CN104993867B - A kind of optical filtering parameter optimization method based on visible light communication - Google Patents

A kind of optical filtering parameter optimization method based on visible light communication Download PDF

Info

Publication number
CN104993867B
CN104993867B CN201510226117.6A CN201510226117A CN104993867B CN 104993867 B CN104993867 B CN 104993867B CN 201510226117 A CN201510226117 A CN 201510226117A CN 104993867 B CN104993867 B CN 104993867B
Authority
CN
China
Prior art keywords
msub
mrow
sigma
msup
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510226117.6A
Other languages
Chinese (zh)
Other versions
CN104993867A (en
Inventor
梁霄
葛鹏飞
王家恒
赵春明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510226117.6A priority Critical patent/CN104993867B/en
Publication of CN104993867A publication Critical patent/CN104993867A/en
Application granted granted Critical
Publication of CN104993867B publication Critical patent/CN104993867B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention proposes a kind of optimization method of optical filtering parameter in visible light communication system, and this method measures each monochromatic spectroscopic data first with spectrometer, is fitted with Gauss or Lorentzian, obtains the fitting function of spectrum;According to real system, the spectral function of bias light and the total noise power of receiving terminal are determined;Using each coloured light receiving terminal signal interference ratio as object function, while determine the constraints of optical filtering parameter;Local derviation first is sought with each variable of signal interference ratio function pair, and makes local derviation result be equal to 0, a variable is then fixed, optimizes another variable under constraints, more wheel iteration is carried out successively, obtains the optimal solution of optical filtering parameter;The object function of each coloured light is solved respectively, you can obtain the optimal value of each color filters parameter.The method of the present invention goes for a variety of optical filterings, and convergence rate is very fast during computing, can preferably reduce the interference between white light.

Description

A kind of optical filtering parameter optimization method based on visible light communication
Technical field
The invention belongs to visible light communication field, in particular to optical filtering parameter in a kind of polychrome optical communication system Optimization method.
Background technology
With the continuous social and economic development, requirement of the people to the quality of life also more and more higher, at the same time, communication Field starts to pursue a kind of " green " and " high-speed " communication technology.Visible light communication technology as above-mentioned alternative just It is increasingly becoming the focus of research field.It utilizes laser device or LED component, and letter is realized by the modulation to intensity of illumination High-speed transfer is ceased, while routine work illumination is ensured, also meets the demand that people are transmitted to high speed information.
The white light in visible light communication has two kinds of generation types at present, one kind be cooperatively formed using blue light with fluorescent material it is white Light, another kind are the modes of a variety of monochromatic light mixing.Using polychromatic light mixing method with compared using white light merely, Neng Gou great Amplitude lifts message capacity and traffic rate, the even more focus as future studies.
For existing polychrome optical communication system, transmitting terminal sends multiple signals using the LED of a variety of coloured light, then mixes Gone out into white light emission, receiving terminal will separate the white light in white light with corresponding a variety of optical filterings.
Testing research shows that the LED light spectral shape of transmitting terminal is analogous to Gaussian function, can not just be kept away between white light Exempt from there is cross jamming.In receiving terminal, to make each road signal degree of accuracy for receiving as high as possible, must just make white light Between cross jamming it is as small as possible, the optimization to optical filtering parameter is to avoid a kind of approach of cross jamming.
Under normal circumstances, the shape of optical filtering pass-band performance has that rectangle, Gaussian function, Lorentzian etc. are several, different The parameter of optical filtering is also different, can provide the method for finding optimal optical filtering parameter in theory, and calculate optical filtering The optimal value of mirror parameter.So as to which the design to actual optical filtering plays directive function with production.It is however, optimal on how to obtain Optical filtering parameter, academia also without correlation research.
The content of the invention
Goal of the invention:The present invention is directed to problems of the prior art, it is proposed that the optimization of a set of receiving terminal optical filtering Method, optimal optical filtering parameter can be found using the method, so that the cross jamming between the white light received is use up May be small, the optical filtering gone out for actual production suitable for polychrome optic communication provides guidance.
Technical scheme:A kind of receiving terminal optical filtering parameter optimization method based on visible light communication, comprises the following steps:1) Each monochromatic spectroscopic data is measured using spectrometer, is fitted with Gaussian function or Lorentzian, obtains the plan of spectrum Close function;2) spectral function of bias light and the total noise power of receiving terminal are determined;3) with each coloured light receiving terminal letter Dry ratio is object function, while determines the constraints of optical filtering parameter;4) local derviation is sought with each variable of signal interference ratio function pair, and made Local derviation result is equal to 0;5) each parameter of initial photochemical filter, then fixes a parameter, optimizes another under constraints Parameter, more wheel iteration are carried out successively;6) after iteration meets certain number, iteration is stopped, convergence result is optical filtering parameter Optimal solution;7) repeat the above steps (3)~(6) to the optical filtering of each color respectively, output a variety of colors optical filtering ginseng Several optimum results.
Further, the overall noise includes Johnson noise and thermal noise.
Further, the pass-band performance of optical filtering is rectangle, and right boundary wavelength is α, β, and the optimization method is specific For:
(1) first, the LED of four kinds of coloured light spectroscopic data is measured with spectrometer, respectively with Gaussian function fitting, expression formula It is as follows:
Sr(λ)=a1 exp[-(λ-λ1)21 2]
Sa(λ)=a2 exp[-(λ-λ2)22 2]
Sg(λ)=a3 exp[-(λ-λ3)23 2]
Sb(λ)=a4 exp[-(λ-λ4)24 2]
Wherein, a1-a4、λ14、σ14It is the fitting parameter of Gaussian function, is real constant;Sr(λ) is the spectrum letter of feux rouges Number, Sa(λ) be gold-tinted spectral function, Sg(λ) be green glow spectral function, Sb(λ) is the spectral function of blue light;
(2) according to the system of reality, it is assumed that the spectrum amplitude of bias light is equally distributed, determines the spectrum letter of bias light Number Sback(λ)=P and receiving terminal total noise power Nt, wherein P and NtIt is real constant;
(3) signal interference ratio of receiving terminal white light is calculated, the signal interference ratio of feux rouges is as follows:
Constraints is:380≤α < β≤780;
(4) local derviation is asked to α, β respectively with signal interference ratio function, makes local derviation result be equal to 0, abbreviation result is
Wherein,
(5) α, β are initialized, preset parameter β Optimal Parameters α first, is obtained according to local derviation formula (1) in the case where meeting constraints α solution;Then α value is updated, fixed α optimizes β, the solution of the β in the case where meeting constraints is obtained according to local derviation formula (2), according to Secondary progress takes turns iteration more;
(6) after iteration meets certain number, iteration is stopped, convergence result is the optimal solution of red filter parameter;
(7) repeat the above steps (3)~the constraints of (6), wherein α, β to the optical filtering of yellow, green, blueness respectively For 380≤α < β≤780;Export the optimum results of multiple color optical filtering parameter.
It can realize that pass-band performance is the parameter optimization of the optical filtering of rectangle by above-mentioned steps.
Further, the pass-band performance of optical filtering is F (λ)=exp [- (λ-λ for meeting Gaussian function0)20 2], it is necessary to Wavelength X centered on Optimal Parameters0And variances sigma0, methods described is specially:
(1) first, the LED of four kinds of coloured light spectroscopic data is measured with spectrometer, respectively with Gaussian function fitting, expression formula It is as follows:
Sr(λ)=a1exp[-(λ-λ1)21 2]
Sa(λ)=a2exp[-(λ-λ2)22 2]
Sg(λ)=a3exp[-(λ-λ3)23 2]
Sb(λ)=a4exp[-(λ-λ4)24 2]
Wherein, a1-a4、λ14、σ14It is the fitting parameter of Gaussian function, is real constant;Sr(λ) is the spectrum letter of feux rouges Number, Sa(λ) be gold-tinted spectral function, Sg(λ) be green glow spectral function, Sb(λ) is the spectral function of blue light;
(2) according to the system of reality, it is assumed that the spectrum amplitude of bias light is equally distributed, determines the spectrum letter of bias light Number Sback(λ)=P and receiving terminal total noise power Nt, wherein P and NtIt is real constant;
(3) signal interference ratio of receiving terminal white light is calculated, the signal interference ratio of feux rouges is as follows:
Constraints is:380≤λ0≤ 780,0<σ0
(4) with signal interference ratio function respectively to λ0、σ0Local derviation is sought, makes local derviation result be equal to 0, abbreviation result is:
Wherein:
(5) λ is initialized0、σ0, σ fixed first0Parameter optimization parameter lambda0, obtained according to local derviation formula (1) and meeting to constrain bar λ under part0Solution;Then λ is updated0Value, fixed λ0Optimize σ0, the σ in the case where meeting constraints is obtained according to local derviation formula (2)0 Solution, carry out more wheel iteration successively;
(6) after iteration meets certain number, iteration is stopped, convergence result is the optimal solution of red filter parameter;
(7) repeat the above steps (3)~(6), wherein λ to the optical filtering of yellow, green, blueness respectively0、σ0Constraint bar Part is 380≤λ0≤ 780,0<σ0;Export the optimum results of multiple color optical filtering parameter.
It can realize that pass-band performance is the parameter optimization for the optical filtering for meeting Gaussian function by above-mentioned steps.
Further, the pass-band performance of optical filtering is F (λ)=1/ (1+ (λ-λ for meeting Lorentzian0)20 2), need Want wavelength X centered on Optimal Parameters0And variances sigma0, methods described is specially:
(1) first, the LED of four kinds of coloured light spectroscopic data is measured with spectrometer, is fitted respectively with Lorentzian, is expressed Formula is as follows:
Sr(λ)=a1/(1+(λ-λ1)21 2)
Sa(λ)=a2/(1+(λ-λ2)22 2)
Sg(λ)=a3/(1+(λ-λ3)23 2)
Sb(λ)=a4/(1+(λ-λ4)24 2)
Wherein, a1-a4、λ14、σ14It is the fitting parameter of Lorentzian, is real constant;Sr(λ) is the spectrum of feux rouges Function, Sa(λ) be gold-tinted spectral function, Sg(λ) be green glow spectral function, Sb(λ) is the spectral function of blue light;
(2) according to the system of reality, it is assumed that the spectrum amplitude of bias light is equally distributed, determines the spectrum letter of bias light Number Sback(λ)=P and receiving terminal total noise power Nt, wherein P and NtIt is real constant;
(3) signal interference ratio of receiving terminal white light is calculated, the signal interference ratio of feux rouges is as follows:
Constraints is:380≤λ0≤ 780,0<σ0
(4) with signal interference ratio function respectively to λ0、σ0Local derviation is sought, makes local derviation result be equal to 0, abbreviation result is:
Wherein:
(5) λ is initialized0、σ0, σ fixed first0Parameter optimization parameter lambda0, obtained according to local derviation formula (1) and meeting to constrain bar λ under part0Solution;Then λ is updated0Value, fixed λ0Optimize σ0, the σ in the case where meeting constraints is obtained according to local derviation formula (2)0 Solution, carry out more wheel iteration successively;
(6) after iteration meets certain number, iteration is stopped, convergence result is the optimal solution of red filter parameter;
(7) repeat the above steps (3)~(6), wherein λ to yellow, green, blue filter respectively0、σ0Constraints For 380≤λ0≤ 780,0<σ0;Export the optimum results of multiple color optical filtering parameter.
It can realize that pass-band performance is the parameter optimization for the optical filtering for meeting Lorentzian by above-mentioned steps.
The core concept of the present invention is that the cross jamming minimum between white light is equivalent to each coloured light in receiving terminal Signal interference ratio it is maximum, in the signal interference ratio of receiving terminal be object function with each coloured light, so as to be provided for quantitatively analysis and solution May;In solution procedure, due to more difficult directly to polytomy variable optimization, the solution procedure proposed here is:It is first solid A fixed variable, optimizes another variable under constraints, carries out more wheel iteration successively.This solution mode can be quick Restrain exactly, convergence result is hardly influenceed by iterative initial value.
Beneficial effect:Optical filtering parameter optimization method proposed by the present invention based on visible light communication, can design compared with Excellent optical filtering parameter, reduces the cross jamming between receiving terminal white light as much as possible, can go out for actual production applicable Guidance is provided in the optical filtering of polychrome optic communication.
Brief description of the drawings
Fig. 1 is the FB(flow block) of the present invention;
Fig. 2 is the spectrum with the color LED of Gaussian function fitting LZ4-00MA00 models four;
Fig. 3 is the spectrum with the color LED of Lorentzian fitting LZ4-00MA00 models four;
Fig. 4 is the optical filtering parameter optimization result that passband is rectangle;
Fig. 5 is the optical filtering parameter optimization result that passband is Gaussian function;
Fig. 6 is the optical filtering parameter optimization result that passband is Lorentzian;
Embodiment:
The present invention program is described in further detail with reference to Figure of description and embodiment.As shown in figure 1, exhibition The algorithm flow block diagram of the present invention is shown.In embodiment, by taking four coloured light communication systems as an example, transmitting terminal is using LED Engin companies production LZ4-00MA00 models four color LED, under identical driving current 700mA, measure respectively R, A, G, The spectrum of tetra- kinds of coloured light of B.It is the result being fitted to spectrum using Gaussian function as shown in Figure 2, from left to right four crests It is followed successively by blueness, green, yellow, red spectrum;It is the result being fitted using Lorentzian to spectrum as shown in Figure 3, From left to right four crests are followed successively by blueness, green, yellow, red spectrum.Comparison is it can be found that what Gaussian function fitting came out As a result more accurate, so under conditions of same, prioritizing selection Gaussian function is fitted.But if carried out with Lorentzian Fitting can notable simplified operation when, can suitably sacrifice fitting precision, be exchanged with and be fitted with Lorentzian.
Actual test is found, for four color LED of LZ4-00MA00 models, under identical driving current 700mA, R, A, G, the radiation flux of tetra- kinds of coloured light of B is respectively 428mW, 122mW, 218mW, 674mW.So in embodiment, it is assumed that receiving terminal Total noise power is 10mW.For the spectrum amplitude of bias light, it can be assumed that to be equally distributed, the present embodiment is not having respectively Have powerful connections light and the situation of bias light that has spectrum amplitude to be 0.5mW/nm is calculated.3 specific implementations are given below Example respectively using pass-band performance be rectangle, gaussian sum Lorentz optical filtering calculated as optimization object.
Embodiment 1:Pass-band performance is the optical filtering of rectangle
The expression formula of (1) four color light source Gaussian function fitting is as follows:
Sr(λ)=a1exp[-(λ-λ1)21 2]
Sa(λ)=a2exp[-(λ-λ2)22 2]
Sg(λ)=a3exp[-(λ-λ3)23 2]
Sb(λ)=a4exp[-(λ-λ4)24 2]
The result obtained with matlab fitting tools is:
Sr(λ)=23.86exp [- (λ -630.5)2/11.62]
Sa(λ)=7.177exp [- (λ -599)2/11.62]
Sg(λ)=4.734exp [- (λ -523.7)2/27.382]
Sb(λ)=28exp [- (λ -453.3)2/14.32]
(2) spectral function (it is assumed here that the spectrum amplitude of bias light is uniform) of bias light:
S is taken respectivelyback(λ)=P=0 and Sback(λ)=P=0.5mW/nm
The total noise power (including Johnson noise, thermal noise etc.) of receiving terminal:Nt=10mW
(3) optical filtering pass-band performance is rectangle, it is assumed that right boundary wavelength is α, β;
(4) signal interference ratio of assorted optical receiving end is determined, is represented following (by taking feux rouges as an example, similarly hereinafter)
Defining integration function
Q functions are brought into SINR functions, obtained result is as follows:
(5) SINR derivations:In order to derive conveniently, order
Then
Local derviation is sought α, β respectively, it is as a result as follows:
According toAbbreviation is arranged to local derviation result:
(6) α, β are initialized.Preset parameter β Optimal Parameters α first, obtained according to local derviation formula (1) in the case where meeting constraints α solution;Then α value is updated, fixed α optimizes β, the solution of the β in the case where meeting constraints is obtained according to local derviation formula (2).According to Secondary progress takes turns iteration more.
(7) repeat the above steps (4)~(6) to the optical filtering of each color respectively, output multiple color optical filtering ginseng Several convergence optimum results.
As shown in figure 4, " --- " represents the condition for the light that has powerful connections, " ... " represents the condition without bias light, and "-" represents actual Spectrum, from left to right four crests be followed successively by blueness, green, yellow, red spectrum.Iteration result is:
As the spectral function S of bias lightbackDuring (λ)=0, iteration convergence in
Left margin (nm) Right margin (nm)
It is red 616 700
It is yellow 579 611
It is green 484 575
It is blue 380 476
As the spectral function S of bias lightbackDuring (λ)=0.5mW/nm, iteration convergence in
Left margin (nm) Right margin (nm)
It is red 621 641
It is yellow 588 607
It is green 506 541
It is blue 441 465
Embodiment 2:Pass-band performance is the optical filtering of Gauss
The expression formula of (1) four color light source Gaussian function fitting is as follows:
Sr(λ)=a1 exp[-(λ-λ1)21 2]
Sa(λ)=a2 exp[-(λ-λ2)22 2]
Sg(λ)=a3 exp[-(λ-λ3)23 2]
Sb(λ)=a4 exp[-(λ-λ4)24 2]
The result obtained with matlab fitting tools is:
Sr(λ)=23.86exp [- (λ -630.5)2/11.62]
Sa(λ)=7.177exp [- (λ -599)2/11.62]
Sg(λ)=4.734exp [- (λ -523.7)2/27.382]
Sb(λ)=28exp [- (λ -453.3)2/14.32]
(2) spectral function (it is assumed here that the spectrum amplitude of bias light is uniform) of bias light:
S is taken respectivelyback(λ)=P=0 and Sback(λ)=P=0.5mW/nm
The total noise power (including Johnson noise, thermal noise etc.) of receiving terminal:Nt=10mW
(3) pass-band performance of optical filtering is Gauss, and expression formula is F (λ)=exp [- (λ-λ0)20 2]
(4) signal interference ratio of assorted optical receiving end is determined, is represented following (by taking feux rouges as an example, similarly hereinafter)
Due to
Have again simultaneously
The result of integral function is brought into SINR functions, obtained as follows:
(5) SINR derivations:In order to derive conveniently, order
B=B2+B3+B4+P·σ0
Then
Respectively to λ0、σ0Local derviation is sought, it is as a result as follows:
Abbreviation is arranged to local derviation result to obtain:
(6) λ is initialized0、σ0.σ fixed first0Parameter optimization parameter lambda0, obtained according to local derviation formula (1) and meeting to constrain bar λ under part0Solution;Then λ is updated0Value, fixed λ0Optimize σ0, the σ in the case where meeting constraints is obtained according to local derviation formula (2)0 Solution.More wheel iteration are carried out successively.
(7) repeat the above steps (4)~(6) to the optical filtering of each color respectively, output multiple color optical filtering ginseng Several convergence optimum results.
As shown in figure 5, " --- " represents the condition for the light that has powerful connections, " ... " represents the condition without bias light, and "-" represents actual Spectrum, from left to right four crests be followed successively by blueness, green, yellow, red spectrum.Iteration result is:
As the spectral function S of bias lightbackDuring (λ)=0, iteration convergence in
Centre wavelength (nm) Variance (nm)
It is red 633 14
It is yellow 596 11.5
It is green 528 27.5
It is blue 450 24.5
As the spectral function S of bias lightbackDuring (λ)=0.5mW/nm, iteration convergence in
Embodiment 3:Pass-band performance is the optical filtering of Lorentz
The expression formula that (1) four color light source is fitted with Lorentzian is as follows:
(calculated for the ease of deriving, light source light spectrum is fitted with Lorentzian here, can in the range of error permission To receive.)
Sr(λ)=a1/(1+(λ-λ1)21 2)
Sa(λ)=a2/(1+(λ-λ2)22 2)
Sg(λ)=a3/(1+(λ-λ3)23 2)
Sb(λ)=a4/(1+(λ-λ4)24 2)
The result obtained with matlab fitting tools is:
Sr(the 1+ (λ -630.9) of (λ)=26.56/2/7.5072)
Sa(the 1+ (λ -599.2) of (λ)=8.033/2/7.1352)
Sg(the 1+ (λ -523.1) of (λ)=5.214/2/17.822)
Sb(the 1+ (λ -453.1) of (λ)=31.36/2/9.1322)
(2) spectral function (it is assumed here that the spectrum amplitude of bias light is uniform) of bias light:
S is taken respectivelyback(λ)=P=0 and Sback(λ)=P=0.5mW/nm
The total noise power (including Johnson noise, thermal noise etc.) of receiving terminal:Nt=10mW
(3) pass-band performance of optical filtering is Lorentz, and pass-band performance function is F (λ)=1/ (1+ (λ-λ0)20 2)
(4) assorted optical receiving end signal interference ratio is determined, is represented following (by taking feux rouges as an example, similarly hereinafter)
Have again simultaneously
∫FSback(1+ (λ-the λ of d λ=∫ 1/0)20 2) Pd λ=P σ0π
The result of integral function is brought into SINR functions, obtained as follows:
(5) SINR derivations:In order to derive conveniently, order
B=B2+B3+B4+P·σ0
Then
Respectively to λ0、σ0Local derviation is sought, it is as a result as follows:(
Abbreviation is arranged to local derviation result to obtain:
6) λ is initialized0、σ0.σ fixed first0Parameter optimization parameter lambda0, obtained according to local derviation formula (1) and meeting constraints Under λ0Solution;Then λ is updated0Value, fixed λ0Optimize σ0, the σ in the case where meeting constraints is obtained according to local derviation formula (2)0's Solution.More wheel iteration are carried out successively.
(7) repeat the above steps (4)~(6) to the optical filtering of each color respectively, output multiple color optical filtering ginseng Several convergence optimum results.
As shown in fig. 6, " --- " represents the condition for the light that has powerful connections, " ... " represents the condition without bias light, and "-" represents actual Spectrum, from left to right four crests be followed successively by blueness, green, yellow, red spectrum.Iteration result is:
As the spectral function S of bias lightbackDuring (λ)=0, iteration convergence in
Centre wavelength (nm) Variance (nm)
It is red 632.36 4.12
It is yellow 598.09 2.09
It is green 525 4.02
It is blue 451 6.05
As the spectral function S of bias lightbackDuring (λ)=0.5mW/nm, iteration convergence in
Centre wavelength (nm) Variance (nm)
It is red 631.77 3.15
It is yellow 598.29 1.90
It is green 525 3.44
It is blue 452.5 4.22

Claims (5)

1. a kind of optical filtering parameter optimization method based on visible light communication, it is characterised in that this method comprises the following steps:
(1) each monochromatic spectroscopic data is measured using spectrometer, is fitted with Gaussian function or Lorentzian, obtains light The fitting function of spectrum;
(2) spectral function of bias light and the total noise power of receiving terminal are determined;
(3) using each coloured light receiving terminal signal interference ratio as object function, while determine the constraints of optical filtering parameter, its Middle optical filtering parameter includes right boundary α, β or central wavelength lambda0, variances sigma0
(4) signal interference ratio function pair each optical filtering parameter alpha, β or λ are used0、σ0Local derviation is sought, and makes local derviation result be equal to 0, obtains local derviation public affairs Formula (1) and local derviation formula (2);
(5) be for passband rectangle optical filtering:Initialize α, β, preset parameter β Optimal Parameters α first, according to local derviation formula (1) solution of the α in the case where meeting constraints is obtained;Then α value is updated, fixed α optimizations β, is obtained according to local derviation formula (2) Meet the solution of the β under constraints, carry out more wheel iteration successively;
It is the optical filtering of Gaussian function or Lorentzian for passband:Initialize λ0、σ0, σ fixed first0Parameter optimization parameter λ0, the λ in the case where meeting constraints is obtained according to local derviation formula (1)0Solution;Then λ is updated0Value, fixed λ0Optimize σ0, according to Local derviation formula (2) obtains the σ in the case where meeting constraints0Solution, carry out more wheel iteration successively;
(6) after iteration meets certain number, iteration is stopped, convergence result is optical filtering parameter alpha, β or λ0、σ0Optimal solution;
(7) repeat the above steps (3)~(6) to the optical filtering of each color respectively, output a variety of colors optical filtering parameter alpha, β Or λ0、σ0Optimum results.
A kind of 2. optical filtering parameter optimization method based on visible light communication as claimed in claim 1, it is characterised in that:It is described Overall noise includes Johnson noise and thermal noise.
A kind of 3. optical filtering parameter optimization method based on visible light communication as claimed in claim 1 or 2, it is characterised in that: The pass-band performance of optical filtering is rectangle, and right boundary wavelength is α, β, and the optimization method is specially:
(1) first, the LED of four kinds of coloured light spectroscopic data is measured with spectrometer, respectively with Gaussian function fitting, expression formula is such as Under:
Sr(λ)=a1exp[-(λ-λ1)21 2]
Sa(λ)=a2exp[-(λ-λ2)22 2]
Sg(λ)=a3exp[-(λ-λ3)23 2]
Sb(λ)=a4exp[-(λ-λ4)24 2]
Wherein, a1-a4、λ14、σ14It is the fitting parameter of Gaussian function, is real constant;Sr(λ) be feux rouges spectral function, Sa (λ) be gold-tinted spectral function, Sg(λ) be green glow spectral function, Sb(λ) is the spectral function of blue light;
(2) according to the system of reality, it is assumed that the spectrum amplitude of bias light is equally distributed, determines the spectral function of bias light Sback(λ)=P and receiving terminal total noise power Nt, wherein P and NtIt is real constant;
(3) signal interference ratio of receiving terminal white light is calculated, the signal interference ratio of feux rouges is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mi>e</mi> <mi>r</mi> <mi>f</mi> <mi>c</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> </mrow> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;beta;</mi> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mrow> <mn>4</mn> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> </mrow> <mi>&amp;pi;</mi> </mfrac> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
Constraints is:380≤α < β≤780;
(4) local derviation is asked to α, β respectively with signal interference ratio function, makes local derviation result be equal to 0, abbreviation result is
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>&amp;DoubleLeftRightArrow;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>4</mn> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>A</mi> <mi>B</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;alpha;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfrac> <msqrt> <mi>&amp;pi;</mi> </msqrt> <mn>2</mn> </mfrac> <mi>P</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;beta;</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>&amp;DoubleLeftRightArrow;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>4</mn> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>A</mi> <mi>B</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfrac> <msqrt> <mi>&amp;pi;</mi> </msqrt> <mn>2</mn> </mfrac> <mi>P</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
5) α, β are initialized, preset parameter β Optimal Parameters α first, obtains α's in the case where meeting constraints according to local derviation formula (1) Solution;Then α value is updated, fixed α optimizations β, the solution of the β in the case where meeting constraints is obtained according to local derviation formula (2), is carried out successively More wheel iteration;
(6) after iteration meets certain number, iteration is stopped, convergence result is the optimal solution of red filter parameter;
(7) repeat the above steps (3)~(6) to the optical filtering of yellow, green, blueness respectively, and wherein α, β constraints are 380≤α < β≤780;Export the optimum results of multiple color optical filtering parameter.
A kind of 4. optical filtering parameter optimization method based on visible light communication as claimed in claim 1 or 2, it is characterised in that: The pass-band performance of optical filtering is F (λ)=exp [- (λ-λ for meeting Gaussian function0)20 2], it is necessary to ripple centered on the parameter of optimization Long λ0And variances sigma0, methods described is specially:
(1) first, the LED of four kinds of coloured light spectroscopic data is measured with spectrometer, respectively with Gaussian function fitting, expression formula is such as Under:
Sr(λ)=a1exp[-(λ-λ1)21 2]
Sa(λ)=a2exp[-(λ-λ2)22 2]
Sg(λ)=a3exp[-(λ-λ3)23 2]
Sb(λ)=a4exp[-(λ-λ4)24 2]
Wherein, a1-a4、λ14、σ14It is the fitting parameter of Gaussian function, is real constant;Sr(λ) be feux rouges spectral function, Sa (λ) be gold-tinted spectral function, Sg(λ) be green glow spectral function, Sb(λ) is the spectral function of blue light;
(2) according to the system of reality, it is assumed that the spectrum amplitude of bias light is equally distributed, determines the spectral function of bias light Sback(λ)=P and receiving terminal total noise power Nt, wherein P and NtIt is real constant;
(3) signal interference ratio of receiving terminal white light is calculated, the signal interference ratio of feux rouges is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>a</mi> <mn>1</mn> </msub> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>1</mn> </msubsup> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mo>(</mo> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> <mo>&amp;rsqb;</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mrow> <mo>(</mo> <mo>(</mo> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>a</mi> <mn>3</mn> </msub> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfrac> <msub> <mi>a</mi> <mn>4</mn> </msub> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>4</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>P</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <msup> <mo>)</mo> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mi>&amp;pi;</mi> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> 2
Constraints is:380≤λ0≤ 780,0<σ0
(4) with signal interference ratio function respectively to λ0、σ0Local derviation is sought, makes local derviation result be equal to 0, abbreviation result is:
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>&amp;DoubleLeftRightArrow;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>B</mi> <mn>4</mn> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>4</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>&amp;DoubleLeftRightArrow;</mo> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mn>4</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>4</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>P</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein:
<mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>3</mn> </msub> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
<mrow> <msub> <mi>B</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>a</mi> <mn>4</mn> </msub> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>4</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> <mi>B</mi> <mo>=</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>B</mi> <mn>4</mn> </msub> <mo>+</mo> <mi>P</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow>
(5) λ is initialized0、σ0, σ fixed first0Parameter optimization parameter lambda0, obtained according to local derviation formula (1) in the case where meeting constraints λ0Solution;Then λ is updated0Value, fixed λ0Optimize σ0, the σ in the case where meeting constraints is obtained according to local derviation formula (2)0Solution, according to Secondary progress takes turns iteration more;
(6) after iteration meets certain number, iteration is stopped, convergence result is the optimal solution of red filter parameter;
(7) repeat the above steps (3)~(6), wherein λ to the optical filtering of yellow, green, blueness respectively0、σ0Constraints be 380≤λ0≤ 780,0<σ0;Export the optimum results of multiple color optical filtering parameter.
A kind of 5. optical filtering parameter optimization method based on visible light communication as claimed in claim 1 or 2, it is characterised in that: The pass-band performance of optical filtering is F (λ)=1/ (1+ (λ-λ for meeting Lorentzian0)20 2), it is necessary to centered on the parameter of optimization Wavelength X0And variances sigma0, methods described is specially:
(1) first, the LED of four kinds of coloured light spectroscopic data is measured with spectrometer, is fitted respectively with Lorentzian, expression formula is such as Under:
Sr(λ)=a1/(1+(λ-λ1)21 2)
Sa(λ)=a2/(1+(λ-λ2)22 2)
Sg(λ)=a3/(1+(λ-λ3)23 2)
Sb(λ)=a4/(1+(λ-λ4)24 2)
Wherein, a1-a4、λ14、σ14It is the fitting parameter of Lorentzian, is real constant;Sr(λ) is the spectral function of feux rouges, Sa(λ) be gold-tinted spectral function, Sg(λ) be green glow spectral function, Sb(λ) is the spectral function of blue light;
(2) according to the system of reality, it is assumed that the spectrum amplitude of bias light is equally distributed, determines the spectral function of bias light Sback(λ)=P and receiving terminal total noise power Nt, wherein P and NtIt is real constant;
(3) signal interference ratio of receiving terminal white light is calculated, the signal interference ratio of feux rouges is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>4</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>P</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;pi;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> 3
Constraints is:380≤λ0≤ 780,0<σ0
(4) with signal interference ratio function respectively to λ0、σ0Local derviation is sought, makes local derviation result be equal to 0, abbreviation result is:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>&amp;DoubleLeftRightArrow;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>/</mo> <msup> <mi>&amp;pi;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>B</mi> <mn>4</mn> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>&amp;DoubleLeftRightArrow;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>N</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>/</mo> <msup> <mi>&amp;pi;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>&amp;CenterDot;</mo> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mn>4</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>P</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein:
B=B2+B3+B4+P·σ0
(5) λ is initialized0、σ0, σ fixed first0Parameter optimization parameter lambda0, obtained according to local derviation formula (1) in the case where meeting constraints λ0Solution;Then λ is updated0Value, fixed λ0Optimize σ0, the σ in the case where meeting constraints is obtained according to local derviation formula (2)0Solution, according to Secondary progress takes turns iteration more;
(6) after iteration meets certain number, iteration is stopped, convergence result is the optimal solution of red filter parameter;
(7) repeat the above steps (3)~(6), wherein λ to yellow, green, blue filter respectively0、σ0Constraints be 380 ≤λ0≤ 780,0<σ0;Export the optimum results of multiple color optical filtering parameter.
CN201510226117.6A 2015-05-06 2015-05-06 A kind of optical filtering parameter optimization method based on visible light communication Active CN104993867B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510226117.6A CN104993867B (en) 2015-05-06 2015-05-06 A kind of optical filtering parameter optimization method based on visible light communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510226117.6A CN104993867B (en) 2015-05-06 2015-05-06 A kind of optical filtering parameter optimization method based on visible light communication

Publications (2)

Publication Number Publication Date
CN104993867A CN104993867A (en) 2015-10-21
CN104993867B true CN104993867B (en) 2017-11-24

Family

ID=54305629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510226117.6A Active CN104993867B (en) 2015-05-06 2015-05-06 A kind of optical filtering parameter optimization method based on visible light communication

Country Status (1)

Country Link
CN (1) CN104993867B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656555B (en) * 2016-03-25 2018-03-13 东南大学 Four color visible light communication system gamut keying constellation points optimize means of illumination
CN106941375B (en) * 2017-02-09 2019-04-30 东南大学 The robustness combined optimization method of optical filter parameter in multicolor visible light communication
CN109004981B (en) * 2018-08-01 2020-02-18 华南理工大学 Visual visible light communication detection method based on fuzzy effect
CN109119031B (en) * 2018-09-07 2020-01-31 广州视源电子科技股份有限公司 method, device and electronic equipment for controlling output brightness of display screen
UA118644C2 (en) * 2018-09-25 2019-02-11 Василь Олександрович Руських PORTABLE PORTABLE LIGHTING DEVICE FOR UNDERWATER PHOTOS AND VIDEOS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599801B (en) * 2008-06-06 2012-02-22 富士通株式会社 Filter coefficient regulator and method thereof
CN103051381B (en) * 2011-10-13 2016-08-03 内诺兰达公司 The method eliminating the interference of visible ray communication ambient light
US9106321B2 (en) * 2013-09-30 2015-08-11 Qualcomm Incorporated Receive filters to minimize side lobes in a UWB system
CN104467966B (en) * 2014-12-31 2017-10-24 中国人民解放军信息工程大学 A kind of LED modulator approaches and system based on visible light communication

Also Published As

Publication number Publication date
CN104993867A (en) 2015-10-21

Similar Documents

Publication Publication Date Title
CN104993867B (en) A kind of optical filtering parameter optimization method based on visible light communication
Goldschmidt et al. Spectrally bright and broad fiber-based heralded single-photon source
CN105069234A (en) Spectrum dimensionality reduction method and system based on visual perception feature
CN107677452A (en) A kind of less fundamental mode optical fibre comprehensive tester and method of testing
CN101865412B (en) Device for producing uniform area light source with continuously adjustable colors
CN104075806A (en) Photoelectric integrating type color photometer based on combined LED light sources and measurement method thereof
CN103134588A (en) Spectrograph
CN107153139A (en) A kind of optical fibre gyro detection circuit board noise characteristic method of testing
CN110118762A (en) Flame CH base is synchronous with NO molecule or selective excitation measuring device and method
CN103091283B (en) A kind of ultraspectral resolution gas medium-wave infrared spectral measurement system
CN108954040A (en) More LED sunlight Spectral beam combining LED type selection methods based on residual error evolution algorithm
CN109714100A (en) A kind of nonlinear fiber calculation of crosstalk method of multi-wavelength channel
CN103148941A (en) Device and method for measuring beam quality of supercontinuum source
CN104122213A (en) Method for measuring chromaticity of water quality
CN102191475A (en) Film thickness monitoring method capable of increasing spectral characteristics of film
CN109375449A (en) A method of manipulation two-photon quantum interference curve
CN105486408A (en) Three-wavelength Stokes vector polarization measurement system and method bases on color CCD
CN108876146A (en) A kind of electric network data class assets management method and system
CN105987877A (en) Optical fiber-coupled laser sum frequency technology-based trace mercury concentration detection method and device
CN102705782A (en) Continuous color matching device for large color gamut
CN103226100B (en) Method for testing quantum yield
CN103856266A (en) Optical correlator based on modal dispersion
CN106941375A (en) The robustness combined optimization method of optical filter parameter in multicolor visible light communication
CN110057551B (en) Light and color performance prediction method of LED multi-chip module
CN109406450B (en) Multiple absorption type trace gas detection system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant