CN104775799A - 一种用于水井稀油稠化调剖方法及系统 - Google Patents

一种用于水井稀油稠化调剖方法及系统 Download PDF

Info

Publication number
CN104775799A
CN104775799A CN201510112543.7A CN201510112543A CN104775799A CN 104775799 A CN104775799 A CN 104775799A CN 201510112543 A CN201510112543 A CN 201510112543A CN 104775799 A CN104775799 A CN 104775799A
Authority
CN
China
Prior art keywords
profile control
well
injection
water
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510112543.7A
Other languages
English (en)
Other versions
CN104775799B (zh
Inventor
张方礼
刘其成
赵庆辉
张向宇
曲波
战洪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
肖传敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖传敏 filed Critical 肖传敏
Priority to CN201510112543.7A priority Critical patent/CN104775799B/zh
Publication of CN104775799A publication Critical patent/CN104775799A/zh
Application granted granted Critical
Publication of CN104775799B publication Critical patent/CN104775799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like

Abstract

本发明提供一种用于水井稀油稠化调剖方法及系统,所述方法包括步骤:第一步:用清水清洗注水井;第二步:配制调剖用液;第三步:将上述配制的调剖用液注入注水井中;第四步:调剖液停注后,当调剖剂中含水率达到30%以上时,注入井恢复原注水。本技术是一种现场操作简便、改善吸水剖面明显的调剖方法,用于解决对高含水层段调剖效果不好的问题。将稀油稠化调剖剂在地面混合均匀,注入注水井,调剖剂优先进入近井附近的大孔道、高渗层中,与地层水接触后粘度快速增加,有效封堵大孔道、高渗透层,明显改善吸水剖面,提高注水开发效果。

Description

一种用于水井稀油稠化调剖方法及系统
技术领域
本发明涉及地球物理领域,具体为通过勘测来提高油田采收率技术,特别涉及一种用于水井稀油稠化调剖方法及系统。
背景技术
我国大部分油田属于陆相沉积,受油藏沉积环境和条件的影响,储层非均质性较强。在注水开发过程中,注入水大部分进入高渗透区域,受长期注水冲刷,非均质性更为严重,导致吸水剖面极其不均匀,使注入水无效循环严重,大大减低油田注水开发效果。
为改善吸水剖面,提高油田注水开发效果,目前水井调剖方式在油田开发中得到了广泛重视和应用,通过注水井注入调剖剂,进入地层后现场高粘体系,封堵大孔道、高渗透层,改变水流运移方向。现场应用的调剖剂种类很多,包括:聚合物凝胶类(李明远等.一种交联聚合物溶液(LPS)深部调剖剂的制备方法CN1270967)、泡沫类(刘宏生等.一种适用于油田深度调剖的泡沫调剖剂CN102516974A)、固体颗粒类(李秀峰等.复合型固体颗粒调剖剂CN1439692)、沸石(苏延昌等.沸石调剖剂及向调剖井内注入沸石调剖剂的方法CN1944573)等调剖剂,但在现场调剖过程中存在着以下缺点或不足:
(1)聚合物凝胶类调剖剂经地层岩心剪切后,粘度明显降低,甚至不成胶,导致吸水剖面改善效果不明显。泡沫类调剖剂存在地层条件下发泡难、封堵能力弱等问题。颗粒类调剖剂存在与地层配伍性问题,注入的固体颗粒、沸石等物质易伤害储层,容易形成永久性污染。
(2)注入的调剖剂对油水层均不能实现选择性封堵,即堵水而不堵油,而是笼统将油水层一起封堵,导致部分潜力油层无法启动生产。
(3)调剖剂注入地层后无法回收再利用,如果被油井采出,还需采取特殊方式进行处理,导致了调剖经济成本与操作成本居高不下。
因此,研发出一种不伤害储层、具有选择性封堵、可回收再利用的低成本稠化本发明中的调剖剂由脱水稀油、稠化剂和助剂组成,具有遇水增粘、遇油不增粘的特点。上述适用于注水开发油田稀油稠化调剖方法如下:
第一步:用清水清洗注水井,清水的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上增加20%,注入压力在原注水井注入压力基础上增加不超过10%。
第二步:配制调剖用液,向含水率小于1%、粘度小于50mPa.s的脱水原油中按照重量比依次加入2.5%稠化剂、0.5%助剂,其余97%成分为原油,搅拌1小时,使其混合均匀,配制成稀油稠化调剖剂。
第三步:将上述配制的调剖液注入注水井中,注入方式为,调剖液的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上降低10%,注入量为以注入井为中心、处理半径10-15米的储层孔隙体积,当注入液压力超过地层原始压力,停止注入调剖液。
第四步:调剖液停注后,注入井恢复原注水,按照原注入参数(注水速度为50-80m3/d)开始注水,随着调剖液与地层水接触,调剖剂含水逐渐增加,当调剖剂中含水率达到30%以上时,调剖剂粘度迅速增加,注入压力明显增加,封堵了近井附近大孔道、高渗透层,改善吸水剖面。
本发明的目的还在于提供一种用于稀油稠化调剖的操作系统,来实现该用于油井稀油稠化堵水方法。该系统主要包括:水泥车(体积50m3、带搅拌器)、三柱塞高压泵(排量3-5m3/h,工作压力8-16MPa)、变频控制器(输出电源频率25-400Hz,可调)、电磁流量计(测量范围30:1)、高压管线(耐压20MPa)。稀油调剖方式,可有效改善注水井吸水剖面,扩大注入水波及体积,提高油田注水开发效果。
发明内容
本发明的目的在于提供一种用于水井稀油稠化调剖方法及系统,其是一种现场操作简便、改善吸水剖面明显的调剖方法,用于解决对高含水层段调剖效果不好的问题。将稀油稠化调剖剂在地面混合均匀,注入注水井,调剖剂优先进入近井附近的大孔道、高渗层中,与地层水接触后粘度快速增加,有效封堵大孔道、高渗透层,明显改善吸水剖面,提高注水开发效果。
依据本发明的技术方案,提供一种用于水井稀油稠化调剖方法,其包括下列步骤:
第一步:用清水清洗注水井;
第二步:配制调剖用液;
第三步:将上述配制的调剖用液注入注水井中;
第四步:调剖液停注后,当调剖剂中含水率达到30%以上时,注入井恢复原注水。
其中,在第一步中,清水的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上增加20%,注入压力在原注水井注入压力基础上增加不超过10%。在第二步中,向含水率小于1%、粘度小于50mPa.s的脱水原油中按照重量比依次加入2.5%稠化剂、0.5%助剂,其余97%成分为原油,搅拌1小时,使其混合均匀,配制成稀油稠化调剖剂。在第三步中,注入方式为,调剖液的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上降低10%,注入量为以注入井为中心、处理半径10-15米的储层孔隙体积,当注入液压力超过地层原始压力,停止注入调剖液。在第四步中,调剖液停注后,注入井恢复原注水,按照原注入参数(注水速度为50-80m3/d)开始注水,随着调剖液与地层水接触,调剖剂含水逐渐增加,当调剖剂中含水率达到30%以上时,调剖剂粘度迅速增加,注入压力明显增加,封堵了近井附近大孔道、高渗透层,改善吸水剖面。
上述用于水井稀油稠化调剖方法使用的操作系统主要包括:水泥车(体积50m3、带搅拌器)、三柱塞高压泵(排量3-5m3/h,工作压力8-16MPa)、变频控制器(输出电源频率25-400Hz,可调)、电磁流量计(测量范围30:1)、高压管线(耐压20MPa)。
优选地,上述方法使用的调剖剂由脱水稀油、稠化剂和助剂组成。
本发明与现有调剖方式相比,具有以下的优点:
(1)应用原油作为主要原料,在油田中原料来源广,且与油藏配伍性好,能与地下原油互溶,不伤害、不污染储层。
(2)稀油稠化调剖方式具有堵水、不堵油的特点,可选择性封堵油水层,加压后可流动。
(3)调剖剂主要成分为原油,注入地层后,随着油田不断开发,还可回采出来,进行再利用,同时采出液不需特殊处理,极大地降低了经济成本。
(4)现场调剖操作系统与实施过程简便,无需建设配制、注入站及相关装置设备,仅用油罐车注入即可。
附图说明
图1为依据本发明的稀油稠化调剖液注入操作系统流程。
图2为依据本发明的现场调剖剂注入量与压力变化曲线;
图3为依据本发明的现场调驱控制系统示意图;
图4是调配控制系统中的可编程控制系统的结构框图;
图5是调配控制系统中的可编程控制系统的电路结构示意图;
图6是调配控制系统中的可编程控制系统的存储芯片电路原理图;
图7是调配控制系统中的可编程控制系统的磁耦隔离电路原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外地,不应当将本发明的保护范围仅仅限制至下述具体结构或部件或具体参数。
一种用于水井稀油稠化调剖技术是一种现场操作简便、改善吸水剖面明显的调剖技术,用于解决对高含水层段调剖效果不好的问题。将稀油稠化调剖剂在地面混合均匀,注入注水井,调剖剂优先进入近井附近的大孔道、高渗层中,与地层水接触后粘度快速增加,有效封堵大孔道、高渗透层,明显改善吸水剖面,提高注水开发效果。
本发明中的调剖剂由脱水稀油、稠化剂和助剂组成,具有遇水增粘、遇油不增粘的特点。上述适用于注水开发油田稀油稠化调剖方法如下:
第一步:用清水清洗注水井,清水的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上增加20%,注入压力在原注水井注入压力基础上增加不超过10%。
第二步:配制调剖用液,向含水率小于1%、粘度小于50mPa.s的脱水原油中按照重量比依次加入2.5%稠化剂、0.5%助剂,其余97%成分为原油,搅拌1小时,使其混合均匀,配制成稀油稠化调剖剂。
第三步:将上述配制的调剖液注入注水井中,注入方式为,调剖液的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上降低10%,注入量为以注入井为中心、处理半径10-15米的储层孔隙体积,当注入液压力超过地层原始压力,停止注入调剖液。
第四步:调剖液停注后,注入井恢复原注水,按照原注入参数(注水速度为50-80m3/d)开始注水,随着调剖液与地层水接触,调剖剂含水逐渐增加,当调剖剂中含水率达到30%以上时,调剖剂粘度迅速增加,注入压力明显增加,封堵了近井附近大孔道、高渗透层,改善吸水剖面。
本发明的目的还在于提供一种用于稀油稠化调剖的操作系统,来实现该用于油井稀油稠化堵水方法。该系统主要包括:水泥车(体积50m3、带搅拌器)、三柱塞高压泵(排量3-5m3/h,工作压力8-16MPa)、变频控制器(输出电源频率25-400Hz,可调)、电磁流量计(测量范围30:1)、高压管线(耐压20MPa)。
本发明提供一种用于水井稀油稠化调剖系统,来实现可选择性作用稀油稠化调驱方法。该系统包括往复泵、智能控制系统、自动上料装置、搅拌罐和仪表控制系统;
其中,往复泵为双缸单作用往复泵,柱塞运动速度慢,对深部调驱剂造成的剪切非常小,变频电动机功率为75Kw,排流量可控制在6—15m3/h,最高工作压力可达30MPa,整机质量10t,安装方式为撬装式,便于搬迁。另外,由于柱塞运动速度慢,磨损小,所以检修周期很长,运行周期平均可达60d以上;
(2)智能控制系统。智能控制系统由自动控制软件、工控机、AD/DA模数转换器、通讯卡、流量计、压力计、液位反馈系统、无线传输模块等组成,是整套系统的“心脏”,所有其它部分开关及调节命令,都是由它通过采集数据并分析后发出的。施工过程中的瞬时流量的压力等参数通过无线传输系统传至系统界面,操作人员可通过智能控制系统直接读取及调整,便于施工人员随时掌握井口注入情况;
(3)自动上料装置。自动上料装置将深部调驱剂粉料倒人提升料箱内,螺旋提升机将料粉输送至锥型料斗,锥型料斗内的物料经螺旋下料器、文丘里喷射器、电动球阀、水粉混合头,由动力输送系统办理送至溶液搅拌罐;
(4)搅拌罐。来自水罐的水注入搅拌罐,与自动上料系统的来料在水粉混合头初步混合,进入罐内充分搅拌。搅拌罐上配有超声波液位计,可以对液面高度进行实时监测,信号传至智能控制系统,具有报警和自动停车功能;
(5)仪表控制系统。由电磁阀、变频器、多个接触器、空气开关、继电器等元件组成,整套设备可以实现连锁自动控制及手动控制,控制液面、流量和压力时可以在智能控制系统中进行,亦可在仪表控制间手动进行。
与上述用于水井稀油稠化调剖系统配套使用的调配控制系统(其中的控制系统部分如图3所示)由高压进水管系、聚合物进料装置、交联剂进料装置以及自动控制系统几大部分构成,如图3所示的控制系统部分包括可编程控制系统、电磁流量计、螺旋进料器、变频器、计量泵和电动调节阀。高压进水管路上依次安装了手动截止阀、电动调节阀、电磁流量计和射流器,在高压水流经射流器时,产生的负压可将交联剂液体或者聚合物干粉吸入水管路中,加入调驱剂罐内。调驱剂罐内安装有搅拌器,可使进水和药剂充分混合。当罐内液位达到预先设定值时,自控程序停止运行,电动阀自动关闭,调驱剂自动配制完成。聚合物进料装置的聚合物储罐上安装料位开关,出料口处安装下料开关和螺旋进料器,给料时聚合物落入料斗,其上装有料位开关,并通过软管与进水管路上的射流器相连。螺旋进料器的驱动电机、变频器以及料位开关处接线至控制箱。交联剂进料装置在交联剂储罐上安装了液位开关,在出口处装有手动阀,随后连接至计量泵。进料时交联剂落入料斗,料斗通过软管与进水管路上的射流器相连。计量泵以及液位开关处接线至控制箱。自动控制系统由人机界面单元,中央控制单元和检测单元组成,通过检测进水流量,对进水电动调节阀实施PID调节,实行手动控制盒自动控制两种方式,按照工艺要求,与交联剂和聚合物控制形成了连锁控制,完成了整套系统的自动控制。其中,电动调节阀可控制管路的启闭并调节进水流量的大小;通过电磁流量计可获得进水的瞬时流量和累计进液量;高压水流经射流器时,可产生负压将药剂吸入调驱剂罐内。聚合物进料装置主要由聚合物储罐、螺旋进料器和干粉料斗组成。储罐上安装的料位开关可实现物料低位报警功能。螺旋进料器的启闭由控制程序根据进水量和加料时间自动控制,可通过变频器调节螺旋轴转速改变加料量。给料时聚合物落入干粉料斗,料斗通过软管与进水管路上的射流器在负压作用下将聚合物吸入。交联剂进料装置由交联剂储罐、计量泵和交联剂料斗组成。液位开关实现液位低位报警功能。计量泵的启闭由控制程序根据进水量和加料时间自动控制,其进液速度可调。进料时交联剂落入料斗,料斗通过软管与进水管路上的射流器在负压作用下将交联剂吸入。
如图4-7所示,进一步对本发明中调配控制系统中的可编程控制系统进行详细说明;图4是调配控制系统中的可编程控制系统的结构框图;图5是调配控制系统中的可编程控制系统的电路结构示意图;图6是调配控制系统中的可编程控制系统的存储芯片电路原理图;图7是调配控制系统中的可编程控制系统的磁耦隔离电路原理图。
参考附图4,具体给出了调配控制系统中的可编程控制系统的结构框图,调配控制系统中的可编程控制系统包括:电源电路、电压采样电路、电流采样电路、计量芯片电路、存储电路、控制电路、液晶显示单元、红外通信模块、485通信模块、载波通信模块、ESAM安全模块和微处理器。电源电路为各个模块电路供电;电压采样电路和电流采样电路输入到计量芯片电路的采集端口;计量芯片电路用于控制信号的计量并通过SPI总线与微处理器通信;存储电路通过I2C总线与微处理器通信,用于存储控制信号;微处理器根据控制信号输出安全指示信号;液晶显示单元显示安全指示信号、功率、电压、电流信息;红外通信模块、485通信模块、载波通信模块均通过UART口与微处理器通信;ESAM模块增加了控制信号的安全性,只有通过身份验证才能改写控制电路的数据。
参考附图5,进一步给出调配控制系统中的可编程控制系统的电路结构示意图,存储芯片由微处理器I/O引脚供电,默认状态下,I/O管脚输出低电平,存储芯片不工作、不耗电,只有需要存取数据时,微处理器才控制I/O管脚输出高电平,为存储芯片供电,存储芯片通过I2C总线与微处理器交换数据;RS485、载波等通信模块均经过磁耦隔离连接微处理器的UART口;光敏电阻R1一端接电源端、光敏电阻R1的另一端连接电阻R2及微处理器的AD接口;电阻R2一端接光敏电阻及微处理器的AD接口、电阻R2的另一端接地端。
参考附图6,进一步给出调配控制系统中的可编程控制系统的存储芯片电路原理图,存储芯片U1的A0、A1、A2和VSS均接地端、存储芯片U1的VCC端口接微处理器的通用I/O接口CPU_I/O端、存储芯片U1的WP端口接地端、存储芯片U1的SCL端口接微处理器的I2C接口CPU_SCL端、存储芯片U1的SDA端口接接微处理器的I2C接口CPU_SDA端;电容C1并联在存储芯片U1的VCC端口与WP端口之间;电阻R2并联在存储芯片U1的VCC端口与SCL端口之间;电阻R2并联在存储芯片U1的VCC端口与SDA端口之间。
参考附图7,进一步给出调配控制系统中的可编程控制系统的磁耦隔离电路原理图,磁藕隔离芯片U2的VIA/VOA端口接通信模块的数据接收端RX、V1B端口接通信模块的数据发送端TX、GND1端接通信模块电源地端、VOA/VIA端口接微处理器的数据发送到CPU_TX、VOB端口接微处理器的数据接收端CPU_RX、GND2端口接微处理器电源地端;电容C2和电阻R4均串联在通信模块电源端VCCM与磁藕隔离芯片U2的VDD1端口;电容C3和电阻R5均串联在微处理器电源端VCC与磁藕隔离芯片U2的VDD2端口。
下面通过实施例对本发明进行进一步说明。
实施例1:稀油稠化调剖液配制过程
调剖液由按照重量比的脱水稀油97%、稠化剂2.5%、助剂0.5%,在常温配液罐中以200r/min的速度搅拌1h,得到均匀的稀油稠化调剖液。
实施例2:稀油稠化调剖的操作系统流程图
在稀油稠化调剖液注入过程中,由水泥车罐中按照实施例1配制调剖液,配制完成后,由三柱塞高压注入泵将调剖液经套管阀门从油套环空挤入地层。
图1中1-水泥车;2-变频控制器;3-三柱塞高压泵;4-电磁流量计;5-油管阀门;6-套管阀门;7-油管压力表。
实施例3:在欢西某油田进行了现场保密性试验并取得了满意的效果
欢西油田某井,1063.40米—1111.80米、23米/10层,平均渗透率1329.8毫达西,日产液25.8方,日产油0.5吨,含水98%。油井高含水,决定开展稀油稠化调剖。
实施后,日产液15.9方,日产油1.4吨,含水91.2%,累增油86吨,降水480方,有效期94天,达到增油降水的目的。目前已累计实施11井次,累计增油1010吨。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。本领域普通的技术人员可以理解,在不背离所附权利要求定义的本发明的精神和范围的情况下,可以在形式和细节中做出各种各样的修改。

Claims (7)

1.一种用于水井稀油稠化调剖方法,其包括下列步骤:
第一步:用清水清洗注水井;
第二步:配制调剖用液;
第三步:将上述配制的调剖用液注入注水井中;
第四步:调剖液停注后,当调剖剂中含水率达到30%以上时,注入井恢复原注水。
2.依据权利要求1的用于水井稀油稠化调剖方法,其特征在于,在第一步中,清水的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上增加20%,注入压力在原注水井注入压力基础上增加不超过10%。
3.依据权利要求1的用于水井稀油稠化调剖方法,其特征在于,在第二步中,向含水率小于1%、粘度小于50mPa.s的脱水原油中按照重量比依次加入2.5%稠化剂、0.5%助剂,其余97%成分为原油,搅拌1小时,使其混合均匀,配制成稀油稠化调剖剂。
4.依据权利要求1的用于水井稀油稠化调剖方法,其特征在于,在第三步中,注入方式为,调剖液的注入速度在原注水井注水速度(注水速度为50-80m3/d)基础上降低10%,注入量为以注入井为中心、处理半径10-15米的储层孔隙体积,当注入液压力超过地层原始压力,停止注入调剖液。
5.依据权利要求1的用于水井稀油稠化调剖方法,其特征在于,在第四步中,调剖液停注后,注入井恢复原注水,按照原注入参数(注水速度为50-80m3/d)开始注水,随着调剖液与地层水接触,调剖剂含水逐渐增加,当调剖剂中含水率达到30%以上时,调剖剂粘度迅速增加,注入压力明显增加,封堵了近井附近大孔道、高渗透层,改善吸水剖面。
6.依据权利要求1-5之任一的用于水井稀油稠化调剖方法,其特征在于,该方法使用的操作系统主要包括:水泥车(体积50m3、带搅拌器)、三柱塞高压泵(排量3-5m3/h,工作压力8-16MPa)、变频控制器(输出电源频率25-400Hz,可调)、电磁流量计(测量范围30:1)、高压管线(耐压20MPa)。
7.依据权利要求6的用于水井稀油稠化调剖方法,其特征在于,上述方法使用的调剖剂由脱水稀油、稠化剂和助剂组成。
CN201510112543.7A 2015-03-14 2015-03-14 一种用于水井稀油稠化调剖方法及系统 Active CN104775799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510112543.7A CN104775799B (zh) 2015-03-14 2015-03-14 一种用于水井稀油稠化调剖方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510112543.7A CN104775799B (zh) 2015-03-14 2015-03-14 一种用于水井稀油稠化调剖方法及系统

Publications (2)

Publication Number Publication Date
CN104775799A true CN104775799A (zh) 2015-07-15
CN104775799B CN104775799B (zh) 2017-05-10

Family

ID=53617523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510112543.7A Active CN104775799B (zh) 2015-03-14 2015-03-14 一种用于水井稀油稠化调剖方法及系统

Country Status (1)

Country Link
CN (1) CN104775799B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106894786A (zh) * 2017-03-31 2017-06-27 西安特耐测控仪器有限公司 低渗透油藏堵水调剖在线监测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076361A (en) * 1990-09-07 1991-12-31 Texaco Inc. Gel method for decreasing permeability around a wellbore
US20080142230A1 (en) * 2006-12-19 2008-06-19 Lau Philip Y Enzyme enhanced oil recovery (EEOR) for water alternating gas (WAG) systems
CN101575966A (zh) * 2009-06-09 2009-11-11 中国石油天然气股份有限公司 一种采油污泥地下聚合堵水调剖的方法
CN102604605A (zh) * 2012-02-07 2012-07-25 大庆鼎奥油田科技有限公司 一种无机盐双液调剖剂及其调剖方法
CN103881671A (zh) * 2014-03-12 2014-06-25 中国石油天然气股份有限公司 一种油田注水井复合凝胶型调剖剂及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076361A (en) * 1990-09-07 1991-12-31 Texaco Inc. Gel method for decreasing permeability around a wellbore
US20080142230A1 (en) * 2006-12-19 2008-06-19 Lau Philip Y Enzyme enhanced oil recovery (EEOR) for water alternating gas (WAG) systems
CN101575966A (zh) * 2009-06-09 2009-11-11 中国石油天然气股份有限公司 一种采油污泥地下聚合堵水调剖的方法
CN102604605A (zh) * 2012-02-07 2012-07-25 大庆鼎奥油田科技有限公司 一种无机盐双液调剖剂及其调剖方法
CN103881671A (zh) * 2014-03-12 2014-06-25 中国石油天然气股份有限公司 一种油田注水井复合凝胶型调剖剂及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
辛寅昌等: "《胶体与界面化学在石油工业中的应用》", 31 July 2014 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106894786A (zh) * 2017-03-31 2017-06-27 西安特耐测控仪器有限公司 低渗透油藏堵水调剖在线监测系统及方法
CN106894786B (zh) * 2017-03-31 2022-11-11 西安特耐测控仪器有限公司 低渗透油藏堵水调剖在线监测系统及方法

Also Published As

Publication number Publication date
CN104775799B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US9328599B2 (en) Centre for the preparation of additives for hydraulic fracturing operations and hydraulic fracturing process employing the preparation centre
CN102423655B (zh) 一种压裂液大流量配液系统及配液方法
CN201223776Y (zh) 聚合物分散溶解装置
CN204819956U (zh) 一种能生产乳化沥青-水泥稳定碎石的混凝土搅拌站
CN102996106B (zh) 冻胶分散体连续在线生产及注入一体化方法
CN101270650A (zh) 海上油田撬装式注聚系统
CN200975247Y (zh) 可移动式组合聚合物注入驱油装置
CN105126697A (zh) 水力压裂用的压裂液大流量连续配液系统及其配液工艺
CN107725022A (zh) 煤矿井下加砂压裂系统
CN204627571U (zh) 一种用于水井稀油稠化调剖系统
CN203990509U (zh) 一种水动力调速配液装置
CN104775799A (zh) 一种用于水井稀油稠化调剖方法及系统
CN204627528U (zh) 一种用于油井稀油稠化堵水系统
CN208203231U (zh) 一种橇式污泥调剖装置
CN110094190B (zh) 撬装式冻胶分散体软体非均相复合驱油体系井口注入装置和注入方法及应用
CN104806195A (zh) 一种可选择性作用稠化稀油调驱方法及系统
CN104437229A (zh) 电驱水粉连续混配装置
CN104712289A (zh) 一种用于油井稀油稠化堵水方法及系统
CN204627529U (zh) 一种可选择性作用稠化稀油调驱系统
CN204891787U (zh) 水力压裂用的压裂液大流量连续配液系统
CN207901416U (zh) 一种用于渗透试验中密封材料的搅拌装置
CN207315336U (zh) 一种工厂化压裂施工的连续供液系统
CN203285473U (zh) 矿用自动化防灭火地面制浆系统
CN205008051U (zh) 一种小颗粒矿粉连续混合配制系统
CN210561591U (zh) 一种沥青砂浆发泡系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201118

Address after: 100007 Beijing, Dongzhimen, North Street, No. 9, No.

Patentee after: PetroChina Co.,Ltd.

Address before: 124010 Experimental Technology Research Institute of Liaohe oilfield exploration and Development Research Institute, Xinglongtai District, Panjin City, Liaoning Province

Patentee before: Xiao Chuanmin

TR01 Transfer of patent right