CN107271997A - Airborne multichannel CSSAR ground moving object motion parameters estimation methods - Google Patents

Airborne multichannel CSSAR ground moving object motion parameters estimation methods Download PDF

Info

Publication number
CN107271997A
CN107271997A CN201710413596.1A CN201710413596A CN107271997A CN 107271997 A CN107271997 A CN 107271997A CN 201710413596 A CN201710413596 A CN 201710413596A CN 107271997 A CN107271997 A CN 107271997A
Authority
CN
China
Prior art keywords
msub
mrow
mover
mfrac
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710413596.1A
Other languages
Chinese (zh)
Other versions
CN107271997B (en
Inventor
李永康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710413596.1A priority Critical patent/CN107271997B/en
Publication of CN107271997A publication Critical patent/CN107271997A/en
Application granted granted Critical
Publication of CN107271997B publication Critical patent/CN107271997B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9088Circular SAR [CSAR, C-SAR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9017SAR image acquisition techniques with time domain processing of the SAR signals in azimuth

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention provides a kind of airborne multichannel CSSAR ground moving object motion parameters estimation methods, it is related to radar signal processing field.The present invention adjust the distance compression after echo signal enter row distance to Fourier transformation, and carry out base band Doppler center compensation, orientation Fourier transformation is carried out to the echo signal after compensation, estimate the doppler ambiguity number and doppler frequency rate of target, and two-dimensional frequency reference function is constructed, the location parameter for carving target according to the doppler centroid of target, doppler frequency rate and positive side apparent time estimates the kinematic parameter of target.The present invention establishes the exact relationship formula of the coupling between target location and speed, propose to release the coupling between target location and speed using positional information of the doppler frequency rate, doppler centroid and target of target in SAR image, can accurately estimate the kinematic parameter of ground moving object under airborne multichannel CSSAR.

Description

Airborne multichannel CSSAR ground moving object motion parameters estimation methods
Technical field
The present invention relates to radar signal processing field, especially a kind of synthetic aperture radar ground moving object kinematic parameter Method of estimation.
Background technology
Airborne Circular test band synthetic aperture radar (Circular Stripmap Synthetic Aperture Radar, CSSAR) there is the characteristics of wide coverage and periodicity are revisited, thus it is suitable for ground moving object instruction (Ground Moving Target Indication, GMTI).Target moving parameter estimation be GMTI systems basic task it One, it is therefore necessary to ground moving object motion parameters estimation method of the research suitable for airborne CSSAR.
It is existing suitable for conventional linear track synthetic aperture radar (Synthetic Aperture Radar, SAR) Ground moving object motion parameters estimation method is typically the orientation speed that Frequency Estimation target is adjusted according to the orientation of target, root According to target Estimation of Doppler central frequency target distance to speed.However, for airborne CSSAR, its circular motion Track causes to occur in that coupling between the position of target and speed so that the above-mentioned action reference variable for straight path SAR Method cannot be used directly for airborne CSSAR.
The content of the invention
In order to overcome the deficiencies in the prior art, the present invention proposes that one kind can tackle target location for airborne multichannel CSSAR The motion parameters estimation method of coupling between speed.Deposited for the position and speed of ground moving object under airborne CSSAR Coupling cause the problem of existing ground moving object motion parameters estimation method is not used to airborne CSSAR, propose a kind of The motion parameters estimation method of the coupling between target location and speed is coped with, ground under airborne multichannel CSSAR is realized The accurate estimation of moving target kinematic parameter.
The step of the technical solution adopted for the present invention to solve the technical problems is:
Step 1, hypothesis:(1) clutter uses displaced phase center antenna by airborne multichannel CSSAR systems (Displaced Phase Center Antenna, DPCA) method suppresses;(2) echo signal after Range compress is carried Take, and echo signal is located at initial data domain;
The echo signal after compression of adjusting the distance enters row distance to Fourier transformation, by echo signal transform to orientation time domain away from Off-frequency domain, into step 2;
Step 2, step 1 is transformed to orientation time domain apart from frequency domain echo signal carry out base band Doppler center compensation, Comprise the following steps:
A) echo signal s of the orientation time domain apart from frequency domainDPCA(fr,ta) be expressed as
Wherein, Wr() is frequency of distance envelope, wa,1() is the transmitting-receiving round trip antenna radiation pattern of reference channel, fcFor thunder Up to the carrier frequency of transmission signal, frFor frequency of distance, taFor the orientation slow time, c is the light velocity, and λ is wavelength, tbIt is located at reference for target At the time of the positive side-looking direction of passage displaced phase center, RbFor tbMoment target is to the distance of radar, KaFor the Doppler of target Frequency modulation rate, facFor the doppler centroid of target, and facIt is represented by fac=fac,b+ MPRF, wherein fac,bFor target base Band doppler centroid, M is target Doppler fuzzy number, and PRF is the pulse recurrence frequency of radar;
B) target base band doppler centroid f is assumedac,bEstimate beThen according to orientation time domain frequency of distance The expression formula of domain echo signal, base band Doppler center penalty function can be configured to
The echo signal of formula (1) is multiplied with the penalty function of formula (2) compensation of base band Doppler center can be achieved;
Step 3, in step 2 base band Doppler center compensation after echo signal carry out orientation Fourier transformation, will Echo signal changes to two-dimensional frequency;
Step 4, the doppler ambiguity number and doppler frequency rate for estimating target, obtained doppler ambiguity number and Doppler The estimate of frequency modulation rate is respectivelyWith
Step 5, the target Doppler fuzzy number estimated using step 4 and doppler frequency rate construct the reference of two-dimensional frequency Function, the echo signal in step 3 is multiplied with the reference function and carries out target imaging, then carries out two to the signal after multiplication Echo signal is changed to image area by dimension inverse Fourier transform;
Two-dimensional frequency reference function is configured to:
Wherein faFor base band orientation frequency, and satisfaction-PRF/2≤fa≤ PRF/2,WithRespectively target Doppler is adjusted The estimate of frequency and doppler ambiguity number;
Step 6, the location parameter for carving according to location estimation positive side apparent time of the target in image area target, including following step Suddenly:
A) image area echo signal is expressed as:
Wherein, trFor apart from fast time, pr() is Range compress impulse response function, pa() is Azimuth Compression impulse Receptance function;
B) according to the expression formula of the image area echo signal of formula (4), positive side apparent time carves the location parameter R of targetbAnd side Parallactic angle θbDrawn by following formula estimation:
Wherein,WithRespectively RbAnd θbEstimate, ta,imgAnd tr,imgFor the orientation position of target in image area With distance to position, ω is the angular speed of radar motion;
Step 7, the location parameter according to the doppler centroid of target, doppler frequency rate and positive side apparent time quarter target Estimate the kinematic parameter of target, the kinematic parameter of target is estimated using equation below:
In formula (7) and formula (8),
Wherein,For vxEstimate,For vyEstimate, vxAnd vyBe respectively target along x-axis and the speed of y-axis, For facEstimate,For rbEstimate, rbTarget is carved to the distance of the origin of coordinates, r for positive side apparent timeaIt is radar motion rail The radius of mark, h is the height of radar.
The step 4 of the present invention is adjusted using the doppler ambiguity number and Doppler of the method estimation target based on maximum-contrast Frequency, is comprised the following steps that:
A) by the two-dimensional frequency echo signal S (f after base band Doppler center compensation in step 3r,fa) be expressed as
Wherein Wa(fa) it is orientation frequency envelope;
B) doppler ambiguity number and doppler frequency rate of target are estimated using the following method based on maximum-contrast:
In formula (4),
s(tr,ta;ka, m)=IDFT2{S(fr,fa)·H2(fr,fa;ka,m)} (14)
Wherein, IDFT2() represents two-dimentional inverse Fourier transform, E () representation space average operation, Contrast () Represent the contrast of image, kaIt is construction two-dimensional frequency reference function H respectively with m2(fr,fa;ka, how general the target used when m) is Strangle frequency modulation rate and doppler ambiguity number.
The beneficial effects of the present invention are the exact relationship formula of the coupling established between target location and speed, and according to Echo signal model, proposes the position in SAR image using doppler frequency rate, doppler centroid and the target of target Information releases the coupling between target location and speed.The present invention can accurately estimate ground under airborne multichannel CSSAR and transport The kinematic parameter of moving-target, it may also be used for Ground moving target imaging.
Brief description of the drawings
Fig. 1 is the schematic flow sheet of the present invention.
Fig. 2 is Airborne Dual-Channel CSSAR observation geometries, wherein raFor the radius of radar motion track, ω is radar Angular speed, h is radar altitude, vxAnd vyRespectively target is along x-axis and the speed of y-axis, r0And θ0It is former to coordinate for zero moment target The distance of point and the azimuth of target.
Fig. 3 is the imaging simulation result figure of target 1, wherein, Fig. 3 (a) is the target image focused on, and Fig. 3 (b) is orientation To profile, Fig. 3 (c) is distance to profile.
Fig. 4 is the imaging simulation result figure of target 2, wherein, Fig. 4 (a) is the target image focused on, and Fig. 4 (b) is orientation Profile, Fig. 4 (c) is distance to profile.
Fig. 5 is the imaging simulation result figure of target 3, wherein, Fig. 5 (a) is the target image focused on, and Fig. 5 (b) is orientation To profile, Fig. 5 (c) is distance to profile.
Embodiment
The present invention is further described with reference to the accompanying drawings and examples.
Fig. 1 is the schematic flow sheet of the present invention, and of the invention comprises the following steps that:
Step 1, hypothesis:(1) clutter uses displaced phase center antenna by airborne multichannel CSSAR systems (Displaced Phase Center Antenna, DPCA) method suppresses;(2) echo signal after Range compress is carried Take, and echo signal is located at initial data domain;
The echo signal after compression of adjusting the distance enters row distance to Fourier transformation, by echo signal transform to orientation time domain away from Off-frequency domain, into step 2;
Fig. 2 is Airborne Dual-Channel CSSAR observation geometries.The movement locus of radar platform is that a radius is raCircle. The angular speed of radar platform is ω, and flying height is h.Radar beam perpendicular to velocity attitude and points to the outer of movement locus all the time Side.Assuming that target linear uniform motion, and its speed along x-axis and y-axis is respectively vxAnd vy.It is assumed that in ta=0 moment (taFor The orientation slow time), the displaced phase center of radar passage 1 (reference channel) is located at (ra, 0, h), the equivalent phase of radar passage 2 It is centrally located at (ra,-d, h), target are located at (r0cosθ0,r0sinθ0, 0), wherein, r0For ta=0 moment target is to the origin of coordinates Distance, θ0For taThe azimuth of=0 moment target, d is the distance between the adjacent displaced phase center of radar (baseline length).
According to Fig. 2, the instantaneous distance R of the displaced phase center of target to i-th (i=1,2) individual passagei(ta) be represented by
In formula,
vta=vycos(θb)-vxsin(θb) (19)
Wherein, tbAt the time of being located at the positive side-looking direction of reference channel displaced phase center for target, i.e., positive side apparent time is carved, θbFor ta=tbThe azimuth of moment target, rbTarget is carved to the distance of the origin of coordinates, v for positive side apparent timetrMesh is carved for positive side apparent time Mark projection of the speed on radar line of sight direction, vtaProjection of the target velocity on radar motion direction, v are carved for positive side apparent timet For the sum velocity of target.
After carrier frequency de not modulation and Range compress, i-th of channel reception to target echo signal be represented by
Wherein, pr() is Range compress impulse response function, wa,i() is the transmitting-receiving round trip antenna side of i-th of passage Xiang Tu, trFor apart from the fast time, λ is wavelength, c is the light velocity.For simplicity of exposition, the constant amplitude in echo signal have ignored.
It is that target echo signal after reference channel, the registration of passage 2 is represented by with passage 1
In formula,
Wherein wa,1(ta) be reference channel (passage 1) transmitting-receiving round trip antenna radiation pattern, R2() for passage 2 target away from From equation, R2,reg(ta) be the registration of passage 2 after target range equation.
Due to R2,reg(ta) and R1(ta) between difference, i.e. vtrd/(raω) will much smaller than one distance samples unit.Cause This can ignore the difference between them in envelope, so that the echo signal after DPCA clutter recognitions is represented by
Enter row distance to above formula to Fourier transformation, the echo signal in orientation time domain frequency of distance domain can be obtained:
Wherein, frFor frequency of distance, fcFor the carrier frequency of radar emission signal, Wr(fr) it is frequency of distance envelope.
Step 2, step 1 is transformed to orientation time domain apart from frequency domain echo signal carry out base band Doppler center compensation, Comprise the following steps:
A) first by R1(ta) be rewritten into
In formula (26),
Wherein, KaFor the doppler frequency rate of target, RbFor tbMoment target is to the distance of radar, facFor the how general of target Strangle centre frequency, and facIt is represented by fac=fac,b+ MPRF, wherein fac,bFor target base band doppler centroid, M is Target Doppler fuzzy number, PRF is the pulse recurrence frequency of radar.
According to formula (26), echo signal s of the orientation time domain apart from frequency domainDPCA(fr,ta) be expressed as
B) the base band doppler centroid of target can be by conventional average cross correlation coefficient (Average Cross Correlation Coefficient, ACCC) method estimates.It is noted herein that, due to target range migration also It is not corrected, the base band doppler centroid of target need to be estimated using ACCC methods in orientation time domain frequency of distance domain.Assuming that The target base band doppler centroid estimated isThen according to the expression of orientation time domain frequency of distance domain echo signal Formula, base band Doppler center penalty function can be configured to
The echo signal of formula (1) is multiplied with the penalty function of formula (2) compensation of base band Doppler center can be achieved.Root According to sDPCA(fr,ta) and H1(fr) expression formula, base band Doppler center compensation after echo signal be represented by
Step 3, in step 2 base band Doppler center compensation after echo signal carry out orientation Fourier transformation, will Echo signal changes to two-dimensional frequency;
Using guard station phase principle, to S (fr,ta) orientation Fourier transformation is carried out, two-dimensional frequency echo signal can be obtained:
Wherein Wa(fa) it is orientation frequency envelope;
Step 4, the doppler ambiguity number and doppler frequency rate for estimating target, obtained doppler ambiguity number and Doppler The estimate of frequency modulation rate is respectivelyWith
Pass through last three exponential terms in echo signal expression formula in compensation formula (11), so that it may realize that target is focused on. Therefore, the present invention estimates the doppler ambiguity number and doppler frequency rate of target using the following method based on maximum-contrast:
In formula (4),
s(tr,ta;ka, m)=IDFT2{S(fr,fa)·H2(fr,fa;ka,m)} (14)
Wherein, IDFT2() represents two-dimentional inverse Fourier transform, E () representation space average operation, Contrast () The contrast of image is represented,WithRespectively target Doppler frequency modulation rate and the estimate of doppler ambiguity number, kaWith m difference It is construction two-dimensional frequency reference function H2(fr,fa;ka, the target Doppler frequency modulation rate and doppler ambiguity number used when m);
Step 5, the target Doppler fuzzy number estimated using step 4 and doppler frequency rate construct the reference of two-dimensional frequency Function, the echo signal in step 3 is multiplied with the reference function and carries out target imaging, then carries out two to the signal after multiplication Echo signal is changed to image area by dimension inverse Fourier transform;
According to the expression formula of two-dimensional frequency echo signal in formula (3), two-dimensional frequency reference function is configured to:
According to the reference function and the expression formula of two-dimensional frequency echo signal, image area echo signal is represented by:
Wherein pa() is Azimuth Compression impulse response function.
It can be seen that, there is not the position skew of orientation in image area in target, and this is beneficial to follow-up target Action reference variable.
Step 6, the location parameter of target is carved according to location estimation positive side apparent time of the target in image area.
According to the expression formula of the image area echo signal of formula (4), positive side apparent time carves target to radar apart from RbAnd mesh Target azimuth angle thetabEstimated by following formula:
Wherein,WithRespectively RbAnd θbEstimate, ta,imgAnd tr,imgFor the orientation position of target in image area With distance to position, ω is the angular speed of radar motion.
Step 7, the location parameter of target is carved according to the doppler centroid of target, doppler frequency rate and positive side apparent time Estimate the kinematic parameter of target, the kinematic parameter of target is estimated using equation below:
In formula (7) and formula (8),
Wherein,For vxEstimate,For vyEstimate, vxAnd vyBe respectively target along x-axis and the speed of y-axis, For facEstimate,For rbEstimate, rbTarget is carved to the distance of the origin of coordinates, r for positive side apparent timeaIt is radar motion rail The radius of mark, h is the height of radar.
The effect of the present invention is further illustrated by following emulation experiment:
Airborne Dual-Channel CCSAR systematic parameters are shown in Table 1, simulate three point targets, and parameter is shown in Table 2, the letter of three targets Make an uproar and be set to 30dB than (Signal-to-Noise Ratio, SNR).Target is being estimated using the method based on maximum-contrast Doppler ambiguity number and doppler frequency rate when, parameter M and KaHunting zone be set to [- 1,1] and [563Hz/s, 634Hz/s], this target velocity scope that can be covered is [- 35m/s, 35m/s].Parameter M is integer, is to its step-size in search 1, parameter KaStep-size in search Δ KaIt is set as 1Hz/s, this can guarantee that the broadening of the Azimuth Compression impulse response function of target is less than 2% (because)。
The Airborne Dual-Channel CSSAR systematic parameters of table 1
Radar platform speed 150m/s
Flying radius 2.5km
Radar platform height 10km
Scene center distance 20km
Carrier frequency 10GHz
Transmitted signal bandwidth 75MHz
Sample frequency 100MHz
Pulse recurrence frequency 1500Hz
The synthetic aperture time 0.9s
Adjacent displaced phase center spacing 0.2m
System revisit time 104.72s
SNR 20dB
The target component of table 2
vx(m/s) vy(m/s) r0(km) θ0(rad)
Target 1 -24 13 19.9 0.01
Target 2 -3 -4 20.1 0.04
Target 3 -18 3 19.8 -0.02
The image quality parameter of table 3
The Target moving parameter estimation result of table 4
Fig. 3 is the imaging simulation result figure of target 1, wherein, Fig. 3 (a) is the target image focused on, and Fig. 3 (b) is orientation To profile, Fig. 3 (c) is distance to profile.
Fig. 4 is the imaging simulation result figure of target 2, wherein, Fig. 4 (a) is the target image focused on, and Fig. 4 (b) is orientation Profile, Fig. 4 (c) is distance to profile.
Fig. 5 is the imaging simulation result figure of target 3, wherein, Fig. 5 (a) is the target image focused on, and Fig. 5 (b) is orientation To profile, Fig. 5 (c) is distance to profile.
Fig. 3 is target imaging simulation result, and table 3 gives the image quality parameter of measurement, wide including impulse response Spend (IRW), integration secondary lobe ratio (ISLR), peak sidelobe ratio (PSLR).Wherein PSLRLIt is defined as main lobe and the highest secondary lobe on the left side Height ratio, PSLRRIt is defined as the height ratio of main lobe and the highest secondary lobe on the right.As can be seen from Table 3, the orientation of all targets 2% is respectively less than to IRW broadenings, and distance is zero to IRW broadenings, the imaging results of this explanation present invention very well, also illustrate this Invention has accurately estimated the doppler ambiguity number and doppler frequency rate of target.
Table 4 gives the simulation result of Target moving parameter estimation, it can be seen that Target moving parameter estimation of the invention Precision is higher, and the absolute value of evaluated error is respectively less than 0.4m/s.

Claims (2)

1. a kind of airborne multichannel CSSAR ground moving object motion parameters estimation methods, it is characterised in that comprise the steps:
Step 1, hypothesis:(1) clutter is suppressed by airborne multichannel CSSAR systems using displaced phase center antenna method;(2) Echo signal after Range compress has been extracted, and echo signal is located at initial data domain;
The echo signal after compressing of adjusting the distance enters row distance to Fourier transformation, and echo signal is transformed into orientation time domain distance frequency Domain, into step 2;
Step 2, step 1 is transformed to orientation time domain apart from frequency domain echo signal carry out base band Doppler center compensation, including Following steps:
A) echo signal s of the orientation time domain apart from frequency domainDPCA(fr,ta) be expressed as
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mrow> <mi>D</mi> <mi>P</mi> <mi>C</mi> <mi>A</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>W</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>w</mi> <mrow> <mi>a</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mn>4</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mfrac> <msub> <mi>R</mi> <mi>b</mi> </msub> <mi>c</mi> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mo>{</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mrow> <msub> <mi>&amp;lambda;f</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msub> </mrow> <mi>c</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>}</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mrow> <msub> <mi>&amp;lambda;K</mi> <mi>a</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mi>c</mi> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Wr() is frequency of distance envelope, wa,1() is the transmitting-receiving round trip antenna radiation pattern of reference channel, fcSent out for radar Penetrate the carrier frequency of signal, frFor frequency of distance, taFor the orientation slow time, c is the light velocity, and λ is wavelength, tbIt is located at reference channel for target At the time of the positive side-looking direction of displaced phase center, RbFor tbMoment target is to the distance of radar, KaFor the Doppler FM of target Rate, facFor the doppler centroid of target, and facIt is represented by fac=fac,b+ MPRF, wherein fac,bIt is many for target base band General Le centre frequency, M is target Doppler fuzzy number, and PRF is the pulse recurrence frequency of radar;
B) target base band doppler centroid f is assumedac,bEstimate beThen according to orientation time domain frequency of distance domain mesh The expression formula of signal is marked, base band Doppler center penalty function can be configured to
<mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> </mfrac> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
The echo signal of formula (1) is multiplied with the penalty function of formula (2) compensation of base band Doppler center can be achieved;
Step 3, in step 2 base band Doppler center compensation after echo signal carry out orientation Fourier transformation, by target Signal changes to two-dimensional frequency;
Step 4, the doppler ambiguity number and doppler frequency rate for estimating target, obtained doppler ambiguity number and Doppler FM The estimate of rate is respectivelyWith
Step 5, the target Doppler fuzzy number estimated using step 4 and doppler frequency rate construct the reference letter of two-dimensional frequency Number, the echo signal in step 3 is multiplied with the reference function and carries out target imaging, then carries out two dimension to the signal after multiplication Echo signal is changed to image area by inverse Fourier transform;
Two-dimensional frequency reference function is configured to:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> <mo>,</mo> <mover> <mi>M</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> </mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> </mfrac> <mfrac> <mrow> <msup> <mover> <mi>M</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <msup> <mi>PRF</mi> <mn>2</mn> </msup> </mrow> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> </mfrac> <mo>}</mo> <mi>exp</mi> <mo>{</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mfrac> <mrow> <mover> <mi>M</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> </mrow> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <mover> <mi>M</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <mover> <mi>M</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Wherein faFor base band orientation frequency, and satisfaction-PRF/2≤fa≤ PRF/2,WithRespectively target Doppler frequency modulation rate With the estimate of doppler ambiguity number;
Step 6, the location parameter for carving according to location estimation positive side apparent time of the target in image area target, comprise the following steps:
A) image area echo signal is expressed as:
<mrow> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>p</mi> <mi>r</mi> </msub> <mo>&amp;lsqb;</mo> <msub> <mi>t</mi> <mi>r</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <mn>2</mn> <mi>c</mi> </mfrac> <msub> <mi>R</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>f</mi> <mrow> <mi>a</mi> <mi>c</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <msub> <mi>f</mi> <mi>c</mi> </msub> </mfrac> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mi>b</mi> </msub> </mrow> <mi>&amp;lambda;</mi> </mfrac> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>a</mi> <mi>c</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein, trFor apart from fast time, pr() is Range compress impulse response function, pa() is Azimuth Compression impulse response Function;
B) according to the expression formula of the image area echo signal of formula (4), positive side apparent time carves target to radar apart from RbWith target Azimuth angle thetabEstimated by following formula:
<mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mi>m</mi> <mi>g</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <mfrac> <mi>c</mi> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> <mi>m</mi> <mi>g</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <msub> <mi>f</mi> <mi>c</mi> </msub> </mfrac> <msub> <mi>t</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mi>m</mi> <mi>g</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Wherein,WithRespectively RbAnd θbEstimate, ta,imgAnd tr,imgOrientation position and distance for target in image area To position, ω is the angular speed of radar motion;
Step 7, the location parameter estimation according to the doppler centroid of target, doppler frequency rate and positive side apparent time quarter target The kinematic parameter of target, the kinematic parameter of target is estimated using equation below:
<mrow> <msub> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>x</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msub> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mi>&amp;omega;</mi> <mo>-</mo> <msqrt> <mrow> <msubsup> <mi>r</mi> <mi>a</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mo>-</mo> <mfrac> <mrow> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <msubsup> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>h</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>4</mn> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </msqrt> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>y</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msub> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mi>&amp;omega;</mi> <mo>-</mo> <msqrt> <mrow> <msubsup> <mi>r</mi> <mi>a</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> <mo>-</mo> <mfrac> <mrow> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <msubsup> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>h</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>4</mn> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </msqrt> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
In formula (7) and formula (8),
<mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mover> <mi>M</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>+</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mrow> <mi>a</mi> <mi>c</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>b</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>+</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Wherein,For vxEstimate,For vyEstimate, vxAnd vyBe respectively target along x-axis and the speed of y-axis,For fac Estimate,For rbEstimate, rbTarget is carved to the distance of the origin of coordinates, r for positive side apparent timeaIt is radar motion track Radius, h is the height of radar.
2. airborne multichannel CSSAR ground moving object motion parameters estimation methods according to claim 1, its feature exists The doppler ambiguity number and doppler frequency rate of target are estimated using the method based on maximum-contrast in step 4, including it is following Step:
A) by the two-dimensional frequency echo signal S (f after base band Doppler center compensation in step 3r,fa) be expressed as
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>W</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>W</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfrac> <mn>2</mn> <mi>c</mi> </mfrac> <msub> <mi>R</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>f</mi> <mrow> <mi>a</mi> <mi>c</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <msub> <mi>f</mi> <mi>c</mi> </msub> </mfrac> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;t</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <mi>M</mi> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>)</mo> </mrow> <mo>}</mo> <mi>exp</mi> <mo>{</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> </mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> </mfrac> <mfrac> <mrow> <msup> <mi>M</mi> <mn>2</mn> </msup> <msup> <mi>PRF</mi> <mn>2</mn> </msup> </mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mfrac> <mrow> <mi>M</mi> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> </mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <mi>M</mi> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>)</mo> </mrow> <mo>}</mo> <mi>exp</mi> <mo>{</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <mi>M</mi> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein Wa(fa) it is orientation frequency envelope;
B) doppler ambiguity number and doppler frequency rate of target are estimated using the following method based on maximum-contrast:
<mrow> <mo>(</mo> <msub> <mover> <mi>K</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> <mo>,</mo> <mover> <mi>M</mi> <mo>^</mo> </mover> <mo>)</mo> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <msub> <mi>k</mi> <mi>a</mi> </msub> <mo>,</mo> <mi>m</mi> </mrow> </munder> <mo>{</mo> <mi>C</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> <mo>&amp;lsqb;</mo> <mi>s</mi> <mo>(</mo> <msub> <mi>t</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mi>k</mi> <mi>a</mi> </msub> <mo>,</mo> <mi>m</mi> <mo>)</mo> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In formula (4),
<mrow> <mi>C</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> <mo>&amp;lsqb;</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mi>k</mi> <mi>a</mi> </msub> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <msqrt> <mrow> <mi>E</mi> <mo>{</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>|</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mi>k</mi> <mi>a</mi> </msub> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mi>E</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>|</mo> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mi>k</mi> <mi>a</mi> </msub> <mo>,</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>}</mo> </mrow> </msqrt> <mrow> <mi>E</mi> <mo>{</mo> <msup> <mrow> <mo>|</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mi>k</mi> <mi>a</mi> </msub> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>}</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
s(tr,ta;ka, m)=IDFT2{S(fr,fa)·H2(fr,fa;ka,m)} (14)
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mi>k</mi> <mi>a</mi> </msub> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> </mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> </mfrac> <mfrac> <mrow> <msup> <mi>m</mi> <mn>2</mn> </msup> <msup> <mi>PRF</mi> <mn>2</mn> </msup> </mrow> <msub> <mi>k</mi> <mi>a</mi> </msub> </mfrac> <mo>}</mo> <mi>exp</mi> <mo>{</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mfrac> <mrow> <mi>m</mi> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> </mrow> <msub> <mi>k</mi> <mi>a</mi> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <mi>m</mi> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <mi>m</mi> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msub> <mi>k</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Wherein, IDFT2() represents two-dimentional inverse Fourier transform, and E () representation space average operation, Contrast () is represented The contrast of image,WithRespectively target Doppler frequency modulation rate and the estimate of doppler ambiguity number, kaIt is structure respectively with m Make two-dimensional frequency reference function H2(fr,fa;ka, the target Doppler frequency modulation rate and doppler ambiguity number used when m).
CN201710413596.1A 2017-06-05 2017-06-05 Airborne multi-channel CSSAR ground moving target motion parameter estimation method Active CN107271997B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710413596.1A CN107271997B (en) 2017-06-05 2017-06-05 Airborne multi-channel CSSAR ground moving target motion parameter estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710413596.1A CN107271997B (en) 2017-06-05 2017-06-05 Airborne multi-channel CSSAR ground moving target motion parameter estimation method

Publications (2)

Publication Number Publication Date
CN107271997A true CN107271997A (en) 2017-10-20
CN107271997B CN107271997B (en) 2020-05-01

Family

ID=60065027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710413596.1A Active CN107271997B (en) 2017-06-05 2017-06-05 Airborne multi-channel CSSAR ground moving target motion parameter estimation method

Country Status (1)

Country Link
CN (1) CN107271997B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271996A (en) * 2017-06-05 2017-10-20 西北工业大学 A kind of airborne CSSAR Ground moving target imagings method
CN110187343A (en) * 2019-05-28 2019-08-30 西北工业大学 Airborne triple channel CSSAR moving-target Doppler's parameter estimate and ATI Method for Phase Difference Measurement
CN110196424A (en) * 2019-05-28 2019-09-03 西北工业大学 Airborne multichannel CSSAR ground moving object movement and location parameter estimation method
CN110231603A (en) * 2019-06-27 2019-09-13 中国航空工业集团公司雷华电子技术研究所 A method of the quick solving target speed based on GMTI
CN112904327A (en) * 2021-01-19 2021-06-04 中国人民解放军国防科技大学 Composite micro-motion target parameter estimation method based on frequency modulation fuzzy function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139250A1 (en) * 2005-12-15 2007-06-21 The Mitre Corporation System and method for monitoring targets
CN102353953A (en) * 2011-09-15 2012-02-15 西安电子科技大学 Ground moving target imaging method for single-channel synthetic aperture radar (SAR)
CN103744068A (en) * 2014-01-21 2014-04-23 西安电子科技大学 Moving target detection imaging method of dual-channel frequency modulation continuous wave SAR system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139250A1 (en) * 2005-12-15 2007-06-21 The Mitre Corporation System and method for monitoring targets
CN102353953A (en) * 2011-09-15 2012-02-15 西安电子科技大学 Ground moving target imaging method for single-channel synthetic aperture radar (SAR)
CN103744068A (en) * 2014-01-21 2014-04-23 西安电子科技大学 Moving target detection imaging method of dual-channel frequency modulation continuous wave SAR system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BING SUN 等: "GMTI Performance Analysis for Circular Scanning SAR Equipped on Slow Platform", 《IGARSS 2008 - 2008 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM》 *
周峰等: "一种单通道SAR地面运动目标成像和运动参数估计方法", 《电子学报》 *
洪文: "圆迹SAR成像技术研究进展", 《雷达学报》 *
赵亮: "基于环视SAR数据的雷达运动参数估计", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271996A (en) * 2017-06-05 2017-10-20 西北工业大学 A kind of airborne CSSAR Ground moving target imagings method
CN107271996B (en) * 2017-06-05 2020-04-03 西北工业大学 Airborne CSSAR (compact spherical synthetic aperture radar) ground moving target imaging method
CN110187343A (en) * 2019-05-28 2019-08-30 西北工业大学 Airborne triple channel CSSAR moving-target Doppler's parameter estimate and ATI Method for Phase Difference Measurement
CN110196424A (en) * 2019-05-28 2019-09-03 西北工业大学 Airborne multichannel CSSAR ground moving object movement and location parameter estimation method
CN110231603A (en) * 2019-06-27 2019-09-13 中国航空工业集团公司雷华电子技术研究所 A method of the quick solving target speed based on GMTI
CN112904327A (en) * 2021-01-19 2021-06-04 中国人民解放军国防科技大学 Composite micro-motion target parameter estimation method based on frequency modulation fuzzy function

Also Published As

Publication number Publication date
CN107271997B (en) 2020-05-01

Similar Documents

Publication Publication Date Title
CN107271997A (en) Airborne multichannel CSSAR ground moving object motion parameters estimation methods
CN104007440B (en) One accelerated decomposition rear orientation projection spot beam SAR formation method
CN103869311B (en) Real beam scanning radar super-resolution imaging method
CN102393518B (en) Airborne SAR (synthetic aperture radar) imaging method suitable for large squint angle
CN105891828B (en) A kind of detection method of airborne CSSAR radar moving targets
CN102914776B (en) Multichannel SAR (synthetic aperture radar) mobile object localization method on the basis of fuzzy-c-mean algorithm
CN104749570B (en) It is a kind of to move constant airborne biradical synthetic aperture radar target localization method
CN105759241B (en) Direct localization method based on time difference frequency difference
CN106054187B (en) Based on the big Squint SAR curvilinear path wave-number domain imaging method under oblique distance model
CN103207387B (en) Method for quickly simulating airborne phased array pulse Doppler (PD) radar clutter
CN105572635B (en) The passive method for rapidly positioning in list station based on least square method
CN105487074B (en) A kind of double-base synthetic aperture radar numerical distance Doppler imaging method
CN104950307B (en) Accurate locating method for onboard tri-channel SAR-GMTI (Synthetic Aperture Radar-Ground Moving Target Indication)
CN107092014A (en) A kind of optimization method of the biradical Forward-looking SAR Warship Target Positioning of missile-borne
CN104515971A (en) Airborne single-station passive positioning method for multiple broadband targets
CN108872971B (en) Target positioning method and device based on motion single array
CN106405552A (en) WVD-PGA algorithm based SAR object focusing method
CN108469608A (en) A kind of motion platform Radar Doppler barycenter precise Estimation Method
CN104898119A (en) Correlation function-based moving-target parameter estimation method
CN104166129A (en) Real beam radar iteration minimum mean square error angle super-resolution method
CN104077498A (en) Multi-target tracking method by adopting external illuminating radar and combining target angles
CN104407349B (en) The one fixed dual station low-frequency ultra-wideband SAR in station frequency domain imaging method
CN104166134A (en) Real beam foresight scanning radar target two-dimension locating method
CN109782278A (en) Interference synthetic aperture radar altimeter beam center is directed toward design method and system
CN105738887A (en) Airborne radar clutter power spectrum optimization method based on Doppler channel division

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant