CN102858721A - 制备催化剂载体的方法 - Google Patents

制备催化剂载体的方法 Download PDF

Info

Publication number
CN102858721A
CN102858721A CN2011800198290A CN201180019829A CN102858721A CN 102858721 A CN102858721 A CN 102858721A CN 2011800198290 A CN2011800198290 A CN 2011800198290A CN 201180019829 A CN201180019829 A CN 201180019829A CN 102858721 A CN102858721 A CN 102858721A
Authority
CN
China
Prior art keywords
catalyst
extrudate
weight
zeolite
ethylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800198290A
Other languages
English (en)
Inventor
L·多莫科斯
P·吉林克
A·H·克拉金加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN102858721A publication Critical patent/CN102858721A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/065Catalytic reforming characterised by the catalyst used containing crystalline zeolitic molecular sieves, other than aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

用于制备催化剂载体的方法,该方法包括以下:a)混合具有总的二氧化硅与氧化铝的摩尔比为20-150的pentasil型沸石与水、二氧化硅源和碱金属盐;b)挤压a)中所得混合物;c)干燥和煅烧步骤(b)中得到的挤出物;d)使步骤(c)中得到的挤出物进行离子交换,以降低碱金属含量;和e)干燥步骤d)中得到的挤出物;及通过基于总催化剂的量为0.001-0.1重量%的铂和0.01-0.5重量%的锡浸渍这种载体的制备催化剂的方法;能够由此得到的乙苯脱烷基化催化剂以及包括使含乙苯原料与这种催化剂接触的乙苯脱烷基化方法。

Description

制备催化剂载体的方法
技术领域
本发明涉及一种制备催化剂载体和催化剂的方法,能够通过该方法制备的乙苯脱烷基化催化剂及利用该催化剂的方法。
背景技术
乙苯是从石脑油裂解或重整油得到的芳香烃之一。重整油是由沸点在70-190℃范围内的直馏烃,例如直馏石脑油,经催化转化得到的芳香产物。这样的烃本身是通过分馏或蒸馏粗石油获得的,其组成根据原油的来源而不同,但一般具有低的芳烃含量。转化为重整油后,芳烃含量显着增加且所得的烃混合物作为有价值的化学品中间体的来源和作为汽油的组分变得非常令人满意。主要组分是一组芳烃,通常称为BTX:苯、甲苯和二甲苯,包括乙苯。还可能存在其它组分,如它们的氢化同系物环己烷等。
BTX组中最有价值的组分是苯和二甲苯,因此BTX经常进行处理以增加这两种芳烃的比例:甲苯加氢脱烷基化为苯以及甲苯歧化为苯和二甲苯。在二甲苯中,对二甲苯是最有用的商品,且已经开发二甲苯异构化或烷基转移化方法来提高对二甲苯的比例。
汽油生产商可利用的其他方法是乙苯加氢脱烷基化为苯。
通常,汽油生产者从重整产物流中分离BTX,然后使BTX产物流进行二甲苯的异构化,其目的是最大化对二甲苯组分。二甲苯异构化是催化过程;一些在这个过程中使用的催化剂,不只是具有使二甲苯异构化的能力,也同时具有使乙苯组分脱烷基化的能力。通常接着先分离出对二甲苯,留下苯、甲苯(除非已经应用甲苯转化方法)和余下的混合二甲苯,包括乙苯。该BTX流或者通过与较重的烃流的接触经由烷基交换进行转化以提高二甲苯的收率,或者可通过脱烷基化进行转化以选择地去除乙苯并增加苯的收率,同时可以使二甲苯达到平衡浓度。后一过程是本发明的主题。
在处理BTX的最后阶段的乙苯脱烷基化中,可希望具有高活性的催化剂。这样的催化剂,使得其在高的重量小时空速下操作成为可能。此外,如果催化剂具有较高的平板压碎强度(flat plate crushstrength)是有利的,因为这会减少催化剂处理和在反应器中加载或卸载催化剂过程中形成的细粉和破碎的材料。已知细粉导致运行中的问题,例如是反应器的压力降的主要原因。
乙苯脱烷基化催化剂在本领域中是公知的,且通常包括例如在EP-A-0018498中所描述的含沸石载体上的铂催化剂。
WO-A-2009/016143涉及乙苯脱烷基化催化剂,该催化剂包含具有总的二氧化硅与氧化铝的摩尔比范围为20-150的pentasil型沸石、铂和锡。
US-A-4,582,815描述了一种用于制备富含二氧化硅的固体的方法,所述方法包括在碱金属碱或碱性盐中混合富含二氧化硅的固体与水,然后研磨、挤出、干燥和中和碱,之后煅烧。煅烧可以使碱金属通过包裹被捕获,因而通过离子交换难以去除以及通常被不完全去除。据描述该产品适合非催化或催化的各种过程,如加氢裂化、异构化、加氢、脱氢、聚合、重整、催化裂化和催化加氢裂化。
发明概述
本发明提供制备催化剂载体的方法,该方法包括:
a)混合具有总的二氧化硅与氧化铝的摩尔比为20-150的pentasil型沸石与水、二氧化硅源和碱金属盐;
b)挤出步骤a)所得混合物;
c)干燥和煅烧步骤(b)所得挤出物;
d)使步骤(c)所得煅烧的挤出物进行离子交换,以降低碱金属含量;和
e)干燥步骤(d)所得挤出物。
还提供了基于这种载体制备催化剂的方法,由该方法可得到的乙苯脱烷基化催化剂和用于乙苯脱烷基化的方法,该方法包括含有乙苯的原料与本发明的催化剂接触,优选含有C7-C9的芳烃的原料,包括二甲苯和乙苯。
发明详述
已发现根据本发明的载体提供活性增加的催化剂。本发明的另外一个优点是,发现可制备具有高的平板压碎强度的催化剂。
在本发明中优选使用二氧化硅作为粘合剂,且可以是天然存在的二氧化硅,或可以是凝胶状沉淀物、溶胶或凝胶的形式。对二氧化硅的形式没有限制,二氧化硅可以是其多种形态的任一种:结晶二氧化硅、玻璃态二氧化硅或无定形二氧化硅。术语无定形二氧化硅涵盖湿法工艺类型,包括沉淀二氧化硅和二氧化硅凝胶,或热解或煅制二氧化硅。二氧化硅溶胶或胶态二氧化硅是无定形二氧化硅在液体——通常是水中的非沉降分散体,通常由阴离子、阳离子或非离子型材料稳定。
二氧化硅粘合剂优选是两种二氧化硅类型的混合物,最优选是粉末形式二氧化硅和二氧化硅溶胶的混合物。方便地,粉末形式二氧化硅具有B.E.T表面积的范围为50-1000m2/g,以及平均粒径为2nm-200μm的范围,优选为2-100μm的范围,更优选的是2-60μm,特别是2-10μm,其由ASTM C690-1992或ISO8130-1测定。非常适合的粉末状二氧化硅材料是Sipernat 50,主要为球形颗粒的白色二氧化硅粉末,可购自德固赛(Degussa)(Sipernat为商品名)。非常适合的二氧化硅溶胶是由Eka Chemicals以商品名Bindzil出售的产品。当混合物包括粉末形式二氧化硅和二氧化硅溶胶时,这两种组分可以粉末形式与溶胶形式的重量比在1∶1-10∶1的范围内,优选为2∶1-5∶1,更优选为2∶1-3∶1存在。粘合剂也可以基本上由粉末形式的二氧化硅构成。
当使用粉末形式的二氧化硅作为本发明的催化剂组合物中的粘合剂时,优选使用具有由ASTM C690-1992测定的平均粒径为2-10μm的小颗粒形式。由于采用这种材料,发现了在载体强度上的额外改进。一种非常适合的小颗粒形式是可购自Degussa的商品名为Sipernat 500LS的产品。
优选地,二氧化硅组分是以纯二氧化硅被使用,而不是以另一种无机氧化物中的组分。最优选,二氧化硅和事实上载体基本不含任何其他无机氧化物粘合剂材料,且特别是不含氧化铝。最多仅存在基于总载体最大量的2重量%的氧化铝。
在采用表面改性脱铝处理的优选实施方式中,氧化铝的存在可能是特别有害的,因为利用氧化铝载体,表面改性将对载体的物理完整性产生不利影响。
pentasil型沸石对本领域技术人员是公知的。“pentasil”是用来描述一类形状选择性沸石的术语,其典型特征在于二氧化硅与氧化铝的摩尔比(SAR)至少为12并构成五元环(它们的骨架由5-1次级结构单元建立)。在本发明中使用的pentasil型沸石的二氧化硅与氧化铝的摩尔比(SAR)范围是20-150。SAR是总体的/全部的的二氧化硅/氧化铝比,其根据游离的或催化剂形式的沸石已经进行的任何处理,可以不同于骨架的SAR或可与骨架的SAR相同。
在pentasil型沸石中,优选的沸石是ZSM-5、ZSM-8、ZSM-11、ZSM-12、TON,例如ZSM-22、ZSM-23、ZSM-35,例如镁碱沸石和ZSM-48,那些具有MFI构造的,特别是ZSM-5是最优选的。所有这些沸石是众所周知的,且均在文献中记载,例如参见沸石结构的数据库:http://www.iza-structure.org/databases/或Baerlocher等人的“沸石骨架类型的地图(″Atlas of zeolite framework types″)的第5次修订版(2001年),由Elsevier代表国际沸石协会的结构委员会出版。在数据库中的http://www.iza-structure.org/databases/Catalog/Pentasils.pdf文件综述了pentasil型沸石。
这种沸石可以各种形式存在,这取决于在沸石结构中的阳离子位点上存在的离子。一般来说,可用的形式包含阳离子位点上的碱金属离子、碱土金属离子、或氢或氢前体离子。在本发明的催化剂组合物中,该沸石以含有氢或氢前体的形式存在;这种形式通常被称为H+形式。沸石也可以用于无模板或含模板形式。已发现在制备过程中使用含模板形式时,在减少二甲苯损失方面有些优点。
这类沸石的SAR优选至少为25,最优选至少为30,且优选至多为100,最优选至多为90,特别优选至多为50。
沸石起始原料可以许多粒径范围存在。适宜地,沸石具有20nm-10μm的初级颗粒直径。使用平均晶粒大小为1-10μm的大晶体粒度ZSM-5沸石,以及还使用初级颗粒直径低于200nm的小颗粒度ZSM-5已经制备了有用的催化剂。一般,在粒径分布方面,ZSM-5可以具有的粒度分布,其中50%的颗粒的直径D(v,0.5)大于2μm,90%的颗粒直径D(v,0.9)小于30μm。
适合的ZSM-5材料可以由记载在文献中的方法来制备,例如,US-3,702,886、在沸石结构的图集或数据库中提供的参考文献、以及其它参考文献,如Yu等人在《Microporous and MesoporousMaterials》,95(2006)234-240、以及Iwayama等人的专利US-A-4,511,547。
ZSM-5沸石的适合等级包括:CBV3014E、CBV 8014和CBV3020E,可商购自Zeolyst International。
在本发明的催化剂组合物显示的活性和选择性中,沸石是重要因素。需要活性和选择性之间的平衡,这可能根据所用的沸石和所用沸石的SAR导致载体中不同的最佳沸石含量。一般地,较高的沸石含量在某些情况下可有利于由催化剂组合物产生较高的活性,而较低的沸石含量可提供较高的选择性。如果使用较高SAR沸石,则趋向于提高催化剂载体中沸石的比例以实现最佳的性能。
SAR和沸石含量之间的平衡可能根据乙苯脱烷基化过程中所用的条件会导致不同的优化,一般优选最小化催化剂载体中所用的沸石的量,因为较高的沸石量可能对催化剂载体的物理性质具有负面影响,如降低其强度。通常优选,载体由30-80重量%,最优选50至70重量%的二氧化硅和20至70重量%,最优选30-50重量%的沸石构成。
用于本发明的非常适合的催化剂载体包含pentasil型沸石,尤其是ZSM-5,其具有二氧化硅与氧化铝的摩尔比在20-50的范围内,特别是30-40,其含量在20-50重量%的范围内,最好为25-40重量%。
碱金属盐可选自众多种类的化合物。优选碱金属是钠或钾,更优选钠。此外,优选化合物是碱性的,即在室温下,该盐的1N水溶液的pH值超过8。更具体地,优选该盐的1N水溶液的pH值超过9,优选至少为10,更优选至少为11。优选地,碱金属盐选自由氢氧化钠、氢氧化钾和硅酸钠组成的组中。最优选地,所述碱金属盐是氢氧化钠和/或水玻璃。
优选地,在步骤(a)的混合物中,除了粘合剂,优选为二氧化硅,pentasil型沸石和碱金属盐之外,没有其他组分。然而,包括至多10重量%的其它组分,同时仍然获得本发明的益处是可能的。这样的其它组分可选自其他难熔的无机氧化物粘合剂材料和其它沸石。其他粘合剂材料可以是氧化铝和氧化镁。其它沸石的例子是8、10或12元环沸石,例如丝光沸石和β沸石,以及酸性中孔性材料,例如MCM-系列沸石,如MCM-22和MCM-41。
优选地,不向挤出混合物进一步加水。基于干混合物,水量优选为40-65重量%,更优选为45-60重量%。
pentasil型沸石的改性降低了氧化铝的摩尔百分数,这基本上意味着酸位点的数目减少。这可以以各种方式来实现。第一种方式是,在沸石的微晶的表面上施加低酸度的无机难熔氧化物涂层。适合用于此目的的无机氧化物是二氧化硅、氧化锆或二氧化钛,其中优选二氧化硅。通过将这样的涂层施加到微晶的表面上,增加改性沸石(即原来的沸石加涂层)中氧化物部分的总数,同时氧化铝部分的数目保持不变,从而导致氧化铝摩尔百分数的降低。这种方法的主要优点是,沸石的微晶表面上的酸位点的数目大大减少到基本零。
另一个改性pentasil型沸石的非常有用的方法是对其进行脱铝处理。一般地,分子筛的微晶的脱铝是指一种处理,由此使铝原子离开沸石骨架而留下空缺或离开骨架并由其他原子,如硅、钛、硼、锗或锆取代。脱铝可以通过本领域中已知的方法实现。特别有用的方法是那些,其中所述脱铝过程选择性地发生或要求选择性地发生在沸石的微晶表面。以这种方式即可以达到与涂层的沸石相同的效果:微晶表面的酸位点的数目减少。
用于沸石微晶表面的脱铝的另一种方法公开在美国专利第US.5,242,676号中。根据该方法使沸石与二羧酸接触充分的时间,适宜以水溶液形式,以利用小于50%的总体脱铝量实现至少减少40%的表面酸度。一种非常适合的二羧酸是草酸,而合适的沸石应该具有大于1的约束指数,并包括ZSM-5、ZSM-11、ZSM-23和ZSM-35。
用于获得具有脱铝外表面的沸石的另一种方法公开在美国专利第US.4,088,605号中。根据这种“原位脱铝”方法具有无铝的二氧化硅外壳的沸石是通过两步法制备的,所述方法包括(i)启动结晶介质中的结晶以形成沸石,和(ii)改变结晶介质以基本上去除其中的铝,其适宜通过将与存在的铝离子形成络合物的络合剂添加到结晶混合物中,之后,去除所形成的络合物。合适的络合剂的实例是葡糖酸、酒石酸和乙二胺四乙酸(EDTA)。可以这种方式生产的具有无铝外壳的沸石包括ZSM-5和ZSM-35。
已发现用氟硅酸盐的水溶液处理步骤(c)中得到的挤出物特别有利,其中所述的氟硅酸盐由下式表示:
(A)2/bSiF6
其中,A是H+以外的具有b价的金属或非金属阳离子。阳离子b的例子是烷基铵、NH4+、Mg++、Li+、Na+、K+、Ba++、Cd++、Cu+、Ca++、Cs+、Fe++、Co++、Pb++、Mn++、Rb+、Ag+、Sr++、Tl+及Zn++。优选地,A是铵阳离子。分子筛或分子筛-粘合剂挤出物材料可与以每100克分子筛或分子筛-粘合剂挤出物材料至少为0.0075摩尔的量的氟硅酸盐接触。pH值适合在3-7之间。US.6,949,181中已经描述了这样的处理。据认为,以这种方式,位于沸石表面上的铝原子被提取并被硅原子取代。
铝硅酸盐沸石的脱铝结果减少了存在于沸石中的氧化铝部分的数量,并因此降低了氧化铝的摩尔百分比。
在上述的(表面)脱铝方法中,已发现涉及用六氟硅酸盐,最适宜用六氟硅酸铵(AHS)处理的方法显示另外的优点。已发现用AHS处理步骤c)中得到的挤出物,导致挤出物除了预期的脱铝外表面外,还具有增加的机械强度。
表面改性仅可在载体上仅应用一次或可以应用两次或更多次。但是,我们没有发现重复使用的任何益处。然而,AHS处理的浓度似乎有影响。优选地,活性成分(AHS)的浓度范围是0.005-0.5M。优选地,浓度范围是从0.01-0.2M,更优选为0.01-0.05M,特别优选的是0.01-0.03M,已经发现这提供了具有高活性的催化剂组合物。
在步骤(c)中,干燥和煅烧挤出物。优选地,干燥在10-350℃,更优选120-150℃的温度进行15分钟-24小时,更优选1-3个小时。在正常条件下进行煅烧,适合通过在空气中加热1-48小时,优选1-10小时,在400-900℃的温度下进行。
在步骤(c)得到的挤出物进行离子交换,以降低它们的碱金属含量。已发现碱金属的存在会导致乙苯脱烷基催化活性的降低。优选地,以Na2O表示的碱金属含量减少到至多为基于总干重的0.2重量%,更优选至多为0.1重量%,更优选至多为0.04重量%,更优选至多为0.02重量%,最优选至多为0.01重量%。
本领域的技术人员会知道采用何种离子交换以达到所需的碱金属含量的减少。适合的方法包括用含铵的水溶液(如氯化铵)处理挤出物。适合的处理包括在80-100℃,优选约90℃,使挤出物浸在氯化铵溶液中0.2-5小时,更具体为0.5-2小时。
人们已经发现,特别有利的是使步骤(c)中获得的挤出物经与六氟硅酸盐处理以及随后应用离子交换。这样只需要进行单一的清洗,就可以使碱金属含量降低到非常低的水平。
在步骤(e)中,在10-350℃,优选100-180℃下,优选地,干燥挤出物15分钟-24小时,更优选1-3个小时。
在步骤(e)中得到的挤出物的B.E.T.表面积优选落入150-250m2/g的范围,以及通过压汞法测的孔体积优选为0.5-0.9ml/g。平板压碎强度通常是至少120N.cm-1,优选至少为140N.cm-1,更优选至少为150N.cm-1,最优选至少为160N.cm-1。平板压碎强度通常至多为200N.cm-1
优选地,通过在载体上沉积铂和锡使本发明的催化剂载体转化为乙苯脱烷基化催化剂。优选地,铂组分以基于总催化剂的0.001-0.1重量%的量存在,优选地,锡组分以基于总催化剂的0.01-0.5重量%的量存在。铂组分最合适以0.01-0.1重量%,优选0.01-0.05重量%的量存在。锡组分最适合以0.1-0.5重量%,优选0.2-0.5重量%的量存在。
本发明的催化剂组合物具有与载体类似的BET表面积、孔体积和平板压碎强度方面的性质。
金属负载到载体上可以是通过在本领域中通常的方法。在成型前可将金属沉积到载体材料上,但优选将它们沉积到成型的载体上。
从金属盐溶液浸渍金属到孔体积是金属负载到成型的载体的非常有效的方法。金属盐溶液的pH值可以是1-12的范围。可以方便地使用的铂盐是氯铂酸和铵稳定的铂盐。所使用的合适的锡盐的例子是氯化亚锡(II)、氯化锡(IV)、硫酸亚锡和乙酸亚锡。金属可以相继地或同时浸渍到成型的载体上。当采用同时浸渍时,所使用的金属盐必须兼容,并且不妨碍金属的沉积。已经发现,在混合的铂/锡盐溶液中使用络合剂或螯合剂,以防止不需要的金属沉淀是有效的。合适的络合剂的例子是EDTA(乙二胺四乙酸)及其衍生物、HEDTA(N-(2-羟乙基)乙二胺-N,N′,N′-三乙酸)、EGTA(乙二醇-双(2-氨基乙基醚)-N,N,N′,N′-四乙酸)、DTPA(二亚乙基三二铵五乙酸)、NTA(腈基三乙酸)。当使用EDTA时,以与锡的摩尔比为0.1-3,最好是1-2来方便地使用。
浸渍金属后,适当地干燥催化剂组合物并煅烧。干燥温度适宜是50-200℃,干燥时间适宜为0.5-5小时。煅烧温度非常适宜在200-800℃,优选为300-600℃。对于载体的煅烧,需要相对短的时间期间,例如,0.5-3小时。对于煅烧催化剂组合物,可能有必要采用以低速加热受控的升温,以确保的金属的最佳分散:这种煅烧可能需要5-20小时。
在使用之前,有必要确保催化剂组合物上的金属是以金属的(而不是氧化物)形式。因此,将催化剂组合物置于还原性条件是有益的,例如,其是在还原气氛中,如任选地用惰性气体或惰性气体的混合物稀释的氢气,在150-600℃加热0.5-5小时,所述惰性气体例如是氮气或二氧化碳。
发现本发明的催化剂组合物在乙苯的选择性脱烷基化中的特别用途。
乙苯原料最适合直接来源于重整单元或石脑油裂解单元或是二甲苯异构化单元的流出物。这样的原料通常包括C7-C9烃类,尤其是除了乙苯外还包括邻二甲苯、间二甲苯、对二甲苯、甲苯和苯中的一种或多种。一般来说,原料中的乙苯量是0.1-50重量%,并且总的二甲苯含量通常是至少20重量%。通常二甲苯将不在热力学平衡态中,并且与热力学平衡态相比,对二甲苯的含量因此将低于其它异构体。
原料在氢气存在下与催化剂组合物接触。这可在固定床系统、移动床系统、或流化床系统中进行。这种系统可连续或间歇方式操作。优选的是在固定床系统中连续操作。催化剂可以在一个反应器中使用,或在几个分开的串联反应器中使用或在切换系统中操作以确保在催化剂更换过程中的连续操作。
该方法适于在300-500℃的温度,0.1-50bar(10-5000kPa)的压力下,使用0.5-20小时-1的液体小时空速下进行。一般使用0.05-30bar(5-3000kPa)的氢分压。进料与氢的摩尔比是0.5-100,通常为1-10摩尔/摩尔。
具体实施方式
现通过下列实施例说明本发明。
实施例
在实施例和前述的所涉及的其他位置,适用如下测试方法:
平板压碎强度:ASTM D 6175。
孔隙率:ASTM D 4284,测量前在300℃干燥样品60分钟测量,并利用压汞法。
水孔隙体积:将样品在300℃下干燥1小时,然后称重,加入水直到充满孔隙,以便润湿样品颗粒,但仍然自由流动;再次称重样品并由两个重量计算每单位样品所吸收的水量。
钠含量为基于总干重的Na2O量。
在实施例中,使用H+型的沸石且不含模板物质。
实施例1
催化剂1(不是根据本发明)
由具有平均初级晶体尺寸低于100纳米且二氧化硅与氧化铝的总摩尔比为40的ZSM-5结构的沸石制备载体。沸石粉末与低钠级二氧化硅(来自德固赛的Sipernat 50)、铵稳定的可商购的二氧化硅溶胶(由Eka Chemicals以商品名Bindzil出售)混合,并使用干重计为1.5重量%的氢氧化铵溶液(含有25重量%氨)挤出,得到由干重计为40重量%的沸石、40重量%的Sipernat 50和20重量%的硅溶胶构成的载体。
未处理的挤出物在120℃下干燥,并在625℃煅烧1小时,得到水孔隙体积为0.76ml.g-1,以及平板压碎强度达为108N.m-1的挤出物。
这些挤出物用0.02M的六氟硅酸铵(AHS)水溶液处理,并随后用水洗涤几次。洗涤后的挤出物,随后在500℃下干燥1小时。所得的催化剂载体的平板压碎强度为124N.cm-1
接着,将催化剂载体的孔隙用pH值低于2的Pt/Sn溶液浸渍,该溶液由H2PtCl6和SnCl2·2H2O制备。这两种金属的浓度使得可提供最终的催化剂负载基于总催化剂的0.025重量%Pt和4重量%的锡。浸渍完成后,干燥催化剂并随后在480℃下煅烧1小时。
实施例2
催化剂2(不是根据本发明)
根据实施例1的过程制备催化剂,但不同的是将干重计的5重量%的Na2SiO3(水玻璃)加入沸石、二氧化硅粉末和二氧化硅溶胶的混合物中。挤出后,干燥和煅烧,得到的挤出物中钠含量为1.22重量%,水孔体积为0.78ml.g-1和平板压碎强度为104N.m-1
用AHS溶液处理后,得到的催化剂载体中的钠含量为0.43重量%,水孔隙体积为0.76ml.g-1和平板压碎强度为163N.m-1
实施例3
催化剂3
根据实施例2的过程制备载体,不同的是在用AHS溶液处理后,洗涤和干燥,挤出物是在离子交换之后用Pt/Sn溶液进行孔隙体积浸渍。所述离子交换包括将挤出物在90℃下在1M NH4Cl溶液中浸渍1小时,过滤出挤出物,用水洗涤挤出物并在120℃下干燥。所得载体的平板压碎强度为163N.m-1
实施例4
催化剂4
根据实施例3的过程制备载体,但不同的是在挤出前混合物的含水量增加2重量%。所得挤出物的钠含量为1.18重量%,水孔隙体积为0.71ml.g-1和平板压碎强度为136N.cm-1
然后根据实施例3,将挤出物进行AHS处理、清洗、干燥、离子交换和干燥。所得载体在离子交换前的钠含量为0.22重量%。离子交换后,载体的钠含量为0.014重量%以及平板压碎强度为170N.cm-1
在金属浸渍后,根据实施例1进行干燥和煅烧,最终的催化剂的平板压碎强度为180N.cm-1
实施例5
如实施例4所描述制备载体,除了AHS处理是通过用AHS水溶液处理挤出物并洗涤,但用1M NH4Cl溶液洗涤替代最后的水洗来进行。洗涤的挤出物随后在500℃下干燥1小时。所得载体的钠含量为0.022重量%,并且平板压碎强度为168N.cm-1
实施例6
上述催化剂进行模仿乙苯脱烷基的典型工业应用条件的催化试验。所用进料的组成概述于表1中。
表1 活性测试中所用进料的组成
  进料组成
  乙苯(EB)   wt%   13.68
  对二甲苯(pX)   wt%   0.18
  邻二甲苯(oX)   wt%   18.12
  间二甲苯(mX)   wt%   62.06
  甲苯   wt%   0.48
  苯   wt%   0.13
  C7-C8环烷烃   wt%   5.35
  C9 +芳烃   wt%   0.00
  总计   wt%   100.00
  C8芳烃   合计   94.97
  C8芳烃进料中的乙苯   wt%   11.25
  进料中的二甲苯中的对二甲苯   wt%   0.22
  进料中的二甲苯中的邻二甲苯   wt%   22.54
  进料中的二甲苯中的间二甲苯   wt%   77.23
活性试验在催化剂处于还原状态后进行,通过将干燥和煅烧的催化剂在450℃下暴露于氢气氛(纯度大于99%)中1小时得到催化剂的还原态。
无需冷却步骤,还原后加压反应器,引入进料。此步骤有助于增强催化剂老化,并因此允许在稳定操作下比较催化性能。
在增加潜在的负操作效应的条件下收集催化数据点。因此,不是在理想的工业操作条件下测定性能,而是在允许更好地区分用于评估本申请中的催化剂的各种性能参数的条件下进行。
在目前情况下,使用重量小时空速为4.6小时-1,氢气与进料之比为2.5mol.mol-1,总的系统压力为1.3MPa。温度在360-410℃之间变化,以得到更容易比较的所需转化。
表2 催化剂性质
Figure BPA00001624745400141
75wt%的乙苯转化(EBC)的Treq.表示获得75wt%的乙苯转化所需的温度。在所有试验期间,还发生二甲苯的异构化,且在每种情形对二甲苯的含量达到其平衡值的最小值98%。
表2显示由于高钠含量导致的催化剂活性的损失,如催化剂例示的那样。催化活性的最高收益由催化剂5得到,其中离子交换过程是与AHS处理的最后清洗步骤结合的。达到近30℃的活性收益。
实施例7(不是根据本发明)
按照实施例1中描述的制备路线制备催化剂载体,但使用初级微晶尺寸为几个立方微米且二氧化硅与氧化铝的总摩尔比为40的ZSM-5沸石。在AHS处理前挤出物的钠含量为0.13重量%。
所得挤出物进行如实施例5所描述的AHS处理。所得催化剂载体的水孔隙体积为0.69ml.g-1、钠含量为0.005重量%以及平版压碎强度为129N.cm-1,全部参数均为金属浸渍前的。
实施例8
按照实施例5的过程制备载体,但使用实施例7中所描述的沸石。在挤出前添加的Na2SiO3(水玻璃)的量赋予所得挤出物的钠含量为1.20重量%。
经过结合的AHS和离子交换处理后,催化剂载体含有0.07重量%的钠,其水孔隙体积为0.69ml.g-1,平板压碎强度为170N.cm-1,全部参数均为金属浸渍前的。
实施例9
按照实施例8的过程制备载体,但调整所添加的Na2SiO3(水玻璃)的量,以得到钠含量为0.95重量%的挤出物。
经过结合的AHS和离子交换处理后,干燥挤出物。所得载体含有钠0.03重量%,其水孔隙体积为0.68ml.g-1,平板压碎强度为141N.cm-1,全部参数均为金属浸渍前的。
实施例10
按照实施例9的过程制备载体,但用NaOH溶液替代Na2SiO3(水玻璃),以得到具有类似的钠含量的挤出物。经分析所得挤出物的钠含量为0.98重量%。
经过结合的AHS和离子交换处理后,干燥挤出物。所得催化剂载体含有钠0.03重量%,其水孔隙体积为0.68ml.g-1,平板压碎强度为151N.cm-1,全部参数均为金属浸渍前的。

Claims (8)

1.制备催化剂载体的方法,该方法包括:
a)混合具有总的二氧化硅与氧化铝的摩尔比为20-150的pentasil型沸石与水、二氧化硅源和碱金属盐;
b)挤出步骤a)得到的混合物;
c)干燥和煅烧步骤b)得到的挤出物;
d)使步骤c)得到的煅烧的挤出物进行离子交换,以降低碱金属含量;和
e)干燥步骤d)所得的挤出物。
2.根据权利要求1所述的方法,其中所述碱金属盐是氢氧化钠和/或水玻璃。
3.根据权利要求1或2所述的方法,其中步骤(d)包括用含有铵的水溶液处理步骤(c)得到的挤出物。
4.根据权利要求1-3中任一项所述的方法,其中步骤(c)得到的挤出物在进行步骤(d)之前用氟硅酸盐水溶液处理。
5.根据权利要求1-4中任一项所述的方法,其中待挤出的所述混合物包含基于干组分的45-60重量%的水。
6.制备催化剂的方法,所述方法包括制备如权利要求1-5中任一项所述的催化剂载体,并随后浸渍基于总催化剂的量为0.001-0.1重量%的铂和0.01-0.5重量%的锡。
7.乙苯脱烷基化催化剂,包含能够由权利要求1-5中任一项所述方法得到的载体。
8.乙苯脱烷基化方法,该方法包括使含乙苯的原料与权利要求7所述的催化剂接触。
CN2011800198290A 2010-04-19 2011-04-18 制备催化剂载体的方法 Pending CN102858721A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10160259 2010-04-19
EP10160259.7 2010-04-19
PCT/EP2011/056171 WO2011131635A1 (en) 2010-04-19 2011-04-18 Process for the preparation of a catalyst support

Publications (1)

Publication Number Publication Date
CN102858721A true CN102858721A (zh) 2013-01-02

Family

ID=42557274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800198290A Pending CN102858721A (zh) 2010-04-19 2011-04-18 制备催化剂载体的方法

Country Status (5)

Country Link
US (3) US9604204B2 (zh)
KR (1) KR101844763B1 (zh)
CN (1) CN102858721A (zh)
SG (1) SG184066A1 (zh)
WO (1) WO2011131635A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108367279A (zh) * 2015-12-17 2018-08-03 国际壳牌研究有限公司 催化剂组合物、其制备方法和使用这类组合物的方法
CN114829006A (zh) * 2019-12-23 2022-07-29 国际壳牌研究有限公司 催化剂及其在乙苯脱烷基化中的用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449525B2 (en) * 2010-10-25 2019-10-22 Shell Oil Company Hydrocarbon conversion catalyst composition
DE102011121971A1 (de) * 2011-12-21 2013-07-11 Süd-Chemie AG Verfahren zur Modifikation der Porengröße von Zeolithen
FR3013234B1 (fr) 2013-11-18 2016-10-28 Ifp Energies Now Zeolithe mise en forme par extrusion et pastillage avec un liant hydraulique presentant des proprietes mecaniques ameliorees et son procede de preparation
CN106661463B (zh) * 2014-07-01 2019-04-16 阿内洛技术股份有限公司 经由催化快速热解工艺将生物质转化成具有低硫、氮和烯烃含量的btx的工艺
RU2741547C2 (ru) * 2016-06-29 2021-01-26 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Получение катализатора на основе zsm-5; использование в способе деалкилирования этилбензола
EP3554693B1 (en) 2016-12-16 2022-09-21 Shell Internationale Research Maatschappij B.V. Catalyst system for dewaxing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009067A1 (en) * 1999-08-03 2001-02-08 Mobil Oil Corporation Plural stage toluene disproportionation process minimizing ethylbenzene production
EP2027917A1 (en) * 2007-07-31 2009-02-25 Shell Internationale Researchmaatschappij B.V. Catalyst composition, its preparation and use
WO2009105248A1 (en) * 2008-02-21 2009-08-27 Exxonmobil Research And Engineering Company Production of shaped silica-rich bodies

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3929672A (en) * 1971-10-20 1975-12-30 Union Oil Co Ammonia-stable Y zeolite compositions
US3977470A (en) 1975-02-27 1976-08-31 Mobil Oil Corporation Oil recovery by alkaline-sulfonate waterflooding
US4088605A (en) 1976-09-24 1978-05-09 Mobil Oil Corporation ZSM-5 containing aluminum-free shells on its surface
JPS55129232A (en) 1979-03-29 1980-10-06 Teijin Yuka Kk Isomerization of xylenes
JPS6035284B2 (ja) 1981-01-27 1985-08-14 東レ株式会社 ペンタシル型ゼオライトの製造法
US4582815A (en) 1984-07-06 1986-04-15 Mobil Oil Corporation Extrusion of silica-rich solids
US4579993A (en) * 1984-08-22 1986-04-01 Mobil Oil Corporation Catalyst for methanol conversion by a combination of steaming and acid-extraction
US4572296A (en) 1984-09-20 1986-02-25 Union Oil Company Of California Steam injection method
US5053374A (en) 1987-05-01 1991-10-01 Mobil Oil Corporation Method for preparing a zeolite catalyst bound with a refractory oxide of low acidity
US4793419A (en) 1988-01-04 1988-12-27 Texaco, Inc. Adding lignosulfonate to caustic floods to shift optimal salinity to a higher salinity
US5242676A (en) 1992-05-11 1993-09-07 Mobil Oil Corp. Selective surface dealumination of zeolites using dicarboxylic acid
US5182242A (en) 1992-06-02 1993-01-26 Mobil Oil Corp. Catalysts bound with low acidity refractory oxide
US5516956A (en) * 1994-11-18 1996-05-14 Mobil Oil Corporation Dual bed xylene isomerization
WO2001007158A1 (en) * 1999-07-27 2001-02-01 Shell Internationale Research Maatschappij B.V. Method for impregnation of molecular sieve-binder extrudates
US6709570B1 (en) * 1999-09-27 2004-03-23 Shell Oil Company Method for preparing a catalyst
US20050199395A1 (en) 2004-03-10 2005-09-15 Berger Paul D. Oil recovery method using alkali and alkylaryl sulfonate surfactants derived from broad distribution alpha-olefins
MXPA06011818A (es) 2004-04-13 2007-04-02 Coriba Technologies L L C Composicion y proceso para recuperacion mejorada de petroleo.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009067A1 (en) * 1999-08-03 2001-02-08 Mobil Oil Corporation Plural stage toluene disproportionation process minimizing ethylbenzene production
EP2027917A1 (en) * 2007-07-31 2009-02-25 Shell Internationale Researchmaatschappij B.V. Catalyst composition, its preparation and use
WO2009105248A1 (en) * 2008-02-21 2009-08-27 Exxonmobil Research And Engineering Company Production of shaped silica-rich bodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108367279A (zh) * 2015-12-17 2018-08-03 国际壳牌研究有限公司 催化剂组合物、其制备方法和使用这类组合物的方法
CN108367279B (zh) * 2015-12-17 2021-06-04 国际壳牌研究有限公司 催化剂组合物、其制备方法和使用这类组合物的方法
CN114829006A (zh) * 2019-12-23 2022-07-29 国际壳牌研究有限公司 催化剂及其在乙苯脱烷基化中的用途

Also Published As

Publication number Publication date
US9604204B2 (en) 2017-03-28
KR20130051447A (ko) 2013-05-20
US20170182483A1 (en) 2017-06-29
US9987623B2 (en) 2018-06-05
US20180099266A1 (en) 2018-04-12
WO2011131635A1 (en) 2011-10-27
SG184066A1 (en) 2012-10-30
KR101844763B1 (ko) 2018-04-03
US20130197290A1 (en) 2013-08-01
US9873111B2 (en) 2018-01-23

Similar Documents

Publication Publication Date Title
US9662641B2 (en) Catalyst composition, its preparation and use
CN102858721A (zh) 制备催化剂载体的方法
US9144790B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
RU2596187C2 (ru) Композиция катализатора конверсии углеводородов
JPS6114117A (ja) 予備成形ゼオライトの合成方法
WO1998054092A1 (en) Preparation of zeolite-bound fau structure type zeolite and use thereof
WO2018065474A1 (en) Alkylaromatic conversion catalyst
EP2022564A1 (en) Catalyst composition, its preparation and use
CA1217160A (en) Process for the dewaxing of hydrocarbon fractions
JP3043747B1 (ja) 軽質リフォ―メ―トの処理方法
JPH0938497A (ja) 芳香族炭化水素変換用触媒及び該変換用触媒を用いた 芳香族炭化水素の変換方法
US20220410131A1 (en) Alkylaromatic conversion catalyst system
RU2493910C1 (ru) Цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола
KR20220113960A (ko) 촉매 및 에틸벤젠 탈알킬화에서의 이의 용도

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20130102

RJ01 Rejection of invention patent application after publication