CN106278798A - Catalysis drying gas produces method and the purposes of described derivant of olefin-based derivative - Google Patents

Catalysis drying gas produces method and the purposes of described derivant of olefin-based derivative Download PDF

Info

Publication number
CN106278798A
CN106278798A CN201510324626.2A CN201510324626A CN106278798A CN 106278798 A CN106278798 A CN 106278798A CN 201510324626 A CN201510324626 A CN 201510324626A CN 106278798 A CN106278798 A CN 106278798A
Authority
CN
China
Prior art keywords
benzene
drying gas
olefin
catalysis drying
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510324626.2A
Other languages
Chinese (zh)
Inventor
杨为民
刘文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201510324626.2A priority Critical patent/CN106278798A/en
Publication of CN106278798A publication Critical patent/CN106278798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a kind of catalysis drying gas and produce method and the purposes of described derivant of olefin-based derivative, mainly solve ethylene and propylene contained by catalysis drying gas in prior art and be difficult to fully utilized problem.The present invention is comprised the following steps by employing a) to be provided containing ethylene and the catalysis drying gas of propylene;B) described catalysis drying gas is the most treated, directly enter alkylation reactor with containing benzene raw materials logistics, obtains gaseous stream after reaction;C) described gaseous stream enters reaction gas absorption plant, and be absorbed after contacting with absorbent liquid;D) described absorbing liquid enters benzene knockout tower, and tower top obtains mainly containing the logistics of benzene, and tower reactor obtains the technical scheme of the logistics containing described olefin-based derivative and preferably solves this problem, can be used in the commercial production that catalysis drying gas produces olefin-based derivative.

Description

Catalysis drying gas produces the method for olefin-based derivative And the purposes of described derivant
Technical field
The present invention relates to a kind of catalysis drying gas and produce the method for olefin-based derivative and described derivant Purposes.
Background technology
Catalysis drying gas is petroleum industry catalytic cracking or catalytic pyrolysis or the by-product of thermal cracker, Its key component is ethylene, propylene, hydrogen, ethane etc., along with the annual petroleum consumption in the whole world It is significantly increased, the anxious utilization to be transformed of the ethylene resource contained in by-product dry gas.Before this due to technology with become This etc. reason, this part precious resources substantially burnt as fuel, while waste resource, Also discharge great amount of carbon dioxide pollutes environment.
Utilize the ethylene production ethylbenzene in catalysis drying gas, abroad the most open at the fifties in last century end Beginning to explore, the seventies enters the industrial experiment stage.Wherein there is Mobil/Badger company of the U.S. Cooperative development with ZSM-5 silica-rich zeolite be Catalyst Production ethylbenzene Mobil/Badger gas phase divide Sub-riddler's skill, Uop Inc. exploitation with Al2O3-BF3ALKar work for Catalyst Production ethylbenzene Skill and the catalytic distillation technology of exploitation later thereof, separately have Monsanto in its pure ethylene second improved Dilute ethylbenzene manufactured from ethylene technique of exploitation on the basis of benzene process.
With the dilute ethylene of catalysis drying gas for raw material production ethylbenzene, foreign patent have US2939890, US369245、US702886、US3848012、US4107224、US4459426、GB827830 Deng, these technology are to the propylene in raw material, H2S、H2O、O2、CO2Have strictly Deng impurity content Requirement, they need to be removed to ppm level and just can apply.
Recent year also develops catalysis drying gas ethylbenzene technology, and relevant patent has ZL200610046750.8、ZL200510105256.X、ZL200410037433.0、 ZL200410021102.8, ZL201110105517.3 etc., although these technology are in catalysis drying gas Contained H2S、H2O、O2、CO2Require to relax Deng impurity content, but be guard catalyst and fall Low benzene consumes, and is designed with removing propylene flow process in technique.For obtaining more ethylbenzene, except ethylene and benzene are anti- Outside the alkylation reactor answered, also set many ethylbenzene and the transalkylation reactor of benzene reaction, separate single Unit, in addition to setting benzene knockout tower, also sets ethylbenzene tower, propyl benzene tower, many ethylbenzene towers, and flow process is complicated, energy consumption The highest with investment.
Summary of the invention
One of the technical problem to be solved be in prior art ethylene contained by catalysis drying gas and Propylene is difficult to fully utilized problem, it is provided that a kind of new catalysis drying gas produces olefin-based derivative Method.The method have the ethylene, propylene resource that can make full use of in catalysis drying gas, plant investment low, The feature that energy consumption is low.The two of the technical problem to be solved are to provide a kind of for solution technology The purposes of the olefin-based derivative that the method synthesis that one of problem is used obtains.
In order to solve one of above-mentioned technical problem, the technical solution used in the present invention is as follows: one is urged Change the method that dry gas produces olefin-based derivative, comprise the following steps:
A) provide containing ethylene and the catalysis drying gas of propylene;
B) described catalysis drying gas is the most treated, directly enter alkylation reactor with containing benzene raw materials logistics, Gaseous stream is obtained after reaction;
C) described gaseous stream enters reaction gas absorption plant, and be absorbed after contacting with absorbent liquid;
D) described absorbing liquid enters benzene knockout tower, and tower top obtains mainly containing the logistics of benzene, and tower reactor obtains Logistics containing described olefin-based derivative.
In technique scheme, it is preferable that in described catalysis drying gas, volume of ethylene content is 5~95%, Propylene volume content is 0.5~10%, H2S volume content < 1000ppm.
In technique scheme, it is preferable that described containing benzene raw materials source streams in the stone of petroleum cracking Oil benzene or the crude benzol of coking of coal, wherein benzene mass content is more than 90%, and toluene mass content is less than 10%.
In technique scheme, it is preferable that the logistics containing benzene that described benzene knockout tower tower top obtains follows Loopback alkylation reactor.
In technique scheme, it is preferable that described gaseous stream do not enter transalkylation reactor, At least one equipment in ethylbenzene separation column, propyl benzene knockout tower or many ethylbenzene separation column.
In technique scheme, it is preferable that described olefin-based derivative contains ethylbenzene, propyl benzene, diethyl Benzene, the first and second benzene and dimethylbenzene.
In technique scheme, it is preferable that catalysis drying gas and benzene alkylation reaction are gas phase reaction, Reaction temperature 250~450 DEG C, reaction pressure 0.5~2.0MPaG, benzene and ethylene molar ratio are 1~6, Weight ethylene air speed is 0.3~2.0 hour-1
In technique scheme, it is preferable that catalyst for alkylation reaction is SiO2/AlO3Mol ratio is The ZSM-5 molecular sieve of 50~300, preferably scope are 80~120.
In technique scheme, it is preferable that alkylation reactor is axial multi-stage fixed-bed reactor, Catalyst divides 2~8 sections of fillings.
In technique scheme, it is preferable that described absorbent is benzene or benzene knockout tower tower bottoms, Absorbing temperature is 0~40 DEG C, and pressure is 0.5~2.0MPaG, absorbent and the stream of described gaseous stream Amount mass ratio is 1~5.
In technique scheme, it is preferable that benzene knockout tower operation pressure is 0.5~2.0MPaG, and tower is managed Opinion plate number is 20~50, and reflux ratio is 1~6.
In order to solve the two of above-mentioned technical problem, the technical solution used in the present invention is as follows: described alkene Alkyl derivative is as gasoline blend component.
In prior art, utilizing the ethylene production ethylbenzene in catalysis drying gas, ethylbenzene is that unique objects produces Thing, must set the pretreatment processes such as more complicated de-propylene for this raw material dry gas;Receive for improving ethylbenzene Rate, reduces and generates the by-product such as dimethylbenzene, diethylbenzene, and alkylated reaction must be at high benzene alkene mole Operate under the conditions of Bi, usually 6~8;Must be to benzene, ethylbenzene, propyl benzene, many ethylbenzene in separation process Carry out accurate separation;For obtaining more ethylbenzene, the alkyl also setting many ethylbenzene and benzene reaction in flow process turns Move reactor.On the whole, this technology causes equipment investment and energy consumption the highest, the most only profit With the part ethylene in dry gas, ethylene utilization rate is less than 90%, and propylene is not obtained by, warp Ji benefit is greatly affected.
In the present invention, catalytic material dry gas is made without process and is directly entered alkylation reactor, Requirement to benzene feedstock is the harshest, petrobenzene, coking benzene, or the benzene containing more toluene is all Can react as raw material and the ethylene in dry gas, propylene obtain ethylbenzene, propyl benzene, the first and second benzene, two Toluene, diethylbenzene etc., these products all have higher octane number, are extraordinary blended gasolines Raw material, therefore alkylated reaction can operate under relatively low benzene alkene mol ratio (usually 1~5), Separation process is only to benzene knockout tower, it is not necessary to transalkylation reactor, benzene knockout tower tower bottoms It is the product that we need.Using the inventive method, ethylene and propylene in raw material dry gas utilize Rate can be close to 100%, and energy consumption is only the 50% of traditional mode of production ethylbenzene process, and investment is only tradition ethylbenzene The 40% of technique, achieves preferable technique effect.
Accompanying drawing explanation
Fig. 1 is the technological process using the inventive method.
Fig. 2 produces ethylbenzene prior art processes flow process for using typical catalysis drying gas.
In Fig. 1, I is alkylation reactor, and II is absorption plant, and III is benzene knockout tower, and 1 for urging Changing dry gas raw material, 2 is fresh benzene raw material, and 3 is the benzene charging of alkylation reactor I, and 4 is reaction Device is worked off one's feeling vent one's spleen, and 5 is absorption plant II tail gas, and 6 is absorbent, and 7 is absorbing liquid, and 8 separate for benzene Tower III overhead stream benzene, 9 is benzene knockout tower III tower bottoms.
In Fig. 1, catalysis drying gas raw material 1 and benzene charging 3 mixes and is directly entered alkylation reactor I, Reacted reactor device is worked off one's feeling vent one's spleen 4 entrance absorption plants II, and absorbent 6 counter current contacting, no Absorbent tail gas 5 discharges battery limit (BL), and the absorbing liquid 7 absorbed enters benzene knockout tower III, tower top Logistics benzene 8 and fresh feed benzene 2 are mixed into alkylation reactor I, and tower bottoms 9 is as product Output battery limit (BL).
In Fig. 2, I is alkylation reactor, and II is absorption plant, and III is benzene knockout tower, and IV is Pretreatment system, V is ethylbenzene tower, and VI is propyl benzene tower, and VII is many ethylbenzene towers, and VIII is transalkylation Reactor, 1 is catalysis drying gas raw material, and 2 is fresh benzene raw material, and 3 is the benzene of alkylation reactor I Charging, 4 is reactor outlet gas, and 5 is absorption plant II tail gas, and 6 is absorbent, and 7 for absorbing Liquid, 8 is benzene knockout tower III overhead stream benzene, and 9 is benzene knockout tower III tower bottoms, and 10 for after pretreatment Catalysis drying gas, 11 is benzene separating III tower top dereaction system recycle benzene logistics, and 12 turn for removing alkyl Moving the benzene logistics of reactor VIII, 13 is ethylbenzene tower V overhead stream ethylbenzene, and 14 is ethylbenzene tower V tower reactor Liquid, 15 is propyl benzene column overhead stream propyl benzene, and 16 is propyl benzene tower tower bottoms, and 17 is many ethylbenzene tower VII towers The top many ethylbenzene of logistics, 18 is many ethylbenzene tower VII tower reactor high-boiling components, and 19 feed for transalkylation reactor, 20 is transalkylation reactor discharging.
In Fig. 2, catalysis drying gas raw material 1 first preprocessed system IV, after removing the impurity such as propylene Logistics 10 is mixed into alkylation reactor I with benzene charging 3, and reacted reactor device is worked off one's feeling vent one's spleen 4 enter absorption plant II, with absorbent 6 counter current contacting, it is impossible to the tail gas 5 of absorption discharges battery limit (BL), The absorbing liquid 7 absorbed enters benzene knockout tower III, and overhead stream benzene 8 is divided into 2 strands, and wherein 1 Stock logistics 11 and fresh feed benzene 2 are mixed into alkylation reactor I, another burst of logistics 12 with Many ethylbenzene towers tower bottoms 17 is mixed into transalkylation reactor VIII, and reacted logistics 20 returns Benzene knockout tower III, benzene knockout tower tower bottoms 9 enters ethylbenzene tower V, and tower top obtains ethylbenzene 13, tower reactor Liquid 14 enters propyl benzene tower VI, and propyl benzene column overhead obtains propyl benzene 15, and tower bottoms 16 enters many ethylbenzene towers VII, many ethylbenzene towers tower bottoms is high-boiling components 18.
Below by embodiment, the present invention is further elaborated.
Detailed description of the invention
[embodiment 1]
Certain 100,000 tons/year of catalysis drying gas produce olefin-based derivative units (year operation hour 8000 little Time), its catalytic material dry gas composition and flow are shown in Table 1, and benzene uses petrobenzene, purity 99.8%, The technique using Fig. 1, prevailing operating conditions and economic indicator are shown in Table 2.Benzene knockout tower tower bottoms octane Value is 108, can be as gasoline blend component.
Table 1 catalytic material dry gas specification
Component Catalytic material dry gas (v%)
Hydrogen 27.4
Nitrogen 24.4
Oxygen 1.0
Carbon monoxide 1.1
Carbon dioxide 3.3
Methane 19.6
Ethane 9.0
Ethylene 12.4
Propylene 1.1
Propane 0.2
Carbon four 0.3
Carbon five 0.1
Flow (ton hour) 18
Table 2 prevailing operating conditions and economic indicator
Alkylation reactor operation pressure MPaG 0.8
Alkylation reactor operation temperature DEG C 320
Alkylation reactor benzene alkene mol ratio 4
Catalyst SiO2/AlO3Mol ratio 50
Alkylation reactor catalyst hop count 4
Absorptive tower absorbent Benzene column tower bottoms
Absorption tower absorbs temperature DEG C 10
Benzene knockout tower tower top operation pressure MPaG 0.7
Benzene knockout tower tower top operation temperature DEG C 151
Ethylene utilization rate % 99.5
Propylene utilization rate % 99.0
Comprehensive energy consumption kilogram mark oil/ton product 60
Plant investment ten thousand yuan 7000
Benzene knockout tower tower bottoms octane number 108
[embodiment 2]
Certain 100,000 tons/year of catalysis drying gas produce olefin-based derivative units (year operation hour 8000 little Time), its catalytic material dry gas composition and flow are shown in Table 3, and benzene uses coking benzene, purity 99.6%, The technique using Fig. 1, prevailing operating conditions and economic indicator are shown in Table 4.Benzene knockout tower tower bottoms octane Value is 108.4, can be as gasoline blend component.
Table 3 catalytic material dry gas specification
Component Catalytic material dry gas (v%)
Hydrogen 12.4
Nitrogen 20.2
Oxygen 0.8
Carbon monoxide 1.0
Carbon dioxide 3.4
Methane 19.7
Ethane 9.0
Ethylene 31.2
Propylene 2.0
Propane 0.1
Carbon four 0.1
Carbon five 0.1
Flow (ton hour) 8.0
Table 4 prevailing operating conditions and economic indicator
Alkylation reactor operation pressure MPaG 1.0
Alkylation reactor operation temperature DEG C 340
Alkylation reactor benzene alkene mol ratio 3.5
Catalyst SiO2/AlO3Mol ratio 200
Alkylation reactor catalyst hop count 5
Absorptive tower absorbent Benzene
Absorption tower absorbs temperature DEG C 5
Benzene knockout tower tower top operation pressure MPaG 0.9
Benzene knockout tower tower top operation temperature DEG C 170
Ethylene utilization rate % 99.2
Propylene utilization rate % 98.5
Comprehensive energy consumption kilogram mark oil/ton product 50
Plant investment ten thousand yuan 5800
Benzene knockout tower tower bottoms octane number 108.4
[embodiment 3]
Certain 100,000 tons/year of catalysis drying gas produce olefin-based derivative units (year operation hour 8000 little Time), its catalytic material dry gas composition and flow are shown in Table 5, benzene feedstock purity 90%, containing toluene 10%, The technique using Fig. 1, prevailing operating conditions and economic indicator are shown in Table 6.Benzene knockout tower tower bottoms octane Value is 109, can be as gasoline blend component.
Table 5 catalytic material dry gas specification
Component Catalytic material dry gas (v%)
Hydrogen 21.4
Nitrogen 19.2
Oxygen 0.9
Carbon monoxide 1.2
Carbon dioxide 3.6
Methane 20.7
Ethane 9.5
Ethylene 21.4
Propylene 1.6
Propane 0.3
Carbon four 0.1
Carbon five 0.1
Flow (ton hour) 9.5
Table 6 prevailing operating conditions and economic indicator
Alkylation reactor operation pressure MPaG 0.5
Alkylation reactor operation temperature DEG C 400
Alkylation reactor benzene alkene mol ratio 2.5
Catalyst SiO2/AlO3Mol ratio 300
Alkylation reactor catalyst hop count 4
Absorptive tower absorbent Benzene column tower bottoms
Absorption tower absorbs temperature DEG C 15
Benzene knockout tower tower top operation pressure MPaG 0.45
Benzene knockout tower tower top operation temperature DEG C 140
Ethylene utilization rate % 99.1
Propylene utilization rate % 98.0
Comprehensive energy consumption kilogram mark oil/ton product 40
Plant investment ten thousand yuan 5500
Benzene knockout tower tower bottoms octane number 109
[embodiment 4]
Certain 100,000 tons/year of catalysis drying gas produce olefin-based derivative units (year operation hour 8000 little Time), its catalytic material dry gas composition and flow are shown in Table 7, benzene feedstock purity 99.6%, containing toluene 0.4%, The technique using Fig. 1, prevailing operating conditions and economic indicator are shown in Table 8.Benzene knockout tower tower bottoms octane Value is 108.8, can be as gasoline blend component.
Table 7 catalytic material dry gas specification
Component Catalytic material dry gas (v%)
Hydrogen 18.6
Nitrogen 15.6
Oxygen 0.9
Carbon monoxide 1.5
Carbon dioxide 4.2
Methane 22.7
Ethane 10.8
Ethylene 24.7
Propylene 0.8
Propane 0.1
Carbon four 0.1
Carbon five 0
Flow (ton hour) 14.0
Table 8 prevailing operating conditions and economic indicator
Alkylation reactor operation pressure MPaG 2.0
Alkylation reactor operation temperature DEG C 360
Alkylation reactor benzene alkene mol ratio 2
Catalyst SiO2/AlO3Mol ratio 150
Alkylation reactor catalyst hop count 6
Absorptive tower absorbent Benzene column tower bottoms
Absorption tower absorbs temperature DEG C 0
Benzene knockout tower tower top operation pressure MPaG 1.0
Benzene knockout tower tower top operation temperature DEG C 180
Ethylene utilization rate % 99.6
Propylene utilization rate % 99.1
Comprehensive energy consumption kilogram mark oil/ton product 25
Plant investment ten thousand yuan 5400
Benzene knockout tower tower bottoms octane number 108.8
[comparative example 1]
Certain 100,000 tons/year of catalysis drying gas produces Benzene Devices (year operation hour 8000 hours), its Catalytic material dry gas composition and flow, with table 1, benzene feedstock purity 99.9%, containing toluene 0.05%, are adopted It is shown in Table 9 by the technique of Fig. 2, prevailing operating conditions and economic indicator.
Table 9 prevailing operating conditions and economic indicator
Alkylation reactor operation pressure MPaG 1.0
Alkylation reactor operation temperature DEG C 380
Alkylation reactor benzene alkene mol ratio 7.0
Catalyst Zeolite
Ethylene utilization rate % 85
Propylene utilization rate % Return catalysis
Comprehensive energy consumption kilogram mark oil/ton product 210
Plant investment ten thousand yuan 16000

Claims (10)

1. the method that catalysis drying gas produces olefin-based derivative, comprises the following steps:
A) provide containing ethylene and the catalysis drying gas of propylene;
B) described catalysis drying gas is the most treated, directly enter alkylation reactor with containing benzene raw materials logistics, Gaseous stream is obtained after reaction;
C) described gaseous stream enters reaction gas absorption plant, and be absorbed after contacting with absorbent liquid;
D) described absorbing liquid enters benzene knockout tower, and tower top obtains mainly containing the logistics of benzene, and tower reactor obtains Logistics containing described olefin-based derivative.
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levy and be in described catalysis drying gas that volume of ethylene content is 5~95%, propylene volume content be 0.5~ 10%, H2S volume content < 1000ppm;Described containing benzene raw materials source streams in the stone of petroleum cracking Oil benzene or the crude benzol of coking of coal, wherein benzene mass content is more than 90%, and toluene mass content is less than 10%;Described olefin-based derivative is containing ethylbenzene, propyl benzene, diethylbenzene, the first and second benzene and dimethylbenzene.
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levy and be that the logistics containing benzene that described benzene knockout tower tower top obtains loops back alkylation reactor.
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levy and be that described gaseous stream does not enter transalkylation reactor, ethylbenzene separation column, propyl benzene knockout tower Or at least one equipment in many ethylbenzene separation column.
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levy and be that catalysis drying gas and benzene alkylation reaction are gas phase reaction, reaction temperature 250~450 DEG C, reaction Pressure 0.5~2.0MPaG, benzene and ethylene molar ratio are 1~6, and weight ethylene air speed is 0.3~2.0 little Time-1
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levy and be that catalyst for alkylation reaction is SiO2/AlO3Mol ratio is the ZSM-5 molecular sieve of 50~300.
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levying and be that alkylation reactor is axial multi-stage fixed-bed reactor, catalyst divides 2~8 sections of fillings.
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levying and be that described absorbent is benzene or benzene knockout tower tower bottoms, absorbing temperature is 0~40 DEG C, pressure Being 0.5~2.0MPaG, absorbent is 1~5 with the flow mass ratio of described gaseous stream.
Catalysis drying gas the most according to claim 1 produces the method for olefin-based derivative, and it is special Levying and be that benzene knockout tower operation pressure is 0.5~2.0MPaG, tower number of theoretical plate is 20~50, reflux ratio It is 1~6.
10. the olefin-based derivative that claim 1~9 either method obtains is as gasoline blend component.
CN201510324626.2A 2015-06-12 2015-06-12 Catalysis drying gas produces method and the purposes of described derivant of olefin-based derivative Pending CN106278798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510324626.2A CN106278798A (en) 2015-06-12 2015-06-12 Catalysis drying gas produces method and the purposes of described derivant of olefin-based derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510324626.2A CN106278798A (en) 2015-06-12 2015-06-12 Catalysis drying gas produces method and the purposes of described derivant of olefin-based derivative

Publications (1)

Publication Number Publication Date
CN106278798A true CN106278798A (en) 2017-01-04

Family

ID=57650677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510324626.2A Pending CN106278798A (en) 2015-06-12 2015-06-12 Catalysis drying gas produces method and the purposes of described derivant of olefin-based derivative

Country Status (1)

Country Link
CN (1) CN106278798A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227833A (en) * 1997-09-22 1999-09-08 中国石化集团洛阳石油化工工程公司 Process for preparing ethyl benzene and propyl benzene by reaction of dilute ethylene, propene and benzene
CN1229781A (en) * 1998-03-19 1999-09-29 中国石油化工总公司 Tech. of preparing ethylbenzene and propyl benzene reacted via polyethylene and propylene with benzene
CN1235146A (en) * 1999-04-09 1999-11-17 中国石油天然气集团公司 Method for preparing ethylbenzene and/or isopropylbenzene from thin ethylene and/or propylene
US6063976A (en) * 1997-08-18 2000-05-16 Exxon Chemical Patent Inc. Process to alkylate an aromatic with a dilute stream comprising propylene and ethylene
US20110166403A1 (en) * 2007-02-09 2011-07-07 Clark Michael C Alkylaromatic Production Process
JP2014015466A (en) * 2005-03-31 2014-01-30 Exxonmobile Chemical Patents Inc Multiphase alkylaromatics production
CN104341262A (en) * 2013-08-08 2015-02-11 中石化洛阳工程有限公司 Vapor-phase-method product separation process for preparation of ethylbenzene and/or propyl benzene from gas ethylene and/or propylene
CN104560233A (en) * 2015-01-19 2015-04-29 广汉市天舟航空发动机燃料科技有限公司 Low-lead aviation gasoline and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063976A (en) * 1997-08-18 2000-05-16 Exxon Chemical Patent Inc. Process to alkylate an aromatic with a dilute stream comprising propylene and ethylene
CN1227833A (en) * 1997-09-22 1999-09-08 中国石化集团洛阳石油化工工程公司 Process for preparing ethyl benzene and propyl benzene by reaction of dilute ethylene, propene and benzene
CN1229781A (en) * 1998-03-19 1999-09-29 中国石油化工总公司 Tech. of preparing ethylbenzene and propyl benzene reacted via polyethylene and propylene with benzene
CN1235146A (en) * 1999-04-09 1999-11-17 中国石油天然气集团公司 Method for preparing ethylbenzene and/or isopropylbenzene from thin ethylene and/or propylene
JP2014015466A (en) * 2005-03-31 2014-01-30 Exxonmobile Chemical Patents Inc Multiphase alkylaromatics production
US20110166403A1 (en) * 2007-02-09 2011-07-07 Clark Michael C Alkylaromatic Production Process
CN104341262A (en) * 2013-08-08 2015-02-11 中石化洛阳工程有限公司 Vapor-phase-method product separation process for preparation of ethylbenzene and/or propyl benzene from gas ethylene and/or propylene
CN104560233A (en) * 2015-01-19 2015-04-29 广汉市天舟航空发动机燃料科技有限公司 Low-lead aviation gasoline and preparation method thereof

Similar Documents

Publication Publication Date Title
CN100564331C (en) Utilize refinery C four to produce the combination process of alkene
CN101844960B (en) Method for producting propylene by catalytic pyrolysis of liquefied gas
CN103121897B (en) By the method for the mixture preparing aromatic hydrocarbon containing hydrocarbon with condensed rings
CN102337154B (en) Method for catalytic conversion production of propylene and light aromatics
CN103772125B (en) Take oil refinery dry gas as the method for waste ethylbenzene
CN104557376B (en) Synthesising gas systeming carbinol methylates with aromatic hydrocarbons the reaction method connected
CN103772126B (en) Take oil refinery dry gas as the combined method of waste ethylbenzene
CN104557361A (en) Multifunctional system and method for preparing ethylene, propylene and aromatic hydrocarbons by converting methanol and/or dimethyl ether
CN103965009B (en) The method of the hydrocarbonylation tail gas ethylbenzene after a kind of catalysis drying gas preparation of styrene
CN202081036U (en) Mixed gas separating system in MTP reaction
CN103772123B (en) Method for increasing yield of BTX aromatics
CN101993332B (en) Combined method for joint production of aromatic hydrocarbon
CN103880584A (en) Method for combined production of p-xylene
CN102351629B (en) Method for producing propylene and high-octane gasoline from methanol
CN104419441A (en) Method of producing gasoline blending component with high octane value by light aromatic hydrocarbon and/or alcohol/ether compound
CN101928598A (en) Method and system for producing gasoline and propylene by integrating heavy oil catalytic cracking with oxygen-containing compound conversion
CN201280527Y (en) Aromatic hydrocarbon production equipment
CN103910595B (en) Separation method for mixture system containing C2, C3, C4, C5 and heavy components
CN106278797B (en) The method of catalysis drying gas production ethylbenzene
CN106278798A (en) Catalysis drying gas produces method and the purposes of described derivant of olefin-based derivative
CN203559017U (en) Separation device for aromatization reaction product
CN105254461A (en) Comprehensive methanol utilization method
CN102126909A (en) C2 fraction selective hydrogenation method in progressive separation flow
CN104557362A (en) System and method for preparing aromatic hydrocarbons and co-producing ethylene and propylene by transforming methanol and/or dimethyl ether
CN104987886A (en) Coal processing method and system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104