CN104950384B - 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导 - Google Patents

圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导 Download PDF

Info

Publication number
CN104950384B
CN104950384B CN201410515301.8A CN201410515301A CN104950384B CN 104950384 B CN104950384 B CN 104950384B CN 201410515301 A CN201410515301 A CN 201410515301A CN 104950384 B CN104950384 B CN 104950384B
Authority
CN
China
Prior art keywords
refractive
column
index
low
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410515301.8A
Other languages
English (en)
Other versions
CN104950384A (zh
Inventor
欧阳征标
黄浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201410515301.8A priority Critical patent/CN104950384B/zh
Priority to PCT/CN2015/090873 priority patent/WO2016050180A1/zh
Publication of CN104950384A publication Critical patent/CN104950384A/zh
Priority to US15/396,499 priority patent/US20170146737A1/en
Application granted granted Critical
Publication of CN104950384B publication Critical patent/CN104950384B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,它由低折射率的第一介质柱在高折射率背景介质中按正方晶格排列而成的光子晶体,在所述光子晶体中移除一排和一列低折射率的第一介质柱以形成直角波导;在所述直角波导的两个拐弯处分别设置低折射率的第二、三介质柱;所述第二、三介质柱为补偿散射柱;所述第二、三补偿散射柱为低折射率柱或者空气孔;所述第一介质柱为低折射率圆形柱或者空气孔。本发明的结构具有极低的反射率和非常高的传输率,便于大规模光路集成,这为光子晶体的应用提供了更广阔的空间。

Description

圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
技术领域
本发明涉及光子晶体拐弯波导,尤其是圆孔式低折射率介质柱和高折射率背景介质正方晶格光子晶体低折射率双补偿散射柱直角波导。
背景技术
1987年,美国Bell实验室的E.Yablonovitch在讨论如何抑制自发辐射和Princeton大学的S.John在讨论光子区域各自独立地提出了光子晶体(PC)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。光子晶体对光的传播具有较强、灵活的控制能力,不仅对直线式传导,而且对锐利的直角,其传导的效率也很高。如果在PC结构中引入一个线缺陷,创建一个导光的通道,称为光子晶体光波导(PCW)。这种波导即使在90°的转角处也只有很小的损失。与基本的全内反射的传统光波导完全不同,它主要利用缺陷态的导波效应,缺陷的引入在光子带隙(PBG)中形成新的光子态,而在缺陷态周围的光子态密度为零。因此,光子晶体光波导利用缺陷模式实现光传输不会产生模式泄漏,光子晶体光波导是构成光子集成光路的基本器件,光子晶体拐弯波导可以提高光路集成度,与之相关的研究对于集成光路的发展具有重要意义。
发明内容
本发明的目的是克服现有技术中的不足,提供一种具有极低的反射率和非常高的传输率的圆孔式正方晶格光子晶体高折射率双补偿散射柱直角波导。
本发明是通过以下技术方案予以实现的。
本发明的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导由低折射率的第一介质柱在高折射率背景介质中按正方晶格排列而成的光子晶体,在所述光子晶体中移除一排和一列低折射率的第一介质柱以形成直角波导;在所述直角波导的两个拐弯处分别设置低折射率的第二、三介质柱;所述第二、三介质柱为补偿散射柱;所述第二、三补偿散射柱为低折射率柱或空气柱;所述第一介质柱为低折射率圆形柱或空气孔。
所述第二、三介质柱为半圆形低折射率柱或者空气孔、弓形低折射率柱或者空气孔、圆形低折射率柱或者空气孔、三角形低折射率柱或者空气孔、多边形低折射率柱或者空气孔、或横截面轮廓线为圆滑封闭曲线的低折射率柱或者空气孔。
所述第二、三介质柱分别为半圆形低折射率柱或者空气孔。
所述高折射率背景介质的材料为折射率大于2的介质。
所述高折射率背景介质的材料为硅、砷化镓或者二氧化钛。
所述高折射率背景介质的材料为硅,其折射率为3.4。
所述低折射率的第一介质柱为折射率小于1.6的介质。
所述低折射率的第一介质柱为空气、真空、氟化镁或者二氧化硅。
所述低折射率的第一介质柱为空气。
所述直角波导为TE工作模式波导。
所述直角波导结构的面积大于或等于7a×7a,其中a为光子晶体的晶格常数。
本发明的光子晶体光波导器件能广泛应用于各种光子集成器件中。它与现有技术相比,有如下积极效果。
1.本发明的圆孔式正方晶格光子晶体低折射率双补偿散柱直角波导有极低的反射率和非常高的传输率,这为光子晶体的应用提供了更广阔的空间。
2.本发明的结构基于多重散射理论,通过双低折射率补偿散射柱对其内传输的光波实现相位和幅度的补偿,以降低反射率,提升透射率,该结构能实现低反射率和高透射率。
3.本发明的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导基于正方晶格结构,可用于大规模集成光路设计中,光路简洁,便于设计,利于大规模光路集成。
4.本发明的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导基于正方晶格结构,使得光路中不同光学元件之间以及不同光路之间易于实现连接和耦合,有利于降低成本。
附图说明
图1是本发明的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导的结构的核心区域示意图。
图2是本发明的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导的归一化频率——传输特性图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的阐述。
如图1所示,为本发明的圆孔式正方晶格光子晶体高折射率双补偿散射柱直角波导,它由低折射率的第一介质柱在高折射率背景介质中按正方晶格排列而成的光子晶体,在所述光子晶体中移除一排和一列高折射率的第一介质柱以形成直角波导;在所述直角波导的两个拐弯处分别设置高折射率的第二、三介质柱,所述的第二、三介质柱分别为补偿散射低折射率介质柱或空气孔,产生补偿反射波与波导本征反射波相抵消;所述补偿散射介质柱还可以采用各种各样的形状,例如:所述第二、三介质柱为半圆形低折射率柱或者空气孔、弓形低折射率柱或者空气孔、圆形低折射率柱或者空气孔、三角形低折射率柱或者空气孔、多边形低折射率柱或者空气孔、或横截面轮廓线为圆滑封闭曲线的低折射率柱或者空气孔。所述第二、三介质柱分别为半圆形低折射率柱或者空气孔。所述高折射率背景介质的材料为硅、砷化镓、二氧化钛,或者折射率大于2的介质。所述低折射率的第一介质柱可以采用空气、真空、氟化镁、二氧化硅,或者折射率小于1.6的介质。
根据以上结果给出如下6个实施例:
实施例1.所述正方晶格光子晶体的晶格常数为a;低折射率的第一介质柱为空气圆柱(或称之为空气孔),该空气柱的半径为0.495a;波导内传输的光波极化形式为TE波;所述第二、三介质补偿散射柱为半圆形空气柱或称之为半圆形空气孔;第二介质柱,即左上角半圆形补偿散射空气柱的半径为0.33301a;其以原点为基准在X向和Z向的位移分别为1.62153a和2.10378a,其旋转角度为205.199158度,旋转角的参考轴为水平右向轴,旋转方向为顺时针方向,X轴方向为水平向右,Z轴方向为垂直向上;第三介质柱即右下角半圆形补偿散射空气柱的半径为0.18591a;其以原点为基准在X向和Z向的位移分别为0.4523a和0.53514a,其旋转角度为250.721844度;光源距离原点的X向和Z向的位移为(-3.18a,0);入射光的初始相位为150.5度。所述高折射率背景介质为硅(Si),其折射率为3.4;所述低折射率的第一介质柱为空气。所述光子晶体直角波导的结构尺寸为15a×15a,此时所述的光子晶体直角波导的回波损耗谱和插入损耗谱如图2所示,该图的横轴部分是该结构的工作频率,纵轴部分则是其传输特性,图中的虚线为该结构的回波损耗(定义为LR=-10log(PR/PI)),而实线则为其插入损耗(定义为LI=-10log(PT/PI)),其中的PI为该结构的入射功率,PR为该结构的反射功率,PT为该结构的透射功率。在归一化频率为0.3(ωa/2πc)处,光子晶体直角波导的最大回波损耗为43.2dB和最小插入损耗为0.0004dB。
实施例2.所述正方晶格光子晶体的晶格常数为a为0.465微米,使最佳归一化波长为1.4微米,低折射率的第一介质柱为空气圆孔,该空气孔的半径为0.230175微米;波导内传输的光波极化形式为TE波;所述第二、三介质补偿散射柱为半圆形空气孔;第二介质柱,即左上角半圆形补偿散射空气柱的半径为0.154851微米;其以原点为基准在X向和Z向的位移分别为0.754013微米和0.978261微米,其旋转角度为205.199158度,旋转角的参考轴为水平右向轴,旋转方向为顺时针方向,X轴方向为水平向右,Z轴方向为垂直向上;第三介质柱,即右下角半圆形补偿散射空气柱的半径为0.086451微米;其以原点为基准在X向和Z向的位移分别为0.210320微米和0.248844微米,其旋转角度为250.721844度;光源距离原点的X向和Z向的位移为(-1.4787,0)(微米);入射光的初始相位为150.5度。所述高折射率背景介质为硅(Si),其折射率为3.4;所述低折射率的第一介质柱为空气。所述光子晶体直角波导的结构尺寸为15a×15a,此时光子晶体直角波导的最大回波损耗为2.884186dB和最小插入损耗为3.66688dB。
实施例3.所述正方晶格光子晶体的晶格常数a为0.465微米,使最佳归一化波长为1.55微米,低折射率的第一介质柱为空气圆孔,该空气孔的半径为0.230175微米;波导内传输的光波极化形式为TE波;所述第二、三介质补偿散射柱为空气柱或称之为半圆形空气孔;第二介质柱,即左上角半圆形补偿散射空气柱的半径为0.154851微米;其以原点为基准在X向和Z向的位移分别为0.754013微米和0.978261微米,其旋转角度为205.199158度,旋转角的参考轴为水平右向轴,旋转方向为顺时针方向,X轴方向为水平向右,Z轴方向为垂直向上;第三介质柱,即右下角半圆形补偿散射空气柱的半径为0.086451微米;其以原点为基准在X向和Z向的位移分别为0.210320微米和0.248844微米,其旋转角度为250.721844度;光源距离原点的X向和Z向的位移为(-1.4787,0)(微米);入射光的初始相位为150.5度。所述高折射率背景介质为硅(Si),其折射率为3.4;所述低折射率的第一介质柱为空气。所述光子晶体直角波导的结构尺寸为15a×15a,在归一化频率为0.3(ωa/2πc)处,光子晶体直角波导的最大回波损耗为43.2dB和最小插入损耗为0.0004dB。
实施例4.所述正方晶格光子晶体的晶格常数a为0.3微米,使最佳归一化波长为1.00微米,低折射率的第一介质柱为空气圆孔,该空气孔的半径为0.1485微米;波导内传输的光波极化形式为TE波;所述第二、三介质补偿散射柱为空气柱或称之为半圆形空气孔;第二介质柱,即左上角半圆形补偿散射空气柱的半径为0.099903微米;其以原点为基准在X向和Z向的位移分别为0.486459微米和0.631134微米,其旋转角度为205.199158度,旋转角的参考轴为水平右向轴,旋转方向为顺时针方向,X轴方向为水平向右,Z轴方向为垂直向上;第三介质柱,即右下角半圆形补偿散射空气柱的半径为0.055773微米;其以原点为基准在X向和Z向的位移分别为0.13569微米和0.160542微米,其旋转角度为250.721844度;光源距离原点的X向和Z向的位移为(-0.954,0)(微米);入射光的初始相位为150.5度。所述高折射率背景介质为硅(Si),其折射率为3.4;所述低折射率的第一介质柱为空气。所述光子晶体直角波导的结构尺寸为15a×15a,在归一化频率为0.3(ωa/2πc)处,光子晶体直角波导的最大回波损耗为43.2dB和最小插入损耗为0.0004dB。
实施例5.所述正方晶格光子晶体的晶格常数a为0.444微米,使最佳归一化波长为1.48微米,低折射率的第一介质柱为空气圆孔,该空气孔的半径为0.21978微米;波导内传输的光波极化形式为TE波;所述第二、三介质补偿散射柱为半圆形空气孔或空气柱;第二介质柱,即左上角半圆形补偿散射空气柱的半径为0.147856微米;其以原点为基准在X向和Z向的位移分别为0.719959微米和0.934078微米,其旋转角度为205.199158度,旋转角的参考轴为水平右向轴,旋转方向为顺时针方向,X轴方向为水平向右,Z轴方向为垂直向上;第三介质柱,即右下角半圆形低折射率介质补偿散射空气柱的半径为0.082544微米;其以原点为基准在X向和Z向的位移分别为0.200821微米和0.237602微米,其旋转角度为250.721844度;光源距离原点的X向和Z向的位移为(-1.41192,0)(微米);入射光的初始相位为150.5度。所述高折射率背景介质为硅(Si),其折射率为3.4;所述低折射率的第一介质柱为空气。所述光子晶体直角波导的结构尺寸为15a×15a。在归一化频率为0.3(ωa/2πc)处,光子晶体直角波导的最大回波损耗为43.2dB和最小插入损耗为0.0004dB。
实施例6.所述正方晶格光子晶体的晶格常数a为150微米,使最佳归一化波长为500微米,低折射率的所述第一介质柱为空气圆孔,该空气孔的半径为74.25微米;波导内传输的光波极化形式为TE波;所述第二、三介质补偿散射柱为半圆形空气柱或称之为空气孔;第二介质柱,即左上角半圆形补偿散射空气柱的半径为49.9515微米;其以原点为基准在X向和Z向的位移分别为243.2295微米和315.567微米,其旋转角度为205.199158度,旋转角的参考轴为水平右向轴,旋转方向为顺时针方向,X轴方向为水平向右,Z轴方向为垂直向上;第三介质柱,即右下角半圆形补偿散射空气柱的半径为27.8865微米;其以原点为基准在X向和Z向的位移分别为67.845微米和80.271微米,其旋转角度为250.721844度;光源距离原点的X向和Z向的位移为(-477,0)(微米);入射光的初始相位为150.5度。所述高折射率背景介质为硅(Si),其折射率为3.4;所述低折射率的第一介质柱为空气。所述光子晶体直角波导的结构尺寸为15a×15a,在归一化频率为0.3(ωa/2πc)处,光子晶体直角波导的最大回波损耗为43.2dB和最小插入损耗为0.0004dB。
以上之详细描述仅为清楚理解本发明,而不应将其看做是对本发明不必要的限制,因此对本发明的任何改动对本领域中的技术熟练的人是显而易见的。

Claims (8)

1.一种圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,它由低折射率的第一介质柱在高折射率背景介质中按正方晶格排列而成的光子晶体,在所述光子晶体中移除一排和一列低折射率的第一介质柱以形成直角波导;在所述直角波导的两个拐弯处分别设置低折射率的第二、三介质柱;所述第二、三介质柱为补偿散射柱;所述第二、三介质柱分别为半圆形空气柱,所述第二介质柱,即左上角半圆形补偿散射空气柱的半径为0.33301a,其中a为正方晶格光子晶体的晶格常数,其旋转角度为205.199158度,旋转方向为顺时针方向;所述第三介质柱,即右下角半圆形补偿散射空气柱的半径为0.18591a,其旋转角为250.721844度;所述第一介质柱为低折射率的空气圆柱或空气圆孔;在归一化频率0.3处,所述光子晶体直角波导的最大回波损耗为43.2dB,最小插入损耗为0.0004dB。
2.按照权利要求1所述的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,所述高折射率背景介质的材料为折射率大于2的介质。
3.按照权利要求1所述的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,所述高折射率背景介质的材料为硅、砷化镓或者二氧化钛。
4.按照权利要求3所述的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,所述高折射率背景介质的材料为硅,其折射率为3.4。
5.按照权利要求1所述的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,所述低折射率的第一介质柱为折射率小于1.6的介质。
6.按照权利要求1所述的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,所述低折射率的第一介质柱为空气、真空、氟化镁或者二氧化硅。
7.按照权利要求1所述的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,所述直角波导为TE工作模式波导。
8.按照权利要求1所述的圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导,其特征在于,所述直角波导结构的面积大于或等于7a×7a,其中a为正方晶格光子晶体的晶格常数。
CN201410515301.8A 2014-09-29 2014-09-29 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导 Expired - Fee Related CN104950384B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410515301.8A CN104950384B (zh) 2014-09-29 2014-09-29 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
PCT/CN2015/090873 WO2016050180A1 (zh) 2014-09-29 2015-09-28 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
US15/396,499 US20170146737A1 (en) 2014-09-29 2016-12-31 Right-angle waveguide based on circular-hole-type square-lattice photonic crystal and dual compensation scattering cylinders with low refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410515301.8A CN104950384B (zh) 2014-09-29 2014-09-29 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导

Publications (2)

Publication Number Publication Date
CN104950384A CN104950384A (zh) 2015-09-30
CN104950384B true CN104950384B (zh) 2020-11-13

Family

ID=54165174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410515301.8A Expired - Fee Related CN104950384B (zh) 2014-09-29 2014-09-29 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导

Country Status (3)

Country Link
US (1) US20170146737A1 (zh)
CN (1) CN104950384B (zh)
WO (1) WO2016050180A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231679B (zh) * 2019-05-17 2020-06-16 太原理工大学 一种实现光波单向高透射的椭圆光子晶体异质结构
CN110231680B (zh) * 2019-05-17 2020-06-23 太原理工大学 可实现宽频带光波单向传输的光子晶体异质结构

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890624B1 (en) * 2000-04-25 2005-05-10 Nanogram Corporation Self-assembled structures
US6608716B1 (en) * 1999-05-17 2003-08-19 New Mexico State University Technology Transfer Corporation Optical enhancement with nanoparticles and microcavities
US6538794B1 (en) * 1999-09-30 2003-03-25 D'aguanno Giuseppe Efficient non-linear phase shifting using a photonic band gap structure
US6835394B1 (en) * 1999-12-14 2004-12-28 The Trustees Of The University Of Pennsylvania Polymersomes and related encapsulating membranes
JP3925769B2 (ja) * 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 2次元フォトニック結晶及び合分波器
GB0008546D0 (en) * 2000-04-06 2000-05-24 Btg Int Ltd Optoelectronic devices
JP2004511828A (ja) * 2000-10-16 2004-04-15 オジン,ジョフリー,アラン 基板上の結晶コロイドパターンの自己集合方法および光学的用途
CA2363277A1 (en) * 2000-11-17 2002-05-17 Ovidiu Toader Photonic band gap materials based on spiral posts in a lattice
JP4303965B2 (ja) * 2000-11-28 2009-07-29 ローズマウント インコーポレイテッド 物理的及び材料的な特性を測定するための光センサ
US20030123827A1 (en) * 2001-12-28 2003-07-03 Xtalight, Inc. Systems and methods of manufacturing integrated photonic circuit devices
JP2003215367A (ja) * 2002-01-25 2003-07-30 Mitsubishi Electric Corp 光デバイス
US6991847B2 (en) * 2002-02-07 2006-01-31 Honeywell International Inc. Light emitting photonic crystals
US6728457B2 (en) * 2002-07-10 2004-04-27 Agilent Technologies, Inc. Waveguides in two dimensional slab photonic crystals with noncircular holes
US6859304B2 (en) * 2002-08-09 2005-02-22 Energy Conversion Devices, Inc. Photonic crystals and devices having tunability and switchability
US7155087B2 (en) * 2002-10-11 2006-12-26 The Board Of Trustees Of The Leland Stanford Junior University Photonic crystal reflectors/filters and displacement sensing applications
US7031585B2 (en) * 2002-12-04 2006-04-18 Massachusetts Institute Of Technology Using electro-magnetically induced transparency in photonic crystal cavities to obtain large non-linear effects
US20060062507A1 (en) * 2003-04-23 2006-03-23 Yanik Mehmet F Bistable all optical devices in non-linear photonic crystals
US7054513B2 (en) * 2003-06-09 2006-05-30 Virginia Tech Intellectual Properties, Inc. Optical fiber with quantum dots
JP4538718B2 (ja) * 2003-08-28 2010-09-08 アルプス電気株式会社 2次元フォトニック結晶スラブ及び2次元フォトニック結晶導波路
US6804446B1 (en) * 2003-11-18 2004-10-12 University Of Alabama In Huntsville Waveguide including at least one photonic crystal region for directing signals propagating therethrough
JP4025738B2 (ja) * 2004-03-05 2007-12-26 国立大学法人京都大学 2次元フォトニック結晶
JP3881666B2 (ja) * 2004-03-25 2007-02-14 国立大学法人京都大学 ヘテロ構造を有するフォトニック結晶及びそれを用いた光デバイス
US20050270633A1 (en) * 2004-05-14 2005-12-08 Peter Herman Photonic crystal mirrors for high-resolving power fabry perots
US7843026B2 (en) * 2005-11-30 2010-11-30 Hewlett-Packard Development Company, L.P. Composite material with conductive structures of random size, shape, orientation, or location
US7881565B2 (en) * 2006-05-04 2011-02-01 The Board Of Trustees Of The Leland Stanford Junior University Device and method using asymmetric optical resonances
WO2007134177A2 (en) * 2006-05-11 2007-11-22 President And Fellows Of Harvard College Methods, materials and devices for light manipulation with oriented molecular assemblies in micronscale photonic circuit elements with high-q or slow light
US8400639B2 (en) * 2006-09-15 2013-03-19 President And Fellows Of Harvard College Methods and devices for measurements using pump-probe spectroscopy in high-Q microcavities
US8701998B2 (en) * 2007-06-04 2014-04-22 President And Fellows Of Harvard College System and method for strong photon localization by disordered photonic crystal structures
WO2009044715A1 (ja) * 2007-10-01 2009-04-09 Nec Corporation フォトニック結晶体
US8502972B2 (en) * 2007-12-31 2013-08-06 Fujirebio Inc. Clusters of microresonators for cavity mode optical sensing
WO2009087825A1 (ja) * 2008-01-11 2009-07-16 Nec Corporation フォトニック結晶体
US8102597B1 (en) * 2008-05-15 2012-01-24 Oewaves, Inc. Structures and fabrication of whispering-gallery-mode resonators
EP2333821A4 (en) * 2008-09-01 2014-07-30 Japan Science & Tech Agency PLASMA METHOD, PLASMA COUNTER DEVICE AND METHOD FOR PRODUCING A PHOTONIC CRYSTAL
CN101561531B (zh) * 2009-05-27 2011-04-27 电子科技大学 光子晶体t形功率分配器
US8928883B1 (en) * 2009-07-07 2015-01-06 Raytheon Company Optical device for detection of an agent
GB0911792D0 (en) * 2009-07-07 2009-08-19 Rue De Int Ltd Photonic crystal material
US9012830B2 (en) * 2009-12-11 2015-04-21 Washington University Systems and methods for particle detection
US8704155B2 (en) * 2009-12-11 2014-04-22 Washington University Nanoscale object detection using a whispering gallery mode resonator
CN102043261B (zh) * 2010-08-31 2013-07-03 深圳大学 光子晶体磁光环行器及其制备方法
CN102087383B (zh) * 2011-03-15 2012-06-27 中国科学院半导体研究所 基于光子晶体表面态的二维光子晶体t型波导
US8582104B2 (en) * 2011-06-30 2013-11-12 Raytheon Company Optical device for detection of an agent
CN102650714B (zh) * 2012-01-13 2015-04-08 深圳大学 光子晶体波导t形偏振分束器
US9065241B2 (en) * 2012-05-11 2015-06-23 Massachusetts Institute Of Technology Methods, systems, and apparatus for high energy optical-pulse amplification at high average power

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yoshihiro NAKA et al..Two-Dimensional Photonic Crystal L-Shaped Bent Waveguide and its Application to Wavelength Multi/Demultiplexer.《Turk. J. Elec. Engin》.2002,第10卷(第2期),245-253. *

Also Published As

Publication number Publication date
CN104950384A (zh) 2015-09-30
US20170146737A1 (en) 2017-05-25
WO2016050180A1 (zh) 2016-04-07

Similar Documents

Publication Publication Date Title
Chen et al. All‐dielectric layered photonic topological insulators
Wu et al. Wideband and low dispersion slow light in slotted photonic crystal waveguide
CN110941109A (zh) 一种硅基集成基于拓扑保护机理的光隔离器件
CN104950384B (zh) 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
US10094979B2 (en) Two-dimensional square-lattice photonic crystal with rotated hollow square rods and rotated triangle rods
Prabha et al. Ultra compact, high contrast ratio based all optical OR gate using two dimensional photonic crystals
CN104950388B (zh) 圆孔式正方晶格光子晶体低折射率单补偿散射柱直角波导
Ma et al. Study on the properties of unidirectional absorption and polarization splitting in one-dimensional plasma photonic crystals with ultra-wideband
CN104950383B (zh) 方孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
WO2016050179A1 (zh) 方柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
CN104849806B (zh) 基于十字连杆与旋转空心正方柱的二维正方晶格光子晶体
US9709736B2 (en) Right-angle waveguide based on square-cylinder-type square-lattice photonic crystal and single compensation scattering cylinder with high refractive index
Lv et al. Chiral metasurfaces in anisotropic thin film lithium niobate and its nonlinear effect
WO2016050182A1 (zh) 圆柱式正方晶格光子晶体高折射率单补偿散射柱直角波导
CN110441858B (zh) 三角晶格二维光子晶体Fano共振器
CN104849805B (zh) 基于旋转空心正方柱的二维正方晶格光子晶体
WO2016050187A1 (zh) 圆柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
CN104950387B (zh) 圆柱式正方晶格光子晶体高折射率单补偿散射柱直角波导
Zhou et al. The all-fiber electro-absorption modulator based on quadri-layer graphene
CN117075258A (zh) 一种可见光波段六方氮化硼拓扑单向慢光传输结构
Pirzadi et al. Ultra optimized y-defect waveguide for realizing reliable and robust all-optical logical and gate
Li et al. Optical diode based on cascaded nonlinear nanocavities
Guan et al. Effect of scatterer shape variations between different channels on coupling characteristics of photonic crystal couplers
White et al. Systematic design of broadband slow light photonic crystal waveguides

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201106

Address after: 518060 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Applicant after: SHENZHEN University

Address before: 518060 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Applicant before: OuYang Zhengbiao

Applicant before: SHENZHEN University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201113

Termination date: 20210929