CN106908911A - 一种用于多路并行传输的光收发组件 - Google Patents

一种用于多路并行传输的光收发组件 Download PDF

Info

Publication number
CN106908911A
CN106908911A CN201510973941.8A CN201510973941A CN106908911A CN 106908911 A CN106908911 A CN 106908911A CN 201510973941 A CN201510973941 A CN 201510973941A CN 106908911 A CN106908911 A CN 106908911A
Authority
CN
China
Prior art keywords
array
optical
lens
fiber
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510973941.8A
Other languages
English (en)
Inventor
王向飞
刘洪彬
李伟启
徐云兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photop Technologies Inc
Original Assignee
Photop Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photop Technologies Inc filed Critical Photop Technologies Inc
Priority to CN201510973941.8A priority Critical patent/CN106908911A/zh
Publication of CN106908911A publication Critical patent/CN106908911A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明公开了一种用于多路并行传输的光收发组件,包括激光器阵列、光电探测器阵列、光学透镜阵列组件和光纤阵列组件,光学透镜阵列组件含多个光学微球透镜或透镜定位块和多个光学微球透镜,光纤阵列的端面角度被磨成45°,光束在该端面上被反射,以最简单的结构实现了其传输方向的90°转折;通过在光纤阵列组件与激光器阵列和光电探测器阵列之间增加组装光学透镜阵列组件,由于光学微球透镜的曲率半径很小,具有很强的会聚能力,又由于透镜定位块和光学微球透镜的成本低廉,且可批量加工,使得该光收发组件具有很高的光耦合效率,成本低廉,组装简便,易于实现批量生产,具有很好的市场前景。

Description

一种用于多路并行传输的光收发组件
技术领域
本发明涉及光纤通信技术中的光收发组件,特别涉及一种用于多路并行传输的光收发组件。
背景技术
随着通讯领域的快速发展,传统的传输技术已经很难满足传输容量及速度的要求,在典型的应用领域如数据中心、网络连接、搜索引擎、高性能计算等领域,为防止宽带资源的不足,承运商和服务供应商们对新一代高速网络协议进行了规划和部署,亟需相应的光高速收发模块以满足高密度高速率的数据传输要求。短距离多路并行光传输是垂直腔面发射激光器(VCSEL)及并行光互联技术,用每一个激光器对准一根传送光纤,在不降低系统传送容量的前提下,降低每根光纤的传输速率,从而实现了一种简单、廉价和可靠的光传输方式。
常见的多路并行光收发模块的光耦合方式是光纤阵列与VCSEL激光器阵列和PD光电探测器阵列直接对准耦合,但是往往耦合效率不高,影响光收发模块的传输性能;且在高速率的传送模块中,PD光电探测器的有效感光面比较小,使得光纤到PD光电探测器的光耦合效率很低,在光信号接收端模块的灵敏度降低;如果使用传统的透镜阵列,不仅价格比较贵,同时由于受加工工艺限制,传统透镜阵列的曲率半径不能做到太小,对光的会聚能力不是很强,所以在这种情况下对光纤与VCSEL激光器或PD光电探测器之间的光耦合效率提升比较有限。
发明内容
针对上述问题,本发明的目的在于提供一种结构简单、成本低廉、耦合效率极高的多路并行传输的光收发组件。
为达到上述目的,本发明所提出的技术方案为:一种用于多路并行传输的光收发组件,包括印刷电路板、激光器阵列、光电探测器阵列、激光器驱动芯片、探测器TIA芯片、光学透镜阵列组件和光纤阵列组件,所述激光器阵列、光电探测器阵列、激光器驱动芯片、探测器TIA芯片均直接组装在所述印刷电路板的电极上;所述光纤阵列组件通过垫块固定在所述印刷电路板的一端,其光纤阵列的耦合端端面角度为45°,与所述光纤阵列耦合端同侧的印刷电路板的另一端设有信号输入输出端口;所述光学透镜阵列组件分别固定在所述激光器阵列的通道发光面和所述光电探测器阵列的通道接收面上,并置于所述光纤阵列组件耦合端的下方。
进一步的,所述激光器阵列为VCSEL激光器阵列。
进一步的,所述激光器阵列和光电探测器阵列、所述激光器驱动芯片和探测器TIA芯片均采用并排直线排列,均通过导电胶直接组装在所述印刷电路板的电极上;所述激光器阵列和激光器驱动芯片、所述光电探测器阵列和探测器TIA芯片均通过金线相连接。
进一步的,所述光纤阵列组件包括由多根光纤组成的光纤阵列和带有与光纤同等数量V型槽的固定座,与光纤阵列耦合端同侧的V型槽端面角度为45°;所述光纤阵列中光纤的数量等于或大于所述激光器阵列的通道数与所述光电探测器阵列的通道数之和;所述每个V型槽之间的间距与激光器阵列和光电探测器阵列中的各个通道之间的间距相同,所述光纤阵列中的每根光纤通过胶粘方式固定在所述固定座中相对应的V型槽内。
进一步的,所述光纤阵列耦合端端面镀有至少一层与所传输信号的波长相对应的高反射膜,以提高光束在该端面的反射率,减少光束损耗。
进一步的,所述光学透镜阵列组件由多个光学微球透镜组成,所述光学微球透镜的数量等于所述激光器阵列的通道数或所述光电探测器阵列的通道数,光学微球透镜的材质为玻璃或塑料,所述光学微球透镜采用光学折射率匹配胶分别粘接固定在激光器阵列和光电探测器阵列上,其中一个透镜阵列组件的每个光学微球透镜中心与激光器阵列中每个通道的发光面中心和光纤阵列中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜中心与光电探测器阵列中每个通道的接收面中心和光纤阵列中相对应的每根出光光纤的出光处中心相对准。
进一步的,所述光学透镜阵列组件由多个光学微球透镜和带有与光学微球透镜同等数量通孔的透镜定位块组成,所述光学微球透镜的数量等于所述激光器阵列的通道数或所述光电探测器阵列的通道数,光学微球透镜的材质为玻璃或塑料,所述光学微球透镜粘接固定在所述透镜定位块的通孔内,通孔的直径稍小于或等于光学微球透镜的直径;所述透镜定位块的通孔间距与激光器阵列、光电探测器阵列的通道间距以及光纤阵列中的光纤间距相同;所述透镜阵列组件采用光学折射率匹配胶分别粘接固定在激光器阵列和光电探测器阵列上,其中一个透镜阵列组件的每个光学微球透镜中心与激光器阵列中每个通道的发光面中心和光纤阵列中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜中心与光电探测器阵列中每个通道的接收面中心和光纤阵列中相对应的每根出光光纤的出光处中心相对准。
进一步的,所述光学透镜阵列组件由多个光学微球透镜和带有与光学微球透镜同等数量V型槽的透镜定位块组成,所述光学微球透镜的数量等于所述激光器阵列的通道数或所述光电探测器阵列的通道数,光学微球透镜的材质为玻璃或塑料,所述光学微球透镜粘接固定在所述透镜定位块的V型槽内;所述透镜定位块的V型槽间距与激光器阵列、光电探测器阵列的通道间距以及光纤阵列中的光纤间距相同;所述透镜阵列组件采用光学折射率匹配胶分别粘接固定在激光器阵列和光电探测器阵列上,其中一个透镜阵列组件的每个光学微球透镜中心与激光器阵列中每个通道的发光面中心和光纤阵列中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜中心与光电探测器阵列中每个通道的接收面中心和光纤阵列中相对应的每根出光光纤的出光处中心相对准。
进一步的,所述透镜定位块的厚度与光学微球透镜的直径大致相同。
采用上述技术方案,本发明具有以下有益效果:采用耦合端端面角度为45°的光纤阵列组件,以最简单的结构实现了光传输方向的90°转折,然后采用直径微小的光学微球透镜对光束进行会聚,由于光学微球透镜具有很强的聚光能力,因此用简单廉价的方案实现了从激光器阵列到光纤阵列以及光纤阵列到光电探测器阵列的高耦合效率,另外采用不同的透镜定位块来定位光学微球透镜,使得本发明具有极高的光耦合效率、成本低廉、结构简单和易于组装等优点,具有非常切实的可行性和很好的市场前景。
附图说明
图1为本发明所述的多路并行传输的光收发组件结构示意图。
图2为本发明所述的多路并行传输的光收发组件的光学耦合示意图。
图3为本发明所述的光纤阵列组件的结构示意图。
图4为本发明所述的光学透镜阵列组件中透镜定位块的结构示意图。
图5为本发明所述的光学透镜阵列组件中透镜定位块的另一结构示意图。
其中:100.印刷电路板,101.激光器阵列,102.光电探测器阵列,103.激光器驱动芯片,104.探测器TIA芯片,105.光纤阵列,106.固定座,107.垫块,108.信号输入输出端口,109.光学微球透镜,110.金线,111.透镜定位块。
具体实施方式
下面结合附图和具体实施方式,对本发明做进一步说明。
如图1所示,一种用于多路并行传输的光收发组件,包括印刷电路板100、激光器阵列101、光电探测器阵列102、激光器驱动芯片103、探测器TIA芯片104、光学透镜阵列组件和光纤阵列组件,激光器阵列101、光电探测器阵列102、激光器驱动芯片103、探测器TIA芯片104均直接组装在印刷电路板100的电极上;光纤阵列组件通过垫块107固定在印刷电路板100的一端,其光纤阵列105的耦合端端面角度为45°,与光纤阵列耦合端同侧的印刷电路板的另一端设有信号输入输出端口108;光学透镜阵列组件分别固定在激光器阵列101的通道发光面和光电探测器阵列102的通道接收面上,并置于光纤阵列组件耦合端的下方。
以下具体实施例中,均以VCSEL激光器阵列和探测器TIA芯片为例。
如图2所示,激光器阵列101和光电探测器阵列102、激光器驱动芯片103和探测器TIA芯片104均采用并排直线排列,均通过导电胶直接组装在印刷电路板100的电极上;激光器阵列101和激光器驱动芯片103、光电探测器阵列102和探测器TIA芯片104均通过打金线110相连接。
如图2和图3所示,光纤阵列组件包括由多根光纤组成的光纤阵列105和带有与光纤同等数量V型槽的固定座106,光纤阵列中光纤的数量等于或大于激光器阵列101的通道数与光电探测器阵列102的通道数之和,光纤阵列105中的每根光纤通过胶粘方式固定在固定座106中相对应的V型槽内。其中每个V型槽之间的间距与激光器阵列101和光电探测器阵列102中的各个通道之间的间距相同,一般情况下为250微米。光纤阵列105的耦合端端面被磨成45°,从而以最简单的结构实现了光束传输方向转折90°的功能,以最少的损耗使光束在光纤内传输,该端面也可被磨成其它角度,此时光束在光纤内传输过程中将会有些许损耗。与光纤阵列105耦合端同侧的V型槽端面也可被磨成45°,与V型槽同侧的固定座端面也可被磨成45°,为了提高光纤中光束的反射效率,在45°光纤阵列耦合端端面上镀有至少一层与所传输信号的波长相对应的高反射膜,以使光束在该端面上实现全反射,减少光束损耗。
由于激光器阵列101与光纤阵列105以及光纤阵列105与光电探测器阵列102之间直接耦合的光耦合效率都比较低,因此为了增加光耦合效率,在光纤阵列105的下方装配一个透镜阵列组件。以下皆以4个通道的VCSEL激光器阵列和光电探测器阵列为例,此时光纤阵列105中所需光纤数可为等于或大于8根,所需光学微球透镜109也可为8个或大于8个,可视具体情况而定。该光学微球透镜直径一般小于0.1mm,对光具有很强的会聚能力。
如图2所示,此时光学透镜阵列组件可由多个光学微球透镜109组成,光学微球透镜109的数量等于激光器阵列101的通道数4个或光电探测器阵列102的通道数4个,则每个透镜阵列组件含有4个光学微球透镜,光学微球透镜109的材质为玻璃或塑料,组装时采用光学折射率匹配胶将光学微球透镜109分别粘接固定在激光器阵列101和光电探测器阵列102上,其中一个透镜阵列组件的每个光学微球透镜109中心与激光器阵列101中每个通道的发光面中心和光纤阵列105中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜109中心与光电探测器阵列102中每个通道的接收面中心和光纤阵列105中相对应的每根出光光纤的出光处中心相对准,以实现最高的光传输效率,进而实现最高的光耦合效率。
如图4所示,光学透镜阵列组件也可由多个光学微球透镜109和带有与光学微球透镜同等数量通孔的透镜定位块111组成,光学微球透镜109的数量等于激光器阵列101的通道数4个或光电探测器阵列102的通道数4个,则每个透镜阵列组件上含有4个光学微球透镜,透镜定位块111上含有4个通孔,用以固定光学微球透镜109,光学微球透镜109的材质为玻璃或塑料。光学微球透镜109粘接固定在透镜定位块111的通孔内,通孔的直径稍小于或等于光学微球透镜109的直径。透镜定位块111的通孔间距与激光器阵列101、光电探测器阵列102的通道间距以及光纤阵列105中的光纤间距相同,以方便组装时的中心对准。组装时采用光学折射率匹配胶将透镜阵列组件分别粘接固定在激光器阵列101和光电探测器阵列102上,其中一个透镜阵列组件的每个光学微球透镜109中心与激光器阵列101中每个通道的发光面中心和光纤阵列105中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜109中心与光电探测器阵列102中每个通道的接收面中心和光纤阵列105中相对应的每根出光光纤的出光处中心相对准,以实现最高的光传输效率,进而实现最高的光耦合效率。
如图5所示,光学透镜阵列组件还可由多个光学微球透镜109和带有与光学微球透镜同等数量V型槽的透镜定位块111组成,光学微球透镜109的数量等于激光器阵列101的通道数4个或光电探测器阵列102的通道数4个,则每个透镜阵列组件上含有4个光学微球透镜,透镜定位块111上含有4个V型槽,用以固定光学微球透镜109,光学微球透镜109的材质为玻璃或塑料。光学微球透镜109粘接固定在透镜定位块111的V型槽内,透镜定位块111的厚度与光学微球透镜109的直径大致相同。透镜定位块111的V型槽间距与激光器阵列101、光电探测器阵列102的通道间距以及光纤阵列105中的光纤间距相同,以方便组装时的中心对准。其组装方法同图4。
如上所述,光纤阵列105中的光纤数可大于激光器阵列通道数和光电探测器通道数之和,其中除用于进光和出光外,剩余的其它光纤没有传输光信号的作用。作为发射端的激光器阵列也可为其他通道数,则相应的接收端的光电探测器阵列需具有相同的通道数,光学微球透镜的数量等于该通道数。
信号从输入输出端口108输入,从激光器阵列101发光面发出,之后通过光学透镜阵列组件上的光学微球透镜109会聚后从光纤侧面进入耦合端端面角度为45°的光纤阵列105,被该端面反射,光束转折90°,后沿着光纤阵列105传输;在相应的接收端,光束在耦合端端面角度为45°的光纤阵列105端面上反射,传输方向同样转折了90°,后从光纤侧面出射,再通过光学透镜阵列组件上的光学微球透镜109会聚后进入光电探测器阵列102进行接收和转换,再从输入输出端口108输出。
透镜定位块111可以用刻蚀的办法加工,不仅精度极高,同时可以批量加工,成本非常低廉;光学微球透镜109可以由玻璃或塑料制成,成本也很低,所以做成的透镜阵列组件很有成本优势。
采用了在光纤阵列组件与激光器阵列和光电探测器阵列之间增加组装光学透镜阵列组件,又由于光学微球透镜的曲率半径很小,对光的会聚能力很强,同时透镜定位块和光学微球透镜的成本低廉,使得本发明的光收发组件具有很高的光耦合效率,结构简单,成本低廉,组装方便等优势。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上对本发明做出各种变化,均为本发明的保护范围。

Claims (9)

1.一种用于多路并行传输的光收发组件,其特征在于,包括印刷电路板、激光器阵列、光电探测器阵列、激光器驱动芯片、探测器TIA芯片、光学透镜阵列组件和光纤阵列组件,所述激光器阵列、光电探测器阵列、激光器驱动芯片、探测器TIA芯片均直接组装在所述印刷电路板的电极上;所述光纤阵列组件通过垫块固定在所述印刷电路板的一端,其光纤阵列的耦合端端面角度为45°,与所述光纤阵列耦合端同侧的印刷电路板的另一端设有信号输入输出端口;所述光学透镜阵列组件分别固定在所述激光器阵列的通道发光面和所述光电探测器阵列的通道接收面上,并置于所述光纤阵列组件耦合端的下方。
2.如权利要求1所述的一种用于多路并行传输的光收发组件,其特征在于,所述激光器阵列为VCSEL激光器阵列。
3.如权利要求1或2所述的一种用于多路并行传输的光收发组件,其特征在于,所述激光器阵列和光电探测器阵列、所述激光器驱动芯片和探测器TIA芯片均采用并排直线排列,均通过导电胶直接组装在所述印刷电路板的电极上;所述激光器阵列和激光器驱动芯片、所述光电探测器阵列和探测器TIA芯片均通过金线相连接。
4.如权利要求1所述的一种用于多路并行传输的光收发组件,其特征在于,所述光纤阵列组件包括由多根光纤组成的光纤阵列和带有与光纤同等数量V型槽的固定座,与光纤阵列耦合端同侧的V型槽端面角度为45°;所述光纤阵列中光纤的数量等于或大于所述激光器阵列的通道数与所述光电探测器阵列的通道数之和;所述每个V型槽之间的间距与激光器阵列和光电探测器阵列中的各个通道之间的间距相同,所述光纤阵列中的每根光纤通过胶粘方式固定在所述固定座中相对应的V型槽内。
5.如权利要求4所述的一种用于多路并行传输的光收发组件,其特征在于,所述光纤阵列耦合端端面镀有至少一层与所传输信号的波长相对应的高反射膜,以提高光束在该端面的反射率,减少光束损耗。
6.如权利要求1或4所述的一种用于多路并行传输的光收发组件,其特征在于,所述光学透镜阵列组件由多个光学微球透镜组成,所述光学微球透镜的数量等于所述激光器阵列的通道数或所述光电探测器阵列的通道数,光学微球透镜的材质为玻璃或塑料,所述光学微球透镜采用光学折射率匹配胶分别粘接固定在激光器阵列和光电探测器阵列上,其中一个透镜阵列组件的每个光学微球透镜中心与激光器阵列中每个通道的发光面中心和光纤阵列中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜中心与光电探测器阵列中每个通道的接收面中心和光纤阵列中相对应的每根出光光纤的出光处中心相对准。
7.如权利要求1或4所述的一种用于多路并行传输的光收发组件,其特征在于,所述光学透镜阵列组件由多个光学微球透镜和带有与光学微球透镜同等数量通孔的透镜定位块组成,所述光学微球透镜的数量等于所述激光器阵列的通道数或所述光电探测器阵列的通道数,光学微球透镜的材质为玻璃或塑料,所述光学微球透镜粘接固定在所述透镜定位块的通孔内,通孔的直径稍小于或等于光学微球透镜的直径;所述透镜定位块的通孔间距与激光器阵列、光电探测器阵列的通道间距以及光纤阵列中的光纤间距相同;所述透镜阵列组件采用光学折射率匹配胶分别粘接固定在激光器阵列和光电探测器阵列上,其中一个透镜阵列组件的每个光学微球透镜中心与激光器阵列中每个通道的发光面中心和光纤阵列中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜中心与光电探测器阵列中每个通道的接收面中心和光纤阵列中相对应的每根出光光纤的出光处中心相对准。
8.如权利要求1或4所述的一种用于多路并行传输的光收发组件,其特征在于,所述光学透镜阵列组件由多个光学微球透镜和带有与光学微球透镜同等数量V型槽的透镜定位块组成,所述光学微球透镜的数量等于所述激光器阵列的通道数或所述光电探测器阵列的通道数,光学微球透镜的材质为玻璃或塑料,所述光学微球透镜粘接固定在所述透镜定位块的V型槽内;所述透镜定位块的V型槽间距与激光器阵列、光电探测器阵列的通道间距以及光纤阵列中的光纤间距相同;所述透镜阵列组件采用光学折射率匹配胶分别粘接固定在激光器阵列和光电探测器阵列上,其中一个透镜阵列组件的每个光学微球透镜中心与激光器阵列中每个通道的发光面中心和光纤阵列中相应的每根进光光纤的进光处中心相对准,另一个透镜阵列组件的每个光学微球透镜中心与光电探测器阵列中每个通道的接收面中心和光纤阵列中相对应的每根出光光纤的出光处中心相对准。
9.如权利要求8所述的一种用于多路并行传输的光收发组件,其特征在于,所述透镜定位块的厚度与光学微球透镜的直径大致相同。
CN201510973941.8A 2015-12-23 2015-12-23 一种用于多路并行传输的光收发组件 Pending CN106908911A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510973941.8A CN106908911A (zh) 2015-12-23 2015-12-23 一种用于多路并行传输的光收发组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510973941.8A CN106908911A (zh) 2015-12-23 2015-12-23 一种用于多路并行传输的光收发组件

Publications (1)

Publication Number Publication Date
CN106908911A true CN106908911A (zh) 2017-06-30

Family

ID=59200207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510973941.8A Pending CN106908911A (zh) 2015-12-23 2015-12-23 一种用于多路并行传输的光收发组件

Country Status (1)

Country Link
CN (1) CN106908911A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508431A (zh) * 2018-06-08 2018-09-07 上海禾赛光电科技有限公司 一种激光发射系统
CN108594385A (zh) * 2018-06-08 2018-09-28 上海禾赛光电科技有限公司 一种用于激光雷达的光纤固定装置
CN108663757A (zh) * 2018-04-03 2018-10-16 上海禾赛光电科技有限公司 一种出光角度控制装置
CN108761471A (zh) * 2018-06-08 2018-11-06 上海禾赛光电科技有限公司 一种激光雷达
CN108761666A (zh) * 2018-03-30 2018-11-06 武汉联特科技有限公司 一种光模块
CN108872965A (zh) * 2018-04-03 2018-11-23 上海禾赛光电科技有限公司 一种激光雷达
CN109407231A (zh) * 2018-12-07 2019-03-01 青岛海信宽带多媒体技术有限公司 光模块
US10429495B1 (en) 2018-04-03 2019-10-01 Hesai Photonics Technology Co., Ltd. Lidar system and method
CN112162366A (zh) * 2020-09-01 2021-01-01 联合微电子中心有限责任公司 光纤与波导芯片的端面耦合装置
US11029394B2 (en) 2018-06-13 2021-06-08 Hesai Technology Co., Ltd. Lidar systems and methods
CN113280914A (zh) * 2020-01-31 2021-08-20 统雷有限公司 低伪影、高速、平衡的光学探测器阵列
WO2023241308A1 (zh) * 2022-06-13 2023-12-21 华为技术有限公司 一种光传输模块、光模块、电路板组件及光网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030031409A1 (en) * 2001-07-31 2003-02-13 Bellman Robert A. Double lens array for optical cross-connects
CN203720412U (zh) * 2013-12-25 2014-07-16 深圳市中兴新地通信器材有限公司 一种光波导与光电芯片的新型耦合结构
CN204028413U (zh) * 2014-09-05 2014-12-17 曾振林 一种新型的光纤侧面耦合光纤阵列
CN104898216A (zh) * 2015-06-24 2015-09-09 苏州洛合镭信光电科技有限公司 一种用于板间互联的小型化并行光收发引擎
CN205229523U (zh) * 2015-12-23 2016-05-11 福州高意通讯有限公司 一种用于多路并行传输的光收发模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030031409A1 (en) * 2001-07-31 2003-02-13 Bellman Robert A. Double lens array for optical cross-connects
CN203720412U (zh) * 2013-12-25 2014-07-16 深圳市中兴新地通信器材有限公司 一种光波导与光电芯片的新型耦合结构
CN204028413U (zh) * 2014-09-05 2014-12-17 曾振林 一种新型的光纤侧面耦合光纤阵列
CN104898216A (zh) * 2015-06-24 2015-09-09 苏州洛合镭信光电科技有限公司 一种用于板间互联的小型化并行光收发引擎
CN205229523U (zh) * 2015-12-23 2016-05-11 福州高意通讯有限公司 一种用于多路并行传输的光收发模块

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761666A (zh) * 2018-03-30 2018-11-06 武汉联特科技有限公司 一种光模块
US10914903B2 (en) 2018-03-30 2021-02-09 Linktel Technologies Co., Ltd Optical module
CN108872965B (zh) * 2018-04-03 2020-04-24 上海禾赛光电科技有限公司 一种激光雷达
US11474207B2 (en) 2018-04-03 2022-10-18 Hesai Technology Co. Ltd. Lidar system and method
CN108663757A (zh) * 2018-04-03 2018-10-16 上海禾赛光电科技有限公司 一种出光角度控制装置
CN108872965A (zh) * 2018-04-03 2018-11-23 上海禾赛光电科技有限公司 一种激光雷达
US10429495B1 (en) 2018-04-03 2019-10-01 Hesai Photonics Technology Co., Ltd. Lidar system and method
CN108761471B (zh) * 2018-06-08 2024-04-30 上海禾赛科技有限公司 一种激光雷达
CN108508431A (zh) * 2018-06-08 2018-09-07 上海禾赛光电科技有限公司 一种激光发射系统
CN108508431B (zh) * 2018-06-08 2024-04-26 上海禾赛科技有限公司 一种激光发射系统
CN108594385A (zh) * 2018-06-08 2018-09-28 上海禾赛光电科技有限公司 一种用于激光雷达的光纤固定装置
CN108761471A (zh) * 2018-06-08 2018-11-06 上海禾赛光电科技有限公司 一种激光雷达
US11029394B2 (en) 2018-06-13 2021-06-08 Hesai Technology Co., Ltd. Lidar systems and methods
US11879999B2 (en) 2018-06-13 2024-01-23 Hesai Technology Co., Ltd. Lidar systems and methods
CN109407231A (zh) * 2018-12-07 2019-03-01 青岛海信宽带多媒体技术有限公司 光模块
CN113280914A (zh) * 2020-01-31 2021-08-20 统雷有限公司 低伪影、高速、平衡的光学探测器阵列
CN112162366B (zh) * 2020-09-01 2022-09-02 联合微电子中心有限责任公司 光纤与波导芯片的端面耦合装置
CN112162366A (zh) * 2020-09-01 2021-01-01 联合微电子中心有限责任公司 光纤与波导芯片的端面耦合装置
WO2023241308A1 (zh) * 2022-06-13 2023-12-21 华为技术有限公司 一种光传输模块、光模块、电路板组件及光网络设备

Similar Documents

Publication Publication Date Title
CN106908911A (zh) 一种用于多路并行传输的光收发组件
CN205229523U (zh) 一种用于多路并行传输的光收发模块
CN106154444B (zh) 光收发器及光通信产品
CN205427247U (zh) 一种用于多路并行传输的光收发组件
JP7195727B2 (ja) 非対称な受信光学ミキサを有する光学スターカプラ
CN105891973B (zh) 一种二维阵列光耦合模块
CN105425351A (zh) 一种光接收/发射次模块的封装结构及其制备方法
US9971106B2 (en) Optical receptacle and optical module
CN215575818U (zh) 一种耦合装置及光模块
US10488605B1 (en) Photonic waveguide coupling using offset light source
CN107209334B (zh) 光插座和光模块
US20160246015A1 (en) Multiple-beam microlen
CN104898215A (zh) 一种用于板间互联的简便耦合并行光收发引擎
US20180259723A1 (en) Long-reach active optical cable
US9046667B2 (en) Photoelectric conversion device and optical fiber coupling connector
US9151914B2 (en) Optical communication systems and methods for minimizing reflective feedback
CN100397128C (zh) 一种光纤波导式光学次模块
CN106526762A (zh) 一种高效耦合的qsfp 光模块
CN208140986U (zh) 一种用于aoc有源光缆的光收发组件
CN102841413A (zh) 用于宽带高速传输的并行光收发组件
CN1514261A (zh) 并行光纤阵列耦合组件
US9423581B2 (en) Parallel optical system with integrated monitoring photodetectors
CN110651212B (zh) 一种多通道并行双向器件耦合装置
US20220187551A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
TWI490576B (zh) 光通訊系統

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170630

WD01 Invention patent application deemed withdrawn after publication