CN106630083B - Harmless treatment method of epoxidized wastewater - Google Patents

Harmless treatment method of epoxidized wastewater Download PDF

Info

Publication number
CN106630083B
CN106630083B CN201510725440.8A CN201510725440A CN106630083B CN 106630083 B CN106630083 B CN 106630083B CN 201510725440 A CN201510725440 A CN 201510725440A CN 106630083 B CN106630083 B CN 106630083B
Authority
CN
China
Prior art keywords
wastewater
epoxidation
reactor
aqueous solution
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510725440.8A
Other languages
Chinese (zh)
Other versions
CN106630083A (en
Inventor
张永强
刘易
杜泽学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201510725440.8A priority Critical patent/CN106630083B/en
Publication of CN106630083A publication Critical patent/CN106630083A/en
Application granted granted Critical
Publication of CN106630083B publication Critical patent/CN106630083B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Abstract

A harmless treatment method of epoxidized wastewater comprises the following steps: a) contacting and mixing epoxidation wastewater obtained by epoxidizing 3-chloropropene and hydrogen peroxide to synthesize epichlorohydrin with an alkaline aqueous solution in a wastewater treatment reactor to convert 3-chloro-1, 2-propanediol therein into glycerol; b) optionally, neutralizing the reaction mixture obtained in step a). The method can conveniently convert toxic and harmful epoxidation wastewater generated in the process of synthesizing epoxy chloropropane by epoxidizing 3-chloropropene and hydrogen peroxide into non-toxic and harmless wastewater.

Description

Harmless treatment method of epoxidized wastewater
Technical Field
The invention relates to a harmless treatment method of epoxy wastewater, in particular to a harmless treatment method of wastewater generated in the epoxidation reaction of 3-chloropropene and hydrogen peroxide to synthesize epichlorohydrin.
Background
Hydrogen peroxide is a green oxidant, and as disclosed in USP4833260, epichlorohydrin can be synthesized efficiently and cleanly by the epoxidation reaction of 3-chloropropene with hydrogen peroxide in the presence of a titanium silicalite catalyst and methanol as a solvent. Epichlorohydrin is an important basic organic chemical raw material and intermediate, and is widely applied to synthesis of epoxy resin, chlorohydrin rubber, medicines, pesticides, surfactants, plasticizers and other industrial products.
CN101747296A and CN101747297A disclose methods for producing epichlorohydrin by epoxidation reaction of 3-chloropropene and hydrogen peroxide, which realizes continuous and stable synthesis of epichlorohydrin for a long time under the condition that the conversion rate of hydrogen peroxide is higher than 97% and the selectivity of epichlorohydrin is higher than 95%. CN101293882A further discloses a method for economically and efficiently separating epichlorohydrin from the epoxidation reaction product of 3-chloropropene and hydrogen peroxide, which can produce a certain amount of epoxidation wastewater while obtaining epichlorohydrin product and recovering 3-chloropropene and methanol.
The epoxidation wastewater contains 0.1 to 1 mass% of 3-chloro-1, 2-propanediol and 0.2 to 2 mass% of chlorinated organic compounds such as chloropropanediol monomethyl ether. It is known that chlorinated organic compounds are a class of surface water and soil pollutants (baulun, zhang jun, wuhong, lao warrior, rejuvenation, research progress on biodegradation of halogenated organic substances, journal of chinese health examination, 2002, 12 (3): 376 to 380), especially 3-chloro-1, 2-propanediol, as reported by kunshun et al (cynhun, sunset, galloanser, sun juniper, berubine. food pollutants 3-chloro-1, 2-propanediol toxicology progress, food industry science and technology, 2013-chloro-1, 2-propanediol is a chlorinated organic compound with obvious toxicity and carcinogenicity to rodents. Therefore, the toxic and harmful epoxidation wastewater needs to be subjected to harmless treatment to remove the 3-chloro-1, 2-propanediol and chloropropanediol monomethyl ether.
For the epoxidation wastewater of epoxy chloropropane synthesized by epoxidizing 3-chloropropene containing 3-chloro-1, 2-propanediol and chloropropanediol monomethyl ether with hydrogen peroxide, no published report for directly decomposing the 3-chloro-1, 2-propanediol and chloropropanediol monomethyl ether exists.
Disclosure of Invention
The invention aims to provide a harmless treatment method of toxic and harmful epoxidation wastewater generated in the process of synthesizing epoxy chloropropane by epoxidizing 3-chloropropene and hydrogen peroxide, so as to realize the harmless treatment of the epoxidation wastewater.
The invention provides a harmless treatment method of epoxidation wastewater, which comprises the following steps: a) contacting and mixing epoxidation wastewater obtained by epoxidizing 3-chloropropene and hydrogen peroxide to synthesize epichlorohydrin with an alkaline aqueous solution in a wastewater treatment reactor to convert 3-chloro-1, 2-propanediol therein into glycerol; b) optionally, neutralizing the reaction mixture obtained in step a); the alkaline aqueous solution is an aqueous solution of alkali metal hydroxide, alkaline earth metal hydroxide and alkali metal salt.
The harmless treatment method of the epoxidation wastewater provided by the invention has the beneficial effects that:
the harmless treatment method of the epoxidation wastewater provided by the invention can convert the toxic and harmful epoxidation wastewater generated in the process of synthesizing epoxy chloropropane by epoxidizing 3-chloropropene and hydrogen peroxide into non-toxic and harmless wastewater, thereby realizing the harmless treatment of the epoxidation wastewater. The method provided by the invention can eliminate toxic and harmful 3-chloro-1, 2-propanediol and chloropropanediol monomethyl ether in the epoxidation wastewater, realize harmless treatment of the epoxidation wastewater, and has the advantages of simple process and easy realization of industrialization.
Detailed Description
The harmless treatment method of the epoxidation wastewater provided by the invention is implemented as follows:
a harmless treatment method of epoxidized wastewater comprises the following steps: a) contacting and mixing epoxidation wastewater generated in the process of synthesizing epichlorohydrin by epoxidizing 3-chloropropene and hydrogen peroxide with an alkaline aqueous solution in a wastewater treatment reactor to convert 3-chloro-1, 2-propanediol in the wastewater into glycerol; b) optionally, neutralizing the reaction mixture obtained in step a); the alkaline aqueous solution is an aqueous solution of alkali metal hydroxide, alkaline earth metal hydroxide and alkali metal salt.
In the method for the harmless treatment of the epoxidized wastewater, the content of 3-chloro-1, 2-propanediol in the epoxidized wastewater is 0.1-1 mass%. Preferably, the harmless treatment method of the epoxidation wastewater provided by the invention is used for preferably treating wastewater containing 3-chloro-1, 2-propanediol and chloropropanediol monomethyl ether, wherein the content of the chloropropanediol monomethyl ether is 0.2-2 mass%.
In the method for treating epoxidation wastewater provided by the invention, the alkali metal hydroxide is lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide and cesium hydroxide, and preferably lithium hydroxide, sodium hydroxide and potassium hydroxide.
The alkaline earth metal hydroxide is calcium hydroxide, strontium hydroxide and barium hydroxide, preferably barium hydroxide.
The alkali metal salt is an alkali metal carbonate. The alkali metal carbonate is sodium carbonate, potassium carbonate, rubidium carbonate and cesium carbonate, and sodium carbonate and potassium carbonate are preferred.
More preferably, the alkaline aqueous solution is an aqueous sodium hydroxide solution.
In the method for treating epoxidation wastewater provided by the invention, the content of the alkaline compound in the alkaline aqueous solution is 1-60% by mass, preferably 10-50% by mass.
The invention provides an epoxidation wasteIn the water treatment method, preferably, the temperature for contact mixing of the epoxidation wastewater and the alkaline aqueous solution in the wastewater treatment reactor is 0-300 ℃, the pressure is 0.1-10.0 MPa, and the addition amount of the alkaline aqueous solution is 1-30 mass% of the amount of the wastewater; more preferably, the wastewater treatment reactor adopts a plug flow reactor, wherein the temperature of contact mixing is 0-300 ℃, the pressure is 0.1-10.0 MPa, and the hourly space velocity of the feeding liquid of the epoxidation wastewater is 0.1-20 h-1The volume space velocity of the alkaline aqueous solution is 0.01-0.5 h-1
More preferably, the contact mixing temperature of the epoxidation wastewater and the alkaline aqueous solution in the wastewater treatment reactor is 50-250 ℃, the pressure is 0.1-5.0 MPa, and the hourly space velocity of the feeding liquid of the epoxidation wastewater is 0.3-15 h-1
The following examples further illustrate the process of the present invention but are not intended to limit the invention thereto.
Example 1
In a 350mL stirred autoclave, 300.00g of the epoxidation wastewater having a 3-chloro-1, 2-propanediol content of 0.24 mass% and 8.43g of an aqueous sodium hydroxide solution having a sodium hydroxide content of 30 mass% were charged, respectively, and mixed at 100 ℃ and 0.1MPa with stirring for 1 hour, whereby 100.00% of the 3-chloro-1, 2-propanediol was converted into glycerol.
Example 2
The epoxidized wastewater was treated in the same manner as in example 1, except that the content of 3-chloro-1, 2-propanediol in the epoxidized wastewater was 0.49% by mass, the content of chloropropanediol monomethyl ether was 0.89% by mass, the amount of the aqueous sodium hydroxide solution was 12.18g, and the wastewater treatment temperature was 80 ℃. As a result of the treatment of the epoxidation wastewater, 100.00% of 3-chloro-1, 2-propanediol was converted into glycerol and 100.00% of chloropropanediol monomethyl ether was converted into glycerol monomethyl ether.
Example 3
Epoxidized wastewater was treated in the same manner as in example 1, except that the epoxidized wastewater had a 3-chloro-1, 2-propanediol content of 0.92 mass% and a chloropropanediol monomethyl ether content of 1.51 mass%, 10.28g of an alkaline aqueous solution having a potassium hydroxide content of 50 mass% was added, and the wastewater treatment temperature was 70 ℃. As a result of the treatment of the epoxidation wastewater, 100.00% of 3-chloro-1, 2-propanediol was converted into glycerol and 100.00% of chloropropanediol monomethyl ether was converted into glycerol monomethyl ether.
Example 4
Epoxidized wastewater was treated in the same manner as in example 3 except that 21.10g of an aqueous alkaline solution having a lithium hydroxide content of 20 mass% was added. As a result of the treatment of the epoxidation wastewater, 100.00% of 3-chloro-1, 2-propanediol was converted into glycerol and 100.00% of chloropropanediol monomethyl ether was converted into glycerol monomethyl ether.
Example 5
Epoxidized wastewater was treated in the same manner as in example 4 except that 81.58g of an aqueous alkaline solution having a barium hydroxide content of 10 mass% was added. As a result of the treatment of the epoxidation wastewater, 100.00% of 3-chloro-1, 2-propanediol was converted into glycerol and 100.00% of chloropropanediol monomethyl ether was converted into glycerol monomethyl ether.
Example 6
Epoxidized wastewater was treated in the same manner as in example 4 except that the epoxidized wastewater had a 3-chloro-1, 2-propanediol content of 0.57 mass% and a chloropropanediol monomethyl ether content of 0.81 mass%, and 16.97g of an alkaline aqueous solution having a sodium carbonate content of 30 mass% was added. As a result of the treatment of the epoxidation wastewater, the conversion of 3-chloro-1, 2-propanediol into glycerol was 93.19%, and the conversion of chloropropanediol monomethyl ether into glycerol monomethyl ether was 87.98%.
Example 7
Epoxidized wastewater was treated in the same manner as in example 4 except that 3-chloro-1, 2-propanediol content was 0.78 mass% and chloropropanediol monomethyl ether content was 0.96 mass%, and 22.10g of an alkaline aqueous solution containing 30 mass% of potassium carbonate was added. As a result of the treatment of the epoxidation wastewater, the conversion of 3-chloro-1, 2-propanediol into glycerin was 87.57%, and the conversion of chloropropanediol monomethyl ether into glycerol monomethyl ether was 86.21%.
Example 8
The epoxidation wastewater was treated in the same manner as in example 1 except that the treatment temperature of the epoxidation wastewater was 60 ℃ and the treatment result of the epoxidation wastewater was 81.05% in the conversion of 3-chloro-1, 2-propanediol into glycerol and 91.73% in the conversion of chloropropanediol monomethyl ether into glycerol monomethyl ether.
Example 9
Continuously treating the epoxidation wastewater in a jacketed pipe type reactor with the effective volume of 86mL, wherein the content of 3-chlorine-1, 2-propylene glycol in the epoxidation wastewater is 0.45 mass percent, the content of chloropropylene glycol monomethyl ether is 1.05 mass percent, and the feeding volume liquid hourly space velocity of the epoxidation wastewater is 13.95h-1The hourly space velocity of the feed solution of the 30 mass% aqueous sodium hydroxide solution was 0.22h-1The temperature of the jacket oil bath was kept constant at 240 ℃ and the pressure at the outlet of the reactor was kept constant at 4.3MPa, and after 1 hour of continuous feeding, a liquid sample at the outlet of the reactor was taken for analysis, and the pH of the liquid sample was 7, in which 3-chloro-1, 2-propanediol had been 100.00% converted to glycerol and chloropropanediol monomethyl ether had been 100.00% converted to glycerol monomethyl ether.
Example 10
Epoxidation waste water was continuously treated in the same manner as in example 9 except that the hourly space velocity of the feed solution of 30 mass% aqueous sodium hydroxide solution was 0.23h-1And as a result of the treatment of the epoxidation wastewater, the pH value of the epoxidation wastewater is 8-9, wherein the conversion rate of 3-chloro-1, 2-propanediol into glycerol is 100.00%, and the conversion rate of chloropropanediol monomethyl ether into glycerol monomethyl ether is 100.00%.
Example 11
Epoxidation waste water was continuously treated in the same manner as in example 9 except that the hourly space velocity of the feed solution of 30 mass% aqueous sodium hydroxide solution was 0.21 hr-1And as a result of the treatment of the epoxidation wastewater, the pH value of the epoxidation wastewater is 3-4, wherein the conversion rate of 3-chloro-1, 2-propanediol into glycerol is 100.00%, and the conversion rate of chloropropanediol monomethyl ether into glycerol monomethyl ether is 96.91%.
Example 12
By the use ofExample 9 the epoxidation wastewater was continuously treated in the same manner as in example 9 except that the hourly space velocity of the feed solution of the 30 mass% aqueous sodium hydroxide solution was 0.18h-1And as a result of the treatment of the epoxidation wastewater, the pH value of the epoxidation wastewater is 2-3, wherein the conversion rate of 3-chloro-1, 2-propanediol into glycerol is 100.00%, and the conversion rate of chloropropanediol monomethyl ether into glycerol monomethyl ether is 94.04%.
Example 13
The epoxidation wastewater was continuously treated in the same manner as in example 9 except that the content of 3-chloro-1, 2-propanediol in the epoxidation wastewater was 0.73% by mass, the content of chloropropanediol monomethyl ether was 1.61% by mass, and the feed volume liquid hourly space velocity of the epoxidation wastewater was 9.77h-1The hourly space velocity of the feed solution of 30% by mass aqueous sodium hydroxide solution was 0.28h-1And after 2 hours of continuous feeding, the pH value of the epoxidation wastewater is 13-14, wherein the conversion rate of 3-chloro-1, 2-propylene glycol into glycerol is 100.00%, and the conversion rate of chloropropanediol monomethyl ether into glycerol monomethyl ether is 100.00%.
Example 14
The epoxidation wastewater was continuously treated in the same manner as in example 9 except that the content of 3-chloro-1, 2-propanediol in the epoxidation wastewater was 0.53% by mass, the content of chloropropanediol monomethyl ether was 1.28% by mass, and the feed volume liquid hourly space velocity of the epoxidation wastewater was 4.88h-1The hourly space velocity of the feed solution of the 30 mass% aqueous sodium hydroxide solution was 0.14h-1The temperature of the jacket oil bath is constant at 150 ℃, the outlet pressure of the reactor is constant at 0.6MPa, and after 2 hours of continuous feeding, the pH value of the epoxidation wastewater is 13-14, wherein the conversion rate of 3-chloro-1, 2-propanediol into glycerol is 100.00%, and the conversion rate of chloropropanediol monomethyl ether into glycerol monomethyl ether is 100.00%.
Example 15
The epoxidized wastewater was continuously treated by the same method as in example 9, except that the content of 3-chloro-1, 2-propanediol in the epoxidized wastewater was 0.42 mass% and the content of chloropropanediol monomethyl ether was 1.02 mass%,the feed volume liquid hourly space velocity of the epoxidation wastewater is 0.489h-1The hourly space velocity of the feed solution of 30% by mass aqueous sodium hydroxide solution was 0.014h-1The temperature of the jacket oil bath is constant at 60 ℃, the outlet pressure of the reactor is constant at 0.1MPa, and after continuous feeding is carried out for 6 hours, the pH value of the epoxidation wastewater is 13-14, the conversion rate of 3-chloro-1, 2-propylene glycol into glycerol is 100.00%, and the conversion rate of chloropropanediol monomethyl ether into glycerol monomethyl ether is 94.83%.
The mode of the present invention has been described in detail above, but the present invention is not limited to the specific details of the above-described embodiments, and various simple modifications can be made to the technical solution of the present invention within the technical idea of the present invention, and these simple modifications are within the protective scope of the present invention.

Claims (5)

1. A harmless treatment method for epoxidized wastewater is characterized by comprising the following steps:
a) contacting and mixing epoxidation wastewater obtained by epoxidizing 3-chloropropene and hydrogen peroxide to synthesize epichlorohydrin with an alkaline aqueous solution in a wastewater treatment reactor to convert 3-chloro-1, 2-propanediol therein into glycerol; the alkaline aqueous solution is an aqueous solution of an alkali metal hydroxide, an alkaline earth metal hydroxide and an alkali metal salt, the content of an alkaline compound in the alkaline aqueous solution is 10-50 mass%, the content of 3-chloro-1, 2-propanediol in the epoxidation wastewater is 0.1-1 mass%, and the content of chloropropanediol monomethyl ether is 0.2-2 mass%; the wastewater treatment reactor adopts a plug flow reactor, wherein the contact mixing temperature is 50-250 ℃, the pressure is 0.1-5.0 MPa, and the hourly space velocity of the feeding liquid of the epoxidation wastewater is 0.3-15 h-1The volume space velocity of the alkaline aqueous solution is 0.01-0.5 h-1
2. The method for innocent treatment of epoxidized wastewater according to claim 1, further comprising: b) neutralizing the reaction mixture obtained in step a).
3. The innocent treatment method of epoxidized wastewater according to claim 1 or 2, wherein the wastewater treatment reactor is a packed bed reactor, a tower reactor, a tubular reactor or a microchannel reactor.
4. The innocent treatment method of the epoxidation wastewater as claimed in claim 1 or 2, wherein said alkali metal hydroxide is one or more of lithium hydroxide, sodium hydroxide and potassium hydroxide; the alkaline earth metal hydroxide is barium hydroxide; the alkali metal salt is an alkali metal carbonate.
5. The method according to claim 4, wherein the aqueous alkaline solution is an aqueous solution of sodium hydroxide, sodium carbonate or potassium carbonate.
CN201510725440.8A 2015-10-29 2015-10-29 Harmless treatment method of epoxidized wastewater Active CN106630083B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510725440.8A CN106630083B (en) 2015-10-29 2015-10-29 Harmless treatment method of epoxidized wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510725440.8A CN106630083B (en) 2015-10-29 2015-10-29 Harmless treatment method of epoxidized wastewater

Publications (2)

Publication Number Publication Date
CN106630083A CN106630083A (en) 2017-05-10
CN106630083B true CN106630083B (en) 2021-05-14

Family

ID=58830819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510725440.8A Active CN106630083B (en) 2015-10-29 2015-10-29 Harmless treatment method of epoxidized wastewater

Country Status (1)

Country Link
CN (1) CN106630083B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559819B (en) * 2020-04-30 2022-07-12 常州瑞华化工工程技术股份有限公司 Method for recovering propylene glycol and other organic matters from propylene epoxidation alkaline washing wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006068A (en) * 2005-05-20 2007-07-25 索尔维公司 Method for making epoxide
CN101541418A (en) * 2007-11-19 2009-09-23 康瑟公司 Conversion of glycerine to dichlorohydrins and epichlorohydrin
CN101657400A (en) * 2007-04-12 2010-02-24 陶氏环球技术公司 Be used to prepare the method and apparatus of chloro-hydrin(e)
CN101998945A (en) * 2008-04-09 2011-03-30 陶氏环球技术公司 Process and apparatus for efficient recovery of dichlorohydrins
CN102686632A (en) * 2009-11-04 2012-09-19 索尔维公司 Process for manufacturing a product derived from epichlorohydrin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1797056A4 (en) * 2004-08-19 2010-04-14 Rstech Corp Process for the preparation of glycidyl derivatives
CN101293882B (en) * 2007-04-24 2011-04-20 中国石油化工股份有限公司 Process for the separation of epoxychloropropane
WO2014042937A1 (en) * 2012-09-14 2014-03-20 Archer Daniels Midland Company Processes for removing monochloropropanediols and/or glycidol from glycerol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006068A (en) * 2005-05-20 2007-07-25 索尔维公司 Method for making epoxide
CN101657400A (en) * 2007-04-12 2010-02-24 陶氏环球技术公司 Be used to prepare the method and apparatus of chloro-hydrin(e)
CN101541418A (en) * 2007-11-19 2009-09-23 康瑟公司 Conversion of glycerine to dichlorohydrins and epichlorohydrin
CN101998945A (en) * 2008-04-09 2011-03-30 陶氏环球技术公司 Process and apparatus for efficient recovery of dichlorohydrins
CN102686632A (en) * 2009-11-04 2012-09-19 索尔维公司 Process for manufacturing a product derived from epichlorohydrin

Also Published As

Publication number Publication date
CN106630083A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
Ciriminna et al. Hydrogen peroxide: a key chemical for today's sustainable development
Roshan et al. The unprecedented catalytic activity of alkanolamine CO 2 scrubbers in the cycloaddition of CO 2 and oxiranes: a DFT endorsed study
JP2008540608A5 (en)
CN101031556A (en) Method for making a chlorohydrin starting with a polyhydroxylated aliphatic hydrocarbon
KR20080036555A (en) Method for making an epoxy starting from a chlorhydrine
RU2000123668A (en) METHOD FOR PRODUCING EPOXIDES FROM OLEFINS
WO2009016149A2 (en) Process for manufacturing glycidol
KR910007854A (en) Method of producing monoepoxide
CN105536838B (en) Soda acid difunctionalization C3N4The preparation method of catalyst and cyclic carbonate
CN106630083B (en) Harmless treatment method of epoxidized wastewater
CN106140178B (en) The catalyst of peroxynitrite decomposition hydrogen and its method for decomposing hydrogen peroxide in epoxidation reaction product
CN107987037B (en) Method for preparing epoxypropane in unit mode
TWI466875B (en) Method for making epoxides
CN104387343A (en) Method for epoxidizing olefin
CN104557792A (en) Production method of beta-ionone epoxide
ITMI991657A1 (en) PROCEDURE FOR THE PREPARATION OF OLEFINIC OXIDES
CN102675251A (en) Method for producing epoxy chloropropane by dichloropropanol
CN106630007B (en) Treatment method of epoxidized wastewater
CN101171220B (en) 1-bromopropane having low acidity
CN104356103A (en) Synthetic method of 6, 7-dimethoxyl coumarin
CN102775439B (en) Preparation method of flame retardant TCPP (testosterone cyclopentylpropionate)
JPS6127377B2 (en)
TW201200504A (en) Process for preparing divinylarene dioxides
EP2589585B1 (en) Method for preparing chlorohydrins and method for preparing epichlorohydrin using chlorohydrins prepared thereby
CN107867975B (en) Method for synthesizing carvacrol by using isodihydrocarvone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant