CN104977505B - 一种基于综合振荡指标的电网扰动源定位方法 - Google Patents

一种基于综合振荡指标的电网扰动源定位方法 Download PDF

Info

Publication number
CN104977505B
CN104977505B CN201510358189.6A CN201510358189A CN104977505B CN 104977505 B CN104977505 B CN 104977505B CN 201510358189 A CN201510358189 A CN 201510358189A CN 104977505 B CN104977505 B CN 104977505B
Authority
CN
China
Prior art keywords
mtd
msub
mrow
mtr
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510358189.6A
Other languages
English (en)
Other versions
CN104977505A (zh
Inventor
范新桥
王赛
商显俊
奚江惠
邵德军
张文朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STATE GRID CENTER CHINA GRID Co Ltd
State Grid Corp of China SGCC
North China Electric Power University
Nanjing NARI Group Corp
Original Assignee
STATE GRID CENTER CHINA GRID Co Ltd
State Grid Corp of China SGCC
North China Electric Power University
Nanjing NARI Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STATE GRID CENTER CHINA GRID Co Ltd, State Grid Corp of China SGCC, North China Electric Power University, Nanjing NARI Group Corp filed Critical STATE GRID CENTER CHINA GRID Co Ltd
Priority to CN201510358189.6A priority Critical patent/CN104977505B/zh
Publication of CN104977505A publication Critical patent/CN104977505A/zh
Application granted granted Critical
Publication of CN104977505B publication Critical patent/CN104977505B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明提供一种基于综合振荡指标的电网扰动源定位方法,包括以下步骤:确定基本振荡指标;采用主成分分析法确定综合振荡指标;根据综合振荡指标对电网扰动源进行定位。本发明采用主成分分析法计算综合振荡指标,以贡献率的形式反映振荡相关指标的重要程度,最后通过对振荡综合指标值进行排序,可将振荡综合指标值最大的机组所在电厂定位为扰动源所在电厂;以指标贡献率的形式考虑了不同振荡指标的相对重要程度,从多个角度对扰动特征进行综合分析,将多个基本振荡指标中不同性质和不同量纲的指标综合成综合振荡指标,通过对该综合振荡指标的排序实现电网扰动源的准确定位。

Description

一种基于综合振荡指标的电网扰动源定位方法
技术领域
本发明属于电力系统技术领域,具体涉及一种基于综合振荡指标的电网扰动源定位方法。
背景技术
电力系统中存在弱阻尼或负阻尼的振荡模式时容易出现低频振荡问题。当处于弱阻尼或者负阻尼的电力系统受到各类或大或小的扰动时,会引起相关发电机组的功角不断振荡,若不及时定位并排除扰动源可发展为全网机组的持续功角振荡,严重时可导致全网解列和系统崩溃。因此,在着力建设坚强电网改善系统的阻尼特性的同时,必须准确地定位出扰动源并及时采取措施,避免电网振荡失稳事故的发生。
电网发生振荡后,振荡源附近线路功率等电气量一般先出现振荡,并带动周围逐渐扩大振荡范围。随着振荡的传播和范围的扩大,振荡幅度随能量的消耗而逐渐减小。因此振荡源附近电气量具有起振早、振荡幅度大等特点,而距离振荡源越远则起振时间相对越晚、振荡幅度相对越小。目前,电网扰动源定位相关研究多从如能量流等单一角度出发定位扰动源。
电网发生扰动后,振荡势能、振幅和起振时间均对振荡源特性有一定反映。因此,从振荡能量、振幅和起振时间等多个角度,通过提取机组振荡势能、起振时刻等振荡特征,并结合多个振荡指标的特点加以综合分析,能更加准确地定位出扰动机组。
发明内容
为了克服上述现有技术的不足,本发明提供一种基于综合振荡指标的电网扰动源定位方法,通过基本振荡指标得到综合振荡指标,再根据综合振荡指标对电网扰动源完成定位。
为了实现上述发明目的,本发明采取如下技术方案:
本发明提供一种基于综合振荡指标的电网扰动源定位方法,所述方法包括以下步骤:
步骤1:确定基本振荡指标;
步骤2:采用主成分分析法确定综合振荡指标;
步骤3:根据综合振荡指标对电网扰动源进行定位。
所述步骤1中,基本振荡指标包括机组势能、机组有功功率最大振幅、机组有功功率相对最大振幅、机组振荡能量和振幅标幺化起振时刻。
所述机组势能为机组出口有功功率变化量和机组出口母线频率变化量乘积的积分,设共有m台机组,i=1,2,…,m;第i台机组的势能为Ei表示为:
式(1)中,ΔPi(t)表示第i台机组出口有功功率变化量,且ΔPi(t)=Pi(t)-Pe,Pi(t)表示第i台机组出口有功功率,Pe表示第i台机组出口有功功率稳态值,t为采样点序号,t=0,1,2,…,n,n为采样点总数;Δfi(t)表示第i台机组出口母线频率变化量;t1表示起始时刻,t2表示结束时刻;
所述机组有功功率最大振幅用于表征振荡幅值的最大值,第i台机组的有功功率最大振幅ΔPimax表示为:
ΔPimax=Pimax(t)-Pe (2)
式(2)中,Pimax(t)表示第i台机组出口有功功率最大值;
所述机组有功功率相对最大振幅用于描述振荡严重程度,第i台机组的有功功率相对最大振幅Fimax表示为:
Fimax=ΔPimax/Pe (3)。
所述机组振荡能量为机组出口有功功率变化量对时间的积分,第i台机组的振荡能量Ezi表示为:
其中,ΔPi(t)表示第i台机组出口有功功率变化量,t1表示起始时刻,t2表示结束时刻;
根据第i台机组的有功功率相对最大振幅Fimax即可得到m台机组的有功功率相对最大振幅的最大值Fmax,有:
Fmax=max(Fimax) (5)
所述振幅标幺化起振时刻用于描述机组的起振时刻,设第i台机组的振幅标幺化起振时刻为tiqz,tiqz为第i台机组的相对最大振幅Fimax达到Fmax的百分比阈值对应的时刻,百分比阈值取30%、50%或90%;
根据Fmax即可得到所有机组的振幅标幺化起振时刻,对每台机组的振幅标幺化起振时刻进行升序排序,排序越靠前的机组,表明起振时刻越早。
所述步骤2具体包括以下步骤:
步骤2-1:建立振荡指标矩阵X,并对振荡指标矩阵X进行标准化处理,得到标准化矩阵Z;
步骤2-2:根据标准化矩阵Z建立相关系数矩阵R;
步骤2-3:确定基础振荡指标的主成分;
步骤2-4:计算累计方差贡献率ρ,并选取重要主成分;
步骤2-5:计算综合振荡指标。
所述步骤2-1中,m台机组中,每台机组均有p个基本振荡指标,构成振荡指标矩阵X,表示为:
X=(xij)m×p (6)
式(1)中,xij表示第i个机组的第j个基本振荡指标值,j=1,2,…,p;
对xij进行标准化处理,有:
式(7)中,和sj分别表示第j个基本振荡指标值的均值和均方差,且有 zij表示第i个机组的第j个基本振荡指标值标准化处理后的值;
由zij组成标准化矩阵Z,且有:
Z=(zij)m×p=(Z1,Z2,…,Zp) (8)
标准化矩阵Z满足E(Zj)=0且D(Zj)=1,E(Zj)和D(Zj)分别表示标准化处理后j个基本振荡指标在m个机组中取值的均值和方差。
所述步骤2-2中,根据标准化矩阵Z建立相关系数矩阵R,有:
式(9)中,T表示矩阵转置。
所述步骤2-3中,确定相关系数矩阵R的p个特征值,若存在q个大于0的特征值,且q≤p,即λ1≥λ2≥…≥λq≥0;由于基本振荡指标的主成分与所确定相关系数矩阵R的q个大于0的特征值一一对应,于是q个主成分y1,y2,…,yq表示为:
将式(10)写成矩阵形式,有Y=ATZT,其中,Y表示q个主成分构成的矩阵,A表示q个非零特征值对应的规范正交特征向量组成的矩阵,Z表示p个特征值构成的标准化矩阵,且有:
Y=[y1,y2,…,yq]T (11)
Z=[Z1,Z2,…,Zp] (13)。
主成分之间互不相关,任一主成分对应的特征值即为该主成分的方差。
所述步骤2-4中,前q个主成分累计方差贡献率ρ表示为:
式(14)中,wv表示第v个主成分的方差对于总方差的贡献率,且:
式(15)中,λv表示第v个主成分的方差,λr表示第r个主成分的方差,v≤q,r≤q;如果ρ达到70%-90%,则选取ρ达到70%-90%对应的前l个重要主成分代替原有的p个基本振荡指标。
所述步骤2-5中,对于不同机组分别计算综合振荡指标f,有:
f=w1y1+w2y2+......+wlyl (16)
式(16)中,wl表示第l个主成分的方差对于总方差的贡献率,yl表示第l个主成分。
所述步骤3中,对各机组的综合振荡指标进行降序排序,综合振荡指标最大的机组即为电网扰动源机组,完成电网扰动源的定位。
与现有技术相比,本发明的有益效果在于:
1)为对电网振荡特征进行准确描述,从能量、振幅和起振时刻角度出发,提出并构建机组势能、机组有功功率最大振幅、机组有功功率相对最大振幅、机组振荡能量和振幅标幺化起振时刻多个基本振荡指标;
2)采用主成分分析法计算综合振荡指标,以贡献率的形式反映振荡相关指标的重要程度,最后通过对振荡综合指标值进行排序,可将振荡综合指标值最大的机组所在电厂定位为扰动源所在电厂;
3)以指标贡献率的形式考虑了不同振荡指标的相对重要程度,从多个角度对扰动特征进行综合分析,将多个基本振荡指标中不同性质和不同量纲的指标综合成综合振荡指标,通过对该综合振荡指标的排序实现电网扰动源的准确定位。
附图说明
图1是本发明实施例中基于综合振荡指标的电网扰动源定位方法流程图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
如图1,本发明提供一种基于综合振荡指标的电网扰动源定位方法,所述方法包括以下步骤:
步骤1:确定基本振荡指标;
步骤2:采用主成分分析法确定综合振荡指标;
步骤3:根据综合振荡指标对电网扰动源进行定位。
所述步骤1中,基本振荡指标包括机组势能、机组有功功率最大振幅、机组有功功率相对最大振幅、机组振荡能量和振幅标幺化起振时刻。
1)机组势能
所述机组势能为机组出口有功功率变化量和机组出口母线频率变化量乘积的积分,由于机组有功和频率数据可能是多个振荡模式的叠加的结果,因此该势能为所有振荡模式势能的一种综合体现。设共有m台机组,i=1,2,…,m;第i台机组的势能为Ei表示为:
式(1)中,ΔPi(t)表示第i台机组出口有功功率变化量,且ΔPi(t)=Pi(t)-Pe,Pi(t)表示第i台机组出口有功功率,Pe表示第i台机组出口有功功率稳态值,t为采样点序号,t=0,1,2,…,n,n为采样点总数;Δfi(t)表示第i台机组出口母线频率变化量;t1表示起始时刻,t2表示结束时刻;
机组势能主要说明机组受到扰动后机端有功波动会引起频率变化,功率波动幅值越大,相应频率变化也就越明显。从势能角度来说,两者乘积的积分值则越大,机组势能就越大。机组势能越大,则说明该机组振荡程度相对也越严重,而振荡最严重的机组为扰动机组的可能性也就越大。
2)机组有功功率最大振幅
所述机组有功功率最大振幅用于表征振荡幅值的最大值,第i台机组的有功功率最大振幅ΔPimax表示为:
ΔPimax=Pimax(t)-Pe (2)
式(2)中,Pimax(t)表示第i台机组出口有功功率最大值;
3)机组有功功率相对最大振幅
功率的振幅表征功率振荡的幅值的大小,对于不同容量的机组若采用绝对最大振幅进行比较是没有意义的,而采用相对振幅进行振荡严重程度比较才更符合实际。
所述机组有功功率相对最大振幅用于描述振荡严重程度,第i台机组的有功功率相对最大振幅Fimax表示为:
Fimax=ΔPimax/Pe (3)。
4)机组振荡能量
所述机组振荡能量为机组出口有功功率变化量对时间的积分,第i台机组的振荡能量Ezi表示为:
其中,ΔPi(t)表示第i台机组出口有功功率变化量,t1表示起始时刻,t2表示结束时刻;
根据第i台机组的有功功率相对最大振幅Fimax即可得到m台机组的有功功率相对最大振幅的最大值Fmax,有:
Fmax=max(Fimax) (5)
5)振幅标幺化起振时刻
机组出口有功功率最先发生振荡的机组往往是扰动源所在机组,对于先起振的机组,同一时刻其出口有功功率振幅要比后起振的出口有功功率振幅大。
所述振幅标幺化起振时刻用于描述机组的起振时刻,设第i台机组的振幅标幺化起振时刻为tiqz,tiqz为第i台机组的相对最大振幅Fimax达到Fmax的百分比阈值对应的时刻,百分比阈值取30%、50%或90%;
根据Fmax即可得到所有机组的振幅标幺化起振时刻,对每台机组的振幅标幺化起振时刻进行升序排序,排序越靠前的机组,表明起振时刻越早。
所述步骤2具体包括以下步骤:
步骤2-1:建立振荡指标矩阵X,并对振荡指标矩阵X进行标准化处理,得到标准化矩阵Z;
步骤2-2:根据标准化矩阵Z建立相关系数矩阵R;
步骤2-3:确定基础振荡指标的主成分;
步骤2-4:计算累计方差贡献率ρ,并选取重要主成分;
步骤2-5:计算综合振荡指标。
所述步骤2-1中,m台机组中,每台机组均有p个基本振荡指标,构成振荡指标矩阵X,表示为:
X=(xij)m×p (6)
式(1)中,xij表示第i个机组的第j个基本振荡指标值,j=1,2,…,p;
对xij进行标准化处理,有:
式(7)中,和sj分别表示第j个基本振荡指标值的均值和均方差,且有 zij表示第i个机组的第j个基本振荡指标值标准化处理后的值;
由zij组成标准化矩阵Z,且有:
Z=(zij)m×p=(Z1,Z2,…,Zp) (8)
标准化矩阵Z满足E(Zj)=0且D(Zj)=1,E(Zj)和D(Zj)分别表示标准化处理后j个基本振荡指标在m个机组中取值的均值和方差。
所述步骤2-2中,根据标准化矩阵Z建立相关系数矩阵R,有:
式(9)中,T表示矩阵转置。
所述步骤2-3中,确定相关系数矩阵R的p个特征值,若存在q个大于0的特征值,且q≤p,即λ1≥λ2≥…≥λq≥0;由于基本振荡指标的主成分与所确定相关系数矩阵R的q个大于0的特征值一一对应,于是q个主成分y1,y2,…,yq表示为:
将式(10)写成矩阵形式,有Y=ATZT,其中,Y表示q个主成分构成的矩阵,A表示q个非零特征值对应的规范正交特征向量组成的矩阵,Z表示p个特征值构成的标准化矩阵,且有:
Y=[y1,y2,…,yq]T (11)
Z=[Z1,Z2,…,Zp] (13)。
主成分之间互不相关,任一主成分对应的特征值即为该主成分的方差。
所述步骤2-4中,前q个主成分累计方差贡献率ρ表示为:
式(14)中,wv表示第v个主成分的方差对于总方差的贡献率,且:
式(15)中,λv表示第v个主成分的方差,λr表示第r个主成分的方差,v≤q,r≤q;如果ρ达到80%,则选取ρ达到80%对应的前l个重要主成分代替原有的p个基本振荡指标。
所述步骤2-5中,对于不同机组分别计算综合振荡指标f,有:
f=w1y1+w2y2+......+wlyl (16)
式(16)中,wl表示第l个主成分的方差对于总方差的贡献率,yl表示第l个主成分。
所述步骤3中,对各机组的综合振荡指标进行降序排序,综合振荡指标最大的机组即为电网扰动源机组,完成电网扰动源的定位。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (9)

1.一种基于综合振荡指标的电网扰动源定位方法,其特征在于:所述方法包括以下步骤:
步骤1:确定基本振荡指标;
步骤2:采用主成分分析法确定综合振荡指标;
步骤3:根据综合振荡指标对电网扰动源进行定位;
所述步骤1中,基本振荡指标包括机组势能、机组有功功率最大振幅、机组有功功率相对最大振幅、机组振荡能量和振幅标幺化起振时刻;
所述机组势能为机组出口有功功率变化量和机组出口母线频率变化量乘积的积分,设共有m台机组,i=1,2,…,m;第i台机组的势能为Ei表示为:
<mrow> <msub> <mi>E</mi> <mi>i</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>2</mn> </msub> </msubsup> <msub> <mi>&amp;Delta;P</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mi>&amp;Delta;f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
式(1)中,ΔPi(t)表示第i台机组出口有功功率变化量,且ΔPi(t)=Pi(t)-Pe,Pi(t)表示第i台机组出口有功功率,Pe表示第i台机组出口有功功率稳态值,t为采样点序号,t=0,1,2,…,n,n为采样点总数;Δfi(t)表示第i台机组出口母线频率变化量;t1表示起始时刻,t2表示结束时刻;
所述机组有功功率最大振幅用于表征振荡幅值的最大值,第i台机组的有功功率最大振幅ΔPimax表示为:
ΔPimax=Pimax(t)-Pe (2)
式(2)中,Pimax(t)表示第i台机组出口有功功率最大值;
所述机组有功功率相对最大振幅用于描述振荡严重程度,第i台机组的有功功率相对最大振幅Fimax表示为:
Fimax=ΔPimax/Pe (3)。
2.根据权利要求1所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述机组振荡能量为机组出口有功功率变化量对时间的积分,第i台机组的振荡能量Ezi表示为:
<mrow> <msub> <mi>E</mi> <mrow> <mi>z</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>2</mn> </msub> </msubsup> <mo>|</mo> <msub> <mi>&amp;Delta;P</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
其中,ΔPi(t)表示第i台机组出口有功功率变化量,t1表示起始时刻,t2表示结束时刻;
根据第i台机组的有功功率相对最大振幅Fimax即可得到m台机组的有功功率相对最大振幅的最大值Fmax,有:
Fmax=max(Fimax) (5)
所述振幅标幺化起振时刻用于描述机组的起振时刻,设第i台机组的振幅标幺化起振时刻为tiqz,tiqz为第i台机组的相对最大振幅Fimax达到Fmax的百分比阈值对应的时刻,百分比阈值取30%、50%或90%;
根据Fmax即可得到所有机组的振幅标幺化起振时刻,对每台机组的振幅标幺化起振时刻进行升序排序,排序越靠前的机组,表明起振时刻越早。
3.根据权利要求1所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述步骤2具体包括以下步骤:
步骤2-1:建立振荡指标矩阵X,并对振荡指标矩阵X进行标准化处理,得到标准化矩阵Z;
步骤2-2:根据标准化矩阵Z建立相关系数矩阵R;
步骤2-3:确定基础振荡指标的主成分;
步骤2-4:计算累计方差贡献率ρ,并选取重要主成分;
步骤2-5:计算综合振荡指标。
4.根据权利要求3所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述步骤2-1中,m台机组中,每台机组均有p个基本振荡指标,构成振荡指标矩阵X,表示为:
X=(xij)m×p (6)
式(1)中,xij表示第i个机组的第j个基本振荡指标值,j=1,2,…,p;
对xij进行标准化处理,有:
<mrow> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>j</mi> </msub> </mrow> <msub> <mi>s</mi> <mi>j</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
式(7)中,和sj分别表示第j个基本振荡指标值的均值和均方差,且有 zij表示第i个机组的第j个基本振荡指标值标准化处理后的值;
由zij组成标准化矩阵Z,且有:
Z=(zij)m×p=(Z1,Z2,…,Zp) (8)
标准化矩阵Z满足E(Zj)=0且D(Zj)=1,E(Zj)和D(Zj)分别表示标准化处理后j个基本振荡指标在m个机组中取值的均值和方差。
5.根据权利要求3所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述步骤2-2中,根据标准化矩阵Z建立相关系数矩阵R,有:
<mrow> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mi>Z</mi> <mi>T</mi> </msup> <mi>Z</mi> </mrow> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
式(9)中,T表示矩阵转置。
6.根据权利要求4所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述步骤2-3中,确定相关系数矩阵R的p个特征值,若存在q个大于0的特征值,且q≤p,即λ1≥λ2≥…≥λq≥0;由于基本振荡指标的主成分与所确定相关系数矩阵R的q个大于0的特征值一一对应,于是q个主成分y1,y2,…,yq表示为:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>q</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>21</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mi>q</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>q</mi> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>Z</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
将式(10)写成矩阵形式,有Y=ATZT,其中,Y表示q个主成分构成的矩阵,A表示q个非零特征值对应的规范正交特征向量组成的矩阵,Z表示p个特征值构成的标准化矩阵,且有:
Y=[y1,y2,…,yq]T (11)
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>12</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mi>q</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>q</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Z=[Z1,Z2,…,Zp] (13)
主成分之间互不相关,任一主成分对应的特征值即为该主成分的方差。
7.根据权利要求5所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述步骤2-4中,前q个主成分累计方差贡献率ρ表示为:
<mrow> <mi>&amp;rho;</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>v</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>w</mi> <mi>v</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
式(14)中,wv表示第v个主成分的方差对于总方差的贡献率,且:
<mrow> <msub> <mi>w</mi> <mi>v</mi> </msub> <mo>=</mo> <msub> <mi>&amp;lambda;</mi> <mi>v</mi> </msub> <mo>/</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>&amp;lambda;</mi> <mi>r</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
式(15)中,λv表示第v个主成分的方差,λr表示第r个主成分的方差,v≤q,r≤q;如果ρ达到70%-90%,则选取ρ达到70%-90%对应的前l个重要主成分代替原有的p个基本振荡指标。
8.根据权利要求5所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述步骤2-5中,对于不同机组分别计算综合振荡指标f,有:
f=w1y1+w2y2+......+wlyl (16)
式(16)中,wl表示第l个主成分的方差对于总方差的贡献率,yl表示第l个主成分。
9.根据权利要求1所述的基于综合振荡指标的电网扰动源定位方法,其特征在于:所述步骤3中,对各机组的综合振荡指标进行降序排序,综合振荡指标最大的机组即为电网扰动源机组,完成电网扰动源的定位。
CN201510358189.6A 2015-06-25 2015-06-25 一种基于综合振荡指标的电网扰动源定位方法 Active CN104977505B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510358189.6A CN104977505B (zh) 2015-06-25 2015-06-25 一种基于综合振荡指标的电网扰动源定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510358189.6A CN104977505B (zh) 2015-06-25 2015-06-25 一种基于综合振荡指标的电网扰动源定位方法

Publications (2)

Publication Number Publication Date
CN104977505A CN104977505A (zh) 2015-10-14
CN104977505B true CN104977505B (zh) 2018-01-19

Family

ID=54274202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510358189.6A Active CN104977505B (zh) 2015-06-25 2015-06-25 一种基于综合振荡指标的电网扰动源定位方法

Country Status (1)

Country Link
CN (1) CN104977505B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608365B (zh) * 2016-09-23 2017-12-11 財團法人工業技術研究院 擾動源追溯方法
CN106571638A (zh) * 2016-11-10 2017-04-19 南京南瑞集团公司 一种低频振荡类型的判别方法
CN106709821A (zh) * 2017-03-10 2017-05-24 东北电力大学 一种基于主成分分析的中压配电网供电可靠性评估方法
CN106950446A (zh) * 2017-03-22 2017-07-14 国网上海市电力公司 基于主成分分析法的电网异常快速检测与定位方法
CN113240541A (zh) * 2021-04-20 2021-08-10 云南电网有限责任公司 一种基于波形相关系数的扰动源快速定位方法和系统
CN115015697B (zh) * 2022-08-09 2022-10-11 中国电力科学研究院有限公司 一种新能源的宽频振荡扰动源定位方法及系统
CN117543627B (zh) * 2024-01-08 2024-04-02 华北电力大学 一种双馈风机振荡扰动源定位方法、系统及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122823B (zh) * 2011-02-23 2013-08-14 南京南瑞继保电气有限公司 电力系统振荡扰动源定位的方法
CN102170127B (zh) * 2011-04-13 2013-04-10 南京南瑞集团公司 引发强迫功率振荡的原动机扰动源定位方法
CN103472362A (zh) * 2013-09-23 2013-12-25 华北电力大学(保定) 一种电力系统wams信息内嵌故障特征提取方法
CN103838959A (zh) * 2013-12-18 2014-06-04 国网上海市电力公司 偏最小二乘回归应用于配电网谐波源定位与检测中的方法
CN104502800B (zh) * 2014-12-17 2018-05-04 华北电力大学(保定) 一种电力系统故障因子特征提取方法

Also Published As

Publication number Publication date
CN104977505A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
CN104977505B (zh) 一种基于综合振荡指标的电网扰动源定位方法
CN110492479B (zh) 一种分布式并网设备的转动惯量和阻尼辨识方法
CN103197559A (zh) 一种改善双馈机组接入后系统小干扰稳定性的方法
CN103886209A (zh) 基于马尔科夫的跳变电力系统时滞稳定性分析系统及方法
CN102928697B (zh) 励磁调节器pss2a模型低频段阻尼检测方法及系统
CN110661259B (zh) 一种抑制频率振荡的电力系统稳定器参数优化方法及系统
CN110875600B (zh) 一种两机等值电力系统动态频率响应近似解析模型
CN103823239A (zh) 频率域优化混合交错网格有限差分正演模拟方法
CN109871622A (zh) 一种基于深度学习的低压台区线损计算方法及系统
CN106655931B (zh) 低励限制参数整定方法和装置
CN109301844A (zh) 一种基于电网系统的水电机组调速器pid参数优化方法与装置
CN103324828A (zh) 基于运行方式灵敏度的电力系统低频振荡辅助决策方法
CN103972912A (zh) 一种含风电电力系统频率响应的频域分析方法
CN107882679A (zh) 风电场的偏航控制方法及控制装置
CN103246934A (zh) 基于轨迹灵敏度的电力系统等值模型参数分类优化方法
CN106532743A (zh) 一种基于振荡能量的互联系统低频振荡安控量获取方法
CN108038292A (zh) 一种基于双代理技术的高效自适应采样方法
CN107506945A (zh) 一种电力系统超低频振荡敏感机组筛选方法
CN109782089A (zh) 一种电力系统稳定器抑制低频振荡能力的测试方法与装置
CN105956318A (zh) 基于改进分裂 h-k 聚类方法的风电场机群划分方法
CN113032968A (zh) 双馈风机控制器参数辨识方法及装置
CN110309625B (zh) 一种双馈风电并网系统的能量稳定域确定方法及系统
CN112926159A (zh) 一种基于深度学习的二阶亥姆霍兹共鸣器设计方法
CN102147439B (zh) 基于低频振荡阻尼灵敏度和等效交流增益的pss时间常数优化试验方法
CN108090263A (zh) 输电线脱冰振动缩尺试验气动阻尼的验证方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant