CN105300960A - Vacuum drying oven and preparation method thereof - Google Patents

Vacuum drying oven and preparation method thereof Download PDF

Info

Publication number
CN105300960A
CN105300960A CN201510873386.1A CN201510873386A CN105300960A CN 105300960 A CN105300960 A CN 105300960A CN 201510873386 A CN201510873386 A CN 201510873386A CN 105300960 A CN105300960 A CN 105300960A
Authority
CN
China
Prior art keywords
organic
evaporation
substrate
chamber
pet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510873386.1A
Other languages
Chinese (zh)
Inventor
董超超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510873386.1A priority Critical patent/CN105300960A/en
Publication of CN105300960A publication Critical patent/CN105300960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The invention discloses a vacuum drying oven and a preparation method thereof. The outside of the vacuum drying oven is provided with a gas detection module; the gas detection module is based on a gas sensor of organic electroluminescence, and creative optimization design is performed on multi aspects such as component materials of the sensor, a production process, structure and the like, the unexpected sensitivity is achieved under the synergistic effects of multi-factor, so that the vacuum drying oven is capable of performing the gas detection on surroundings, and has a great market prospect.

Description

A kind of vacuum drying chamber and preparation method thereof
Technical field
The invention belongs to drying box field, more specifically relate to a kind of vacuum drying chamber and preparation method thereof.
Background technology
Vacuum drying chamber aims at dry heat sensitivity, easily decomposition and readily oxidizable substance and designs, and can make to keep in operating room certain vacuum tightness, also internally can be filled with inert gas during work.
Have in the complex environment of dangerous gas because vacuum drying chamber is generally usually used in laboratory etc., but existing vacuum drying chamber does not generally have gas detection function, when its working environment atmosphere is dangerous gas, potential safety hazard can be caused to personnel, equipment etc.
Summary of the invention
Based on background technology Problems existing, the invention provides a kind of vacuum drying chamber and preparation method thereof, it is characterized in that, at the outside installing gas detection module of vacuum drying box body, organic electroluminescence device and gas sensor, based on organic electroluminescent gas sensor device, combine by this gas detection module.
This gas detection module is achieved through the following technical solutions:
Based on a gas sensor for organic electroluminescent, it is made by the following method:
Organic electroluminescent gas sensor preparation technology relates to thin film technique and film treatment process etc., mainly includes the techniques such as the preparation of the organic film of machine Small molecular or high molecular polymer etc., the preparation of metal electrode and device package;
Idiographic flow is: conductive plastics ITO-PET surface clean and process-substrate are placed in vacuum chamber-vacuum evaporation organic layer-evaporation metal electrode-encapsulation or test.
1. conductive plastics ITO-PET cleans
First, the ITO-PET of cutting specific dimensions, washes by rubbing with the hands ITO-PET substrate with special purpose detergent and non-dust cloth, to remove on-chip various greasy dirt thing, then compound biological enzyme liquid (optional) is put into successively, in deionized water, acetone, ethanol, each ultrasonic 15min; Then, dry up ITO-PET with high pure nitrogen, make ethanol evaporation, then put into pre-service chamber, continue to pass into high purity oxygen gas, with plasma bombardment substrate 5min;
The composition of described compound biological enzyme is: alkali protease 0.2-0.5g/L, cellulase 0.9-1.3g/L, polyphenol oxidase 0.05g/L, and all the other are deionized water;
After utilizing biological membrane pre-service, significantly can increase the susceptibility of gas sensor.
2. prepared by porous structure YSZ
A) appropriate Ni (NO is taken 3) 26H 2o and deionized water are put into beaker and are fully dissolved, slowly ammoniacal liquor is instilled with separating funnel under the effect of magnetic agitation, make it abundant reaction, after titration, 80 DEG C of water-bath 1h obtain suspension, be separated through hydro-extractor and be precipitated thing, then put into the NiO powder that batch-type furnace 300 DEG C insulation 5h can obtain black;
B) take YSZ and NiO powder, 5:6 puts into bowl mill in mass ratio, then adds a certain amount of spreading agent and ethanol, makes it abundant mixing, obtains YSZ slurry;
C) adopted by YSZ slurry screen printing technique to be coated in conductive plastics ITO-PET surface, thickness is 2 μm, puts into drying baker and dries;
3. organic thin-film vapor deposition
A) organic material (Alq3, CuPc) to be evaporated is put into corresponding evaporation boat, and block with mask;
B) the conductive plastics substrate after oven dry is sent to organic chamber from pre-service chamber, substrate is placed on the sample carrier in organic chamber, aims at organic electron gun;
C) organic chamber is vacuumized, when vacuum reaches required numerical value, regulate vapourizing furnace temperature controller, increase evaporating temperature, material is heated, after condition is suitable, evaporation organic material Alq3, CuPc successively, controls evaporation rate and time, makes it thickness and be respectively 4.2 μm, 2 μm;
4. mesh-like metallic cathode preparation
After various organic thin-film vapor deposition, substrate is taken out, cover mesh-like electrode mask version, subsequently substrate is sent into metal evaporation room, vacuumize and make air pressure remain on 1.5 × 10 -3, carry out the evaporation of metal electrode, regulate electric current, the evaporation ratio making Cr:Al is 8:1, obtains the Cr:Al electrode that thickness is 3 μm;
Device test data:
After element manufacturing completes, use the nitometer sensitive detection parts luminosity of sensitive detection parts luminosity, use semiconductor test system test component I-E characteristic.After testing, this device is to NO 2have air-sensitive response characteristic Deng gas, this gas can the luminosity of increased device; When operating voltage is 20V, luminosity is 16cd/m 2, with NO 2increase Deng nitrogenous gas concentration, luminosity increases.
Usefulness of the present invention is:
The present invention from the assembly material of the gas sensor of organic electroluminescent, manufacture craft, the many-sides such as structure have carried out creationary optimal design, under the synergy of many factors, reach unexpected sensitivity, can detect trace nitrogen dioxide, carrier mobility is for being greater than 9.8 × 10 -2cm 2/ Vs, fast response time, release time is short, can 100% recover; There are very large market outlook.
Accompanying drawing explanation
Fig. 1 is vacuum drying chamber 10 structural representation, at the outside installing gas detection module 20 of vacuum drying box body.
Fig. 2 is the device architecture schematic diagram of gas detection module 20.
Embodiment
Gas sensor relates to the multi-disciplinary new and high technologies such as physics, chemistry, material, electronic technology.Gas sensor refers to the device or device that gaseous species to be measured or concentration are converted to the output electric signal having certain rule and relation with it.Gas sensor has a wide range of applications and important value in productive life.In the industrial production, can be used for detecting the flammable explosive gas such as rock gas, hydrogen, oxygen; In civilian, can be used for detecting the harmful gases such as vehicle exhaust.
It is different with sensitive mechanism that gas sensor presses gas sensitive, can be divided into: the gas sensor such as Electrolyte type, galvanochemistry type of semi-conductor type, catalytic combustion type, solid.
In solid electrolyte, conductive ion also can be able to be negative ion for kation, and it is mainly determined by the defect of material itself.
Stabilizing zirconia/yttrium stable zirconium oxide (YSZ) is the most useful a kind of solid electrolyte, under normal temperature, zirconia (ZrO2) is a kind of monoclinic crystal, ionic conductivity is very low, when being doped into appropriate divalence or trivalent cubic symmetry oxide (Y2O3, MgO, CaO, Sc2O3) processes it, ionic conductivity can be shown, there is high oxide ion conduction rate, excellent chemical stability and thermal stability and mechanicalness, be widely used in Solid Oxide Fuel Cell and gas sensor domain.
Organic electroluminescent phenomenon and corresponding research start from the sixties in last century, and organic electroluminescent is through development for many years, gradually to industrialized development, in the world, especially more active with Japan, American Studies.The features such as organic electroluminescence device has active illuminating, fast response time, visual angle is wide, cost is low.
The basic structure of organic electroluminescence device is thin by one and organic material layer sandwiches wherein for positive pole and metallic cathode by the ITO of transparent semiconductor character as sandwich, and organic material generally comprises hole transmission layer, luminescent layer and electron transfer layer.It is a kind of pouring-in luminescent device, and to meet luminescent layer formation exciton from anode injected holes with from negative electrode injected electrons, radioactive transition occurs exciton compound, namely reaches the luminescence of organic material.
Organic electroluminescent gas sensor comprises gas sensing thin film part and organic electroluminescent part.
The sensitive thin film of gas sensor is a complicated process to gas molecule to be measured, comprising to the physisorption of gas molecule and chemisorption.This wherein theoretical side can use the explanations such as grain-boundary barrier model, space-charge model, redox model.
Organic Light Emitting Diodes can simply be described as: outside under alive effect, after the electronics of negative electrode and anode and hole overcome the charge carrier potential barrier between electrode and organic material, be injected into organic layer and transmit wherein, their compounds after luminescent layer meets release energy, and by energy transferring to luminous organic material molecule, luminescent material molecule obtains after energy can be energized into excited state from ground state, and it just can send light when ground state or energy lower state are returned in excited state transition.
Organic electroluminescence device and gas sensor, based on organic electroluminescent gas sensor device, combine by this programme.
The design of this technological invention is mainly for some consideration following:
Consider organic electroluminescence device material and gas sensor gas sensitive and associated materials performance:
(1) experiment adopts oxine aluminium (Alq3) to hold concurrently electron transport material as the luminescent material of device, based on following consideration: a) Alq3 is a kind of stable metal complex, between organism and inorganics, itself has electron transport property; B) Alq3 has good film forming, high glass transition temperature and good chemical stability; C) Alq3 transmitting green light is higher compared to brightness Red and blue light;
(2) adopt compliant conductive plastics ITO-PET as substrate, it has the features such as softness, flexible, lightweight and cost are low, and is conducive to large-scale production;
(3) adopt porous structure YSZ material to be hole transmission layer, improve hole transport rate;
(4) adopt micro fabrication to prepare mesh-like Cr:Ag electrode, increase gas to be measured and gas sensitive contact area, and then increase its susceptibility to gas concentration, kind.
For working out the gas sensor having organic electro luminescent performance, having prepared structure is: the device of ITO-PET/ porous YSZ/Alq3/ CuPc (CuPc)/Cr:Ag, and structure as shown in drawings;
This device is under impressed voltage effect, and hole is injected through YSZ hole transport layer transports to luminescent layer Alq3 from ITO, and electronics is transferred in Alq3 layer through Cr:Ag electrode injection through CuPc layer, electronics and hole-recombination, and electroluminescent organic material Alq3 can send green glow; After device gaseous surrounding environment changes, such as NO 2concentration increases, and the concentration of the gas molecule of CuPc absorption changes thereupon, causes its conductivity to change, finally causes the change of luminescent layer Alq3 luminescence efficiency, and namely device detects place environmental gas concentration by the luminescence efficiency of luminescent layer.
Fig. 1 is vacuum drying chamber 10 structural representation, at the outside installing gas detection module 20 of vacuum drying box body.
Fig. 2 is the device architecture schematic diagram of gas detection module 20.
Embodiment 1:
A kind of vacuum drying chamber, at the outside installing gas detection module of vacuum drying box body, this gas detection module is made by the following method:
Idiographic flow is: conductive plastics ITO-PET surface clean and process-substrate are placed in vacuum chamber-vacuum evaporation organic layer-evaporation metal electrode-encapsulation or test.
1. conductive plastics ITO-PET cleans
First, the ITO-PET of cutting specific dimensions, washes by rubbing with the hands ITO-PET substrate with special purpose detergent and non-dust cloth, to remove on-chip various greasy dirt thing, then puts into compound biological enzyme liquid successively, in deionized water, acetone, ethanol, and each ultrasonic 35min; Then, dry up ITO-PET with high pure nitrogen, make ethanol evaporation, then put into pre-service chamber, continue to pass into high purity oxygen gas, with plasma bombardment substrate 5min;
The composition of described compound biological enzyme is: alkali protease 0.5g/L, cellulase 1.3g/L, polyphenol oxidase 0.06g/L, and all the other are deionized water;
2. prepared by porous structure YSZ
A) appropriate Ni (NO is taken 3) 26H 2o and deionized water are put into beaker and are fully dissolved, slowly ammoniacal liquor is instilled with separating funnel under the effect of magnetic agitation, make it abundant reaction, after titration, 80 DEG C of water-bath 1h obtain suspension, be separated through hydro-extractor and be precipitated thing, then put into the NiO powder that batch-type furnace 300 DEG C insulation 5h can obtain black;
B) take YSZ and NiO powder, 7:1 puts into bowl mill in mass ratio, then adds a certain amount of spreading agent and ethanol, makes it abundant mixing, obtains YSZ slurry;
C) adopted by YSZ slurry screen printing technique to be coated in conductive plastics ITO-PET surface, thickness is 2 μm, puts into drying baker and dries;
3. organic thin-film vapor deposition
A) organic material (Alq3, CuPc) to be evaporated is put into corresponding evaporation boat, and block with mask;
B) the conductive plastics substrate after oven dry is sent to organic chamber from pre-service chamber, substrate is placed on the sample carrier in organic chamber, aims at organic electron gun;
C) organic chamber is vacuumized, when vacuum reaches required numerical value, regulate vapourizing furnace temperature controller, increase evaporating temperature, material is heated, after condition is suitable, evaporation organic material Alq3, CuPc successively, controls evaporation rate and time, makes it thickness and be respectively 6.2 μm, 2 μm;
4. mesh-like metallic cathode preparation
After various organic thin-film vapor deposition, substrate is taken out, cover mesh-like electrode mask version, subsequently substrate is sent into metal evaporation room, vacuumize and make air pressure remain on 1.5 × 10 -3, carry out the evaporation of metal electrode, regulate electric current, the evaporation ratio making Cr:Al is 8:3, obtains the Cr:Al electrode that thickness is 3.5 μm;
Device test data:
After element manufacturing completes, use the nitometer sensitive detection parts luminosity of sensitive detection parts luminosity, use semiconductor test system test component I-E characteristic.After testing, this device is to NO 2have air-sensitive response characteristic Deng gas, this gas can the luminosity of increased device; When operating voltage is 20V, luminosity is 16cd/m 2, with NO 2increase Deng nitrogenous gas concentration, luminosity increases.Detection limit 0.1ppmNO 2under concentration, luminosity is 18cd/m 2, 30ppmNO 2under concentration, luminosity is 35cd/m 2, 50ppmNO 2under concentration, luminosity is 48cd/m 2, 100ppmNO 2under concentration, luminosity is 172cd/m 2, 150ppmNO 2under concentration, luminosity is 188cd/m 2.
Embodiment 2:
A kind of vacuum drying chamber, at the outside installing gas detection module of vacuum drying box body, this gas detection module is made by the following method:
Idiographic flow is: conductive plastics ITO-PET surface clean and process-substrate are placed in vacuum chamber-vacuum evaporation organic layer-evaporation metal electrode-encapsulation or test.
1. conductive plastics ITO-PET cleans
First, the ITO-PET of cutting specific dimensions, washes by rubbing with the hands ITO-PET substrate with special purpose detergent and non-dust cloth, to remove on-chip various greasy dirt thing, then puts into deionized water, acetone, ethanol successively, each ultrasonic 15min; Then, dry up ITO-PET with high pure nitrogen, make ethanol evaporation, then put into pre-service chamber, continue to pass into high purity oxygen gas, with plasma bombardment substrate 5min;
2. prepared by porous structure YSZ
A) appropriate Ni (NO is taken 3) 26H 2o and deionized water are put into beaker and are fully dissolved, slowly ammoniacal liquor is instilled with separating funnel under the effect of magnetic agitation, make it abundant reaction, after titration, 80 DEG C of water-bath 1h obtain suspension, be separated through hydro-extractor and be precipitated thing, then put into the NiO powder that batch-type furnace 390 DEG C insulation 5h can obtain black;
B) take YSZ and NiO powder, 6:1 puts into bowl mill in mass ratio, then adds a certain amount of spreading agent and ethanol, makes it abundant mixing, obtains YSZ slurry;
C) adopted by YSZ slurry screen printing technique to be coated in conductive plastics ITO-PET surface, thickness is 2 μm, puts into drying baker and dries;
3. organic thin-film vapor deposition
A) organic material (Alq3, CuPc) to be evaporated is put into corresponding evaporation boat, and block with mask;
B) the conductive plastics substrate after oven dry is sent to organic chamber from pre-service chamber, substrate is placed on the sample carrier in organic chamber, aims at organic electron gun;
C) organic chamber is vacuumized, when vacuum reaches required numerical value, regulate vapourizing furnace temperature controller, increase evaporating temperature, material is heated, after condition is suitable, evaporation organic material Alq3, CuPc successively, controls evaporation rate and time, makes it thickness and be respectively 5.2 μm, 2 μm;
4. mesh-like metallic cathode preparation
After various organic thin-film vapor deposition, substrate is taken out, cover mesh-like electrode mask version, subsequently substrate is sent into metal evaporation room, vacuumize and make air pressure remain on 1.9 × 10 -3, carry out the evaporation of metal electrode, regulate electric current, the evaporation ratio making Cr:Al is 8:1, obtains the Cr:Al electrode that thickness is 3 μm;
Device test data:
After element manufacturing completes, use the nitometer sensitive detection parts luminosity of sensitive detection parts luminosity, use semiconductor test system test component I-E characteristic.After testing, this device is to NO 2have air-sensitive response characteristic Deng gas, this gas can the luminosity of increased device; When operating voltage is 20V, luminosity is 16cd/m2, with NO 2increase Deng nitrogenous gas concentration, luminosity increases.Detection limit 1ppmNO 2under concentration, luminosity is 18cd/m 2, 50ppmNO 2under concentration, luminosity is 56cd/m 2, 150ppmNO 2under concentration, luminosity is 52cd/m 2.
Embodiment 3:
A kind of vacuum drying chamber, at the outside installing gas detection module of vacuum drying box body, this gas detection module is made by the following method:
Idiographic flow is: conductive plastics ITO-PET surface clean and process-substrate are placed in vacuum chamber-vacuum evaporation organic layer-evaporation metal electrode-encapsulation or test.
1. conductive plastics ITO-PET cleans
First, the ITO-PET of cutting specific dimensions, washes by rubbing with the hands ITO-PET substrate with special purpose detergent and non-dust cloth, to remove on-chip various greasy dirt thing, then puts into compound biological enzyme liquid successively, in deionized water, acetone, ethanol, and each ultrasonic 15min; Then, dry up ITO-PET with high pure nitrogen, make ethanol evaporation, then put into pre-service chamber, continue to pass into high purity oxygen gas, with plasma bombardment substrate 5min;
The composition of described compound biological enzyme is: alkali protease 0.2g/L, cellulase 1.3g/L, polyphenol oxidase 0.05g/L, and all the other are deionized water;
The enzyme of described three kinds of enzymes is lived and is 5000u/g.
2. prepared by porous structure YSZ
A) appropriate Ni (NO is taken 3) 26H 2o and deionized water are put into beaker and are fully dissolved, slowly ammoniacal liquor is instilled with separating funnel under the effect of magnetic agitation, make it abundant reaction, after titration, 80 DEG C of water-bath 1h obtain suspension, be separated through hydro-extractor and be precipitated thing, then put into the NiO powder that batch-type furnace 300 DEG C insulation 5h can obtain black;
B) take YSZ and NiO powder, 5:3 puts into bowl mill in mass ratio, then adds a certain amount of spreading agent and ethanol, makes it abundant mixing, obtains YSZ slurry;
C) adopted by YSZ slurry screen printing technique to be coated in conductive plastics ITO-PET surface, thickness is 2 μm, puts into drying baker and dries;
3. organic thin-film vapor deposition
A) organic material (Alq3, CuPc) to be evaporated is put into corresponding evaporation boat, and block with mask;
B) the conductive plastics substrate after oven dry is sent to organic chamber from pre-service chamber, substrate is placed on the sample carrier in organic chamber, aims at organic electron gun;
C) organic chamber is vacuumized, when vacuum reaches required numerical value, regulate vapourizing furnace temperature controller, increase evaporating temperature, material is heated, after condition is suitable, evaporation organic material Alq3, CuPc successively, controls evaporation rate and time, makes it thickness and be respectively 5 μm, 2 μm;
4. mesh-like metallic cathode preparation
After various organic thin-film vapor deposition, substrate is taken out, cover mesh-like electrode mask version, subsequently substrate is sent into metal evaporation room, vacuumize and make air pressure remain on 1.5 × 10 -3, carry out the evaporation of metal electrode, regulate electric current, the evaporation ratio making Cr:Al is 8:1, obtains the Cr:Al electrode that thickness is 3 μm;
Device test data:
After element manufacturing completes, use the nitometer sensitive detection parts luminosity of sensitive detection parts luminosity, use semiconductor test system test component I-E characteristic.After testing, this device is to NO 2have air-sensitive response characteristic Deng gas, this gas can the luminosity of increased device; When operating voltage is 20V, luminosity is 16cd/m 2, with NO 2increase Deng nitrogenous gas concentration, luminosity increases.Detection limit 0.1ppmNO 2under concentration, luminosity is 18cd/m2,30ppmNO 2under concentration, luminosity is 35cd/m 2, 50ppmNO 2under concentration, luminosity is 58cd/m 2, 100ppmNO 2under concentration, luminosity is 168cd/m 2, 150ppmNO 2under concentration, luminosity is 208cd/m 2.
Embodiment 4:
A kind of vacuum drying chamber, at the outside installing gas detection module of vacuum drying box body, this gas detection module is made by the following method:
Idiographic flow is: conductive plastics ITO-PET surface clean and process-substrate are placed in vacuum chamber-vacuum evaporation organic layer-evaporation metal electrode-encapsulation or test.
1. conductive plastics ITO-PET cleans
First, the ITO-PET of cutting specific dimensions, washes by rubbing with the hands ITO-PET substrate with special purpose detergent and non-dust cloth, to remove on-chip various greasy dirt thing, then puts into compound biological enzyme liquid successively, in deionized water, acetone, ethanol, and each ultrasonic 15min; Then, dry up ITO-PET with high pure nitrogen, make ethanol evaporation, then put into pre-service chamber, continue to pass into high purity oxygen gas, with plasma bombardment substrate 5min;
The composition of described compound biological enzyme is: alkali protease 0.65g/L, cellulase 0.9g/L, polyphenol oxidase 0.05g/L, and all the other are deionized water;
2. prepared by porous structure YSZ
A) appropriate Ni (NO is taken 3) 26H 2o and deionized water are put into beaker and are fully dissolved, slowly ammoniacal liquor is instilled with separating funnel under the effect of magnetic agitation, make it abundant reaction, after titration, 80 DEG C of water-bath 1h obtain suspension, be separated through hydro-extractor and be precipitated thing, then put into the NiO powder that batch-type furnace 300 DEG C insulation 5h can obtain black;
B) take YSZ and NiO powder, 5:1 puts into bowl mill in mass ratio, then adds a certain amount of spreading agent and ethanol, makes it abundant mixing, obtains YSZ slurry;
C) adopted by YSZ slurry screen printing technique to be coated in conductive plastics ITO-PET surface, thickness is 2 μm, puts into drying baker and dries;
3. organic thin-film vapor deposition
A) organic material (Alq3, CuPc) to be evaporated is put into corresponding evaporation boat, and block with mask;
B) the conductive plastics substrate after oven dry is sent to organic chamber from pre-service chamber, substrate is placed on the sample carrier in organic chamber, aims at organic electron gun;
C) organic chamber is vacuumized, when vacuum reaches required numerical value, regulate vapourizing furnace temperature controller, increase evaporating temperature, material is heated, after condition is suitable, evaporation organic material Alq3, CuPc successively, controls evaporation rate and time, makes it thickness and be respectively 5 μm, 2.3 μm;
4. mesh-like metallic cathode preparation
After various organic thin-film vapor deposition, substrate is taken out, cover mesh-like electrode mask version, subsequently substrate is sent into metal evaporation room, vacuumize and make air pressure remain on 1.5 × 10 -3, carry out the evaporation of metal electrode, regulate electric current, the evaporation ratio making Cr:Al is 4:1, obtains the Cr:Al electrode that thickness is 3 μm;
Device test data:
After element manufacturing completes, use the nitometer sensitive detection parts luminosity of sensitive detection parts luminosity, use semiconductor test system test component I-E characteristic.After testing, this device is to NO 2have air-sensitive response characteristic Deng gas, this gas can the luminosity of increased device; When operating voltage is 20V, luminosity is 16cd/m 2, with NO 2increase Deng nitrogenous gas concentration, luminosity increases.Detection limit 0.2ppmNO 2under concentration, luminosity is 18cd/m2,30ppmNO 2under concentration, luminosity is 35cd/m 2, under 50ppmNO2 concentration, luminosity is 72cd/m 2, 100ppmNO 2under concentration, luminosity is 145cd/m 2, 150ppmNO 2under concentration, luminosity is 202cd/m 2.
Embodiment 5:
A kind of vacuum drying chamber, at the outside installing gas detection module of vacuum drying box body, this gas detection module is made by the following method:
Idiographic flow is: conductive plastics ITO-PET surface clean and process-substrate are placed in vacuum chamber-vacuum evaporation organic layer-evaporation metal electrode-encapsulation or test.
1. conductive plastics ITO-PET cleans
First, the ITO-PET of cutting specific dimensions, washes by rubbing with the hands ITO-PET substrate with special purpose detergent and non-dust cloth, to remove on-chip various greasy dirt thing, then puts into compound biological enzyme liquid successively, in deionized water, acetone, ethanol, and each ultrasonic 15min; Then, dry up ITO-PET with high pure nitrogen, make ethanol evaporation, then put into pre-service chamber, continue to pass into high purity oxygen gas, with plasma bombardment substrate 5min;
The composition of described compound biological enzyme is: alkali protease 0.4g/L, cellulase 1.1g/L, polyphenol oxidase 0.05g/L, and all the other are deionized water;
2. prepared by porous structure YSZ
A) appropriate Ni (NO is taken 3) 26H 2o and deionized water are put into beaker and are fully dissolved, slowly ammoniacal liquor is instilled with separating funnel under the effect of magnetic agitation, make it abundant reaction, after titration, 80 DEG C of water-bath 1h obtain suspension, be separated through hydro-extractor and be precipitated thing, then put into the NiO powder that batch-type furnace 300 DEG C insulation 5h can obtain black;
B) take YSZ and NiO powder, 5:1 puts into bowl mill in mass ratio, then adds a certain amount of spreading agent and ethanol, makes it abundant mixing, obtains YSZ slurry;
C) adopted by YSZ slurry screen printing technique to be coated in conductive plastics ITO-PET surface, thickness is 2 μm, puts into drying baker and dries;
3. organic thin-film vapor deposition
A) organic material (Alq3, CuPc) to be evaporated is put into corresponding evaporation boat, and block with mask;
B) the conductive plastics substrate after oven dry is sent to organic chamber from pre-service chamber, substrate is placed on the sample carrier in organic chamber, aims at organic electron gun;
C) organic chamber is vacuumized, when vacuum reaches required numerical value, regulate vapourizing furnace temperature controller, increase evaporating temperature, material is heated, after condition is suitable, evaporation organic material Alq3, CuPc successively, controls evaporation rate and time, makes it thickness and be respectively 3.6 μm, 2 μm;
4. mesh-like metallic cathode preparation
After various organic thin-film vapor deposition, substrate is taken out, cover mesh-like electrode mask version, subsequently substrate is sent into metal evaporation room, vacuumize and make air pressure remain on 1.5 × 10 -3, carry out the evaporation of metal electrode, regulate electric current, the evaporation ratio making Cr:Al is 8:3, obtains the Cr:Al electrode that thickness is 3 μm;
Device test data:
After element manufacturing completes, use the nitometer sensitive detection parts luminosity of sensitive detection parts luminosity, use semiconductor test system test component I-E characteristic.After testing, this device is to NO 2have air-sensitive response characteristic Deng gas, this gas can the luminosity of increased device; When operating voltage is 20V, luminosity is 16cd/m 2, with NO 2increase Deng nitrogenous gas concentration, luminosity increases.Detection limit 0.1ppmNO 2under concentration, luminosity is 19cd/m 2, 30ppmNO 2under concentration, luminosity is 35cd/m 2, 50ppmNO 2under concentration, luminosity is 65cd/m 2, 100ppmNO 2under concentration, luminosity is 150cd/m 2, 150ppmNO 2under concentration, luminosity is 208cd/m 2.
The above; be only the present invention's preferably embodiment; but protection scope of the present invention is not limited thereto; anyly be familiar with those skilled in the art in the technical scope that the present invention discloses; be equal to according to technological invention of the present invention and inventive concept thereof and replace or change, all should be encompassed within protection scope of the present invention.

Claims (3)

1. a vacuum drying chamber, it is characterized in that, at the outside installing gas detection module of the casing of vacuum drying chamber, this gas detection module comprises flexible substrates, luminescent layer, hole transmission layer, mesh-like negative electrode, wherein, flexible substrate is conductive plastics ITO-PET, and porous structure YSZ is hole transmission layer.
2. vacuum drying chamber according to claim 1, is characterized in that, described YSZ slurry thickness is 2 μm and is coated in conductive plastics surface.
3. a method for making for vacuum drying chamber, is characterized in that, at the outside installing gas detection module of the casing of vacuum drying chamber, the making step of this gas detection module is as follows:
Organic electroluminescent gas sensor preparation technology relates to thin film technique and film treatment process etc., mainly includes the techniques such as the preparation of the organic film of machine Small molecular or high molecular polymer etc., the preparation of metal electrode and device package;
Concrete steps are: conductive plastics ITO-PET surface clean and process, and substrate is placed in vacuum chamber, vacuum evaporation organic layer, evaporation metal electrode, encapsulation or test;
(1) conductive plastics ITO-PET cleans
First, the ITO-PET of cutting specific dimensions, washes by rubbing with the hands ITO-PET substrate with special purpose detergent and non-dust cloth, to remove on-chip various greasy dirt thing, then compound biological enzyme liquid (optional) is put into successively, in deionized water, acetone, ethanol, each ultrasonic 15min; Then, dry up ITO-PET with high pure nitrogen, make ethanol evaporation, then put into pre-service chamber, continue to pass into high purity oxygen gas, with plasma bombardment substrate 5min;
The composition of described compound biological enzyme is: alkali protease 0.2-0.5g/L, cellulase 0.9-1.3g/L, polyphenol oxidase 0.05g/L, and all the other are deionized water.
(2) prepared by porous structure YSZ
A) appropriate Ni (NO is taken 3) 26H 2o and deionized water are put into beaker and are fully dissolved, slowly ammoniacal liquor is instilled with separating funnel under the effect of magnetic agitation, make it abundant reaction, after titration, 80 DEG C of water-bath 1h obtain suspension, be separated through hydro-extractor and be precipitated thing, then put into the NiO powder that batch-type furnace 300 DEG C insulation 5h can obtain black;
B) take YSZ and NiO powder, 5:6 puts into bowl mill in mass ratio, then adds a certain amount of spreading agent and ethanol, makes it abundant mixing, obtains YSZ slurry;
C) adopted by YSZ slurry screen printing technique to be coated in conductive plastics ITO-PET surface, thickness is 2 μm, puts into drying baker and dries;
(3) organic thin-film vapor deposition
A) organic material (Alq3, CuPc) to be evaporated is put into corresponding evaporation boat, and block with mask;
B) the conductive plastics substrate after oven dry is sent to organic chamber from pre-service chamber, substrate is placed on the sample carrier in organic chamber, aims at organic electron gun;
C) organic chamber is vacuumized, when vacuum reaches required numerical value, regulate vapourizing furnace temperature controller, increase evaporating temperature, material is heated, after condition is suitable, evaporation organic material Alq3, CuPc successively, controls evaporation rate and time, makes it thickness and be respectively 4.2 μm, 2 μm;
(4) mesh-like metallic cathode preparation
After various organic thin-film vapor deposition, substrate is taken out, cover mesh-like electrode mask version, subsequently substrate is sent into metal evaporation room, vacuumize and make air pressure remain on 1.5 × 10 -3, carry out the evaporation of metal electrode, regulate electric current, the evaporation ratio making Cr:Al is 8:1, obtains the Cr:Al electrode that thickness is 3 μm.
CN201510873386.1A 2015-12-02 2015-12-02 Vacuum drying oven and preparation method thereof Pending CN105300960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510873386.1A CN105300960A (en) 2015-12-02 2015-12-02 Vacuum drying oven and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510873386.1A CN105300960A (en) 2015-12-02 2015-12-02 Vacuum drying oven and preparation method thereof

Publications (1)

Publication Number Publication Date
CN105300960A true CN105300960A (en) 2016-02-03

Family

ID=55198469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510873386.1A Pending CN105300960A (en) 2015-12-02 2015-12-02 Vacuum drying oven and preparation method thereof

Country Status (1)

Country Link
CN (1) CN105300960A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712730A (en) * 1993-06-28 1995-01-17 Oki Electric Ind Co Ltd Odor sensor and method of measuring odor
CN101535886A (en) * 2006-11-08 2009-09-16 株式会社理光 Multiphoton absorption functional material, composite layer having multiphoton absorption function and mixture, and optical recording medium, photoelectric conversion element, optical control element,
CN104681731A (en) * 2015-02-09 2015-06-03 南京工业大学 Perovskite type electroluminescence device and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712730A (en) * 1993-06-28 1995-01-17 Oki Electric Ind Co Ltd Odor sensor and method of measuring odor
CN101535886A (en) * 2006-11-08 2009-09-16 株式会社理光 Multiphoton absorption functional material, composite layer having multiphoton absorption function and mixture, and optical recording medium, photoelectric conversion element, optical control element,
CN104681731A (en) * 2015-02-09 2015-06-03 南京工业大学 Perovskite type electroluminescence device and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王然: "基于有机电致发光器件气体传感器的基础研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
黄祖志等: "多孔NiO/钇稳定氧化锆陶瓷的水系流延成型", 《硅酸盐学报》 *

Similar Documents

Publication Publication Date Title
CN107331775B (en) A kind of perovskite solar cell and preparation method thereof of high quality electron transfer layer
CN110246917A (en) A kind of inorganic perovskite solar battery and preparation method
CN202576545U (en) Grooved mask plate for evaporation
CN106252511B (en) Photo-electric conversion element and its manufacturing method
CN104795498A (en) Flexible perovskite solar cell production technology
CN109273612A (en) CsPbBr3The continuous gas-phase deposition process for preparing of perovskite battery
CN110246971A (en) Inorganic perovskite solar battery and preparation method based on preceding oxidation hole transmission layer
CN103227286B (en) The MoO of sulfur doping 3film is as the organic photovoltaic battery and preparation method thereof of anode interface layer
CN105300959A (en) Coal mine safety alarm system and manufacture method thereof
CN106449989A (en) Perovskite solar battery and preparation method thereof
CN105334398A (en) Storage battery module and manufacturing method thereof
CN105352938A (en) High-voltage power source with gas detection function and manufacturing method thereof
CN105352937A (en) Novel robot and making method thereof
CN105352940A (en) Novel relay protector and manufacturing method thereof
CN105352939A (en) Industrial boiler and manufacturing method thereof
CN105527271A (en) Vacuum ring main unit with gas detection function and manufacturing method thereof
CN105374951A (en) Novel printing and dyeing device and manufacture method thereof
CN105548142A (en) Server cabinet with gas alarming function and manufacturing method thereof
CN103178211A (en) Organic solar cell with MoO3/MoS2 composite film as anodic interface layer and production method of organic solar cell
CN105319199A (en) Petroleum exploitation underground pipeline system and manufacturing method thereof
CN105300960A (en) Vacuum drying oven and preparation method thereof
CN105403554A (en) Digital controlled lathe and manufacturing method thereof
CN105548144A (en) Vacuum pump and manufacturing method thereof
CN105510298A (en) Power station with gas detection function and manufacture method of power station
CN105352941A (en) Biomass reacting furnace and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160203