CN105371872B - Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer - Google Patents

Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer Download PDF

Info

Publication number
CN105371872B
CN105371872B CN201510990028.9A CN201510990028A CN105371872B CN 105371872 B CN105371872 B CN 105371872B CN 201510990028 A CN201510990028 A CN 201510990028A CN 105371872 B CN105371872 B CN 105371872B
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510990028.9A
Other languages
Chinese (zh)
Other versions
CN105371872A (en
Inventor
刘晓坤
赵辉
马克茂
霍鑫
史维佳
姚郁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510990028.9A priority Critical patent/CN105371872B/en
Publication of CN105371872A publication Critical patent/CN105371872A/en
Application granted granted Critical
Publication of CN105371872B publication Critical patent/CN105371872B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention is the gyroscope flywheel system disturbance method of estimation based on extension High-gain observer, belongs to inertial navigation field.The present invention proposes the gyroscope flywheel system disturbance method of estimation based on extension High-gain observer to solve dynamic disturbances estimation problem of the gyroscope flywheel in the big angle of heel working condition of rotor.The inventive method includes:Step 1: according to the kinetics equation of gyroscope flywheel system, the gyroscope flywheel system state equation containing unknown disturbance is established;Step 2: according to the gyroscope flywheel system state equation containing unknown disturbance, design extension High-gain observer;Step 3: the checking of observation error convergence and Design of Observer parameter ε regulations;Step 4: gyroscope flywheel system disturbance is estimated.The present invention is applied to gyroscope flywheel system disturbance and estimated.

Description

Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer
Technical field
The present invention is the gyroscope flywheel system disturbance method of estimation based on extension High-gain observer, and in particular to inertia is led Boat field.
Background technology
Gyroscope flywheel is a kind of to have actuator and the electromechanical servo device of sensor function, its base concurrently applied to spacecraft Developed in the physical arrangement of traditional inertial instruments-dynamically tuned gyro, DTG.But gyroscope flywheel and dynamic tuning top Spiral shell instrument functionally significantly different is that gyroscope flywheel not only realizes the two-dimensional carrier angular speed as dynamically tuned gyro, DTG Measure function, moreover it is possible to realize Three dimensions control torque output function.And gyroscope flywheel is to realize three-dimensional moment output function, gyro flies Wheel rotor need to radially produce the rolling motion of wide-angle in bidimensional, need to axially produce speed governing campaign, these motion states show Difference is write, gyroscope flywheel is result in and realizes that two-dimentional spacecraft angular rate measurement function is adjusted compared with power on the basis of three-dimensional moment output Humorous gyroscope is increasingly complex.
It is required to realize drift error compensation in dynamically tuned gyro, DTG development, to overcome the influence of undesirable factor, from And ensure measurement accuracy.And the static drift error compensating method that dynamically tuned gyro, DTG is commonly used is servo turntable method and power Square feedback transmitter, both static drift error compensating methods can be to caused by the factors such as such as different elasticity, mass unbalance Systematic error carries out calibration compensation;But because this method is a kind of static scaling method, can not be to as gyroscope flywheel The system that works long hours in big rolling motion state of rotor carry out complete calibration compensation, it is therefore desirable to further research is dynamic The disturbance method of estimation of state is estimated to being estimated due to drift error caused by the big rolling motion of gyroscope flywheel rotor using experiment Count obtained test data sequence and compensation is modeled to disturbance.
Kalman Filter Technology is a kind of optimal State Estimation method, and it is by recursive algorithm, by the presence obtained in real time The discrete experimental data of noise pollution, the optimal estimation of unbiased and minimum variance is carried out to system mode.But Kalman filtering Dependent on accurate complete system mathematic model, and to gyroscope flywheel system, the disturbance caused by undesirable factor is unknown, and It is difficult to it is modeled, so the disturbance estimation for carrying out gyroscope flywheel system using Kalman filtering has larger difficulty.Base It is a kind of Nonlinear Observer to develop extended mode observer in active disturbance rejection thought, such a Nonlinear Observer Disturbance expansion in gyroscope flywheel system can be single order state by method, be fed back using specific nonsmooth nonlinearities error, knot The design parameter properly worked as, realize to stateful observation.Although numerous scholars are to such a Nonlinear Observer method Have made intensive studies, still, Nonlinear Observer method causes parameter tuning difficult because design parameter is numerous, and Nonlinear Observer method uses continuous nonsmooth nonlinearities structure, it is difficult to is received with traditional Design of Observer theory Holding back property and observation error analysis, are not well solved especially yet to the error convergence problem of high-order (more than second order) system. To gyroscope flywheel system, if carrying out disturbance estimation, the selection of relatively reasonable design parameter using Nonlinear Observer method And error convergence proves the relatively complicated complexity that then seems, realizes that difficulty is larger.
The content of the invention
The present invention proposes base to solve dynamic disturbances estimation problem of the gyroscope flywheel in big angle of heel working condition In the gyroscope flywheel system disturbance method of estimation of extension High-gain observer, comprise the following steps:
Step 1: according to the kinetics equation of gyroscope flywheel system, the gyroscope flywheel system influenceed containing unknown disturbance is built System state equation;
The radially movable bidimensional angle of heel φ of tilt sensor direct measurement rotor of gyroscope flywheel systemxy, utilize The gyroscope flywheel system dynamics equation that two class Lagrangian methods are established, by corresponding coordinate transform, by not considering for system The ideal kinetics equation of disturbance is converted to the φ that can be obtained by sensor direct measurementxyUnder the housing coordinate system at place, So as to obtain considering the gyroscope flywheel system state equation for not modeling disturbance;
From gyroscope flywheel rotor two-dimensional direction angle of heel (φxy) and tilt angular speedAs state Variable:Then containing the gyroscope flywheel system mode for not modeling disturbance Shown in equation such as formula (1):
Shown in measurement equation such as formula (2):
Wherein, f1(x,t),f2(x, t) is represented ideally, the Nonlinear Mechanism item of gyroscope flywheel;ux,uyRepresent two Tie up the control moment of torquer, gx1(x,t),gx2(x,t),gy1(x,t),gy2(x, t) represents the nonlinear factor of bidimensional torquer ;
σx(x,t),σy(x, t) expression system does not model disturbance term;y1,y2Represent that measurable gyroscope flywheel turns respectively Sub- bidimensional angle of heel (φxy);
After being arranged by formula (1) (2), formula (3) can be obtained:
Wherein, σd(x, t) does not model nonlinear disturbance item for the continuous bounded of gyroscope flywheel system;U is that bidimensional continuously has Boundary's control input, i.e. bidimensional torquer export;F (x, t), g (x, t) are nominal model, and are twice continuously differentiable bounded Nonlinear function;
Wherein,
Wherein, CθWith SθExpression formula be respectively rotational angle theta cosine value cos θ and sine value sin θ;
Irx,Iry,IrzRespectively rotor is known quantity in the principal axis of inertia direction rotary inertia of rotor block coordinate system three;
Igx,Igy,IgzRespectively balance ring is balancing the principal axis of inertia direction rotary inertia of ring body coordinate system three, is known quantity;
kx,kyRespectively known flexible support torsion bar torsional rigidity;cgx,cgyRespectively known flexible support damping system Number;
Tcx=ktyiy,Tcy=ktxixRespectively bidimensional torquer is exported to the control moment of rotor, i.e., in equation (1) ux,uy
ktx,ktyThe respectively scale factor of known sensor, ix,iyThe respectively electric current of bidimensional torquer, it is sensor It is measurable;
θz,Gyroscope flywheel motor Shaft angle and rotating speed are represented respectively, are that sensor is measurable;
θ in equationxy,φz,I1,I212, η is intermediate variable, and concrete form difference is as follows:
I1=Igx+Irxcos2θy+Irzsin2θy
I2=Igz-Igy-Iry+Irxsin2θy+Irzcos2θy
Step 2: according to the gyroscope flywheel system state equation containing unknown disturbance, can be surveyed using bidimensional tilt sensor Measure φxy, design extension High-gain observer;
To utilize measurement equation y=Cx, realize to state variable x and nonlinear disturbance item σdThe accurate estimation of (x, t), if Count High-gain observer extended below:
Wherein,For High-gain observer state variable;To extend High-gain observer state variable;
H (ε), F (ε) are the gain matrix of observer, and its concrete form is as follows:
Wherein, design parameter ε>0 is small design parameter;Design parameter αij, i=1,2,3, j=1,2 are selected as reality Number;
Step 3: the checking of observation error convergence and Design of Observer parameter ε regulations;
The observation error convergence of the designed gyroscope flywheel extension High-gain observer of analysis, according to accuracy of observation need Ask, adjust and provide applicable extension High-gain observer design parameter;
Define error vectorI.e.By the first formula in formula (3) and the formula of formula (4) first Make the difference, and it is state that the nonlinear terms made the difference in rear gained equation are carried out into integral extensionFormula is obtained after arrangement (6):
Wherein,
For the nonlinear terms of formula (7);
By the formula of equation (4) secondThe 3rd formula and the 6th formula of equation (6) are brought into, and is organized into matrix form, Such as formula (7):
Formula (7) can be further abbreviated as:
Wherein,
According to state equation (8), nonlinear terms δ can be considered the disturbance input of system, stateIt is considered as system output, then the phase HopeMiddle hi, i=1,2...6's is designed to δ pairs of counteractingInfluence, realize the asymptotic convergence of state observation error, consider by Disturbance input δ is to state outputTransmission function, to (8) carry out Laplace transformation, obtain formula (9):
Formula (9) further spread out for:
Wherein,
Remember respectivelyAccording to equation (9), if transmission function G1(s),G2(s) equal identically vanishing, then It is completely counterbalanced by nonlinear disturbance and inputs δ to state output errorInfluence, accurately realize estimating for gyroscope flywheel system total state Meter;Select design parameter h1~h6, to ω ∈ R, make the Infinite Norm shown in formula (11) simultaneously arbitrarily small;
IfChoose
Wherein, αij, i=1,2,3;J=1,2 meets the Hurwitz multinomials shown in following (12);ε is normal number, and ε < < 1;
s31js22js+α3j, j=1,2 (12)
By h1~h6Bring into Gj(s) in, can obtain:
Wherein, P (s)=(ε s)31j(εs)22j(εs)+α3j, j=1,2;According to formula (13), The value for extending High-gain observer by reducing ε is designed, disturbance estimated accuracy is improved, realizes required precision index;
Step 4: realize that gyroscope flywheel system disturbance is estimated;
The disturbance observation of gyroscope flywheel system is carried out using the High-gain observer after extension, with reference to step 3 adjusted design Parameter ε, the disturbance characterized using multivariate regression models is estimated, until observation data meet expectation estimation precision index, Disturbance estimation test data sequence caused by the big rolling motion of gyroscope flywheel system is obtained, realizes that gyroscope flywheel system does not model Disturbance term σdx(x,t),σdyThe estimation of (x, t).
Beneficial effect of the present invention:
1st, the inventive method utilizes designed extension High-gain observer, fully utilizes bidimensional tilt sensor measurement letter Breath and the error of observation information, largely weaken and adversely affected caused by calculus of differences, improve observation accuracy;
2nd, the inventive method is compared with traditional mechanical gyroscope uses static error method, the present invention is directed by top Spiral shell flywheel rotor it is big tilt angular movement caused by disturbance estimated, be a kind of dynamic error estimation, available for Disturbance estimation and compensation further are carried out to gyroscope flywheel measurement equation on the basis of static error demarcation, are existing error calibration skill A kind of complementary technology of art.
Brief description of the drawings
Fig. 1 is the schematic process flow diagram of the gyroscope flywheel system disturbance method of estimation based on extension High-gain observer;
When Fig. 2 is design parameter ε=0.1, disturbance estimate figure of the gyroscope flywheel in x-axis;
When Fig. 3 is design parameter ε=0.1, disturbance estimate figure of the gyroscope flywheel in y-axis;
When Fig. 4 is design parameter ε=0.1, disturbance evaluated error figure of the gyroscope flywheel in x-axis;
When Fig. 5 is design parameter ε=0.1, disturbance evaluated error figure of the gyroscope flywheel in y-axis;
When Fig. 6 is design parameter ε=0.001, disturbance estimate figure of the gyroscope flywheel in x-axis;
When Fig. 7 is design parameter ε=0.001, disturbance estimate figure of the gyroscope flywheel in y-axis;
When Fig. 8 is design parameter ε=0.001, gyroscope flywheel disturbs evaluated error figure in x-axis;
When Fig. 9 is design parameter ε=0.001, disturbance evaluated error figure of the gyroscope flywheel in y-axis.
Embodiment
Embodiment one:Gyroscope flywheel system disturbance estimation side of the present embodiment based on extension High-gain observer Method is realized according to following steps:
Step 1: according to the kinetics equation of gyroscope flywheel system, the gyroscope flywheel system shape containing unknown disturbance is established State equation;
Step 2: according to the gyroscope flywheel system state equation containing unknown disturbance, design extension High-gain observer;
Step 3: observation error convergence and Design of Observer parameter ε regulations;
Step 4: realize that gyroscope flywheel system disturbance is estimated.
Embodiment two:Present embodiment is unlike embodiment one:Characterized in that, described step The rapid one gyroscope flywheel system state equation containing unknown disturbance is realized according to following steps:
Angle of heel (φ of the gyroscope flywheel rotor in two-dimensional directionxy) and tilt angular speedAs state variable x:Then containing the gyroscope flywheel system state equation for not modeling disturbance As shown in formula (1):
Shown in measurement equation such as formula (2):
Wherein, f1(x,t),f2(x, t) is represented ideally, the Nonlinear Mechanism item of gyroscope flywheel;ux,uyRepresent two Tie up the control moment of torquer, gx1(x,t),gx2(x,t),gy1(x,t),gy2(x, t) represents the nonlinear factor of bidimensional torquer ;
σx(x,t),σy(x, t) expression system does not model disturbance term;y1,y2Represent that measurable gyroscope flywheel turns respectively Sub- bidimensional angle of heel (φxy);
After being arranged by formula (1) (2), formula (3) can be obtained:
Wherein, σd(x, t) does not model nonlinear disturbance item for the continuous bounded of gyroscope flywheel system;U is that bidimensional continuously has Boundary's control input, i.e. bidimensional torquer export;F (x, t), g (x, t) are nominal model, and non-for twice continuously differentiable bounded Linear function;
Wherein,
Wherein, CθWith SθExpression formula be respectively rotational angle theta cosine value cos θ and sine value sin θ;
Irx,Iry,IrzRespectively rotor is known quantity in the principal axis of inertia direction rotary inertia of rotor block coordinate system three;
Igx,Igy,IgzRespectively balance ring is balancing the principal axis of inertia direction rotary inertia of ring body coordinate system three, is known quantity;
kx,kyRespectively known flexible support torsion bar torsional rigidity;cgx,cgyRespectively known flexible support damping system Number;
Tcx=ktyiy,Tcy=ktxixRespectively bidimensional torquer is exported to the control moment of rotor, i.e., in equation (1) ux,uy
ktx,ktyThe respectively scale factor of known sensor, ix,iyThe respectively electric current of bidimensional torquer, it is sensor It is measurable;
θz,Gyroscope flywheel motor Shaft angle and rotating speed are represented respectively, are that sensor is measurable;
θ in equationxy,φz,I1,I212, η is intermediate variable, and concrete form difference is as follows:
I1=Igx+Irxcos2θy+Irzsin2θy
I2=Igz-Igy-Iry+Irxsin2θy+Irzcos2θy
Embodiment three:Present embodiment is unlike embodiment one or two:It is characterized in that, described The step of two design extension High-gain observers realized according to following steps:
Using measurement equation y=Cx, realize to state variable x and nonlinear disturbance item σdThe estimation of (x, t), design are as follows Extend High-gain observer:
Wherein,For High-gain observer state variable;To extend High-gain observer state variable;
H (ε), F (ε) are the gain matrix of observer, and its concrete form is as follows:
Wherein, design parameter ε>0 is small design parameter;Design parameter αij, i=1,2,3, j=1,2 are selected as reality Number, and following Hurwitz multinomials should be met:
s31js22js+α3j, j=1,2
Other steps and parameter are identical with one of embodiment one to two.
Embodiment four:Unlike one of present embodiment and embodiment one to three:Characterized in that, Described step three observation error convergence and Design of Observer parameter ε regulations are realized according to following steps:
The observation error convergence of the designed gyroscope flywheel extension High-gain observer of analysis, according to accuracy of observation need Ask, adjust and provide applicable extension High-gain observer design parameter;
Define error vectorI.e.By the first formula in formula (3) and the formula of formula (4) first Make the difference, and it is state that the nonlinear terms made the difference in rear gained equation are carried out into integral extensionFormula is obtained after arrangement (6):
Wherein,
For the nonlinear terms of formula (7);
By the formula of equation (4) secondThe 3rd formula and the 6th formula of equation (6) are brought into, and is organized into matrix form, Such as formula (7):
Formula (7) can be further abbreviated as:
Wherein,
According to state equation (8), nonlinear terms δ can be considered the disturbance input of system, stateIt is considered as system output, then the phase HopeMiddle hi, i=1,2...6's is designed to δ pairs of counteractingInfluence, realize the asymptotic convergence of state observation error, consider By disturbance input δ to state outputTransmission function, to (8) carry out Laplace transformation, obtain formula (9):
Formula (9) further spread out for:
Wherein,
Remember respectivelyAccording to equation (9), if transmission function G1(s),G2(s) equal identically vanishing, then it is complete Full nonlinear disturbance of offsetting inputs δ to state output errorInfluence, accurately realize the estimation of gyroscope flywheel system total state; Select design parameter h1~h6, to ω ∈ R, make the Infinite Norm shown in formula (11) simultaneously arbitrarily small;
IfChoose
Wherein, αij, i=1,2,3;J=1,2 meets the Hurwitz multinomials shown in following (12);ε is normal number, and ε < < 1;
s31js22js+α3j, j=1,2 (12)
By h1~h6Bring into Gj(s) in, can obtain:
Wherein P (s)=(ε s)31j(εs)22j(εs)+α3j, j=1,2;According to formula (13), The value for extending High-gain observer by reducing ε is designed, disturbance estimated accuracy is improved, realizes required precision index;
Other steps and parameter are identical with one of embodiment one to three.
Embodiment five:Unlike one of present embodiment and embodiment one to four:Characterized in that, Described step four gyroscope flywheel system disturbance estimation is realized according to following steps:
The disturbance observation of gyroscope flywheel system is carried out using the High-gain observer after the extension designed by step 2, with reference to Step 3 adjusted design parameter ε, the disturbance of the gyroscope flywheel system to being characterized using multivariate regression models is estimated, makes observation Data meet expectation estimation precision index, obtain disturbance estimation test data sequence caused by the big rolling motion of gyroscope flywheel system Row, realize the disturbance term σ that gyroscope flywheel system does not modeldx(x,t),σdyThe estimation of (x, t);
Other steps and parameter are identical with one of embodiment one to four.
Embodiment
If gyroscope flywheel system disturbance σkShown in mathematical description such as formula (14):
Wherein, a, bi,cjIt is constant value undetermined coefficient, m, n are the exponent number of the selection of multivariate regression models, f=ωm/(2π) For time-varying motor rotation frequency, ωmFor motor speed;σ in gyroscope flywheel physical system mathematical modeling such as formula (1) during emulationx, σyIt is expressed as shown in formula (15):
Formula (15) extends the estimation target of High-gain observer in testing;
The rotary inertia J of gyroscope flywheel system rotor, balance ringr,JgIt is given as respectively:
Wherein, Jrxy,Jrxz,JryzThe disturbance factor as caused by rotor unbalance is represented, it is influenceed in gyroscope flywheel system side σ is presented as in journey such as formula (1)x(x,t),σy(x, t) unknown disturbance item, disturbing influence is characterized by formula (15) in emulation;
The torsional rigidity k and damped coefficient c of two pairs of torsion bars in gyroscope flywheel systemgIt is set to:
K=0.092Nm/rad;cg=2.5e-4Nms/rad
If gyroscope flywheel is in torque output state, the axle input instruction of gyroscope flywheel three difference in the direction of principal axis of spacecraft three For motor driving shaft rotary speed instruction:ω'm=23sin (0.2 π t)+157rad/s, rotor radially x-axis, the bidimensional of y-axis Angle of heel instructs:
φ'y=1sin (0.2 π t) °
Extend High-gain observer design parameter αij, i=1,2,3, j=1,2 are as follows:
α1j=12.6;α2j=312.1;α3j=3225.3;J=1,2
When not considering to measure noise according to gyroscope flywheel parameter setting and input instruction, in sensor, ε takes 0.1 respectively, When 0.001, system disturbance (σxy) observation effect respectively as shown in Fig. 2-Fig. 9.
Understood according to Fig. 2-Fig. 9, as ε=0.1, observation error is located at 10-3In the order of magnitude;As ε=0.001, observation Error is located at 10-4In the order of magnitude, observation error improves an order of magnitude;Gyro is flown using designed High-gain observer Take turns the disturbance estimation of two radial axlesReach preferable observation effect, the estimated accuracy of disturbance with the reduction of ε values and Improve.

Claims (1)

1. the gyroscope flywheel system disturbance method of estimation based on extension High-gain observer, it is characterised in that described based on expansion The gyroscope flywheel system disturbance method of estimation for opening up High-gain observer is realized according to following steps:
Step 1: according to the kinetics equation of gyroscope flywheel system, the gyroscope flywheel system mode side containing unknown disturbance is established Journey;
Angle of heel (φ of the gyroscope flywheel rotor in bidimensional radial directionxy) and tilt angular speedAs state variable x:Then containing not modeling the gyroscope flywheel system state equation of disturbance such as Shown in formula (1):
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>g</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>4</mn> </msub> <mo>=</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>g</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Shown in system measurements equation such as formula (2):
<mrow> <mi>y</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>4</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, f1(x,t),f2(x, t) is represented ideally, the Nonlinear Mechanism item of gyroscope flywheel;ux,uyRepresent bidimensional torque The control moment of device, gx1(x,t),gx2(x,t),gy1(x,t),gy2(x, t) represents that the nonlinear system of bidimensional torquer is several;σx (x,t),σy(x, t) expression system does not model disturbance term;y1,y2Measurable gyroscope flywheel rotor bidimensional tilt is represented respectively Angle (φxy);
After being arranged by formula (1) (2), formula (3) can be obtained:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>x</mi> <mo>+</mo> <mi>B</mi> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>u</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mi>C</mi> <mi>x</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Wherein, σd(x, t) does not model nonlinear disturbance item for the continuous bounded of gyroscope flywheel system;U is the continuous bounded control of bidimensional Input, i.e. bidimensional torquer export;F (x, t), g (x, t) are nominal model, and are the non-linear letter of twice continuously differentiable bounded Number;
Wherein,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> 1
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> </msub> </mrow> <msubsup> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> <mn>2</mn> </msubsup> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>+</mo> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> </msub> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <mo>)</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <mo>(</mo> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>+</mo> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>)</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>(</mo> <mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mfrac> <mo>(</mo> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>g</mi> <mi>x</mi> </mrow> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>x</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> <mo>+</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>I</mi> <mn>2</mn> </msub> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>&amp;rsqb;</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>&amp;eta;</mi> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mfrac> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>g</mi> <mi>y</mi> </mrow> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>y</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> <mo>-</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msubsup> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> <mn>2</mn> </msubsup> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>&amp;rsqb;</mo> <msubsup> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>&amp;rsqb;</mo> <msubsup> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>+</mo> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mfrac> <mo>(</mo> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>g</mi> <mi>x</mi> </mrow> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>x</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>I</mi> <mn>2</mn> </msub> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>&amp;rsqb;</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mfrac> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>g</mi> <mi>y</mi> </mrow> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>y</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> <mo>-</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msubsup> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> <mn>2</mn> </msubsup> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>&amp;rsqb;</mo> <msubsup> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> <mn>2</mn> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>S</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>&amp;rsqb;</mo> <msubsup> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mfrac> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <mo>+</mo> <mfrac> <mi>&amp;eta;</mi> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mfrac> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mfrac> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <mfrac> <mi>&amp;eta;</mi> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mfrac> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mfrac> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <mfrac> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mfrac> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mfrac> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mfrac> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, CθWith SθExpression formula be respectively rotational angle theta cosine value cos θ and sine value sin θ;
Irx,Iry,IrzRespectively rotor is known quantity in the principal axis of inertia direction rotary inertia of rotor block coordinate system three;
Igx,Igy,IgzRespectively balance ring is balancing the principal axis of inertia direction rotary inertia of ring body coordinate system three, is known quantity;
kx,kyRespectively known flexible support torsion bar torsional rigidity;cgx,cgyRespectively known flexible support damped coefficient;
Tcx=ktyiy,Tcy=ktxixRespectively bidimensional torquer is exported to the control moment of rotor, i.e. u in equation (1)x,uy
ktx,ktyThe respectively scale factor of known sensor, ix,iyThe respectively electric current of bidimensional torquer, it can be surveyed for sensor Amount;
θz,Gyroscope flywheel motor Shaft angle and rotating speed are represented respectively, are that sensor is measurable;
θ in equationxy,φz,I1,I212, η is intermediate variable, and concrete form difference is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>+</mo> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <mo>-</mo> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <msub> <mi>&amp;phi;</mi> <mi>y</mi> </msub> </msub> <msub> <mi>S</mi> <msub> <mi>&amp;phi;</mi> <mi>z</mi> </msub> </msub> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>S</mi> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> 2
I1=Igx+Irxcos2θy+Irzsin2θy
I2=Igz-Igy-Iry+Irxsin2θy+Irzcos2θy
Step 2: according to the gyroscope flywheel system state equation containing unknown disturbance, design extension High-gain observer;
Using measurement equation y=Cx, realize to state variable x and nonlinear disturbance item σdThe estimation of (x, t), design are extended below High-gain observer:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>+</mo> <mi>B</mi> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>u</mi> <mo>-</mo> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>H</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>C</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>C</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein,For High-gain observer state variable;To extend High-gain observer state variable;
H (ε), F (ε) are the gain matrix of observer, and its concrete form is as follows:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>h</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>h</mi> <mn>4</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <msub> <mi>&amp;alpha;</mi> <mn>11</mn> </msub> <mi>&amp;epsiv;</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>&amp;alpha;</mi> <mn>21</mn> </msub> <msup> <mi>&amp;epsiv;</mi> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msub> <mi>&amp;alpha;</mi> <mn>12</mn> </msub> <mi>&amp;epsiv;</mi> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msub> <mi>&amp;alpha;</mi> <mn>22</mn> </msub> <msup> <mi>&amp;epsiv;</mi> <mn>2</mn> </msup> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <mi>F</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>5</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>6</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>&amp;alpha;</mi> <mn>31</mn> </msub> <msup> <mi>&amp;epsiv;</mi> <mn>3</mn> </msup> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>&amp;alpha;</mi> <mn>32</mn> </msub> <msup> <mi>&amp;epsiv;</mi> <mn>3</mn> </msup> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Wherein, design parameter ε>0 is small design parameter;Design parameter αij, i=1,2,3, j=1,2 are selected as real number;
Step 3: the checking of observation error convergence and Design of Observer parameter ε regulations;
The observation error convergence of the gyroscope flywheel extension High-gain observer of Observation Design, according to accuracy of observation demand, adjustment Obtain applicable extension High-gain observer design parameter;
Define error vectorI.e.First formula in formula (3) and the formula of formula (4) first are made the difference, And it is state that the nonlinear terms made the difference in rear gained equation are carried out into integral extensionFormula (6) is obtained after arrangement:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>x</mi> </msub> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>x</mi> </msub> </msub> <mo>=</mo> <msub> <mover> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>x</mi> </mrow> <mn>1</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>3</mn> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>4</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>4</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>h</mi> <mn>4</mn> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>y</mi> </msub> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>y</mi> </msub> </msub> <mo>=</mo> <msub> <mover> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> 3
Wherein,
For the nonlinear terms of formula (7);
By the formula of equation (4) secondThe 3rd formula and the 6th formula of equation (6) are brought into, and is organized into matrix form, it is such as public Formula (7):
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>5</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>4</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>6</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;eta;</mi> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;eta;</mi> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;delta;</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;delta;</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Formula (7) can be further abbreviated as:
<mrow> <mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>A</mi> <mo>~</mo> </mover> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>+</mo> <mover> <mi>B</mi> <mo>~</mo> </mover> <mi>&amp;delta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;eta;</mi> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>x</mi> </msub> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;eta;</mi> <msub> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mi>y</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <mover> <mi>A</mi> <mo>~</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>5</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>4</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>h</mi> <mn>6</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <mover> <mi>B</mi> <mo>~</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <mi>&amp;delta;</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;delta;</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;delta;</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>x</mi> </mrow> <mn>1</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>g</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>e</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
According to state equation (8), nonlinear terms δ can be considered the disturbance input of system, stateIt is considered as system output, then it is expected Middle hi, i=1,2...6's is designed to δ pairs of counteractingInfluence, realize the asymptotic convergence of state observation error, consider by disturbing δ is inputted to state outputTransmission function, to (8) carry out Laplace transformation, obtain formula (9):
<mrow> <mfrac> <mrow> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>s</mi> <mi>I</mi> <mo>-</mo> <mover> <mi>A</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mover> <mi>B</mi> <mo>~</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Formula (9) further spread out for:
<mrow> <mfrac> <mrow> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mn>21</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mn>31</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>G</mi> <mn>42</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>G</mi> <mn>52</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>G</mi> <mn>62</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>5</mn> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>G</mi> <mn>21</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>5</mn> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>G</mi> <mn>31</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> </mrow> <mrow> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>5</mn> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mn>42</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>4</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>6</mn> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>G</mi> <mn>52</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>h</mi> <mn>3</mn> </msub> <mo>+</mo> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>4</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>6</mn> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>G</mi> <mn>62</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>4</mn> </msub> </mrow> <mrow> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>h</mi> <mn>4</mn> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>h</mi> <mn>6</mn> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Remember respectivelyAccording to equation (9), if transmission function G1(s),G2(s) equal identically vanishing, then support completely The nonlinear disturbance that disappears inputs δ to state output errorInfluence, accurately realize the estimation of gyroscope flywheel system total state;Selection Design parameter h1~h6, to ω ∈ R, make the Infinite Norm shown in formula (11) simultaneously arbitrarily small;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>=</mo> <munder> <mi>max</mi> <mrow> <mn>1</mn> <mo>&lt;</mo> <mi>i</mi> <mo>&amp;le;</mo> <mn>3</mn> </mrow> </munder> <munder> <mi>sup</mi> <mi>&amp;omega;</mi> </munder> <mo>|</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>=</mo> <munder> <mi>max</mi> <mrow> <mn>4</mn> <mo>&lt;</mo> <mi>i</mi> <mo>&amp;le;</mo> <mn>6</mn> </mrow> </munder> <munder> <mi>sup</mi> <mi>&amp;omega;</mi> </munder> <mo>|</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
IfChoose
Wherein, αij, i=1,2,3;J=1,2 meets the Hurwitz multinomials shown in following (12);ε is normal number, and ε < < 1;
s31js22js+α3j, j=1,2 (12)
By h1~h6Bring into Gj(s) in, can obtain:
<mrow> <msub> <mi>G</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>&amp;epsiv;</mi> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>&amp;epsiv;</mi> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;epsiv;</mi> <mi>s</mi> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <mi>s</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Wherein P (s)=(ε s)31j(εs)22j(εs)+α3j, j=1,2;According to formula (13), design expands Exhibition High-gain observer improves disturbance estimated accuracy, realizes required precision index by reducing ε value;
Step 4: realize that gyroscope flywheel system disturbance is estimated;
The disturbance observation of gyroscope flywheel system is carried out using the High-gain observer after the extension of step 2 design, with reference to step 3 Adjusted design parameter ε, the disturbance of the gyroscope flywheel system to being characterized using multivariate regression models is estimated, expires observation data Sufficient expectation estimation precision index, disturbance estimation test data sequence caused by the big rolling motion of gyroscope flywheel system is obtained, it is real The disturbance term σ that existing gyroscope flywheel system does not modeldx(x,t),σdyThe estimation of (x, t).
CN201510990028.9A 2015-12-24 2015-12-24 Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer Expired - Fee Related CN105371872B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510990028.9A CN105371872B (en) 2015-12-24 2015-12-24 Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510990028.9A CN105371872B (en) 2015-12-24 2015-12-24 Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer

Publications (2)

Publication Number Publication Date
CN105371872A CN105371872A (en) 2016-03-02
CN105371872B true CN105371872B (en) 2017-11-14

Family

ID=55374279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510990028.9A Expired - Fee Related CN105371872B (en) 2015-12-24 2015-12-24 Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer

Country Status (1)

Country Link
CN (1) CN105371872B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105867169B (en) * 2016-04-20 2019-03-08 华北电力大学(保定) A kind of Modelling of Dynamic System method based on state observer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708778A (en) * 2009-11-27 2010-05-19 北京航空航天大学 Magnetically suspended gyroscope flywheel
CN102171628A (en) * 2008-06-27 2011-08-31 莫韦公司 Pointer with motion sensing resolved by data merging
CN104995833A (en) * 2013-02-14 2015-10-21 迪尔公司 Methods of determining initial position of rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171628A (en) * 2008-06-27 2011-08-31 莫韦公司 Pointer with motion sensing resolved by data merging
CN101708778A (en) * 2009-11-27 2010-05-19 北京航空航天大学 Magnetically suspended gyroscope flywheel
CN104995833A (en) * 2013-02-14 2015-10-21 迪尔公司 Methods of determining initial position of rotor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
High-gain observers in nonlinear feedback control;Khalil H K;《International Journal of Robust & Nonlinear Control》;20141231;第24卷(第6期);第249-268页 *
High-gain observers in the presence of measurement noise: A switched-gain approach;Ahrens J H, Khalil H K.;《Automatica》;20091231;第45卷(第4期);第936-943页 *
扩展状态观测器在陀螺稳定平台中的应用仿真;张钊等;《兵工自动化》;20111231;第30卷(第11期);第83-85页 *
陀螺飞轮——一种用于航天器三轴姿态控制的新型执行机构/敏感器;G.Tyc.et al;《控制工程》;20011231(第3期);第32-40页 *
陀螺飞轮实现航天器姿态测量与控制的机理分析;鲍国亮;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20140315(第3期);第21-30页 *

Also Published As

Publication number Publication date
CN105371872A (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN106873611B (en) A kind of design method of multichannel linear active disturbance rejection controller
CN100405014C (en) Carrier attitude measurement method and system
CN108168574A (en) A kind of 8 position Strapdown Inertial Navigation System grade scaling methods based on speed observation
CN103970964B (en) Flexible satellite modal parameter in-orbit identification method
CN103344257B (en) Quick temperature calibrating method of inertia measuring unit
CN104697525A (en) Magnetic suspension controlled sensitive gyroscope configuration based attitude angle velocity measuring method
CN103727940B (en) Nonlinear initial alignment method based on acceleration of gravity vector matching
CN103759731B (en) Angular speed initial conditions places an order increment Research on Rotation Vector Attitude method
CN104165638A (en) Multi-position self-calibration method for biaxial rotating inertial navigation system
CN104483973A (en) Low-orbit flexible satellite attitude tracking control method based on sliding-mode observer
CN107831660A (en) Gyroscope self-adaption high-order super-twisting sliding mode control method
CN102680000A (en) Zero-velocity/course correction application online calibrating method for optical fiber strapdown inertial measuring unit
CN101738203B (en) Optimal position calibration method of static drifting zero and primary acceleration related term error model of flexible gyroscope
CN106017452A (en) Dual gyro anti-disturbance north-seeking method
CN107861386A (en) A kind of anti-interference attitude control ground checking system and its control method based on angular speed observer
CN102636184B (en) Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement
CN106918438A (en) The measuring method and system of a kind of multi -components power and torque
Yan et al. High-precision simulator for strapdown inertial navigation systems based on real dynamics from GNSS and IMU integration
CN105973237B (en) Emulation dynamic trajectory based on practical flight data interpolating parses generation method
CN105371872B (en) Gyroscope flywheel system disturbance method of estimation based on extension High-gain observer
CN102506862B (en) Cone algorithm based on second-order non-communicative error compensation model
CN104121930A (en) Compensation method for MEMS (Micro-electromechanical Systems) gyroscopic drifting errors based on accelerometer coupling
CN104344835B (en) A kind of inertial navigation moving alignment method based on suitching type Self Adaptive Control compass
CN103983274A (en) Inertial measurement unit calibration method suitable for low-precision no-azimuth reference biaxial transfer equipment
CN101769743B (en) Distributed filtering device for MIMU and GPS combined navigation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171114

Termination date: 20201224

CF01 Termination of patent right due to non-payment of annual fee