CN101961819B - Device for realizing laser welding and seam tracking and control method thereof - Google Patents

Device for realizing laser welding and seam tracking and control method thereof Download PDF

Info

Publication number
CN101961819B
CN101961819B CN 200910012657 CN200910012657A CN101961819B CN 101961819 B CN101961819 B CN 101961819B CN 200910012657 CN200910012657 CN 200910012657 CN 200910012657 A CN200910012657 A CN 200910012657A CN 101961819 B CN101961819 B CN 101961819B
Authority
CN
China
Prior art keywords
welding gun
image
motion
beat
seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910012657
Other languages
Chinese (zh)
Other versions
CN101961819A (en
Inventor
姜春英
邹媛媛
柳连柱
吴强
郭奇
康永军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN 200910012657 priority Critical patent/CN101961819B/en
Publication of CN101961819A publication Critical patent/CN101961819A/en
Application granted granted Critical
Publication of CN101961819B publication Critical patent/CN101961819B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

The invention relates to a device for realizing laser welding and seam tracking and a control method thereof. The device of the invention comprises an image collecting and processing unit for collecting and processing the image data of laser welding and seam characteristics and outputting the seam position information, a motion control unit for receiving the seam position information and transmitting a motion control command to a motion shaft actuating mechanism, and an upper parameter setting and control unit for setting the parameters and being respectively connected with the image collecting and processing unit and the motion control unit in a communication mode. The method of the invention comprises the following steps: setting the parameters by utilizing the upper parameter setting and control unit; collecting and processing seam images to obtain the seam image data; caching and calibrating the seam image data, and determining the offset of a welding gun; carrying out filtering, fitting and track planning on tracking tracks by utilizing a motion controller in the motion control unit; and transmitting the result to a motion shaft driver. The invention can be suitable for various seam types and techniques and has the advantages of good generality, strong flexibility, high independence, high precision, accurate positioning, strong adaptability, and the like.

Description

A kind of laser weld seam tracking device and control method thereof
Technical field
Vision measurement and intelligent motion control technology, specifically a kind of laser weld seam tracking device and control method thereof in the present invention and the robot building field.
Background technology
At present, in manufacturing machine people's welding procedure is produced, generally adopt the mode of manually control, robot teaching or off-line programing to carry out path planning and movement programming, just simply repeat predefined action in the welding process.But in laser weld, because it has the technological requirement of high-speed, high precision, therefore higher requirement has been proposed laser welding apparatus.
In existing weld joint tracking implementation, the general sensors such as machinery, electromagnetism, vision that adopt provide weld seam information, are processed by system, realize welding torch position control.But such seam tracking system generally seals, and is sensor and Processing Algorithm for particular system exploitation, lacks general, real-time seam tracking system flexibly and independently.External had the product of ripe laser weld seam tracking system of part, but the comparison system performance is each has something to recommend him, be difficult on the precision and satisfy simultaneously the requirement of laser weld high-speed, high precision on the speed, and system architecture is huge, it is complicated to consist of.
Summary of the invention
For above shortcomings part in the prior art, the technical problem to be solved in the present invention provides a kind of have precision height, location standard, adaptable laser weld seam tracking device and control method thereof.
For solving the problems of the technologies described above, the technical solution used in the present invention is:
A kind of laser weld seam tracking device of the present invention comprises:
IMAQ and processing unit, welding seam position information is processed and exported to the view data of collection laser weld characteristics of weld seam to this view data;
Motion control unit receives above-mentioned welding seam position information and carries out analyzing and processing, sends motion control instruction to kinematic axis executing agency;
Upper-layer parameters arranges and control module, and IMAQ and processing parameter, motion control parameter are set, and carries out communication and is connected with IMAQ and processing unit, motion control unit respectively.
Described IMAQ and processing unit comprise LASER Light Source, optical module and smart camera, and wherein a word linear laser of LASER Light Source generation reflects by welding work pieces, is gathered by smart camera through optical module; Described laser source wavelength is 660nm, and power is that 50mw~100mw is adjustable; Optical filter in the described optical module can see through the light wave of wavelength 660nm.
Described motion control unit comprises motion controller, kinematic axis driver and kinematic axis executing agency, wherein:
Motion controller links to each other by the CAN bus with the smart camera of IMAQ and processing unit take DSP as control core, and the positional information of its input is analyzed, calculated, and obtains the control position information of kinematic axis executing agency;
The kinematic axis driver, the control position information of reception motion controller exports kinematic axis executing agency to, and compensating motion is corrected in the tracking of final welding gun butt welded seam position of realizing.
The control method of a kind of laser weld seam tracking device of the present invention is characterized in that may further comprise the steps:
Beginning is by upper-layer parameters setting and control module parameters;
By IMAQ and processing unit Real-time Collection weld image, and carry out image algorithm and process and to obtain the weld image data;
With the weld image data buffer storage, the rower of going forward side by side is processed surely, determines the welding gun side-play amount that current collection image is corresponding;
Motion controller in the motion control unit carries out filtering, match and the trajectory planning of pursuit path according to above-mentioned welding gun side-play amount;
Above-mentioned result of calculation is given the kinematic axis driver kinematic axis executing agency is implemented control.
Described parameter comprises filtering, the match control algolithm parameter of laser instrument light intensity regulating parameter, workpiece parameter, image processing algorithm parameter and pursuit path computational process.
Described image algorithm is processed by FPGA hardware programming and dsp software programming and is combined to realize, wherein realizes the image preprocessing process by the FPGA hardware programming, may further comprise the steps:
Window to gathering weld image, obtain area-of-interest;
The region of interest area image is carried out medium filtering obtain image after the filtering;
Image after the filtering is carried out the binary picture image intensifying to be processed;
Image after the binaryzation is implemented the morphology processing of dilation and erosion;
Image behind the dilation and erosion is carried out edge extracting;
Image after edge extracts carries out central line pick-up;
By dsp software programming realization character point leaching process, may further comprise the steps:
Adopt least square method to carry out fitting a straight line to processed the center line that obtains by FPGA;
By finding maximum corner position to find characteristic point, realization character point extracts.
Described definite welding gun side-play amount corresponding to current collection image may further comprise the steps:
Optical plane uniformly-spaced is divided into rectangular mesh by density, and each grid vertex is the characteristic point of prior demarcation;
In as the plane, have and the corresponding grid of optical plane, carry out the actual measurement of grid each point by Position Control, obtain the corresponding optical plane physical coordinates of image coordinate (u, the v) (x on irregular grid summit in the picture plane w, y w, z w), obtain corresponding relation database table;
Process the characteristics of weld seam dot information that obtains for above-mentioned image, be any to be calibrated some P (u in the picture plane, v), go out its physical coordinates by the little quadrilateral mesh interpolation calculation of surrounding this point to be calibrated in the above-mentioned related table of having set up, obtain the three-dimensional coordinate P (x of actual welds point w, y w, z w).
Determine to be fixed in the tracking displacement of the welding gun butt welded seam in the kinematic axis executing agency by three-dimensional coordinate (x, y, z) and camera and welding gun physical location relation.
The filtering of described pursuit path, match are also calculated trace point and movement instruction planning function in real time, and implementation procedure may further comprise the steps:
Motion controller adopts the welding gun offset information of timer interrupt mode reading images acquisition and processing unit;
The welding gun offset information that apparent distance scope obtains before the motion controller pursuit path filtration module is as the filtering input message, filtering parameter (such as intermediate value or Mean Filtering Algorithm and 3 or 5 filtering parameters) by the host computer transmission carries out the selection of algorithm and parameter, 2 times of forward sight distances are set as the length of filter window, finish filtering and calculate, output is through the welding gun side-play amount after the filtering;
The pursuit path fitting module with the output quantity of filtration module as input, fitting parameter by host computer transmission carries out the selection of approximating method (such as least square or Cubic Spline Fitting) and match window size (such as parameter setting or forward sight apart from the multiple setting), finish the Fitting Calculation, and the division that the line segment after the match is controlled the welding gun side-play amount according to the time beat synchronous with gathering beat is calculated in real time;
The output quantity of tracking trajectory planning module after with the Fitting Calculation by leading deviation computational methods, calculated the rectification side-play amount that current welding gun need to be followed the tracks of compensating motion as input, and carries out movement instruction planning according to the control beat of 10 milliseconds of predetermined multiples.
Described leading deviation computational methods are as follows:
When welding gun forward travel distance during less than or equal to L, welding gun from the position " n " correction value of " n+1 " is to the position:
Delta n + 1 = Dist n + 1 - Σ p = 1 n Delta p ( n + 1 ≤ M , n , p ⊆ Z ) ; The welding gun forward travel distance is less than or equal to L; Wherein:
M is the forward sight distance L length welding gun beat number that advances, and namely welding gun begins the processing picture number before the real-time tracking;
Welding gun when n is the leading deviate of current calculating advances and controls the last beat number of beat;
P is a certain beat before the current location;
Dist N+1The distance that departs from initial position for the current location welding gun;
Delta pCorrection value for the relatively last beat of a certain beat horizontal level before the current location;
Delta N+1Correction value for the relatively last beat of current location position.
The correction value computing formula is behind the welding gun in-position " M ":
Delta M + n + 1 = Dist M + n + 1 - Σ p = n + 2 M + n Delta p ( n , p ⊆ Z ) ;
Wherein:
M, the p implication is the same;
N controls the last beat number of beat for beginning from initial position to advance apart from the current location welding gun that begins length after to calculate through first forward sight;
Dist M+n+1The distance that departs from initial position for the current location welding gun;
Delta pCorrection value for the relatively last beat of a certain beat horizontal level before the current location;
Delta M+n+1Correction value for the relatively last beat of current location position.
The present invention has following beneficial effect and advantage:
1. use the inventive method and device can adapt to multiple weld seam type and technique, locate in the time of can realizing the high-precision real of position while welding, have the advantages such as versatility is good, flexibility is strong and independence is high and precision is high, location standard, strong adaptability.The present invention can adapt to V-arrangement interface, overlap joint and etc. the multiple weld seam types such as slab, unequal thickness plate docking, gather the laser welded seam image, extract the weld bead feature points position; Smart camera provides network interface to realize that host computer arranges the running parameter of camera, and the weld joint tracking position data that provides the CAN communication interface to carry out after image is processed is transmitted; Motion control DSP has to the simulated power control interface of linear laser device and to the signal interactive interface of PLC; After finishing parameter and arrange for a kind of operating mode, system can break away from the automatic weld joint tracking of host computer complete independently.
2. the present invention is directed to V-arrangement interface, overlap joint with etc. the multiple weld seam types such as slab, unequal thickness plate docking different operating condition designs different parameters be used for the weld image processing module, and according to smart camera and the connected mode that connects firmly of following the tracks of executing agency, developed leading deviation Weld Seam Tracking Control algorithm, to adapt to the weld joint tracking requirement of multiple welds types operating mode.
Description of drawings
Fig. 1 is the structured flowchart of laser weld seam tracking device of the present invention;
Fig. 2 is the inventive method control flow chart;
Fig. 3 is the structured flowchart of smart camera in the laser weld seam tracking device;
Fig. 4 is the functional flow diagram of smart camera in the laser weld seam tracking device;
Fig. 5 is motion control unit functional flow diagram in the laser weld seam tracking device;
Fig. 6 is the calibrating function schematic diagram of smart camera in the laser weld seam tracking device;
Fig. 7 is that the laser weld seam tracking device switch board is arranged schematic diagram;
Fig. 8 is embodiment of the invention structural representation;
Fig. 9~Figure 15 is treatment effect figure ()~(seven) that image of the present invention is processed each step;
Figure 16 follower and weld seam relative position schematic diagram.
The specific embodiment
Apparatus of the present invention structure comprises as shown in Figure 1:
IMAQ and processing unit, welding seam position information is processed and exported to the view data of collection laser weld characteristics of weld seam to this view data;
Motion control unit receives above-mentioned welding seam position information and carries out analyzing and processing, sends motion control instruction to kinematic axis executing agency;
Upper-layer parameters arranges and control module, and IMAQ and processing parameter, motion control parameter are set, and carries out communication and is connected with IMAQ and processing unit, motion control unit respectively.
Described IMAQ and processing unit comprise LASER Light Source, optical module and smart camera, and wherein a word linear laser of LASER Light Source generation reflects by welding work pieces, is gathered by smart camera through optical module.
Described motion control unit comprises motion controller, kinematic axis driver and kinematic axis executing agency, wherein:
Motion controller links to each other by the CAN bus with the smart camera of IMAQ and processing unit take DSP as control core, and the positional information of its input is analyzed, calculated, and obtains the control position information of kinematic axis executing agency;
The kinematic axis driver receives the control position information of motion controller, exports to kinematic axis executing agency, thereby finishes the tracking rectification compensating motion of the welding gun butt welded seam position that the present invention institute will finally realize.
As shown in Figure 8, the smart camera 3 in the system connects firmly with following the tracks of executing agency 10, and welding welding-gun 9 connects firmly with executing agency 10.IMAQ and processing unit 4 interior semiconductor one word linear laser device 1, optical filter 2 and the smart cameras 3 of having encapsulated.The 1st perforate 6 of outer cover top, be used for drawing the connection of power line, laser power analog control signal line and smart camera CAN Bus and the ethernet lan of laser instrument and smart camera, the 1st, 2 perforates 7,8 are as the going out of IMAQ and processing unit 4 air cooling systems, air intake.Single-piece frame and welding gun 9 are rigidly connected, mounting distance accurately guarantees by installing hole, be and integrated connection in executing agency 10, thereby executing agency 10 can realize that welding gun 9 is with respect to the adjustment of position while welding, in the present embodiment with what direction perpendicular to the bead direction motion? be defined as Y-direction.Executing agency 10 is fixed on the welding equipment by support 11 integral body.As shown in Figure 7, motion control unit and upper-layer parameters setting and control module integrated installation are in switch board, wherein the kinematic axis driver in the motion control unit is that servo-driver is installed in the switch board below, the industrial control computer of motion controller DSP2812 and employing Windows system is the top that upper-layer parameters setting and control module are installed on respectively switch board, the spare interface connection layout is as smart camera cable in the sampling and processing unit 4, outside PLC (realizing external control for linking to each other with other system) and system power supply etc., the switch board guidance panel is equipped with display and various indicator lamp, button and emergency stop switch.
The laser beam that semiconductor one word linear laser device 1 sends produces the structured light plane, shines the welding work pieces surface, forms the feature laser stripe of weld seam 5, laser focus is 110mm, the focal position live width is 0.044mm, and power is 50~100mw, and wavelength is 660nm.Optical filter 2 can be through the light wave of wavelength 660nm.Smart camera 3 gathers the laser stripe image that is formed by laser instrument 1.
Laser weld seam tracking system total working flow process may further comprise the steps as shown in Figure 2:
Beginning is by upper-layer parameters setting and control module parameters;
By IMAQ and processing unit Real-time Collection weld image, and carry out image algorithm and process and to obtain the weld image data;
With the weld image data buffer storage, the rower of going forward side by side is processed surely, determines the welding gun side-play amount that current collection image is corresponding;
Motion controller in the motion control unit carries out filtering, the match of pursuit path and calculates in real time the planning of trace point and movement instruction according to above-mentioned welding gun side-play amount;
Above-mentioned result of calculation is given the kinematic axis driver kinematic axis executing agency is implemented control.
At first, by upper-layer parameters setting and control module parameters, comprise 1) laser instrument light intensity regulating parameter, be transferred to slave computer DSP2812 by serial ports, by its simulation control interface the laser instrument light intensity is being controlled; 2) selection of the interface shapes such as V word interface, docking, overlap joint and etc. the selection of slab, unequal thickness plate welding condition, and the relevant parameter of the size of windowing, filtering scheduling algorithm is transferred to smart camera by the lan network interface; 3) set the filtering of tracking system pursuit path, fitting parameter, be transferred to the DSP2812 motion control unit by serial ports.
Then, by IMAQ and processing unit Real-time Collection weld image, and carry out image algorithm and process and to obtain the weld image data; With the weld image data buffer storage, the rower of going forward side by side is processed surely, determines the welding gun side-play amount that current collection image is corresponding, and detailed process is as follows:
IMAQ and processing unit Real-time Collection also carry out the weld image processing capacity and are finished by smart camera, the composition structure of smart camera as shown in Figure 3, the course of work as shown in Figure 4, now specifically describe as follows: the optical pickocff of camera carries out IMAQ according to certain beat, rhythm control, time for exposure and the size of windowing wait relevant parameter to be finished by the LAN LAN interface by host computer and preset, FPGA reads and gathers the original image that is stored in " frame buffer ", and carry out the hard-wired image processing function of FPGA, comprise and windowing, filtering, binaryzation, dilation and corrosion, edge extracting and axis of a weld extract, image processing effect is seen Fig. 9~15, wherein Fig. 9 is the original weld image with the sign of windowing, Figure 10 is the region of interest area image after windowing, Figure 11 is the image after filtering is processed, Figure 12 is the image after the binary conversion treatment, Figure 13 is the image after dilation and corrosion is processed, Figure 14 is the image after edge extracting is processed, the image after line drawing is processed centered by Figure 15.The axis of a weld view data of extracting stores in " image buffer storage ", magazine DSP takes out the axis of a weld view data and is stored in " synchronous DRAM " associated with it from " image buffer storage ", and it is carried out the position while welding feature point extraction process (as shown in figure 15), data are stored in " read-only storage ".Simultaneously, the DSP butt welded seam view data in the smart camera is demarcated processing, determines the side-play amount of the welding gun phase butt welded seam that current collection picture position is corresponding, sends the welding gun side-play amount to motion control unit by the CAN Bus interface at last.
Wherein, calibration principle figure as shown in Figure 6, process is as follows:
Optical plane uniformly-spaced is divided into rectangular mesh by certain density, and each grid vertex is the characteristic point of prior demarcation, has in as the plane and the corresponding grid of optical plane, because lens distortion, these grids become irregular quadrangle; By carrying out a series of accurate experiment measurings, can obtain the corresponding optical plane physical coordinates of image coordinate (u, the v) (x on irregular grid summit in the picture plane w, y w, z w), obtain corresponding relation database table; Process the characteristics of weld seam dot information that obtains for above-mentioned image, be any to be calibrated some P (u in the picture plane, v), can go out its physical coordinates by the little quadrilateral mesh interpolation calculation of surrounding this point to be calibrated in the above-mentioned related table of having set up, obtain the three-dimensional coordinate P (x of actual welds point w, y w, z w).
Before system starts working, need to carry out Zero calibration by accurate measurement, namely demarcate certain any physics corresponding relation on the dead-center position executing agency of regulation and picture plane.Because smart camera is fixed on executing agency and welding gun, therefore by this corresponding relation, can will correspond on the welding gun physical location as certain some position on the plane.
Then, the DSP2812 motion controller in the motion control unit carries out filtering, the match of pursuit path and calculates in real time the planning of trace point and movement instruction according to above-mentioned welding gun side-play amount;
The amount that kinematic axis executing agency implements control is the rectification side-play amount that current welding gun need to be followed the tracks of compensating motion, be that welding gun advances to the correct amount that next position is needing perpendicular to bead direction from a position, to obtain image constantly to be fixed in welding gun in the kinematic axis executing agency and the relative displacement of weld seam and processing result image embodies, be not the motion control correct amount of above-mentioned needs, so must carry out motion planning to the result of IMAQ and processing unit gained.
Before motion planning, in order to guarantee motion stabilization, need first the pursuit path data to be carried out filtering, match and calculated in real time trace point.
The DSP motion controller adopts the welding gun offset information of timer interrupt mode reading images acquisition and processing unit, and the timing beat is designed to 10 milliseconds;
Apparent distance scope is (in Fig. 8 before the DSP motion controller pursuit path filtration module (as shown in Figure 5), laser stripe 5 and the vertical range D of welding gun 9 between the projection on the workpiece) the welding gun offset information that obtains is as the filtering input message, filtering parameter (such as intermediate value or Mean Filtering Algorithm and 3 or 5 filtering parameters) by host computer (being upper-layer parameters setting and control module) transmission carries out the selection of algorithm and parameter, 2 times of forward sight distances are set as the length of filter window, finish filtering and calculate, output is through the welding gun side-play amount after the filtering.
The output quantity of pursuit path fitting module (as shown in Figure 5) is as input, fitting parameter by host computer transmission carries out the selection of approximating method (such as least square or Cubic Spline Fitting) and match window size (such as parameter setting or forward sight apart from the multiple setting), finish the Fitting Calculation, and the division that the line segment after the match is controlled the welding gun side-play amount according to the time beat synchronous with gathering beat is calculated in real time.
Tracking trajectory planning module (as shown in Figure 5) with the output quantity after the Fitting Calculation as input, calculate the rectification side-play amount that current welding gun need to be followed the tracks of compensating motion by leading deviation computational methods, and carry out movement instruction planning according to the control beat of 10 milliseconds of predetermined multiples.Leading deviation is calculated Method And Principle figure as shown in figure 16, and detailed process is as follows:
Because camera is positioned at the place ahead of welding gun, so the tracking lag of welding gun butt welded seam is in image processing process, the picture number that begins to process the real-time tracking to welding gun from camera collection the first width of cloth image, it is the picture number that gathers in the forward sight distance range, can adopt following formula to calculating, as shown in figure 16, be the deviation schematic diagram of weld seam and welding gun.
M = L v · t p - - - ( 1 )
In the formula: M is for processing picture number; L is distance between welding gun and the camera, i.e. the forward sight distance; V is speed of welding; t pFor processing the frame weld image time.
The meaning of following formula: because welding gun just begins to carry out real-time tracking after will arriving the camera initial position, namely pass through the length L of forward sight distance, so at first calculate from the welding gun begin column and go to welding gun arrival camera initial position required time (L/v), process the used time t of a two field picture with this time divided by smart camera again p, i.e. (L/ (vt p)), obtain the processing picture number (M) before welding gun begins real-time tracking.
In actual applications, what the present invention was concerned about is that welding gun advances to the correct amount that next position needs in the horizontal direction from a position, and the processing result image embodiment is the relative position that obtains this moment welding gun of image and weld seam, be not the correct amount that the present invention needs, so must the result that image is processed gained be adjusted.The welding gun of the processing result image of position if " n " and the distance Dist of weld seam center nExpression, from the position " n-1 " to the position horizontal direction correction value Delta of " n " nExpression.Dist nAnd Delta nBe signed number, the Dist when the definition weld seam is positioned at the welding gun right side nAnd Delta nFor just, corresponding Dist when being positioned at the welding gun left side nAnd Delta nFor negative.
By primary condition as can be known, to advance to camera initial position (being made as a reset) front when welding gun, do not carry out the position adjustment of any horizontal direction, when arriving the camera initial position, welding gun is over against weld seam, and welding gun advances to the required horizontal level correction value (Delta of a set by the position reset 1) calculate the deviate Dist of gained before equaling 1No longer be the processing result image Dist that obtains and advance to position " 2 " horizontal direction correction value from the position set 2, must correct this result, it is as follows to correct formula:
Delta 2=Dist 2-Delta 1 (2)
" 2 " correction value of " 3 " is welding gun to the position from the position:
Delta 3=Dist 2-Delta 1-Delta 2 (3)
The rest may be inferred, from the position " n " correction value of " n+1 " is to the position:
Delta n + 1 = Dist n + 1 - Σ p = 1 n Delta p ( n + 1 ≤ M , n , p ⊆ Z ) - - - ( 4 )
Top formula is applicable to the welding gun forward travel distance less than or equal to the situation of L.
When welding gun from the position " M " (position " M " expression welding gun begins first forward sight distance and position of beginning from initial position before the real-time tracking here) when advancing to position " M+1 ", situation changes.The camera weld image that " M+1 " locates to obtain in the position is corresponding to welding gun (being the camera center) translation Delta in the horizontal direction 1Distance, namely this moment image horizontal reference be the abscissa of position set, rather than the abscissa of reset before this, so the welding gun correction value that " M " advances to position " M+1 " from the position is:
Delta M + 1 = Dist M + 1 - Σ p = 2 M Delta p ( p ⊆ Z ) - - - ( 5 )
The processing result image of namely using position " M+1 " to locate deduct welding gun from the position set to the position " M " displacement sum in the horizontal direction be exactly from the position " M " to the position horizontal direction correction value of " M+1 ".
In like manner, the weld image that the position " M+2 " that obtains when welding gun in-position " 2 " is located, and obtain corresponding Dist by image processing algorithm M+2, for obtain from the position " M+1 " to the position correction value Delta of " M+2 " M+2, need to be from Dist M+2Deduct from the position " 2 " to the position " M+1 " welding gun displacement sum in the horizontal direction, that is:
Delta M + 2 = Dist M + 2 - Σ p = 3 M + 1 Delta p ( p ⊆ Z ) - - - ( 6 )
So the general correction value computing formula after welding gun in-position " M " is:
Delta M + n + 1 = Dist M + n + 1 - Σ p = n + 2 M + n Delta p ( n , p ⊆ Z ) - - - ( 7 )
Above (4), (7) two formula be applicable to the various position relationships that welding gun and weld seam exist, be above-mentioned leading deviation computational methods.
At last, above-mentioned movement instruction is given the kinematic axis driver by the pwm signal of motion controller DSP2812 kinematic axis executing agency is implemented the motion of control realization weld joint tracking.

Claims (6)

1. laser weld seam tracking device is characterized in that comprising:
IMAQ and processing unit, the view data of collection laser weld characteristics of weld seam is carried out this view data
Process and the output welding seam position information;
Motion control unit receives above-mentioned welding seam position information and carries out analyzing and processing, sends motion control instruction to kinematic axis executing agency;
Upper-layer parameters arranges and control module, and IMAQ and processing parameter, motion control parameter are set, and carries out communication and is connected with IMAQ and processing unit, motion control unit respectively;
Described IMAQ and processing unit comprise LASER Light Source, optical module and smart camera, and wherein a word linear laser of LASER Light Source generation reflects by welding work pieces, is gathered by the smart camera with DSP and FPGA through optical module;
Described laser source wavelength is 660nm, and power is that 50mw~100mw is adjustable;
Optical filter in the described optical module can see through the light wave of wavelength 660nm;
Described motion control unit comprises motion controller, kinematic axis driver and kinematic axis executing agency, wherein:
Motion controller links to each other by the CAN bus with the smart camera of IMAQ and processing unit take DSP as control core, and the positional information of its input is analyzed, calculated, and obtains the control position information of kinematic axis executing agency;
The kinematic axis driver, the control position information of reception motion controller exports kinematic axis executing agency to, realizes that finally compensating motion is corrected in the tracking of welding gun butt welded seam position.
2. the control method of a laser weld seam tracking device is characterized in that may further comprise the steps:
Beginning is by upper-layer parameters setting and control module parameters;
By IMAQ and processing unit Real-time Collection weld image, and carry out image algorithm and process and to obtain the weld image data;
With the weld image data buffer storage, the rower of going forward side by side is processed surely, determines the welding gun side-play amount that current collection image is corresponding;
Motion controller in the motion control unit carries out filtering, match and the trajectory planning of pursuit path according to above-mentioned welding gun side-play amount;
Above-mentioned result of calculation is given the kinematic axis driver kinematic axis executing agency is implemented control;
Described image algorithm is processed by FPGA hardware programming and dsp software programming and is combined to realize, wherein realizes the image preprocessing process by the FPGA hardware programming, may further comprise the steps:
Window to gathering weld image, obtain area-of-interest;
The region of interest area image is carried out medium filtering obtain image after the filtering;
Image after the filtering is carried out the binary picture image intensifying to be processed;
Image after the binaryzation is implemented the morphology processing of dilation and erosion;
Image behind the dilation and erosion is carried out edge extracting;
Image after edge extracts carries out central line pick-up;
By dsp software programming realization character point leaching process, may further comprise the steps:
Adopt least square method to carry out fitting a straight line to processed the center line that obtains by FPGA;
By finding maximum corner position to find characteristic point, realization character point extracts.
3. by the control method of laser weld seam tracking device claimed in claim 2, it is characterized in that:
Described parameter comprises filtering, the match control algolithm parameter of laser instrument light intensity regulating parameter, workpiece parameter, image processing algorithm parameter and pursuit path computational process.
4. by the control method of laser weld seam tracking device claimed in claim 2, it is characterized in that: described definite welding gun side-play amount corresponding to current collection image may further comprise the steps:
Optical plane uniformly-spaced is divided into rectangular mesh by density, and each grid vertex is the characteristic point of prior demarcation;
In as the plane, have and the corresponding grid of optical plane, carry out the actual measurement of grid each point by Position Control, obtain the corresponding optical plane physical coordinates of image coordinate (u, the v) (x on irregular grid summit in the picture plane w, y w, z w), obtain corresponding relation database table;
Process the characteristics of weld seam dot information that obtains for above-mentioned image, be any to be calibrated some P (u in the picture plane, v), go out its physical coordinates by the little quadrilateral mesh interpolation calculation of surrounding this point to be calibrated in the above-mentioned related table of having set up, obtain the three-dimensional coordinate P (x of actual welds point w, y w, z w);
Determine to be fixed in the tracking displacement of the welding gun butt welded seam in the kinematic axis executing agency by three-dimensional coordinate (x, y, z) and camera and welding gun physical location relation.
5. by the control method of laser weld seam tracking device claimed in claim 3, it is characterized in that: the filtering of described pursuit path, match are also calculated trace point and movement instruction planning function in real time, and implementation procedure may further comprise the steps:
Motion controller adopts the welding gun offset information of timer interrupt mode reading images acquisition and processing unit;
The welding gun offset information that apparent distance scope obtains before the motion controller pursuit path filtration module is as the filtering input message, filtering parameter by the host computer transmission carries out the selection of algorithm and parameter, 2 times of forward sight distances are set as the length of filter window, finish filtering and calculate, output is through the welding gun side-play amount after the filtering;
The pursuit path fitting module with the output quantity of filtration module as input, fitting parameter by the host computer transmission carries out the selection of approximating method and match window size, finish the Fitting Calculation, and the division that the line segment after the match is controlled the welding gun side-play amount according to the time beat synchronous with gathering beat is calculated in real time;
The output quantity of tracking trajectory planning module after with the Fitting Calculation by leading deviation computational methods, calculated the rectification side-play amount that current welding gun need to be followed the tracks of compensating motion as input, and carries out movement instruction planning according to the control beat of 10 milliseconds of predetermined multiples.
6. by the control method of laser weld seam tracking device claimed in claim 5, it is characterized in that: described leading deviation computational methods are as follows:
When welding gun forward travel distance during less than or equal to L, welding gun from the position " n " correction value of " n+1 " is to the position:
Delt a n + 1 = Dist n + 1 - Σ p = 1 n Delta p ( n + 1 ≤ M , n , p ⊆ Z ) ; The welding gun forward travel distance is less than or equal to L; Wherein:
M is the forward sight distance L length welding gun beat number that advances, and namely welding gun begins the processing picture number before the real-time tracking;
Welding gun when n is the leading deviate of current calculating advances and controls the last beat number of beat;
P is a certain beat before the current location;
Dist N+1The distance that departs from initial position for the current location welding gun;
Delta pCorrection value for the relatively last beat of a certain beat horizontal level before the current location;
Delta N+1Correction value for the relatively last beat of current location position;
The correction value computing formula is behind the welding gun in-position " M ":
Delta M + n + 1 = Dist M + n + 1 - Σ p = n + 2 M + n Delta p ( n . p ⊆ Z ) ;
Wherein:
M, the p implication is the same;
N controls the last beat number of beat for beginning from initial position to advance apart from the current location welding gun that begins length after to calculate through first forward sight;
Dist M+n+1The distance that departs from initial position for the current location welding gun;
Delta pCorrection value for the relatively last beat of a certain beat horizontal level before the current location;
Delta M+n+1Correction value for the relatively last beat of current location position.
CN 200910012657 2009-07-22 2009-07-22 Device for realizing laser welding and seam tracking and control method thereof Expired - Fee Related CN101961819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910012657 CN101961819B (en) 2009-07-22 2009-07-22 Device for realizing laser welding and seam tracking and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910012657 CN101961819B (en) 2009-07-22 2009-07-22 Device for realizing laser welding and seam tracking and control method thereof

Publications (2)

Publication Number Publication Date
CN101961819A CN101961819A (en) 2011-02-02
CN101961819B true CN101961819B (en) 2013-10-30

Family

ID=43514956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910012657 Expired - Fee Related CN101961819B (en) 2009-07-22 2009-07-22 Device for realizing laser welding and seam tracking and control method thereof

Country Status (1)

Country Link
CN (1) CN101961819B (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615429A (en) * 2012-04-18 2012-08-01 深圳市恒毅兴实业有限公司 Welding method and welding system based on welding points of disconnector of surge protector
CN102699489B (en) * 2012-06-28 2014-12-31 昆山工研院工业机器人研究所有限公司 Method and system allowing robot to be self-adaptive to width of groove weld
CN102922114B (en) * 2012-10-09 2016-05-25 上海工程技术大学 A kind of meticulous tracking system of micro-plasma arc welding of ultra-thin fine texture part
CN103810459A (en) * 2012-11-07 2014-05-21 上海航天设备制造总厂 Image recognition device and solar array welding system by using same
CN103810458A (en) * 2012-11-07 2014-05-21 上海航天设备制造总厂 Image recognition method
CN103008881A (en) * 2012-12-05 2013-04-03 中国电子科技集团公司第四十五研究所 Seam tracking method based on template matching
CN103018154B (en) * 2012-12-05 2016-04-27 中国电子科技集团公司第四十五研究所 A kind of multizone image detecting method traveling through crystal grain irregular area
CN103170778B (en) * 2013-04-01 2015-06-24 大连海事大学 Welded joint automatic tracking system
CN103418950A (en) * 2013-07-03 2013-12-04 江南大学 Automatic posture adjusting method for industrial welding robot in seam tracking process
CN103567607A (en) * 2013-11-06 2014-02-12 广东德科机器人技术与装备有限公司 Welding-seam tracking method
CN103752992B (en) * 2014-01-03 2016-01-20 杭州菲达环保技术研究院有限公司 A kind of angle welding recognition device and welding control method thereof
CN103759648B (en) * 2014-01-28 2016-05-25 华南理工大学 A kind of complicated angle welding method for detecting position based on Binocular stereo vision with laser
CN104057202B (en) * 2014-07-11 2016-04-13 华南理工大学 Based on the autonomous welding system of remote monitoring mobile robot and the method for FPGA
CN104162752B (en) * 2014-08-12 2016-02-03 河北工业大学 Sheet metal lap weld little characteristic point four head serial vision-based detection tracking means
CN105759842A (en) * 2014-12-16 2016-07-13 天津微神自动化科技有限公司 Fully automatic visual three-axis motion platform control system
CN104722922B (en) * 2014-12-23 2017-12-15 张家港浦项不锈钢有限公司 Laser welder dynamic welding method
CN105171258B (en) * 2015-08-12 2017-12-19 上海先德机械工程有限公司 Steel plate splicing straight seam welding method and system
CN105171289B (en) * 2015-09-30 2017-10-31 厦门理工学院 Become the cut deal multi-layer multi-pass welding method for planning track of groove width
CN105446360A (en) * 2015-11-16 2016-03-30 深圳市神视检验有限公司 Automatic tracking method and automatic tracking apparatus based on welding seam
CN105467930B (en) * 2015-11-28 2021-08-17 张碧陶 Machine vision and motion controller and servo driver integrated control system
CN105522290B (en) * 2015-12-22 2018-03-13 无锡洲翔成套焊接设备有限公司 Ripple Sternum welds algorithm
JP6601285B2 (en) * 2016-03-15 2019-11-06 オムロン株式会社 Laser processing system and processing control method
CN106181162B (en) * 2016-08-12 2018-10-23 中国矿业大学 A kind of real-time weld joint tracking detection method based on machine vision
CN106312301A (en) * 2016-09-29 2017-01-11 哈尔滨理工大学 Weld joint tracking system based on image processing
CN106737733B (en) * 2016-12-22 2019-04-30 江苏工程职业技术学院 One kind climbing wall concrete curing robot control method
US10987749B2 (en) * 2017-01-04 2021-04-27 Illinois Tool Works Inc. Methods and systems for indicating a schedule in a welding-type torch
US10702941B2 (en) * 2017-02-27 2020-07-07 General Electric Technology Gmbh System, method and apparatus for welding tubes
CN107598363A (en) * 2017-09-22 2018-01-19 惠州市洛玛科技有限公司 The method of welding system and welding product
CN107598367A (en) * 2017-09-28 2018-01-19 惠州市洛玛科技有限公司 Welding equipment and its welding method
CN107649773A (en) * 2017-10-31 2018-02-02 中车四方车辆有限公司 A kind of resistance spot welding positioner and localization method
CN108080827A (en) * 2017-12-04 2018-05-29 北京中电华强焊接工程技术有限公司 A kind of laser tracks large-scale curved plate angle weldering system and method
CN107943056B (en) * 2017-12-25 2020-09-25 成都信息工程大学 Incomplete constraint wheeled robot track tracking control method based on table lookup method
CN108132017B (en) * 2018-01-12 2020-03-24 中国计量大学 Planar weld joint feature point extraction method based on laser vision system
CN108381068A (en) * 2018-02-12 2018-08-10 江苏理工学院 A kind of welding manipulator weld image servo teaching apparatus and teaching method
CN108620714B (en) * 2018-07-06 2020-02-07 太原科技大学 Welding deviation detection system based on GMAW (gas metal arc welding) molten pool profile characteristics and detection method thereof
CN108994488B (en) * 2018-07-13 2020-07-24 上海拓璞数控科技股份有限公司 Weld tracking method, system, device and readable storage medium
CN109128434B (en) * 2018-10-09 2022-03-29 王燕蓉 Fillet weld welding method
CN109483018A (en) * 2018-11-06 2019-03-19 湖北书豪智能科技有限公司 The active vision bootstrap technique of weld seam in automatic welding of pipelines
CN109365960A (en) * 2018-12-07 2019-02-22 北京博清科技有限公司 Welding tracking identifies equipment and welding system
CN109746603B (en) * 2019-03-28 2024-04-09 北部湾大学 Welding system of ship assembling plate frame structure
CN110473165A (en) * 2019-07-02 2019-11-19 深圳市格灵人工智能与机器人研究院有限公司 A kind of welding quality of circuit board detection method and device
CN110271005B (en) * 2019-07-16 2022-03-22 中冶赛迪工程技术股份有限公司 Medium plate robot welding track planning method, equipment and medium
CN110497121A (en) * 2019-08-05 2019-11-26 苏州热工研究院有限公司 The image processing mode of welding bead center tracking in a kind of welding process
CN110455187B (en) * 2019-08-21 2020-06-09 哈尔滨工业大学 Three-dimensional vision-based box workpiece weld joint detection method
CN111014892B (en) * 2019-12-13 2021-11-23 华中科技大学鄂州工业技术研究院 Welding seam track monitoring system
CN111375945B (en) * 2020-01-15 2023-07-21 吉林大学 Gantry type triaxial welding device and welding method capable of automatically identifying weld track
CN111781897B (en) * 2020-07-14 2022-07-19 上海柏楚电子科技股份有限公司 Machining control method, control device, machining control system, and storage medium
CN112207396A (en) * 2020-10-16 2021-01-12 中国化学工程第六建设有限公司 Automatic weld seam tracking and correcting system
CN112669383B (en) * 2020-12-30 2023-04-07 上海新时达机器人有限公司 Tracking method and camera calibration method of assembly line tracking system
CN113333941A (en) * 2021-04-26 2021-09-03 哈尔滨电气动力装备有限公司 Automatic tracking type laser welding method for micro long-distance welding seam of nuclear reactor coolant pump
CN114101850B (en) * 2021-09-14 2023-08-01 福州大学 Intelligent welding system based on ROS platform and working method thereof
CN114326583A (en) * 2021-12-23 2022-04-12 深圳市友睿达科技有限公司 Control system and method of laser welding equipment
CN114346553B (en) * 2022-02-11 2023-11-10 爱派尔(常州)数控科技有限公司 Welding control method, control device and system
CN114633021B (en) * 2022-03-02 2024-03-29 武汉逸飞激光股份有限公司 Real-time vision acquisition laser welding method and device thereof
CN115383262B (en) * 2022-08-12 2023-06-16 华南理工大学 Automatic tracking method and system for weld joint track under laser vision guidance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782659A (en) * 2004-12-02 2006-06-07 中国科学院自动化研究所 Welding seam tracking sight sensor based on laser structure light
CN201034947Y (en) * 2007-05-23 2008-03-12 孙忠诚 Spiral welding line X ray real time digital image-forming detecting and autotracking unit
CN101256399A (en) * 2007-12-27 2008-09-03 清华大学 Double DSP built-in control system for visual feedback during soldering process
CN101456182A (en) * 2007-12-12 2009-06-17 中国科学院自动化研究所 Intelligent robot welding device using large-scale workpiece
CN201514565U (en) * 2009-07-22 2010-06-23 中国科学院沈阳自动化研究所 Laser weld seam tracking device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265962A (en) * 2006-02-28 2007-10-11 Hitachi Ltd Method of laser welding, manufacturing method of control unit, and vehicular control unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782659A (en) * 2004-12-02 2006-06-07 中国科学院自动化研究所 Welding seam tracking sight sensor based on laser structure light
CN201034947Y (en) * 2007-05-23 2008-03-12 孙忠诚 Spiral welding line X ray real time digital image-forming detecting and autotracking unit
CN101456182A (en) * 2007-12-12 2009-06-17 中国科学院自动化研究所 Intelligent robot welding device using large-scale workpiece
CN101256399A (en) * 2007-12-27 2008-09-03 清华大学 Double DSP built-in control system for visual feedback during soldering process
CN201514565U (en) * 2009-07-22 2010-06-23 中国科学院沈阳自动化研究所 Laser weld seam tracking device

Also Published As

Publication number Publication date
CN101961819A (en) 2011-02-02

Similar Documents

Publication Publication Date Title
CN101961819B (en) Device for realizing laser welding and seam tracking and control method thereof
CN201514565U (en) Laser weld seam tracking device
CN110524580B (en) Welding robot vision assembly and measuring method thereof
CN108747132B (en) Autonomous mobile welding robot vision control system
CN103480991B (en) Thin steel plate narrow welding joint online visual inspection and control device
CN104057202B (en) Based on the autonomous welding system of remote monitoring mobile robot and the method for FPGA
EP2997428B1 (en) Robot positioning
CN103418950A (en) Automatic posture adjusting method for industrial welding robot in seam tracking process
CN105364266B (en) A kind of manipulator motion track adjusts system and method
CN204413359U (en) Laser vision welded seam tracing system
CN109202912A (en) A method of objective contour point cloud is registrated based on monocular depth sensor and mechanical arm
CN106041296B (en) A kind of online dynamic vision laser precision machining method
CN105643607A (en) Intelligent industrial robot with sensing and cognitive abilities
CN110706184A (en) Method for correcting offset of laser galvanometer
WO2010091086A1 (en) Method of controlling a robotic tool
CN114043087B (en) Three-dimensional trajectory laser welding seam tracking attitude planning method
CN102284769A (en) System and method for initial welding position identification of robot based on monocular vision sensing
CN101298116B (en) Non-coaxial positioning method for processing laser material
CN104325268A (en) Industrial robot three-dimensional space independent assembly method based on intelligent learning
CN114434059B (en) Automatic welding system and method for large structural part with combined robot and three-dimensional vision
CN107378246A (en) A kind of method and system for correcting laser welding track
CN114474041A (en) Welding automation intelligent guiding method and system based on cooperative robot
CN103713579A (en) Industrial robot operation method
CN104552299A (en) Robot off-line teaching device and compensation teaching method
CN105487558A (en) Object following system based on mobile robot and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131030

Termination date: 20170722