CN106274136A - Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process - Google Patents

Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process Download PDF

Info

Publication number
CN106274136A
CN106274136A CN201610849172.5A CN201610849172A CN106274136A CN 106274136 A CN106274136 A CN 106274136A CN 201610849172 A CN201610849172 A CN 201610849172A CN 106274136 A CN106274136 A CN 106274136A
Authority
CN
China
Prior art keywords
binary
counterfeiting information
group
control variable
binary system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610849172.5A
Other languages
Chinese (zh)
Inventor
董智红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Graphic Communication
Original Assignee
Beijing Institute of Graphic Communication
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Graphic Communication filed Critical Beijing Institute of Graphic Communication
Priority to CN201610849172.5A priority Critical patent/CN106274136A/en
Publication of CN106274136A publication Critical patent/CN106274136A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/305Associated digital information

Landscapes

  • Printing Methods (AREA)

Abstract

A kind of parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process, binary system anti-counterfeiting information can be generated binary modulated signal by unitary layered encryption and chnnel coding by the method, and by circulation look-up table modulation system, anti-counterfeiting information is embedded in the whole RMB page with the changing in order of shape of amplitude, anti-counterfeiting information can be identified from any one fragment when RMB identification, may be used in the anti-counterfeit printing of RMB.

Description

Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process
Technical field:
The present invention relates to a kind of RMB anti-counterfeiting printing technology, particularly a kind of parameter layering transmutation unary encrypted binary people Coin antiforging printing method, in the anti-counterfeit printing of the RMB that this RMB anti-counterfeiting printing technology may be used for various face amount.
Background technology:
Currency security is related to a national financial security, produces beginning struggle that is false proof and that fake from currency and does not the most stop Breath, the RMB of China has carried out innovating audaciously, have employed watermark anti-counterfeiting technology, safety line anti-counterfeiting technology, carved intaglio print Brush and gravure wiring anti-counterfeiting technology, red blue color fiber and colorless fluorescent fibre false-proof technology, stealthy denomination digital anti-counterfeiting technology, Photochromatic printing ink printing surface specified number word anti-counterfeiting technology, yin yang complementarity are to being patterned anti-counterfeiting technology, number convex print anti-counterfeiting technology, miniature literary composition The multinomial anti-counterfeiting technologies such as word anti-counterfeiting technology, colorless fluorescent pattern anti-fake technology, colored fluorescent pattern anti-fake technology and docking coincide, But struggle that is false proof and that fake is high-tech trial of strength, more advanced anti-counterfeiting technology has certain ageing, therefore it is necessary to not Disconnected lifting RMB anti-counterfeiting technology so that it is being forever in the leading position of anti-counterfeiting technology, this also maintains financial security of the country Basic assurance.
Summary of the invention:
In order to improve reliability and the safety of RMB anti-counterfeiting, the present invention is directed to the deficiency of existing RMB anti-counterfeiting existence to existing RMB anti-counterfeiting technology is had to be improved, it is proposed that the RMB of a kind of binary system coded signal modulation amplitude shape is prevented Pseudo-technology, anti-counterfeiting information, by the change of amplitude shape in printing RMB, is entered by this RMB anti-counterfeiting technology with two Coded signal form processed is embedded in the whole RMB page, can identify false proof from any one fragment when RMB identification Information, therefore has very strong disguised and crush resistance.
The technical solution adopted for the present invention to solve the technical problems is: first to image and character anti-counterfeiting information number Wordization processes, and utilizes the binary system anti-counterfeiting information table that image and character anti-counterfeiting information generate 8 group, for preventing in ciphering process Produce information spillover, 8 one group of binary system anti-counterfeiting information in binary system anti-counterfeiting information table are expanded to 16 one group of binary systems Anti-counterfeiting information, generates most-significant byte and is all 16 the one group binary system anti-counterfeiting information table of 0, by 16 one group binary system anti-counterfeiting information table In i-th group of 16 binary system anti-counterfeiting information be denoted as Ni, i is the positive integer more than 0, and eight-digit binary number encryption parameter is denoted as, encryption parameterIt is 0 C The bigit of 255, binary operator control variable is denoted as k, and binary operator control variable k is the binary system of 0 k 7 Integer, operatorUse+,-, ×, tetra-kinds of operators of ÷, binary operator control During variable k=0 processedBe defined as+, during binary operator control variable k=1Be respectively defined as+, ÷, binary system calculate During symbol control variable k=2Be respectively defined as-, ÷ ,+, during binary operator control variable k=3Be respectively defined as+, × ,+, ÷, during binary operator control variable k=4 Be respectively defined as+, × ,+, ÷ ,-, during binary operator control variable k=5Fixed respectively Justice is+, × ,+, ÷ ,-, ÷, during binary operator control variable k=6Fixed respectively Justice is+, × ,+, ÷ ,-, ÷ ,+, during binary operator control variable k=7 Be respectively defined as+, × ,+, ÷ ,-, ÷ ,+, ×, by i-th group 16 in 16 one group binary system encryption anti-fake information table Binary system encryption anti-fake information is denoted as Ni, during binary operator control variable k=0, unitary layered encryption operational formula is defined as, during binary operator control variable k=1, unitary layered encryption operational formula is defined as, binary system During operator control variable k=2, unitary layered encryption operational formula is defined as, binary operator controls During variable k=3, unitary layered encryption operational formula is defined as, binary operator controls to become During amount k=4, unitary layered encryption operational formula is defined as, binary operator controls to become During amount k=5, unitary layered encryption operational formula is defined as, binary operator controls to become During amount k=6, unitary layered encryption operational formula is defined as, binary operator controls During variable k=7, unitary layered encryption operational formula is defined asIf, Determine encryption parameterInitial value, set in 16 one group binary system anti-counterfeiting information table 16 binary system anti-counterfeiting information NiPosition control variable i=1, from 16 one group binary system anti-counterfeiting information table first group 16 Binary system anti-counterfeiting information N1Starting, circulation uses above-mentioned eight kinds of different cryptographic calculation formula to 16 the one group false proof letter of binary system In breath table, 16 binary system anti-counterfeiting information are encrypted computing, and carry out i+1 computing while cryptographic calculation each time, with The value change of i, by each group of 16 binary system anti-counterfeiting information in 16 one group binary system anti-counterfeiting information table are carried out Cryptographic calculation, generates 16 the one group binary system encryption anti-fake information table corresponding with 16 one group binary system anti-counterfeiting information table, right In RMB printing, the shape of amplitude is digitized processing, and is shaped to by amplitudeWithTwo kinds, WhereinBe defined as numeral 0,It is defined as numeral 1, utilizes the two of 16 one group of generation to enter in RMB printing process Encryption anti-fake information processed, by the amplitude on the circulation look-up table modulation RMB page, makes the amplitude modulation net on the RMB page Point is regular to be changed according to the shape of above two amplitude, adjacent 16 amplitude modulation nets on the RMB page after modulation Point constitutes one group of 16 binary system anti-counterfeiting information so that carry false proof letter by the change of amplitude shape on the RMB page Breath, and make this anti-counterfeiting information be embedded in whole RMB page site, it is achieved RMB anti-counterfeiting.By in the RMB page Non-embed extractible anti-counterfeiting information, it is possible to provide valid certificates for real Renminbi, there is stronger anti-forgery simultaneously obviously Ability, and do not increase extra false proof cost.
For solving above-mentioned technical problem, first it is digitized anti-counterfeiting information processing, generates the binary system of 8 group Anti-counterfeiting information table, anti-counterfeiting information can be image information and Word message information, by 8 one group in binary system anti-counterfeiting information table Binary system anti-counterfeiting information expands to 16 one group of binary system anti-counterfeiting information, and 16 one group of binary systems that generation most-significant byte is all 0 are false proof Each 16 binary system anti-counterfeiting information in 16 one group binary system anti-counterfeiting information table are carried out layered encryption fortune by information table Calculate, generate the binary system encryption anti-fake information table of 16 group, utilize 16 binary systems in binary system encryption anti-fake information table Encryption anti-fake information, through chnnel coding, generates the binary modulated signal of 16 group with error detecting and error correcting function, letter Road coding can use loop coding, convolutional encoding or Turbo to encode various ways, picture of RMB page original continuous being changed the line map Signal processes (RIP) and hybrid screening output halftoning hybrid screening picture signal through rasterizing, including amplitude With FM screened image signal, 16 the one group of binary modulated signals generated are utilized to use circulation look-up table modulation system modulation The shape of amplitude in halftoning hybrid screening picture signal, make the shape of amplitude according toWithRegular Raw change, makes adjacent 16 amplitudes in halftoning hybrid screening picture signal carry 16 binary systems by the change of shape Encryption anti-fake information, thus generate the halftoning hybrid screening image letter embedding anti-counterfeiting information in whole RMB page site Number, it is achieved the anti-counterfeit printing of RMB.
When extracting anti-counterfeiting information, first gather RMB page halftone dot image signal, through the shape to amplitude Fuzzy diagnosis, differentiate the shape of amplitude, extract the edge signal of amplitude and shape information, demodulate the RMB page The shape information of amplitude, exports the binary modulated signal of 16 group, the binary system to 16 group of demodulation output Modulated signal carries out channel-decoding, recovers to generate binary system deciphering anti-counterfeiting information table after channel-decoding.
Binary system is deciphered in anti-counterfeiting information table 16 binary informations and is denoted as Hi, by ciphering process, extensive In the binary system deciphering anti-counterfeiting information table of repetitive generation, during binary operator control variable k=0, unitary layering deciphering computing is, during binary operator control variable k=1, unitary layering deciphering computing is, two enter During operator control variable k=2 processed, unitary layering deciphering computing is, binary operator controls During variable k=3, unitary layering deciphering computing is, binary operator control variable k= When 4, unitary layering deciphering computing is, binary operator control variable k= When 5, unitary layering deciphering computing is, binary operator controls During variable k=6, unitary layering deciphering computing is, binary system is calculated During symbol control variable k=7, unitary layering deciphering computing is, The binary system recovering after decoding to generate is deciphered 16 binary informations H in anti-counterfeiting information tableiPosition control initial guess set Being set to i=1, binary operator control variable initial value design is k=0, from recovering the binary system deciphering anti-counterfeiting information table that generates the One group of H1Starting, each group of 16 binary informations deciphered the binary system recovering to generate in anti-counterfeiting information table are carried out accordingly Unitary layering deciphering computing, solves binary system anti-counterfeiting information Ni, generate most-significant byte and be all 16 one group of binary system anti-counterfeiting information of 0 Table, removes most-significant byte, recovers to generate the binary system anti-counterfeiting information table of 8 group, recovers anti-counterfeiting signal and export anti-counterfeiting information.
Accompanying drawing illustrates:
The present invention is further described below in conjunction with the accompanying drawings.
Fig. 1 loads anti-counterfeiting information flow chart.
Fig. 2 extracts anti-counterfeiting information flow chart.
Detailed description of the invention:
In loading anti-counterfeiting information flow chart 1, original anti-counterfeiting information (image, word) is encrypted, generates the binary system of 8 group 8 one group of binary informations in binary system anti-counterfeiting information table are expanded to 16 one group of binary informations by anti-counterfeiting information table, generate Most-significant byte is all 16 the one group binary system anti-counterfeiting information table of 0, i-th group of 16 binary system in 16 one group binary system anti-counterfeiting information table Information is denoted as Ni, i is the positive integer more than 0, and eight-digit binary number encryption parameter is denoted as, Encryption parameterBeing the bigit of 0 C 255, binary operator controls Variable is denoted as k, and binary operator control variable k is the bigit of 0 k 7, operatorUse+,-, ×, tetra-kinds of operators of ÷, during binary operator control variable k=0Be defined as+, during binary operator control variable k=1Be respectively defined as+, ÷, during binary operator control variable k=2Be respectively defined as-, ÷ ,+, during binary operator control variable k=3It is respectively defined as +, × ,+, ÷, during binary operator control variable k=4Be respectively defined as+, × ,+, ÷ ,-, two During system operator control variable k=5Be respectively defined as+, × ,+, ÷ ,-, ÷, binary system During operator control variable k=6Be respectively defined as+, × ,+, ÷ ,-, ÷ ,+, two enter During operator control variable k=7 processedBe respectively defined as+, × ,+, ÷ ,-, ÷, +, ×, i-th group of 16 binary system encryption anti-fake information in 16 one group binary system encryption anti-fake information table are denoted as Ni, two enter During operator control variable k=0 processed, unitary layered encryption operational formula is defined as, during binary operator control variable k=1 Unitary layered encryption operational formula is defined as, unitary layered encryption during binary operator control variable k=2 Operational formula is defined as, unitary layered encryption operational formula during binary operator control variable k=3 It is defined as, during binary operator control variable k=4, unitary layered encryption operational formula is fixed Justice is, during binary operator control variable k=5, the computing of unitary layered encryption is public Formula is defined as, unitary layering during binary operator control variable k=6 Cryptographic calculation formula is defined as, binary operator control variable k=7 Shi Yiyuan layered encryption operational formula is defined as, set encryption ParameterInitial value, set in 16 one group binary system anti-counterfeiting information table 16 two System anti-counterfeiting information NiPosition control variable i=1, first group of 16 binary system from 16 one group binary system anti-counterfeiting information table Anti-counterfeiting information N1Starting, circulation uses above-mentioned eight kinds of different cryptographic calculation formula in 16 one group binary system anti-counterfeiting information table 16 binary system anti-counterfeiting information are encrypted computing, and carry out i+1 computing while cryptographic calculation each time, along with i's Value changes, by each group of 16 binary system anti-counterfeiting information in 16 one group binary system anti-counterfeiting information table are encrypted fortune Calculate, generate 16 the one group binary system encryption anti-fake information table corresponding with 16 one group binary system anti-counterfeiting information table, to RMB In printing, the shape of amplitude is digitized processing, and is shaped to by amplitudeWithTwo kinds, wherein Be defined as numeral 0,It is defined as numeral 1, RMB printing process utilizes the binary add tight defense of 16 group of generation Fake information, by the amplitude on the circulation look-up table modulation RMB page, makes the amplitude on the RMB page regular The shape according to above two amplitude be changed, after modulation, on the RMB page, adjacent 16 amplitudes constitute one Organize 16 binary system anti-counterfeiting information so that carry anti-counterfeiting information by the change of amplitude shape on the RMB page, and make This anti-counterfeiting information is embedded in whole RMB page site, it is achieved RMB anti-counterfeiting printing.
In extracting anti-counterfeiting information flow chart 2, when extracting anti-counterfeiting information, first gather RMB page halftone dot image signal, Through the fuzzy diagnosis of the shape to amplitude, differentiate the shape of amplitude, extract edge signal and the shape of amplitude Information, the shape information of demodulation RMB page amplitude, export the binary modulated signal of 16 group, to demodulation output The binary modulated signal of 16 one group carries out channel-decoding, recovers to generate binary system deciphering anti-counterfeiting information table after channel-decoding.
Binary system is deciphered in anti-counterfeiting information table 16 binary informations and is denoted as Hi, by ciphering process, extensive In the binary system deciphering anti-counterfeiting information table of repetitive generation, during binary operator control variable k=0, unitary layering deciphering computing is, during binary operator control variable k=1, unitary layering deciphering computing is, two enter During operator control variable k=2 processed, unitary layering deciphering computing is, binary operator controls During variable k=3, unitary layering deciphering computing is, binary operator control variable k= When 4, unitary layering deciphering computing is, binary operator control variable k= When 5, unitary layering deciphering computing is, binary operator controls During variable k=6, unitary layering deciphering computing is, binary operator During control variable k=7, unitary layering deciphering computing is, The binary system recovering after decoding to generate is deciphered 16 binary informations H in anti-counterfeiting information tableiPosition control initial guess set Being set to i=1, binary operator control variable initial value design is k=0, from recovering the binary system deciphering anti-counterfeiting information table that generates the One group of H1Start, each group of 16 binary informations in the binary system group anti-counterfeiting information table recovering generation are carried out corresponding one Unit's layering deciphering computing, solves binary system anti-counterfeiting information Ni, generate most-significant byte and be all 16 the one group binary system anti-counterfeiting information table of 0, Remove most-significant byte, recover to generate the binary system anti-counterfeiting information table of 8 group, recover anti-counterfeiting signal and export anti-counterfeiting information.

Claims (1)

1. anti-counterfeiting information is generated a binary modulated signal by cryptographic calculation and chnnel coding, and tabled look-up modulation by circulation The parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process that anti-counterfeiting information is embedded in full page by mode, its Feature is: be digitized anti-counterfeiting information, generates the binary system anti-counterfeiting information table of 8 group, anti-counterfeiting information be image information and Word message, for preventing from producing in ciphering process information spillover, by 8 the one group false proof letter of binary system in binary system anti-counterfeiting information table Breath expands to 16 one group of binary system anti-counterfeiting information, generates most-significant byte and is all 16 the one group binary system anti-counterfeiting information table of 0, by 16 I-th group of 16 binary system anti-counterfeiting information in the one group of binary system anti-counterfeiting information table in position are denoted as Ni, i is the positive integer more than 0, eight Binary system encryption parameter is denoted as, encryption parameter Being the bigit of 0 C 255, binary operator control variable is denoted as k, and binary operator control variable k is 0 k 7 Bigit, operatorUse+,-, ×, tetra-kinds of operators of ÷, binary system calculate During symbol control variable k=0Be defined as+, during binary operator control variable k=1Be respectively defined as+, ÷, binary system calculate During symbol control variable k=2Be respectively defined as-, ÷ ,+, during binary operator control variable k=3 Be respectively defined as+, × ,+, ÷, during binary operator control variable k=4Be respectively defined as+, × ,+, ÷ ,-, during binary operator control variable k=5Be respectively defined as+, × ,+, ÷ ,-, ÷, During binary operator control variable k=6Be respectively defined as+, × ,+, ÷ ,-, ÷ ,+, During binary operator control variable k=7Be respectively defined as+, × ,+, ÷ ,-, ÷ ,+, ×, i-th group of 16 binary system encryption anti-fake information in 16 one group binary system encryption anti-fake information table are denoted as Ni, During binary operator control variable k=0, unitary layered encryption operational formula is defined as, binary operator control variable k When=1, unitary layered encryption operational formula is defined as, unitary layering during binary operator control variable k=2 Cryptographic calculation formula is defined as, unitary layered encryption computing during binary operator control variable k=3 Formula is defined as, during binary operator control variable k=4, the computing of unitary layered encryption is public Formula is defined as, unitary layered encryption fortune during binary operator control variable k=5 Calculation formula is defined as, unitary during binary operator control variable k=6 Layered encryption operational formula is defined as, binary operator controls During variable k=7, unitary layered encryption operational formula is defined asIf, Determine encryption parameterInitial value, set in 16 one group binary system anti-counterfeiting information table 16 binary system anti-counterfeiting information NiPosition control variable i=1, from 16 one group binary system anti-counterfeiting information table first group 16 two System anti-counterfeiting information N1Starting, circulation uses above-mentioned eight kinds of different cryptographic calculation formula to 16 one group binary system anti-counterfeiting information table In 16 binary system anti-counterfeiting information be encrypted computing, and while cryptographic calculation each time, carry out i+1 computing, along with i's Value changes, by each group of 16 binary system anti-counterfeiting information in 16 one group binary system anti-counterfeiting information table are encrypted fortune Calculate, generate 16 the one group binary system encryption anti-fake information table corresponding with 16 one group binary system anti-counterfeiting information table, RMB is printed In brush, the shape of amplitude is digitized processing, and is shaped to by amplitudeWithTwo kinds, whereinFixed Justice be numeral 0,It is defined as numeral 1, RMB printing process utilizes the binary system encryption anti-counterfeiting letter of 16 group of generation Cease by circulation look-up table modulation the RMB page on amplitude, make the amplitude on the RMB page regular according to The shape of above two amplitude is changed, and after modulation, on the RMB page, adjacent 16 amplitudes constitute one group 16 two System anti-counterfeiting information so that carry anti-counterfeiting information by the change of amplitude shape on the RMB page, and make this anti-counterfeiting information It is embedded in whole RMB page site, it is achieved RMB anti-counterfeiting.
CN201610849172.5A 2016-09-25 2016-09-25 Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process Pending CN106274136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610849172.5A CN106274136A (en) 2016-09-25 2016-09-25 Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610849172.5A CN106274136A (en) 2016-09-25 2016-09-25 Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process

Publications (1)

Publication Number Publication Date
CN106274136A true CN106274136A (en) 2017-01-04

Family

ID=57714949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610849172.5A Pending CN106274136A (en) 2016-09-25 2016-09-25 Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process

Country Status (1)

Country Link
CN (1) CN106274136A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424690A (en) * 2003-01-20 2003-06-18 天津市阿波罗信息技术有限公司 Network screen encoded anti-fakery method
CA2554674A1 (en) * 2004-02-06 2005-08-25 Signoptic Technologies Use of a digital signature obtained from at least one structural characteristic of a hardware element in order to protect direct reading of sensitive information and method for reading protected sensitive information
CN101219614A (en) * 2007-01-08 2008-07-16 郑阿奇 Method for setting false proof making in printed matter
CN101699845A (en) * 2009-10-20 2010-04-28 北京印刷学院 Encryption counterfeit printing technology of frequency modulated halftone dot space position for pseudo random signal modulation printed matter
CN101777134A (en) * 2010-03-01 2010-07-14 北京印刷学院 Presswork encryption security printing technology based on multi-system quadrature amplitude modulation
CN102225671A (en) * 2011-04-14 2011-10-26 北京印刷学院 Encrypted anti-counterfeit printing technology for modulating shape of printed matter amplitude-modulation screen dot by dual-encrypted signal
CN102402696A (en) * 2011-04-25 2012-04-04 北京印刷学院 Multi-dimensional encryption anti-counterfeiting printing technology based on binary signals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424690A (en) * 2003-01-20 2003-06-18 天津市阿波罗信息技术有限公司 Network screen encoded anti-fakery method
CA2554674A1 (en) * 2004-02-06 2005-08-25 Signoptic Technologies Use of a digital signature obtained from at least one structural characteristic of a hardware element in order to protect direct reading of sensitive information and method for reading protected sensitive information
CN101219614A (en) * 2007-01-08 2008-07-16 郑阿奇 Method for setting false proof making in printed matter
CN101699845A (en) * 2009-10-20 2010-04-28 北京印刷学院 Encryption counterfeit printing technology of frequency modulated halftone dot space position for pseudo random signal modulation printed matter
CN101777134A (en) * 2010-03-01 2010-07-14 北京印刷学院 Presswork encryption security printing technology based on multi-system quadrature amplitude modulation
CN102225671A (en) * 2011-04-14 2011-10-26 北京印刷学院 Encrypted anti-counterfeit printing technology for modulating shape of printed matter amplitude-modulation screen dot by dual-encrypted signal
CN102402696A (en) * 2011-04-25 2012-04-04 北京印刷学院 Multi-dimensional encryption anti-counterfeiting printing technology based on binary signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯登国: "《密码学导引》", 30 April 1999 *

Similar Documents

Publication Publication Date Title
CN106274136A (en) Parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process
CN106218263A (en) Univariate parameter layering transmutation unary encrypted binary RMB anti-counterfeiting printing process
CN106183531A (en) Parameter layering gradient binary encrypted binary RMB anti-counterfeiting printing process
CN106183534A (en) Parameter layering gradient multivariate encrypted binary RMB anti-counterfeiting printing process
CN106183530A (en) One-parameter variation transmutation multivariable layered encryption binary system RMB anti-counterfeiting printing process
CN106183533A (en) Univariate parameter layering gradient multivariate encrypted binary RMB anti-counterfeiting printing process
CN106183535A (en) One-parameter multivariate ternary layered encryption binary system RMB anti-counterfeiting printing process
CN106183532A (en) One-parameter univariate binary layered encryption binary system RMB anti-counterfeiting printing process
CN106218262A (en) One-parameter univariable ternary layered encryption binary system RMB anti-counterfeiting printing process
CN106427282A (en) Single parameter variable progressive-changing ternary layering encryption binary Ren Min Bi anti-counterfeit printing method
CN106355622A (en) Single parameter variable gradient unary layering encrypting binary RMB anti-counterfeiting printing method
CN106626876A (en) One-parameter variable transmutation binary layered encryption binary system Ren Min Bi anti-counterfeit printing method
CN106355623A (en) Single-parameter multi-variable binary layering encrypting binary RMB anti-counterfeiting printing method
CN106427281A (en) Single-parameter single-variable multivariate layering encryption binary Ren Min Bi anti-counterfeit printing method
CN106626875A (en) Single-parameter multi-variable unary layered encryption binary Renminbi anti-counterfeit printing method
CN106427284A (en) Parametric layered gradating and ternary encrypting type binary anti-counterfeit printing method for Ren Min Bi
CN106427285A (en) Single-variable-parameter layered gradating and ternary encrypting type binary anti-counterfeit printing method for Ren Min Bi
CN106427280A (en) Binary information encryption certificate anti-counterfeit printing method
CN106427286A (en) Single-parameter single-variable unitary layered encryption type binary anti-counterfeit printing method for Ren Min Bi
CN106427283A (en) Single-parameter multi-variable multivariate layering encryption binary Ren Min Bi anti-counterfeit printing method
CN106427279A (en) Multi-information encryption certificate anti-counterfeit printing method
CN103116773A (en) Parameter transmutation ternary variable circulation encryption anti-fake information storage trademark
CN103106508A (en) Single parameter ternary variable circulation encryption anti-counterfeiting information storage trademark
CN103106489A (en) Single parameter ternary encryption anti-counterfeiting information storage trademark
CN103136566A (en) Parametric variable gradient polynary encryption anti-fake information storage trademark

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104