r(kalarm,i,krelease,i-1), (23);
r(kalarm,i,krelease,i- 1)=[r (kalarm,i)T r(kalarm,i+1)T … r(krelease,i-1)T], (24);
T (i)=diag (S (kalarm,i) S(kalarm,i+1) … S(krelease,i-1)), (26);
G(i,j)11=G (i, j) { 1:ny(krelease,i-kalarm,i),1}, (27);
G(i,j)12=G (i, j) { 1:ny(krelease,i-kalarm,i),2:ny}, (28);
Step 4.2:Set intermittent fault separation false segmentation rate
Step 4.3:Design intermittent fault separation threshold value JI(j)
Wherein,
Step 4.4:Intermittent fault separation is carried out according to following criterions
If TI(i, j) > JI(j), then sensor j is faulty;
If TI(i,j)≤JI(j), then sensor j fault-frees;
Step 4.5:Calculate intermittent fault estimate
Wherein,
Fault reconstruction and Fault Estimation result difference are as shown in Figure 4, Figure 5.
Certainly, described above is not limitation of the present invention, and the present invention is also not limited to the example above, this technology neck The variations, modifications, additions or substitutions that the technical staff in domain is made in the essential scope of the present invention, it should also belong to the present invention's Protection domain.

Claims (1)

  1. A kind of 1. robust interval sensor fault diagnosis method of bullet train critical system, it is characterised in that:Specifically include as Lower step:
    Step 1:Establish bullet train critical system discrete-time state-space model and identification model parameter
    <mrow> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>A</mi> <mi>&amp;delta;</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>B</mi> <mi>&amp;delta;</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein,Respectively system mode, control input, measurement output; Respectively process noise, measurement noise;For sensor fault; For systematic parameter; For parameter uncertainty;Meet following condition:Original state x (0) average, covariance, second moment are respectivelyP0, Σ0;Make an uproar Sound w (k), v (k) average are zero, and covariance matrix is respectively Σw(k), Σv(k);Parameter uncertainty Aδ(k),Bδ(k),Cδ(k) Average be zero, covariance matrix is respectively
    Step 2:Bullet train critical system robust Residual Generation device is designed, is specifically comprised the following steps:
    Step 2.1:Off-line calculation gain matrix K (k)
    K (k)=G (k) Cc(k)TQ(k)-1, (2);
    Wherein,
    <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <msub> <mi>A</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <msub> <mi>B</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Sigma;</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>x</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>x</mi> </msub> </mrow> </msub> <mo>-</mo> <mi>K</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Rapid 2.2:In line computation robust residual error r (k)
    <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein,
    <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mn>0</mn> </msub> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Step 3:Bullet train critical system robust interval Transducer-fault Detecting Method is designed, is specifically comprised the following steps:
    Step 3.1:Calculate intermittent fault detection statistic TD(k)
    <mrow> <msub> <mi>T</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>r</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mi>P</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Step 3.2:Set intermittent fault detection rate of false alarm Pfa
    Pfafa, (12);
    Step 3.3:Design intermittent fault detection threshold value JD
    <mrow> <msub> <mi>J</mi> <mi>D</mi> </msub> <mo>=</mo> <msubsup> <mi>&amp;chi;</mi> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>f</mi> <mi>a</mi> </mrow> </msub> <mn>2</mn> </msubsup> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein,
    <mrow> <mi>P</mi> <mo>{</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <msubsup> <mi>&amp;chi;</mi> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>f</mi> <mi>a</mi> </mrow> </msub> <mn>2</mn> </msubsup> <mo>|</mo> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>~</mo> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mn>0</mn> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mi>P</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>f</mi> <mi>a</mi> </mrow> </msub> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Step 3.4:Intermittent fault detection is carried out according to following criterions
    If TD(k-1)≤JD,TD(k) > JD, then the k moment break down, fault warning indicatrix Ia=1;
    If TD(k-1) > JD,TD(k)≤JD, then k moment failure vanishes, trouble shooting indicatrix Ir=1;
    Correspondingly, the fault warning time of i-th intermittent fault and trouble shooting time are respectively
    kalarm,i=min (k | TD(k) > JD,k≥krelease,i-1+1), (15);
    krelease,i=min (k | TD(k)≤JD,k≥kalarm,i+1), (16);
    Step 4:The separation of bullet train critical system robust interval sensor fault and method of estimation are designed, specifically includes following step Suddenly:
    Step 4.1:Calculate intermittent fault separation statistic TI(i,j)
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>d</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msub> <mo>-</mo> <mi>L</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>12</mn> </msub> <mi>L</mi> <msup> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>22</mn> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <msup> <mrow> <mo>(</mo> <mi>L</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>11</mn> </msub> <mo>-</mo> <mi>L</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>12</mn> </msub> <mi>L</mi> <msup> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>22</mn> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>L</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>21</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mi>d</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msub> <mo>-</mo> <mi>L</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>12</mn> </msub> <mi>L</mi> <msup> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>22</mn> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein,
    L(i,j)11=G (i, j)11 TT(i)-1G(i,j)11, (18);
    L(i,j)12=G (i, j)11 TT(i)-1G(i,j)12, (19);
    L(i,j)21=G (i, j)12 TT(i)-1G(i,j)11, (20);
    L(i,j)22=G (i, j)12 TT(i)-1G(i,j)12, (21);
    d(i,j)1=G (i, j)11 TT(i)-1r(kalarm,i,krelease,i-1), (22);
    d(i,j)2=G (i, j)12 TT(i)-1r(kalarm,i,krelease,i-1), (23);
    r(kalarm,i,krelease,i- 1)=[r (kalarm,i)T r(kalarm,i+1)T…r(krelease,i-1)T], (24);
    <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> <mi>Z</mi> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mi>Z</mi> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mi>Z</mi> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    T (i)=diag (S (kalarm,i) S(kalarm,i+1) … S(krelease,i-1)), (26);
    G(i,j)11=G (i, j) { 1:ny(krelease,i-kalarm,i),1}, (27);
    G(i,j)12=G (i, j) { 1:ny(krelease,i-kalarm,i),2:ny}, (28);
    Step 4.2:Set intermittent fault separation false segmentation rate
    <mrow> <msub> <mi>P</mi> <msubsup> <mi>f</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msubsup> </msub> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <msubsup> <mi>f</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msubsup> </msub> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Step 4.3:Design intermittent fault separation threshold value JI(j)
    <mrow> <mi>P</mi> <mo>{</mo> <msub> <mi>T</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <msubsup> <mi>&amp;chi;</mi> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>f</mi> <mi>a</mi> </mrow> </msub> <mn>2</mn> </msubsup> <mo>|</mo> <msubsup> <mi>f</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> <mo>}</mo> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <msubsup> <mi>f</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msubsup> </msub> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein,
    <mrow> <msub> <mi>J</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <msubsup> <mi>f</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msubsup> </msub> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Step 4.4:Intermittent fault separation is carried out according to following criterions
    If TI(i, j) > JI(j), then sensor j is faulty;
    If TI(i,j)≤JI(j), then sensor j fault-frees;
    Step 4.5:Calculate intermittent fault estimate
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>{</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mn>1</mn> <msup> <mi>R</mi> <mo>+</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>J</mi> <mi>I</mi> </msub> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mn>1</mn> <msup> <mi>R</mi> <mo>+</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>J</mi> <mi>I</mi> </msub> <mo>(</mo> <mn>2</mn> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow> <msub> <mn>1</mn> <msup> <mi>R</mi> <mo>+</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>J</mi> <mi>I</mi> </msub> <mo>(</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>arg</mi> <munder> <mi>max</mi> <mi>&amp;beta;</mi> </munder> <mi>ln</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>(</mo> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>&amp;beta;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>{</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mn>1</mn> <msup> <mi>R</mi> <mo>+</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>J</mi> <mi>I</mi> </msub> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mn>1</mn> <msup> <mi>R</mi> <mo>+</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>J</mi> <mi>I</mi> </msub> <mo>(</mo> <mn>2</mn> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow> <msub> <mn>1</mn> <msup> <mi>R</mi> <mo>+</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>J</mi> <mi>I</mi> </msub> <mo>(</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>S</mi> <msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein,
    <mrow> <mi>S</mi> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>l</mi> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>l</mi> <mo>)</mo> <mi>Z</mi> <mo>(</mo> <mi>l</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>Q</mi> <msup> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>l</mi> <mo>)</mo> <mi>Z</mi> <mo>(</mo> <mi>l</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>l</mi> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>m</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>l</mi> <mo>)</mo> <mi>Z</mi> <mo>(</mo> <mi>l</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>Q</mi> <msup> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>r</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
CN201710554307.XA 2017-07-10 2017-07-10 A kind of robust interval sensor fault diagnosis method of bullet train critical system Pending CN107703740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710554307.XA CN107703740A (en) 2017-07-10 2017-07-10 A kind of robust interval sensor fault diagnosis method of bullet train critical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710554307.XA CN107703740A (en) 2017-07-10 2017-07-10 A kind of robust interval sensor fault diagnosis method of bullet train critical system

Publications (1)

Publication Number Publication Date
CN107703740A true CN107703740A (en) 2018-02-16

Family

ID=61170641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710554307.XA Pending CN107703740A (en) 2017-07-10 2017-07-10 A kind of robust interval sensor fault diagnosis method of bullet train critical system

Country Status (1)

Country Link
CN (1) CN107703740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109325310A (en) * 2018-10-25 2019-02-12 山东科技大学 A kind of bullet train intermittent fault detection method based on the multiple side's T control figure
CN109839264A (en) * 2019-03-13 2019-06-04 山东科技大学 High-speed train braking system intermittent fault detection method under closed loop

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317698B1 (en) * 1999-04-06 2001-11-13 Ford Global Technologies, Inc. Observer for transfer case fault detection in a four-wheel drive system
US20050114023A1 (en) * 2003-11-26 2005-05-26 Williamson Walton R. Fault-tolerant system, apparatus and method
CN102253663A (en) * 2011-03-25 2011-11-23 清华大学 Leakage fault diagnose method and system thereof for networked three-container water tank system
CN102436179A (en) * 2011-11-25 2012-05-02 中国电力科学研究院 Design method of robustness fault detection filter of linear uncertain system
CN104360679A (en) * 2014-10-21 2015-02-18 南京航空航天大学 Train suspension system fault diagnosis and fault-tolerant control method based on dynamic actuator
CN105867360A (en) * 2016-06-14 2016-08-17 江南大学 Initial value prediction iterative learning fault diagnosis algorithm of electromechanical control system
CN106525466A (en) * 2016-10-14 2017-03-22 清华大学 Robust filtering method and system for a key part of motor train unit braking system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317698B1 (en) * 1999-04-06 2001-11-13 Ford Global Technologies, Inc. Observer for transfer case fault detection in a four-wheel drive system
US20050114023A1 (en) * 2003-11-26 2005-05-26 Williamson Walton R. Fault-tolerant system, apparatus and method
CN102253663A (en) * 2011-03-25 2011-11-23 清华大学 Leakage fault diagnose method and system thereof for networked three-container water tank system
CN102436179A (en) * 2011-11-25 2012-05-02 中国电力科学研究院 Design method of robustness fault detection filter of linear uncertain system
CN104360679A (en) * 2014-10-21 2015-02-18 南京航空航天大学 Train suspension system fault diagnosis and fault-tolerant control method based on dynamic actuator
CN105867360A (en) * 2016-06-14 2016-08-17 江南大学 Initial value prediction iterative learning fault diagnosis algorithm of electromechanical control system
CN106525466A (en) * 2016-10-14 2017-03-22 清华大学 Robust filtering method and system for a key part of motor train unit braking system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
秦利国等: "一种基于鲁棒残差生成器的故障估计方法", 《上海交通大学学报》 *
鄢镕易等: "一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法", 《自动化学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109325310A (en) * 2018-10-25 2019-02-12 山东科技大学 A kind of bullet train intermittent fault detection method based on the multiple side's T control figure
CN109325310B (en) * 2018-10-25 2023-05-05 山东科技大学 High-speed train intermittent fault detection method based on multiple T-square control diagram
CN109839264A (en) * 2019-03-13 2019-06-04 山东科技大学 High-speed train braking system intermittent fault detection method under closed loop

Similar Documents

Publication Publication Date Title
Chen et al. A review of fault detection and diagnosis for the traction system in high-speed trains
CN107272651B (en) A kind of Robust Detection Method of Braking System for Multiple Units interval multiplying property sensor fault
CN110879372B (en) Traction system main loop earth fault diagnosis method and system based on feature correlation
CN108804740B (en) Long-distance pipeline pressure monitoring method based on integrated improved ICA-KRR algorithm
CN107703740A (en) A kind of robust interval sensor fault diagnosis method of bullet train critical system
CN112947392B (en) Flight control system actuator and sensor composite tiny fault estimation method based on robust observer
CN108345711A (en) Based on event driven EMU robust sensor intermittent fault detection method
CN104458297A (en) Fault detection method for train suspension system sensor based on nonlinearity random model
CN102968109B (en) Safety instrument system based on D-S (Dempster/Shafer) evidence theory
CN108445258A (en) Magnetic-levitation train list iron suspension acceleration transducer diagnostic method based on integrator
CN110991074B (en) Method for judging effectiveness of measurement data of displacement sensor
CN107356282A (en) Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations
Sang et al. Incipient fault detection for air brake system of high-speed trains
CN108415402B (en) Consider the EMU robust filtering fault detection method of event-driven and output saturation
CN103970127A (en) Robust fault diagnosis method of carrier pitching channel control system
Mo et al. Method on the fault detection and diagnosis for the railway turnout based on the current curve of switch machine
CN108874741A (en) A kind of relay valve leakage failure detection method based on SPRT algorithm
CN115470831B (en) Hydropower signal abnormity judgment method based on frequent item set reasoning
CN109325310B (en) High-speed train intermittent fault detection method based on multiple T-square control diagram
CN105932641A (en) Intelligent safety protection device and method for hot ammonia defrosting
CN106371030A (en) New energy automobile battery fault diagnosis method based on uncertainty reasoning
Blesa et al. Robust fault detection and isolation of wind turbines using interval observers
CN115358294A (en) Micro fault detection method for high-speed train traction system
CN106515745A (en) Control system for automatic drive train and platform
CN103870711A (en) Method for recognizing petroleum product blending pressure state

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216

RJ01 Rejection of invention patent application after publication