CN104011508B - 基于布拉格光栅和光学时域反射计的光纤传感系统 - Google Patents

基于布拉格光栅和光学时域反射计的光纤传感系统 Download PDF

Info

Publication number
CN104011508B
CN104011508B CN201280063287.1A CN201280063287A CN104011508B CN 104011508 B CN104011508 B CN 104011508B CN 201280063287 A CN201280063287 A CN 201280063287A CN 104011508 B CN104011508 B CN 104011508B
Authority
CN
China
Prior art keywords
optical
fibre
sensor
bragg grating
fbg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280063287.1A
Other languages
English (en)
Other versions
CN104011508A (zh
Inventor
S·H·陈
L·塞维纳兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Polytechnique Federale de Lausanne EPFL
Original Assignee
Ecole Polytechnique Federale de Lausanne EPFL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique Federale de Lausanne EPFL filed Critical Ecole Polytechnique Federale de Lausanne EPFL
Publication of CN104011508A publication Critical patent/CN104011508A/zh
Application granted granted Critical
Publication of CN104011508B publication Critical patent/CN104011508B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种光纤传感器,其特征在于,所述传感光纤设置有覆盖整个光纤长度的连续的布拉格光栅,该长度专用于感测并且沿着该长度执行空间分辨测量。

Description

基于布拉格光栅和光学时域反射计的光纤传感系统
技术领域
本发明涉及一种光纤传感器及包括使用这种光纤传感器的传感方法。
背景技术
传感光纤可以用于不同应用中,例如以控制光纤光学网络的功能性或者在结构上安装成像传感神经系统一样。这些传感光纤主要用来检测并且能够执行与“应变计”相似的功能。
传感光纤表示主光纤线路的物理情况,并且通过检测传感光纤的操作情况,可以确定主线路的环境。
玻璃光纤感测温度或者压力以及张力,温度或者压力以及张力局部地改变光纤中的光学传输和反射特性。玻璃光纤的这种感测性能使得在长距离管道(例如,输送管)中也包括传感光纤成为可能,以便探测和定位变形或者温度变化。
测量脉冲的试探信号反射的标准方法是光学时域反射计(OTDR),并且使用诸如激光源和脉冲发生器的光电检测设备的组合来发射一系列的光学脉冲到传感光纤端部。
光学脉冲通过光纤传输,并且连续地反射回最初发射脉冲的相同的光纤端部。其他的光电检测设备(与振荡器组合的探测器)通过测量反向散射光,从相同的光纤端部接收并解译反馈信号。反向散射光包含大量的基于沿着光纤的从参考点反射的不同信息。反馈脉冲的强度被测量并且解译成时间的函数,并且可以被绘制成光纤长度的函数。
自基于瑞利散射使用OTDR的分布式光纤传感的首次演示以来,近二十年来,已经广泛地研究了多种分布式光纤传感系统,它们使用诸如拉曼和布里渊散射的不同物理现象。大部分分布式传感技术依赖于自发光反向散射,同时光传播通过沿着受监测的结构安装的传感光纤。但是,在基于瑞利、拉曼和布里渊散射的任何OTDR系统中的自发光散射的效率都不足以在长的测量范围内获得高的空间分辨率。
光散射的过程可以基于在诸如受激布里渊散射的两个光波之间的光学参数相互作用(被称为布里渊光学时域分析(BOTDA))而显著增强。这种类型的传感系统已经展示了其在50km上探询分布的温度和/或结构变形的能力,具有2m的空间分辨率。原则上,空间分辨率由布里渊泵浦脉冲的持续时间决定。所以,仅通过减少泵浦脉冲持续时间就能够获得较高的空间分辨率(小于2m)。然而,传感系统将经受庞大的布里渊共振的光谱展宽,该光谱展宽与脉冲缩短成反比。因此,这将降低BOTDA系统在测量精度方面的传感性能,增加标准偏差。
近来,已经在实验上证明了使用保偏光纤的基于动态布里渊光栅(DBG)的分布式传感(DS)系统,产生了在时域传感系统中曾经报道过的5mm的最佳空间分辨率。与典型的BOTDA系统不同,在该类型的传感系统中,两个不同的物理过程:布里渊光栅的生成和光栅性能的探询完全分离。这样,高空间分辨率和高测量精度之间的平衡关系不再关联。但是,在这种类型的系统中,明显地出现了两个实际的局限。第一,在小于1km的纵向传播过程中,可以保持光波的偏振态(SOP),严格地限制了可获得的最大测量范围。第二,从实践观点来看,传感系统的复杂性可能成为其在实际应用中实施的实际限制。
除了之前引用的传感系统之外,还开发了其他的传感器种类,即,光纤布拉格光栅(FBG)传感器。
“布拉格光栅”是沿着传感光纤的参考点。它们通常由激光雕刻图案组成,这些图案沿着整个光纤长度以特定且预定的距离压印。
因为这些布拉格光栅,未损坏的检测光纤产生预定且特定的反馈信号至OTDR检测工具。如果光纤传感器受到机械拉力(由于热膨胀、损坏、破裂、加热、压力、磁场或电场等),OTDR接收修正的反馈信号,并且如果布拉格光栅正好出现在该点,就能够确定损坏点的位置。
这样的FBG传感器公开在以下两个专利中:US4996419和US5684297。光纤展示了多个彼此远离的分离的光纤布拉格光栅。每个FBG具有相对短的长度。如在US5684297中指出那样,短长度FBG的光谱宽度太大,以至于需要探测脉冲的长的频率扫描。此外,脉冲的功率耗散也很明显,因为脉冲光谱比FBG反射光谱短很多。
现有的FBG传感器表现出了多个缺点。它们通常在FBG峰值频移和检测的光功率差之间要求一个预先校准。此外,沿着光纤的温度和应力的变化不均匀,使得原FBG光谱(测量作为参考)失真。这就意味着预先校准将变得模糊不清,一定会降低测量精度。
因此,需要改进现有的FBG传感器。
发明内容
本发明的目的在于提供一种基于布拉格OTDR的改进的光纤传感系统。
另一目的在于提供较高效率的光反向散射。
再一目的在于消除对于光学泵浦波的必然需要,该光学泵浦波用来在光纤中产生动态声光栅。
在那个方面,本发明关注一种在权利要求中限定的光纤。
本发明的一个必要特征在于覆盖整个光纤长度的FBG的连续(即,分布式)的出现,该长度用于感测并且沿着该长度执行空间分辨测量。
优选地,根据本发明的光纤光栅具有低的反射率。沿着整个FBG的总体反射率(overall integrated reflectivity)优选地小于20%。
沿着光纤的由FBG连续反向反射发射到根据本发明的传感光纤的信号脉冲,该信号脉冲同时传播通过光纤。接着,在布拉格反射光谱(BRS)附近,扫掠信号脉冲的中心频率。这样,可以探询沿着FBG的局部温度或应力的精确信息,原因在于局部FBG的中心频率对于施加到FBG的外部温度和/或应力的变化具有线性关系,分别展示了-1.4GHz/K或140MHz/με的典型值。因此,BRS的测量的峰值频率影响沿着传感光纤的整个长度的局部温度/应力的信息。
提出的本发明的一个进一步优点在于提供非常高的空间分辨率,已经达到了亚厘米(sub-cm)。因为布拉格光栅沿着传感光纤的整个长度的连续性,分布式感测可以用几毫米的空间分辨率实现,这使得传感系统能够监测紧凑结构和/或集成电路的结构健康状态。
根据本发明的系统的另一优点在于提供一种简化配置,原因在于不再需要光学泵浦源。实现分布式传感的关键在于基于入射脉冲的连续反向散射的存在,该入射脉冲传播通过传感光纤,传感光纤沿着受监测的结构固定。在分析反向散射光的光学性质之后,可以定性地确定沿着结构的关于失真的信息,例如温度和应力的变化。但是,现有的基于FBG的传感系统沿着受监测的结构安装单个或多个独立的FBG,并发射持续时间比相邻的FBG之间的间隔短的光学脉冲来探询局部FBG的性能。这就意味着,这种类型的传感系统不能够探测任何温度和应力的变化,这种变化发生在不具有FBG的区域中,尤其沿着两个相邻FBG的距离。本发明仅通过连续地沿着整个传感光纤生成弱FBG就能够克服这种类型的盲区。因此,入射脉冲提供连续的反向散射信号,同时传播通过传感光纤。因此,当与现有技术公开的传感系统相比,本发明能够没有盲区地告警。
以下利用更详细的说明以及非限制性实例,将更好地理解本发明。
附图说明
图1:表示本发明的优选实施方式的示意图。
图2A:光纤传感器的照片。
图2B:在没有外部热点情况下的测量的反射的照片。
图2C:在具有外部热点情况下的测量的反射的照片。
具体实施方式
现在,参照附图,图1示出了使用长且弱的光纤布拉格光栅沿着光纤探询分布的温度和/或应力而提出的分布式传感系统的优选示意图。
弱且长的光纤布拉格光栅用作传感光纤,并且FBG的峰值频率的温度关系被测量为-1.23GHz/K。在通过可以是电光调制器(EOM)的脉冲整形设备之后,产生FWHM50ps信号脉冲,然后将该信号脉冲发送到FBG中。接着,仅通过改变可调谐激光源(TLS)的频率,在FBG反射光谱窗口附近,以几MHz的步骤增加脉冲的中心频率。
在图2(a)中,示出了用作分布式传感器的FBG。根据本发明,可以生成热点,并且可以使用分布式FBG精确定位该热点。
图2(b)示出了在没有任何外部热点和施加到FBG传感器的应力的情况下,作为光纤距离函数的本发明的FBG传感器的测量出的分布式反射光谱。传送给光学时域反射计(OTDR)的信息对应于基于原布拉格频移的反馈信号。因此,将测量的FBG反射光谱的分布作为参考,以使得后续测量中的局部布拉格频率上的任何变化都能够定性地表明该位置上的温度和应力的变化。但是,必须指出,图2(b)基于布拉格频率在距离上的分布提供了关于制备的长FBG的均匀性的重要信息以及沿着FBG的频率啁啾(chirp)信息。
图2(c)示出了在沿着长FBG具有外部热点(图2c)的情况下,作为光纤距离函数的本发明的FBG传感器的测量出的分布式反射光谱。可以清楚地看出,热点的存在导致布拉格频率的明显移动。可以将温度变化量简单地估计为-1.23GHz/K的线性关系的结果。
在该实施方式中,FBG是均匀的,这意味着光栅的整个长度上的布拉格频率近乎恒定。但是,这不是本发明的必须条件。举例来说,布拉格频率沿着光栅的分布可以相对于距离线性变化,或者在距离上是阶梯式的。
还应该指出的是,并不严格要求FBG沿着覆盖的传感范围的绝对连续性,并且可以出现没有压印的FBG的短截光纤,原因在于在大部分制备工艺中,仅可以沿着有限长度压印FBG。因此,可以要求添加很多光栅来延伸传感长度,并且光栅间的间隙可以有意或无意地出现。要求该距离间隙小于探询系统的空间分辨率以实施本发明就足够了。在本发明的描述中,将这种情况无差别地等同为连续的FBG。
将探询的光信号整形为单脉冲也是不严格要求的,但是可以实施输入光信号的其他编码技术(例如多脉冲编码或射频调制扫描),以通过傅里叶变换检索时域信息。
在不背离所附权利要求限定的本发明的范围的情况下,对于所属领域技术人员而言,对本发明的描述的实施方式的各种修改和变型将是显而易见的。虽然已经结合特定的优选实施方式描述了本发明,但是应该理解,所要求保护的发明并不过度地受限于这种特定实施方式。
参考文献:
[1]T.Horiguchi和M.Tateda,"Optical-fiber-attenuation investigationusing stimulated Brillouin scattering between a pulse and a continuous wave",Opt.Lett.14,408-410(1989).
[2]M.Ahangrani Farahani和T.Gogolla,“Spontaneous Rman scattering inoptical fibers with modulated probe light for distributed temperature Ramanremote sensing”,J.Lightwave Technol.17,1379-1391(1999).
[3]T.Horiguchi,T.Kurashima和M.Tateda,"A technique to measuredistributed strain in optical fibers",Photon.Technol.Lett.2,352-354(1990).
[4]T.Kurashima,T.Horiguchi和M.Tateda,"Distributed-temperature sensingusing stimulated Brillouin scattering in optical silica fibers",Opt.Lett.15,1038-1040(1990).
[5]K.Y.Song,S.Chin,N.Primerov和L.Thevenaz,“Time-domain distributedfiber sensor with1cm spatial resolution based on Brillouin dynamic grating”,J.Lightwave Technol.28,2062-2067(2010).
[6]M.durkin,M.Ibsen,M.J.Cole和R.I.Laming,“1m long continuously-written fiber Bragg gratings for combined second and third order dispersioncompensation”,Electron.Lett.33,1891-1893(1997).
[7]美国专利No.4,996,419,“distributed multiplexed optical fiber bragggrating sensor arrangement”,1989年12月26日提交.
[8]美国专利No.5,684,297,“Method of detecting and/or measuringphysical magnitudes using a distributed sensor”,1995年11月15日.

Claims (8)

1.一种光纤传感器,其包括传感光纤和反射测量装置,其中所述传感光纤设置有覆盖整个光纤长度的单一且连续的布拉格光栅,该长度专用于感测并且沿着该长度执行空间分辨测量,其中所述反射测量装置是光学时域反射计,并且其中所述布拉格光栅被设计成提供小于20%的总体反射率。
2.根据权利要求1所述的光纤传感器,其中所述光栅沿着所述光纤长度是均匀的。
3.根据权利要求1所述的光纤传感器,其中所述光栅沿着所述光纤长度是啁啾的或者阶梯式的。
4.根据权利要求1所述的光纤传感器,其中反射测量装置将单光学脉冲发送给传感光纤。
5.一种使用前述权利要求中任一项所述的光纤传感器并基于OTDR的传感方法。
6.一种根据权利要求1至4中任一项所述的光纤传感器用来沿着光纤感测温度和/或应力的应用。
7.一种用于评估设置有布拉格光栅的光纤的均匀性的方法,所述方法包括利用光学时域反射计沿着所述光纤测量分布式布拉格频率,其中所述布拉格光栅被设计成提供小于20%的总体反射率。
8.根据权利要求7所述的方法,其中,单光学脉冲被发送给光纤。
CN201280063287.1A 2011-12-20 2012-12-19 基于布拉格光栅和光学时域反射计的光纤传感系统 Expired - Fee Related CN104011508B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2011/055812 2011-12-20
IB2011055812 2011-12-20
PCT/IB2012/057463 WO2013093788A1 (en) 2011-12-20 2012-12-19 Fiber sensing system based on a bragg grating and optical time domain reflectometry

Publications (2)

Publication Number Publication Date
CN104011508A CN104011508A (zh) 2014-08-27
CN104011508B true CN104011508B (zh) 2016-11-02

Family

ID=47714462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280063287.1A Expired - Fee Related CN104011508B (zh) 2011-12-20 2012-12-19 基于布拉格光栅和光学时域反射计的光纤传感系统

Country Status (4)

Country Link
US (1) US9651418B2 (zh)
EP (1) EP2795260B1 (zh)
CN (1) CN104011508B (zh)
WO (1) WO2013093788A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3094952A1 (en) * 2014-01-14 2016-11-23 Omnisens S.A. A sensing cable with enhanced sensitivity
CN103983385B (zh) * 2014-05-07 2016-05-18 王东方 一种椭球形光纤压力传感器及检测光纤故障压力点的方法
JP6226897B2 (ja) * 2015-02-20 2017-11-08 アンリツ株式会社 Ofdr装置および方法
RU2589447C1 (ru) * 2015-03-27 2016-07-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Способ изготовления чувствительного элемента спектрального преобразователя деформации
CN104990620B (zh) * 2015-07-03 2018-06-08 南京大学 基于布拉格光纤光栅阵列的相敏光时域反射装置及方法
US10408995B1 (en) 2016-07-15 2019-09-10 Sentek Instrument, Llc Optical sensing fiber
WO2020005077A1 (en) 2018-06-27 2020-01-02 Victoria Link Limited Optical fibre sensing system and method
CN109974757B (zh) * 2019-04-11 2021-03-23 南京聚科光电技术有限公司 基于内调制脉冲和啁啾光栅的分布式光纤传感器
RU2756461C1 (ru) * 2021-02-04 2021-09-30 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Способ натяжения волоконной решетки Брэгга до заданной величины относительного удлинения

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717804A (en) * 1996-04-30 1998-02-10 E-Tek Dynamics, Inc. Integrated laser diode and fiber grating assembly

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761073A (en) * 1984-08-13 1988-08-02 United Technologies Corporation Distributed, spatially resolving optical fiber strain gauge
US4996419A (en) 1989-12-26 1991-02-26 United Technologies Corporation Distributed multiplexed optical fiber Bragg grating sensor arrangeement
US5380995A (en) * 1992-10-20 1995-01-10 Mcdonnell Douglas Corporation Fiber optic grating sensor systems for sensing environmental effects
US5397891A (en) * 1992-10-20 1995-03-14 Mcdonnell Douglas Corporation Sensor systems employing optical fiber gratings
DE69513937T2 (de) * 1994-11-17 2000-07-20 Alcatel Sa Verfahren zum Messen und Detektieren physikalischer Grössen unter Verwendung eines Mehrpunktsensors
US5748312A (en) * 1995-09-19 1998-05-05 United States Of American As Represented By The Secretary Of The Navy Sensing apparatus and method for detecting strain between fiber bragg grating sensors inscribed into an optical fiber
US5828059A (en) * 1996-09-09 1998-10-27 Udd; Eric Transverse strain measurements using fiber optic grating based sensors
US6009222A (en) * 1997-09-12 1999-12-28 Dong; Liang Optical fibre and optical fibre grating
GB9721473D0 (en) * 1997-10-09 1997-12-10 Sensor Dynamics Ltd Interferometric sensing apparatus
US6335524B1 (en) * 1997-10-22 2002-01-01 Blue Road Research High speed demodulation systems for fiber optic grating sensors
US6427040B1 (en) * 1998-10-30 2002-07-30 Lucent Technologies Inc. Optical waveguide gratings device with adjustable optical space profile
KR100334799B1 (ko) * 1999-07-07 2002-05-02 윤종용 광섬유격자 제작 장치 및 방법
US6314214B1 (en) * 1999-09-28 2001-11-06 Corning Incorporated System and method for measuring stress during processing of an optical fiber
US7190705B2 (en) * 2000-05-23 2007-03-13 Imra America. Inc. Pulsed laser sources
US6795599B2 (en) * 2001-05-11 2004-09-21 Vasilii V. Spirin Differential fiber optical sensor with interference energy analyzer
US7038190B2 (en) * 2001-12-21 2006-05-02 Eric Udd Fiber grating environmental sensing system
US6876786B2 (en) * 2002-10-02 2005-04-05 Cicese-Centro De Investigation Fiber-optic sensing system for distributed detection and localization of alarm conditions
FR2867561B1 (fr) * 2004-03-11 2007-02-02 Commissariat Energie Atomique Systeme de mesure distribuee des courbures d'une structure
CN101304683B (zh) * 2005-09-29 2012-12-12 通用医疗公司 以渐进增加的分辨率观察和分析一个或多个生物样品的方法和用于该方法的设备
US7535934B2 (en) * 2007-03-23 2009-05-19 Ofs Fitel Llc Optical continuum source including light generation beyond wavelength edges of continuum
US8050523B2 (en) * 2007-04-20 2011-11-01 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US8027557B2 (en) * 2007-09-24 2011-09-27 Nufern Optical fiber laser, and components for an optical fiber laser, having reduced susceptibility to catastrophic failure under high power operation
DE102008005114B4 (de) * 2008-01-16 2010-06-02 Eagleyard Photonics Gmbh Vorrichtung zur Frequenzänderung
CN101793570B (zh) * 2009-10-21 2012-08-08 南京大学 光纤布拉格光栅激光器的传感方法
CN102102998A (zh) * 2010-12-16 2011-06-22 华中科技大学 基于弱布拉格反射结构光纤的分布式传感系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717804A (en) * 1996-04-30 1998-02-10 E-Tek Dynamics, Inc. Integrated laser diode and fiber grating assembly

Also Published As

Publication number Publication date
EP2795260B1 (en) 2017-03-08
US9651418B2 (en) 2017-05-16
WO2013093788A1 (en) 2013-06-27
EP2795260A1 (en) 2014-10-29
US20140375980A1 (en) 2014-12-25
CN104011508A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
CN104011508B (zh) 基于布拉格光栅和光学时域反射计的光纤传感系统
Muanenda Recent advances in distributed acoustic sensing based on phase‐sensitive optical time domain reflectometry
De Oliveira et al. Health monitoring of composite structures by embedded FBG and interferometric Fabry–Pérot sensors
Chehura et al. Temperature and strain discrimination using a single tilted fibre Bragg grating
Hotate et al. Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing
US8948550B2 (en) Sensing systems and few-mode optical fiber for use in such systems
RU2562927C2 (ru) Способ и устройство бриллюэновского оптоэлектронного измерения
Chin et al. Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers
CN103502771A (zh) 使用少模感测光纤的分布式布里渊感测系统及方法
US7557930B2 (en) Bessel beam interferometer and measurement method
Zhao et al. High sensitive modal interferometer for temperature and refractive index measurement
JP2017032979A (ja) 高後方散乱導波路
Lalam et al. Phase-sensitive optical time domain reflectometry with Rayleigh enhanced optical fiber
EP2861947B1 (en) A method and device for pressure sensing
KR100963169B1 (ko) Rf 신호를 이용한 구부림 센서 및 이를 이용한 구부림측정 방법
Frazão et al. Optical bend sensor based on a long-period fiber grating monitored by an optical time-domain reflectometer
Singh et al. High-resolution fiber optic sensor based on coated linearly chirped Bragg grating
Arias et al. Phase-sensitive correlation optical time-domain reflectometer using quantum phase noise of laser light
Wang Distributed pressure and temperature sensing based on stimulated Brillouin scattering
Kim et al. Characterization of distributed Brillouin sensors based on elliptical-core two-mode fiber
Hotate et al. Distributed discrimination of strain and temperature based on Brillouin dynamic grating in an optical fiber
Misbakhov DAS quazi-distributed system combined with temperature measuring on addressed fiber Bragg gratings
Zhou et al. Low coherent optical frequency domain reflectometry interrogates fiber Bragg grating sensors
Zhu et al. Multi-Point Optical Fiber Fabry-Perot Curvature Sensor Based on Microwave Photonics
Babin et al. Comparison of temperature distribution measurement methods with the use of the Bragg gratingsand Raman scattering of light in optical fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161102

Termination date: 20191219