CN107194410B - 一种基于多线性ica的光谱张量降维的分类方法 - Google Patents

一种基于多线性ica的光谱张量降维的分类方法 Download PDF

Info

Publication number
CN107194410B
CN107194410B CN201710204014.9A CN201710204014A CN107194410B CN 107194410 B CN107194410 B CN 107194410B CN 201710204014 A CN201710204014 A CN 201710204014A CN 107194410 B CN107194410 B CN 107194410B
Authority
CN
China
Prior art keywords
class
tensor
matrix
pixel
factors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710204014.9A
Other languages
English (en)
Other versions
CN107194410A (zh
Inventor
彭进业
闫荣华
汶德胜
冯晓毅
胡永明
王珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
XiAn Institute of Optics and Precision Mechanics of CAS
Northwestern University
Original Assignee
Northwestern Polytechnical University
XiAn Institute of Optics and Precision Mechanics of CAS
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, XiAn Institute of Optics and Precision Mechanics of CAS, Northwestern University filed Critical Northwestern Polytechnical University
Priority to CN201710204014.9A priority Critical patent/CN107194410B/zh
Publication of CN107194410A publication Critical patent/CN107194410A/zh
Application granted granted Critical
Publication of CN107194410B publication Critical patent/CN107194410B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/245Classification techniques relating to the decision surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于多线性ICA的光谱张量降维的分类方法,该方法将影响地物光谱特征的因素作为类内因素,并将类内因素、类与像素光谱分别作为一种模式构建成一个3阶张量,对其进行基于低秩张量分解的降维;对3阶张量D进行多线性ICA(独立成分分析)分解得到类空间矩阵Cclass、类内因素空间矩阵Cwithin‑class;采用有监督分类器对无类别的测试高光谱图像d进行分类。本发明在模型建立后即可对高光谱图像进行分类,无需调整,而其他张量建模方法则需要反复设置、调整参数才能达到最佳分类效果;本发明将一类的所有像素光谱映射到同一系数向量上,从而将各种因素的影响减至最小,不但提高了分类精度,而且结果稳定;对未知像素光谱分类时,可推断出其受哪一个因素影响。

Description

一种基于多线性ICA的光谱张量降维的分类方法
技术领域
本发明属于遥感图像处理技术领域,具体涉及一种基于多线性ICA的光谱张量降维的分类方法。
背景技术
高光谱图像提供了细致丰富的地物光谱特性描述,大大提高了对地物的分类能力,已广泛应用于地质勘探与地球资源调查、城市遥感与规划管理、环境与灾害监测、精细农业、测绘及考古等方面。
然而,高光谱图像由大量波段数据组成,这些波段构成高维特征空间,对其处理需要巨大的计算量,引发“数据灾难”。针对这个问题,最为有效的方式就是降维。主分量分析(Principal Component Analysis,PCA)由于简单有效是目前应用最广泛的降维方法。但是PCA需要将高光谱图像向量化,并且只是在高光谱图像的光谱维上进行处理,忽略了高光谱图像的空间信息。
为了充分利用高光谱图像的空间信息,学者们提出了许多将高光谱图像建模为张量的方法。高光谱图像可是一组二维图像,因此可以用多维数据表示,包括两个空间维和一个光谱维。Letexier等人将高光谱图像建模为三阶张量
Figure BDA0001259384380000011
其中I1和I2为像素位置,I3为波段数。使用张量分解模型对高光谱图像进行空间和光谱联合分析。其中使用Tucker3分解模型生成张量数据的低秩近似,称为LRTA-(k1,k2,k3)方法。
基于张量的低秩近似,Nadine Renard等提出了先在高光谱数据的空间维上进行低秩近似,以降低空间维上的噪声;然后在光谱维上使用PCA进行降维的LRTAdr-(k1,k2,p)方法。该方法改善了分类精度。但是该方法仅仅将高光谱立方体简单建模为三阶张量,没有考虑到影响高光谱分类精度的真正原因:地物的光谱特征受到如光照、混合、大气散射、大气辐射等多种因素影响。
发明内容
针对现有技术中存在的缺陷,本发明提出了一种基于多线性ICA的光谱张量降维的分类方法,包括以下步骤:
步骤1,随机选取高光谱图像中的像素光谱作为训练集,所选取的像素光谱有L个波段、C类样本,分别在C类样本中的每类样本中随机选取W个像素光谱作为类内因素,其中C大于等于1的自然数,W为大于等于1的自然数;
步骤2,构建3阶张量
Figure BDA0001259384380000024
其中C为第一模式,W为第二模式,L为第三模式,其中L为大于等于1的自然数。
步骤3,判断待测试像素光谱d所属类、所属因素:
步骤31,计算基张量
(式1)中,
Figure BDA0001259384380000025
为3阶张量;Cclass为类空间矩阵;Cwithin-class为类内因素空间矩阵;Upixels为像素光谱矩阵;对3阶张量
Figure BDA0001259384380000027
进行多线性ICA分解得到类空间矩阵Cclass、类内因素空间矩阵Cwithin-class
步骤32,计算基张量
Figure BDA0001259384380000026
的逆张量
Figure BDA0001259384380000028
由张量化矩阵P(pixels)得到;
其中,
(式2)中,
Figure BDA0001259384380000023
为基张量
Figure BDA00012593843800000210
第三模式展开得到的矩阵T(pixels)的逆矩阵的转置。
步骤33,计算响应张量
其中,
(式3)中,
Figure BDA0001259384380000032
为响应张量,
Figure BDA0001259384380000033
为基张量
Figure BDA0001259384380000034
的逆张量,d为待测试像素光谱。
步骤34,将响应张量
Figure BDA0001259384380000035
按第三模式展平得到R(pixels)
步骤35,对R(pixels)进行奇异值分解得到左矩阵U和右矩阵V;
步骤36,取U的第一列记为cd,取V的第一列记为wd
步骤37,如果ck满足则测试像素光谱d属于C类中的类别k,k≤C;
其中,ck=Cclass(k,:)T
步骤38,如果wm满足则测试像素光谱d属于W个因素中的因素m,m≤W;
其中,wm=Cwithin-class(m,:)T
与现有技术相比,本发明具有以下技术效果:
(1)本发明第一次将影响高光谱图像的因素建模为张量,解决了对影响高光谱图像的因素建模的问题;
(2)本发明在模型建立后即可对高光谱图像进行分类,无需调整,而其他张量建模方法则需要反复设置、调整参数才能达到最佳分类效果;
(3)本发明将一类的所有像素光谱映射到同一系数向量上,从而将各种因素的影响减至最小,不但提高了分类精度,而且结果稳定。
(4)对未知像素光谱分类时,可推断出其受哪一个因素影响。
附图说明
图1为光谱张量综合降维分解图;
图2(a)为Indian Pine数据集波段60、27及17的伪彩色合成图;
图2(b)为Indian Pine数据集真实标记图;
图3为Indian Pine数据集中各类的光谱曲线;
图4为形成3阶光谱张量;
具体实施方式
下面通过实施例和附图对本发明做进一步说明。
实施例1
本实施例提供了一种基于多线性的光谱张量降维方法,该方法将随机选取的像素光谱作为类内因素,并将类内因素、类与像素光谱的波段分别作为一种模式构建成一个3阶张量,对其进行基于多线性ICA的降维;
步骤1,本实施例选用的是Indian Pine的高光谱图像中的像素光谱,原始图像尺寸为145×145。如图2所示,该高光谱图像包括10类样本,分别为:Corn-notill、Corn-min、Grass/Pasture、Grass/Tree、Hay-windrowed、Soybeans-notill、soybeans-min、soybeans-clean、Woods、Bldg-Grass Tree;本实施例中,从上述10类样本中的每类样本中选择50个像素光谱作为类内因素;
由于地物的光谱特征易受到如光照、混合、大气散射、大气辐射等多种因素影响,所以本实施例将地物的光谱特征作为类内因素来建模,提高高光谱图像的分类精度。
步骤2,将所述类作为第一模式,所述类内因素作为第二模式,所述像素光谱的波段作为第三模式构建3阶张量其中10为第一模式,50为第二模式,220为第三模式,如图4所示。图4为3阶张量
Figure BDA0001259384380000042
的构造过程。
使用多线性ICA分解生成张量数据的低秩近似,改善了高光谱图像的分类精度。
实施例2
本实施例将实施例1选取的高光谱图像的像素光谱作为训练集,输入任意一幅Indian Pine中未分类的像素光谱作为测试像素光谱d。
其中,d为(0.3172,0.4142,0.4506,0.4279,0.4782,0.5048,0.5213,0.5106,0.5053,0.4750,0.4816,0.4769,0.4610,0.4805,0.4828,0.4861,0.4767,0.4624,0.4549,0.4463,0.4462,0.4446,0.4445,0.4336,0.4381,0.4319,0.4207,0.4305,0.4311,0.3991,0.4168,0.3942,0.4061,0.4365,0.4318,0.4252,0.4869,0.5284,0.5055,0.3591,0.5175,0.5217,0.5058,0.4969,0.4721,0.4291,0.4555,0.4886,0.4868,0.4806,0.4783,0.4811,0.4709,0.3903,0.3795,0.3715,0.3359,0.2130,0.2269,0.2480,0.3145,0.3626,0.4060,0.4296,0.4211,0.4225,0.4157,0.4133,0.4082,0.4048,0.3935,0.3843,0.3784,0.3642,0.3271,0.2707,0.1707,0.1564,0.1838,0.1719,0.2229,0.2764,0.2919,0.2873,0.2977,0.2913,0.3034,0.3051,0.3124,0.3101,0.3033,0.2713,0.2740,0.2947,0.2706,0.2834,0.2856,0.2683,0.2400,0.2229,0.1822,0.1542,0.1097,0.1029,0.1020,0.1026,0.1009,0.1011,0.1047,0.1069,0.1100,0.1122,0.1259,0.1365,0.1261,0.1374,0.1630,0.1851,0.2028,0.2130,0.2170,0.2205,0.2214,0.2204,0.2100,0.2106,0.2146,0.2089,0.2078,0.2134,0.2127,0.2074,0.2057,0.2045,0.2003, 0.1999,0.1959,0.1924,0.1883,0.1843,0.1781,0.1716,0.1698,0.1645,0.1540,0.1410,0.1294,0.1131,0.1044,0.1029,0.1006,0.1017,0.1000,0.0995,0.0997,0.1003,0.1016,0.1001,0.1003,0.1002,0.1005,0.1004,0.1008,0.1032,0.1045,0.1100,0.1212,0.1295,0.1244,0.1100,0.1103,0.1216,0.1346,0.1330,0.1259,0.1251,0.1313,0.1372,0.1393,0.1402,0.1396,0.1381,0.1396,0.1381,0.1353,0.1346,0.1341,0.1332,0.1324,0.1310,0.1318,0.1330,0.1310,0.1292,0.1280,0.1275,0.1266,0.1264,0.1233,0.1241,0.1232,0.1215,0.1215,0.1187,0.1168,0.1171,0.1150,0.1134,0.1123,0.1135,0.1094,0.1090,0.1112,0.1090,0.1062,0.1069,0.1057,0.1020,0.1020,0.1005);
本实施例在实施例1的基础上判断待测试像素光谱d所属类,所属因素,包括以下步骤:
步骤1,计算基张量
Figure BDA0001259384380000061
(式1)中,为10×50×220张量;Cclass为10×10的类空间矩阵;Cwithin-class为50×50类内因素空间矩阵;对3阶张量
Figure BDA0001259384380000065
进行多线性ICA分解得到类空间矩阵Cclass、类内因素空间矩阵Cwithin-class
步骤2,计算基张量
Figure BDA0001259384380000066
的逆张量
Figure BDA0001259384380000067
Figure BDA0001259384380000068
由张量化矩阵P(pixels)得到;
其中,
(式2)中,
Figure BDA0001259384380000063
为基张量第三模式展开得到的矩阵T(pixels)的逆矩阵的转置。
步骤3,计算响应张量
其中,
Figure BDA0001259384380000071
(式3)中,为响应张量,为基张量的逆张量,d为待测试像素光谱。
步骤4,将响应张量
Figure BDA0001259384380000075
按第三模式展平得到R(pixels)
步骤5,对R(pixels)进行奇异值分解得到左矩阵U和右矩阵V;
步骤6,取U的第一列记为cd,取V的第一列记为wd
步骤7,如果ck满足
Figure BDA0001259384380000076
则测试像素光谱d属于C类中的类别k,k≤C;
其中,ck=Cclass(k,:)T
步骤8,如果wm满足
Figure BDA0001259384380000077
则测试像素光谱d属于W个因素中的因素m,m≤W;
其中,wm=Cwithin-class(m,:)T
本发明提出了一种新的高光谱图像的降维方法,这种方法的优点如下:1)第一次将影响高光谱图像的因素建模为张量。2)模型建立后即可使用,无需调整,而其他张量建模方法则需要反复设置、调整参数才能达到最佳分类效果。3)本发明方法的最大优点是将一类的所有像素光谱映射到同一系数向量上,从而将各种因素的影响减至最小,不但提高了分类精度,而且结果稳定。4)对未知像素光谱分类时,可推断出其受哪一个因素影响。

Claims (1)

1.一种基于多线性ICA的光谱张量降维的分类方法,其特征在于,包括以下步骤:
步骤1,随机选取高光谱图像中的像素光谱作为训练集,所选取的像素光谱有L个波段、C类样本,分别在C类样本中的每类样本中随机选取W个像素光谱作为类内因素,其中C为大于等于1的自然数,W为大于等于1的自然数;
步骤2,构建3阶张量
Figure FDA0001259384370000011
其中C为第一模式,W为第二模式,L为第三模式,其中L为大于等于1的自然数;
步骤3,判断待测试像素光谱d所属类、所属因素:
步骤31,计算基张量
Figure FDA0001259384370000012
(式1)中,
Figure FDA0001259384370000013
为3阶张量;Cclass为类空间矩阵;Cwithin-class为类内因素空间矩阵;Upixels为像素光谱矩阵;对3阶张量进行多线性ICA分解得到类空间矩阵Cclass、类内因素空间矩阵Cwithin-class
步骤32,计算基张量
Figure FDA0001259384370000015
的逆张量
Figure FDA0001259384370000016
由张量化矩阵P(pixels)得到;
其中,
Figure FDA0001259384370000017
(式2)中,
Figure FDA0001259384370000018
为基张量
Figure FDA0001259384370000019
第三模式展开得到的矩阵T(pixels)的逆矩阵的转置;
步骤33,计算响应张量
Figure FDA00012593843700000110
其中,
(式3)中,
Figure FDA00012593843700000112
为响应张量,
Figure FDA00012593843700000113
为基张量
Figure FDA00012593843700000114
的逆张量,d为待测试像素光谱;
步骤34,将响应张量
Figure FDA0001259384370000021
按第三模式展平得到
步骤35,对
Figure FDA0001259384370000023
进行奇异值分解得到左矩阵U和右矩阵V;
步骤36,取U的第一列记为cd,取V的第一列记为wd
步骤37,如果ck满足argkmin||cd-ck||,则测试像素光谱d属于C类中的类别k,k≤C;
其中,ck=Cclass(k,:)T
步骤38,如果wm满足
Figure FDA0001259384370000024
则测试像素光谱d属于W个因素中的因素m,m≤W;
其中,wm=Cwithin-class(m,:)T
CN201710204014.9A 2017-03-30 2017-03-30 一种基于多线性ica的光谱张量降维的分类方法 Expired - Fee Related CN107194410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710204014.9A CN107194410B (zh) 2017-03-30 2017-03-30 一种基于多线性ica的光谱张量降维的分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710204014.9A CN107194410B (zh) 2017-03-30 2017-03-30 一种基于多线性ica的光谱张量降维的分类方法

Publications (2)

Publication Number Publication Date
CN107194410A CN107194410A (zh) 2017-09-22
CN107194410B true CN107194410B (zh) 2020-01-14

Family

ID=59871728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710204014.9A Expired - Fee Related CN107194410B (zh) 2017-03-30 2017-03-30 一种基于多线性ica的光谱张量降维的分类方法

Country Status (1)

Country Link
CN (1) CN107194410B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109885628B (zh) * 2019-03-20 2020-05-12 上海燧原智能科技有限公司 一种张量转置方法、装置、计算机及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379925B2 (en) * 2003-07-25 2008-05-27 New York University Logic arrangement, data structure, system and method for multilinear representation of multimodal data ensembles for synthesis, rotation and compression
JP2007518199A (ja) * 2004-01-13 2007-07-05 ニューヨーク・ユニバーシティ 多重線形独立要素分析を使用した画像認識の方法、システム、記憶媒体、及びデータ構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《CLASSIFICATION IMPROVEMENT BY DIMENSIONALITY REDUCTION BASED ON MULTILINEAR ALGEBRA TOOLS》;N. Renard等;《IEEE Xplore》;20150504;第287页左栏,第4-5节 *
《Multilinear Independent Components Analysis》;M. Alex O. Vasilescu等;《2005 IEEE Computer Society Conference on Computer Vision and Pattern Ricognition(CVPR"05)》;20050725;第3-6节 *

Also Published As

Publication number Publication date
CN107194410A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
CN106845517B (zh) 一种基于Tucker分解的光谱张量降维及分类方法
CN107590515B (zh) 基于熵率超像素分割的自编码器的高光谱图像分类方法
CN107145836B (zh) 基于栈式边界辨别自编码器的高光谱图像分类方法
Feilhauer et al. Multi-method ensemble selection of spectral bands related to leaf biochemistry
CN103886336B (zh) 基于稀疏自动编码器的极化sar图像分类方法
CN107609573B (zh) 基于低秩分解和空谱约束的高光谱图像时变特征提取方法
Wang et al. Adaptive ${L} _ {\bf 1/2} $ sparsity-constrained NMF with half-thresholding algorithm for hyperspectral unmixing
Ouerghemmi et al. Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces
CN104751181B (zh) 一种基于相对丰度的高光谱图像解混方法
CN105894013B (zh) 基于cnn和smm的极化sar图像分类方法
CN104809471B (zh) 一种基于空间光谱信息的高光谱图像残差融合分类方法
CN106203452B (zh) 基于多线性判别分析的玉米种子高光谱图像多特征转换方法
CN114266961A (zh) 一种整合高光谱和多频段全极化sar影像的沼泽植被堆栈集成学习分类方法
CN107194410B (zh) 一种基于多线性ica的光谱张量降维的分类方法
CN113421198B (zh) 一种基于子空间的非局部低秩张量分解的高光谱图像去噪方法
Wang et al. Hyperspectral linear unmixing based on collaborative sparsity and multi-band non-local total variation
CN117115669B (zh) 双条件质量约束的对象级地物样本自适应生成方法及系统
Li et al. On diverse noises in hyperspectral unmixing
Yan et al. Spectral tensor synthesis analysis for hyperspectral image spectral–spatial feature extraction
LU500715B1 (en) Hyperspectral Image Classification Method Based on Discriminant Gabor Network
Li et al. A multispectral remote sensing data spectral unmixing algorithm based on variational Bayesian ICA
CN111985501B (zh) 一种基于自适应高阶张量分解的高光谱图像特征提取方法
Wang et al. Hyperspectral unmixing using deep learning
Zhang et al. Nonlinear estimation of subpixel proportion via kernel least square regression
Bourennane et al. Dimensionality reduction and coloured noise removal from hyperspectral images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200114

CF01 Termination of patent right due to non-payment of annual fee