CN104897250B - A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference - Google Patents

A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference Download PDF

Info

Publication number
CN104897250B
CN104897250B CN201510358402.3A CN201510358402A CN104897250B CN 104897250 B CN104897250 B CN 104897250B CN 201510358402 A CN201510358402 A CN 201510358402A CN 104897250 B CN104897250 B CN 104897250B
Authority
CN
China
Prior art keywords
mrow
msub
msup
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510358402.3A
Other languages
Chinese (zh)
Other versions
CN104897250A (en
Inventor
刘桂雄
黄坚
江境宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510358402.3A priority Critical patent/CN104897250B/en
Publication of CN104897250A publication Critical patent/CN104897250A/en
Application granted granted Critical
Publication of CN104897250B publication Critical patent/CN104897250B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Phase Differences (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention provides a kind of more bit stream gauge fundamental phase impulse compensation methods for resisting strong harmonic wave interference, and methods described includes:Obtain flowmeter and standard scale output pulse signal, with preposition cut-off frequency adjustable digital Butterworth wave filters extraction fundamental signal y (t), utilize adaptive notch filter state variable periodic orbit count start/stop time fundamental phase, obtain in time of measuring and measure pulse number value, compensation count value is calculated according to phase compensation principle, the accurate metering value after count compensation is obtained, realizes that step-by-step counting compensates.The present invention, which realizes, correctly to be extracted fundamental signal under strong harmonic wave interference, obtains fundamental phase, carries out accuracy compensation to multichannel difference step pulse signal, can effectively improve the calibration accuracy of flowmeter.

Description

A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference
Technical field
The present invention relates to flowmeter pulses count compensation field, more particularly to a kind of more bit traffics for resisting strong harmonic wave interference Count step-by-step counting compensation method.
Background technology
With development of modern industry, flowmeter demand is continuously increased, and especially pulse-output type flowmeter is (stable in flow field In the case of, pulse-output type flowmeter instantaneous delivery is proportional to pulse frequency) unprecedentedly applied, to its quick, accurate calibrating It is significant.General calibrating installation, industrial computer drive commutator according to the lockin signal of flowmeter pulses signal, can be to flow The pulse signal of meter realizes that complete cycle intercepts.However, in the device of platform position, do not ensure that what another flowmeter pulses counted Measurement accuracy requirement.
Patent CN 103176045A are proposed a kind of alien frequencies quarter-phase counted based on coincidence impulse and overlap detection method. The patent constructs alien frequencies signal phase and overlaps pre-detection and phase coincidence impulse train generation circuit, quarter-phase coincidence detection phase Drift correction circuit and Men Shi generation circuits, claim that solving conventional phase overlaps detection easily by phase noise and trigger error Influence, the shortcomings that Phase coincidence detection phase deviation be present.In fact, the phase only pupil filter formula that the patent provides(wherein, N2, N1 correspond to the count value of two-way pulse, and T2, T1 correspond to two-way pulse Cycle), be not suitable for more bit stream gauge calibrating installation pulse Frequencies, the application demands of variable pulse width.
Other Phase coincidence detection methods, such as CN 102680808A, CN 102323739 B, CN103472299 A etc., All do not known for more bit stream gauge calibrating installations in the presence of the calibrating time, need extra supporting complicated hardware unit, be unfavorable for The problems such as detecting system based on industrial computer integrates.
The content of the invention
To solve above-mentioned problem and defect, the present invention provides a kind of more bit stream gauge bases for resisting strong harmonic wave interference Wave phase impulse compensation method, it the method achieve and fundamental signal is correctly extracted under strong harmonic wave interference, fundamental phase is obtained, is right Multichannel difference step pulse signal carries out accuracy compensation, can effectively improve the calibration accuracy of flowmeter.
The purpose of the present invention is realized by following technical scheme:
A kind of more bit stream gauge fundamental phase impulse compensation methods for resisting strong harmonic wave interference, it is characterised in that the side Method includes:
A obtains flowmeter and standard scale output pulse signal u (t);
B extracts fundamental signal y (t) with preposition cut-off frequency adjustable digital Butterworth wave filters;
C utilizes adaptive notch filter state variable periodic orbit count start/stop time ts、teFundamental phase
D is obtained in time of measuring and is measured pulse number value Np, compensation count value is calculated according to phase compensation principle Nc, obtain the accurate metering value N after count compensation.
Present invention has the advantages that:
Realize and fundamental signal is correctly extracted under strong harmonic wave interference, fundamental phase is obtained, the pace pulse of multichannel difference is believed Number accuracy compensation is carried out, the calibration accuracy of flowmeter can be effectively improved.
Brief description of the drawings
Fig. 1 is more bit stream gauge fundamental phase impulse compensation method flow frames of the present invention for resisting strong harmonic wave interference Figure;
Fig. 2 is pulse signal phase extraction FB(flow block);
Fig. 3 is Butterworth filter curve figures;
Fig. 4 is input angle Frequency Estimation curve map.
Embodiment
With reference to embodiment and accompanying drawing, the present invention is described in further detail.
The present invention is based on preposition cut-off frequency adjustable digital Butterworth wave filters extraction fundamental signal, adaptively Trapper state variable periodic orbit calculates the different step pulse signal precision compensation methods of fundamental phase, as shown in figure 1, the party Method comprises the following steps:
Step 10, obtain flowmeter and standard scale output pulse signal u (t).
Step 20, with preposition cut-off frequency tunable digital filter extract fundamental signal y (t);Wherein:
1st, preposition cut-off frequency tunable digital filter frequency normalization transmission function is:
Wherein b1=2.6131, b2=3.4142, b3=2.6131 be the characterisitic parameter of Butterworth wave filters.If adopt Sample interval time is Ts, ωiFor the i-th road pulse signal angular frequency, if Butterworth low pass filter cutoff frequencies ωcFor 3 ωi, then its non-normalized transmission function be:
It is illustrated in figure 2 pulse signal phase extraction FB(flow block).
2nd, transform discretization is carried out to above formula, makes input, output that u (k), y (k) are k moment discrete form wave filters, Then have:
Wherein, A1、A2、B1、B2、C1、C2、D1、D2、E1、E2For with ωci、Ts、b1、b2、b3Related constant.
Step 30, utilize adaptive notch filter state variable periodic orbit count start/stop time ts、teFundamental phaseMethod be:
If the 1, not considering adaptive law, the transmission function of trapper is:
It is input signal to make f, and second-order system state variable is x1、x2, damping ratio ξ, adaptive gain γ, angular frequency ω transient states estimate is θ (as shown in figure 4, being input angle Frequency Estimation curve map), then can design adaptive notch filter is:
2nd, recurrent pulse fundamental signal is after making Butterworth digital filters Then discretization adaptive notch filter is (being illustrated in figure 3 Butterworth filter curves):
3rd, for the i-th road periodic input signal, if dynamical system is (4) in tsMoment enters its periodic orbit, thenWith unique periodic orbit:
4th, according to periodic orbit Γi, state variable x2It is completely the same with input signal y, and Γ can be passed throughiTry to achieve pulse letter Number in any n moment phase:
Signal strobe is tried to achieve by above formula, and moment t occurss、teWhen pulse signal real-time phase
Due to formula:
For differential configuration, and there is the requirement for keeping pressure of supply water constant during meter proof, thus should using formula Count value N is repaid in formula supplementcPhase loss caused by LPF can not be considered.
Step 40 obtains in time of measuring and measures pulse number value Np, compensation meter is calculated according to phase compensation principle Numerical value of Nc, the method for obtaining the accurate metering value N after count compensation is:
If pulse signal cycle is T, in signal strobe occurs for pulse signal moment ts、tePhase be respectively HaveIt can must then count offset NcFor:
Counted by rising edge Hopping Pattern, be located in time of measuring and measure pulse number value NP, then after count compensation Accurate metering value N be:
N=Np+Nc
Although disclosed herein embodiment as above.But described content is only to facilitate understanding the present invention and adopting Embodiment, it is not limited to the present invention.Any those skilled in the art to which this invention pertains, this is not being departed from On the premise of the disclosed spirit and scope of invention, any modification and change can be made in the implementing form and in details, But the scope of patent protection of the present invention, still should be subject to the scope of the claims as defined in the appended claims.

Claims (4)

  1. A kind of 1. more bit stream gauge fundamental phase impulse compensation methods for resisting strong harmonic wave interference, it is characterised in that methods described Including:
    A obtains flowmeter and standard scale output pulse signal u (t);
    B extracts fundamental signal y (t) with preposition cut-off frequency adjustable digital Butterworth wave filters;
    C utilizes adaptive notch filter state variable periodic orbit count start/stop time ts、teFundamental phase
    D is obtained in time of measuring and is measured pulse number value Np, compensation count value N is calculated according to phase compensation principlec, obtain Accurate metering value N after to count compensation.
  2. 2. resist more bit stream gauge fundamental phase impulse compensation methods of strong harmonic wave interference, its feature as claimed in claim 1 It is, preposition cut-off frequency adjustable digital Butterworth filter frequencies normalized transfer functions are in the step B:
    <mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>s</mi> <mn>4</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    Wherein b1、b2、b3For the characterisitic parameter of Butterworth wave filters;If sampling interval duration is Ts, ωiFor the i-th tunnel pulse Signal angular frequency, if Butterworth low pass filter cutoff frequencies ωcFor 3 ωi, then its non-normalized transmission function be:
    <mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msubsup> <mi>&amp;omega;</mi> <mi>c</mi> <mn>4</mn> </msubsup> <mrow> <msup> <mi>S</mi> <mn>4</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msub> <mi>&amp;omega;</mi> <mi>c</mi> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msubsup> <mi>&amp;omega;</mi> <mi>c</mi> <mn>2</mn> </msubsup> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <msubsup> <mi>&amp;omega;</mi> <mi>c</mi> <mn>3</mn> </msubsup> <mi>s</mi> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>c</mi> <mn>4</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    Using transform to formula (2) discretization, input, output that u (k), y (k) are k moment discrete form wave filters are made, then is had:
    <mrow> <mtable> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>A</mi> <mn>2</mn> </msub> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mrow> <mo>+</mo> <mi>C</mi> </mrow> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, A1、A2、B1、B2、C1、C2、D1、D2、E1、E2For with ωci、Ts、b1、b2、b3Related constant.
  3. 3. resist more bit stream gauge fundamental phase impulse compensation methods of strong harmonic wave interference, its feature as claimed in claim 1 It is, in the step C, utilizes adaptive notch filter state variable periodic orbit count start/stop time ts、teFundamental phaseMethod be:
    If not considering adaptive law, the transmission function of trapper is:
    <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;xi;</mi> <mi>&amp;theta;</mi> </mrow> <mrow> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>&amp;xi;</mi> <mi>&amp;theta;</mi> <mi>s</mi> <mo>+</mo> <msup> <mi>&amp;theta;</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow>
    It is input signal to make f, and second-order system state variable is x1、x2, damping ratio ξ, adaptive gain γ, angular frequency wink State estimate is θ, then can design adaptive notch filter is:
    <mrow> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;xi;&amp;theta;x</mi> <mn>2</mn> </msub> <mo>-</mo> <msup> <mi>&amp;theta;</mi> <mn>2</mn> </msup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <mi>&amp;xi;</mi> <mi>&amp;theta;</mi> <mi>f</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;gamma;x</mi> <mn>1</mn> </msub> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    Recurrent pulse fundamental signal is after making Butterworth digital filtersThen Discretization adaptive notch filter is:
    <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;xi;</mi> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>x</mi> <mtext> </mtext> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;theta;</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>2</mn> <mi>&amp;xi;</mi> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;gamma;x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
    For the i-th road periodic input signal, if dynamical system is (4) in tsMoment enters its periodic orbit, then With unique periodic orbit:
    Thus, according to periodic orbit Γi, state variable x2It is completely the same with input signal y, and Γ can be passed throughiTry to achieve pulse signal In any n moment phase:
    Signal strobe is (6) tried to achieve by formula moment t occurss、teWhen pulse signal real-time phase be respectively
  4. 4. resist more bit stream gauge fundamental phase impulse compensation methods of strong harmonic wave interference, its feature as claimed in claim 1 It is, in the step D, obtains in time of measuring and measure pulse number value Np, benefit is calculated according to phase compensation principle Repay count value Nc, the method for obtaining the accurate metering value N after count compensation is:
    If pulse signal cycle is T, in signal strobe occurs for pulse signal moment ts、tePhase be respectivelyHaveIt can must then count offset NcFor:
    Counted by rising edge Hopping Pattern, be located in time of measuring and measure pulse number value NP, then it is accurate after count compensation Count value N is:
    N=Np+Nc。 ⑻
CN201510358402.3A 2015-06-25 2015-06-25 A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference Active CN104897250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510358402.3A CN104897250B (en) 2015-06-25 2015-06-25 A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510358402.3A CN104897250B (en) 2015-06-25 2015-06-25 A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference

Publications (2)

Publication Number Publication Date
CN104897250A CN104897250A (en) 2015-09-09
CN104897250B true CN104897250B (en) 2018-02-02

Family

ID=54030057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510358402.3A Active CN104897250B (en) 2015-06-25 2015-06-25 A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference

Country Status (1)

Country Link
CN (1) CN104897250B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105318940B (en) * 2015-10-08 2018-07-13 华南理工大学 A kind of multi-way stream gauge calibrating installation pulse counting signal reconstructing method
CN107782984A (en) * 2017-12-08 2018-03-09 国家电网公司 A kind of method of each order components in measurement power network
CN112162820A (en) * 2020-09-23 2021-01-01 广州六环信息科技有限公司 Timing method and device of timer
CN116915215B (en) * 2023-09-12 2023-12-08 青岛艾诺仪器有限公司 Implementation method of high sampling rate variable cut-off frequency digital filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014839A (en) * 2004-08-24 2007-08-08 微动公司 Method and apparatus for calibrating flow meter
CN102869959A (en) * 2010-04-28 2013-01-09 米托尔斯有限公司 Ultrasonic flow meter
CN103364055A (en) * 2013-07-15 2013-10-23 河南理工大学 Automatic correcting method and device for flow meter impulse
CN104266732A (en) * 2014-10-24 2015-01-07 广州能源检测研究院 Pulse counting precision compensation method for dual-bit flowmeter calibrating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073949B2 (en) * 2006-02-02 2012-11-14 日立オートモティブシステムズ株式会社 Flow measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014839A (en) * 2004-08-24 2007-08-08 微动公司 Method and apparatus for calibrating flow meter
CN102869959A (en) * 2010-04-28 2013-01-09 米托尔斯有限公司 Ultrasonic flow meter
CN103364055A (en) * 2013-07-15 2013-10-23 河南理工大学 Automatic correcting method and device for flow meter impulse
CN104266732A (en) * 2014-10-24 2015-01-07 广州能源检测研究院 Pulse counting precision compensation method for dual-bit flowmeter calibrating device

Also Published As

Publication number Publication date
CN104897250A (en) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104897250B (en) A kind of more bit stream gauge step-by-step counting compensation methodes for resisting strong harmonic wave interference
CN203534650U (en) Cloud transmission digital signal processing device with Coriolis mass flow meter
CN103248356A (en) Counter based on phase-lock loop pulse interpolation technology and realization method
CN108020282A (en) Coriolis mass flowmeter signal processing method based on complex coefficient filtering
CN103529293B (en) Based on parallel frequency and the cyclical signal measurement method of parameters of rim effect
CN113675850B (en) Power grid information rapid and accurate sensing method based on nonlinear robust estimation
CN107655552A (en) A kind of Ultrasonic water meter flow velocity modification method based on the non-measured section of propagation time difference and drift error
CN107300682A (en) A kind of lattice gauge source power calibration method for introducing matching amendment
CN104155521A (en) Method and apparatus for determining phase difference
CN102519597B (en) Phase correction apodization method for Fourier transform spectrometer
CN104122439B (en) Electric energy meter capable of improving phase correction precision
CN103528634A (en) Coriolis mass flow meter cloud transmission digital signal processing device and method
CN106597097A (en) High-precision frequency measurement method
CN104990616B (en) The asynchronous step-by-step counting compensation method of multichannel based on cascade adaptive trapper
CN104266732B (en) Dual stage bit stream gauge calibrating installation step-by-step counting precision compensation method
CN106291102A (en) A kind of Frequency Standard Comparison device and method
CN102928026B (en) Method of obtaining integrated transient void fraction by utilizing local transient void fraction
Tu et al. Method for CMF signal processing based on the recursive DTFT algorithm with negative frequency contribution
CN102183706B (en) Device and method for correcting metering of three-phase three-wire false wiring
US9322698B2 (en) Frequency based prover apparatus and method
CN101556173A (en) Coriolis mass flowmeter digital resolver based on wavelet de-noising and method thereof
CN108107393A (en) A kind of spectral peak Credibility judgement method in frequency analysis
CN105092969B (en) A kind of phase frequency matching process of phase difference estimation
CN104964729B (en) A kind of calibrating installation of fluid metering instrument
US20120271569A1 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant