CN101560251B - Associated protein for plant root growth and encoding gene and application thereof - Google Patents

Associated protein for plant root growth and encoding gene and application thereof Download PDF

Info

Publication number
CN101560251B
CN101560251B CN2008101040829A CN200810104082A CN101560251B CN 101560251 B CN101560251 B CN 101560251B CN 2008101040829 A CN2008101040829 A CN 2008101040829A CN 200810104082 A CN200810104082 A CN 200810104082A CN 101560251 B CN101560251 B CN 101560251B
Authority
CN
China
Prior art keywords
sequence
nucleotide
plant
root growth
associated protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101040829A
Other languages
Chinese (zh)
Other versions
CN101560251A (en
Inventor
李传友
韦丽荣
蒋红玲
吴晓燕
孙加强
李常保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN2008101040829A priority Critical patent/CN101560251B/en
Publication of CN101560251A publication Critical patent/CN101560251A/en
Application granted granted Critical
Publication of CN101560251B publication Critical patent/CN101560251B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses an associated protein for plant root growth and an encoding gene and application thereof. The protein is provided with one of the following amino acid residue sequences: (1) SEQ ID No.3 amino acid residue sequence in the sequence table; and (2) protein which is formed by substituting and/or deleting and/or adding one or a few SEQ ID No.3 amino acid residues in the sequence table and has associated protein activity for plant root growth. The associated protein for plant root growth and the encoding gene thereof can promote the growth of the plant root, and play great role in promoting the root system of plant, improving the yield and improving the variety of the plant (particularly crops).

Description

Associated protein for plant root growth and encoding sox thereof and application
Technical field
The present invention relates to a kind of associated protein for plant root growth and encoding sox thereof and application, particularly relate to associated protein for plant root growth and encoding sox and their application in growth and development of plants that derives from Arabidopis thaliana.
Background technology
As higher organism, the difference of the maximum of Plants and Animals be plant must set growth, the fixing and nutritive substance of this growth draw the growth that must depend on root system of plant consumingly.So growing of root system plays crucial effects for the whole good growth of plant.No matter be monocotyledons or dicotyledons, though the structure of root system and form are different, all to form for sophisticated by root cap district, meristematic zone, elongation zone and maturation zone four parts, wherein every part is all being carried out different functions.Root cap is made up of central root cap cell and side root cap cell, and along with the continuous growth of the tip of a root, thereby root cap cell detachment has foremost played the effect of protection to the tip of a root; Central root cap cell contains a large amount of starch small graiies simultaneously, plays the effect of experiencing gravity, thereby makes the root of plant produce geotropic growth.Meristematic zone is made up of the cell that is in division stage, and the continuous division of these cells just makes the number of cell increase, and root is constantly grown.The elongation zone is made up of the cell between splitting status and differentiation state, is the transitory stage between the two.The maturation zone is made up of well differentiated cell, and the cell size and form of these differentiation and maturations no longer changes, and carries out different functions separately.
The stem cell that is called as initiating cell in the Arabidopis thaliana root meristematic tissue has produced various types of cells in every confluent monolayer cells layer through the spatial division, and these cells have been formed a vegetative clone.One in two daughter cells that initiating cell produces through division is once still keeping primitiveness, and the another one cell becomes transit-amplifyingcell (TA cell), this cell through division many times after, be differentiated to form self characteristics.The cell that is centered around the quiescent center (QC) of initiating cell central authorities seldom divides and stem cell has on every side been formed the merismatic stem cell of root habitat (stem cell niche), and QC is the organization center of this niche.QC through with the signal communication of stem cell on every side; Suppress its differentiation; The primitiveness that keeps stem cell, the understanding for these signaling molecule essence at present is very few, but from root meristematic tissue and the merismatic contrast of bud, finds; The initiating cell of root is similar to the merismatic stem cell of bud, and QC is similar to the OC cell of expressing WUS.
In the research of some two mutants of regulating and control the Arabidopis thaliana root growth and gene thereof; The similar signal transduction path of discovery CLV has also been participated in the regulation and control of root stem cell; And the isolation identification of some other two mutants; As wherein shortroot (shr) and scarecrow (scr) two mutants all to show as root short, and these two site mutation have all caused root between epidermis and endodermis, to lack a confluent monolayer cells, it is necessary that SHR and SCR express for the characteristic of keeping QC simultaneously.In addition, the PLT gene also is necessary for the establishment in root stem cell habitat.And PLT and SHR/SCR are two parallel approach in the formation of participating in regulation and control root meristematic tissue stem cell, have regulated and control merismatic formation and growth from embryo's radicle in period to the matured root in seedling stage jointly.
Summary of the invention
The purpose of this invention is to provide a kind of associated protein for plant root growth and encoding sox thereof and application.
Associated protein for plant root growth provided by the present invention, name is called ARD1, derives from Arabidopis thaliana (Arabidopsis thaliana), is (a) or protein (b) as follows:
(a) protein of forming by the amino acid residue sequence of sequence in the sequence table 3;
(b) with the amino acid residue sequence of sequence in the sequence table 3 through the replacement of one or several amino-acid residue and/or disappearance and/or interpolation and have the root growth adjusting function by (a) deutero-protein.
Wherein, the sequence in the sequence table 3 is made up of 500 amino-acid residues.
The encoding sox of above-mentioned associated protein for plant root growth (ARD1) also belongs to protection scope of the present invention.
The cDNA gene of above-mentioned associated protein for plant root growth can have one of following nucleotide sequence:
1) dna sequence dna of sequence 1 in the sequence table;
2) polynucleotide of protein sequence shown in the sequence 3 in the code sequence tabulation;
The nucleotide sequence of the dna sequence dna hybridization that 3) under the rigorous condition of height, can limit with sequence in the sequence table 1.
Wherein, sequence 1 is made up of 1925 deoxynucleotides in the sequence table, and 5 of sequence 1 ' end 268-1770 position nucleotides sequence is classified encoding sequence (ORF) as in sequence table, and coding has the protein of the amino acid residue sequence of sequence 3 in the sequence table.
The genomic gene of above-mentioned associated protein for plant root growth can have one of following nucleotide sequence:
1) dna sequence dna of sequence 2 in the sequence table;
2) polynucleotide of protein sequence shown in the sequence 3 in the code sequence tabulation;
The nucleotide sequence of the dna sequence dna hybridization that 3) under the rigorous condition of height, can limit with sequence in the sequence table 2.
Wherein, Sequence 2 is made up of 4881 Nucleotide in the sequence table; Nucleotide is first exon of this genomic gene from 5 ' end 262-506 position; Nucleotide is first intron of this genomic gene from 5 ' end 507-748 position; Nucleotide is second exon of this genomic gene from 5 ' end 749-820 position; Nucleotide is second intron of this genomic gene from 5 ' end 821-916 position; Nucleotide is the 3rd exon of this genomic gene from 5 ' end 917-1093 position, and Nucleotide is the 3rd intron of this genomic gene from 5 ' end 1094-1178 position, and Nucleotide is the 4th exon of this genomic gene from 5 ' end 1179-1248 position; Nucleotide is the 4th intron of this genomic gene from 5 ' end 1249-1541 position; From 5 ' and end 1542-1829 position Nucleotide be the 5th exon of this genomic gene, Nucleotide is the 5th intron of this genomic gene from 5 ' end 1830-1937 position, from 5 ' to hold 1938-2078 position Nucleotide be the 6th each and every one exon of this genomic gene; Nucleotide is the 6th intron of this genomic gene from 5 ' end 2079-2157 position; Nucleotide is the 7th exon of this genomic gene from 5 ' end 2158-2260 position, and Nucleotide is the 7th intron of this genomic gene from 5 ' end 2261-2352 position, and Nucleotide is the 8th exon of this genomic gene from 5 ' end 2353-2499 position; Nucleotide is the 8th intron of this genomic gene from 5 ' end 2500-3085 position; Nucleotide is the 9th exon of this genomic gene from 5 ' end 3086-3132 position, and Nucleotide is the 9th intron of this genomic gene from 5 ' end 3133-3219 position, and Nucleotide is the tenth exon of this genomic gene from 5 ' end 3220-3273 position; Nucleotide is the tenth intron of this genomic gene from 5 ' end 3274-3345 position; Nucleotide is the 11 exon of this genomic gene from 5 ' end 3346-3464 position, and Nucleotide is the 11 intron of this genomic gene from 5 ' end 3465-3552 position, and Nucleotide is the 12 exon of this genomic gene from 5 ' end 3553-3688 position; Nucleotide is the 12 intron of this genomic gene from 5 ' end 3689-3766 position, and Nucleotide is the 13 exon of this genomic gene from 5 ' end 3767-4092 position.
The rigorous condition of above-mentioned height can be 0.1 * SSPE (or 0.1 * SSC), in the solution of 0.1%SDS, under 65 ℃, hybridize and wash film.
The expression vector, transgenic cell line and the host bacterium that contain the encoding sox of above-mentioned associated protein for plant root growth all belong to protection scope of the present invention.
Utilize plant expression vector, encoding sox (ARD1) importing vegetable cell or tissue with associated protein for plant root growth of the present invention can obtain root development enhanced plant.
When using ARD1 to make up plant expression vector, before its transcription initiation Nucleotide, can add any enhancement type promotor or inducible promoter.For the ease of transgenic plant cells or plant being identified and screening; Can process used plant expression vector, as adding selected marker's (gus gene, luciferase genes etc.) that can in plant, express or antibiotic marker thing (qingfengmeisu qiong affinity tag, kantlex affinity tag etc.) with resistance.From the security consideration of transgenic plant, can not add any selected marker, directly with adverse circumstance screening transformed plant.
Carry ARD1 of the present invention plant expression vector can Ti-plasmids, Ri plasmid, plant viral vector, directly DNA conversion, microinjection, electricity be led, conventional biological method transformed plant cells or tissue such as agriculture bacillus mediated through using, and the plant transformed tissue cultivating is become plant.By the plant transformed host both can be monocotyledonss such as paddy rice, corn, wheat, also can be dicotyledonss such as tomato, Arabidopis thaliana, tobacco, cotton.
Associated protein for plant root growth of the present invention and encoding sox thereof can promote growing of roots of plants, to promoting plant root growth, improve plant biomass, in the improvement of plant (particularly farm crop) kind, play a great role.
Below in conjunction with specific embodiment the present invention is explained further details.
Description of drawings
Fig. 1 is the growing state of normal wild type plant and ard1 two mutants root
Fig. 2 is the map based cloning synoptic diagram of ARD1 gene
Fig. 3 is the upgrowth situation photo of the ard1 two mutants of commentaries on classics ARD1 gene
Embodiment
Method therefor is ordinary method if no special instructions among the following embodiment, and the primer is synthetic to reach examining order by the completion of the living worker's biotechnology in Shanghai ltd.
Embodiment 1, of the present inventionly derive from Arabidopis thaliana and acquisition and functional verification thereof root development genes involved ARD1
One, the acquisition of Arabidopis thaliana ARD1 two mutants
Screening through to an Arabidopis thaliana (Col-0) T-DNA mutant library obtains a two mutants in the root growth defective, called after ARD1; The phenotype of this two mutants is mainly: root growth is slow, and root system is undeveloped, and main root shortens; Main root is merely about 1/3 of wild-type, and is as shown in Figure 1.WT is wild-type Arabidopis thaliana (Col-0 is environmental) among Fig. 1; ARD1 is the ARD1 two mutants that above-mentioned screening obtains.
Two, with the map based cloning method obtain from two mutants ARD1 with root development genes involved ARD1
Adopt the map based cloning method from the ARD1 two mutants of above-mentioned acquisition, to separate and root development genes involved ARD1, concrete grammar may further comprise the steps:
1) F that is obtained with ARD1 two mutants (Col-0 background) and Ler (another one of Arabidopis thaliana is environmental, available from ArabidopsisBiological Resource Center) hybridization 2For segregating population is material; Therefrom having identified 2100 has with above-mentioned ARD1 mutation type surface individuals with same and carries out genetic analysis; Clone the ARD1 assignment of genes gene mapping on (T6D22) to No. 1 chromosomal BAC of Arabidopis thaliana; Be about 550Kb with the physical distance of flag F 21M12, as shown in Figure 2.Among Fig. 2, near adjacent BAC clone shown in the arrow being.
2) scope of utilizing the method for map based cloning further to dwindle goal gene, last, according to the arabidopsis gene group sequence of announcing, utilize the candidate gene of PCR method amplifying target genes scope, through sequence alignment.The final gene of confirming the place, mutational site.This gene has the nucleotide sequence of sequence 2 in the sequence table, with its called after ARD1.Sequence 2 is made up of 4881 Nucleotide in the sequence table; Nucleotide is first exon of this genomic gene from 5 ' end 262-506 position; Nucleotide is first intron of this genomic gene from 5 ' end 507-748 position; Nucleotide is second exon of this genomic gene from 5 ' end 749-820 position; Nucleotide is second intron of this genomic gene from 5 ' end 821-916 position; Nucleotide is the 3rd exon of this genomic gene from 5 ' end 917-1093 position; Nucleotide is the 3rd intron of this genomic gene from 5 ' end 1094-1178 position; Nucleotide is the 4th exon of this genomic gene from 5 ' end 1179-1248 position, and Nucleotide is the 4th intron of this genomic gene from 5 ' end 1249-1541 position, and Nucleotide is the 5th exon of this genomic gene from 5 ' end 1542-1829 position; Nucleotide is the 5th intron of this genomic gene from 5 ' end 1830-1937 position; From 5 ' and end 1938-2078 position Nucleotide be the 6th each and every one exon of this genomic gene, Nucleotide is the 6th intron of this genomic gene from 5 ' end 2079-2157 position, from 5 ' to hold 2158-2260 position Nucleotide be the 7th exon of this genomic gene; Nucleotide is the 7th intron of this genomic gene from 5 ' end 2261-2352 position; Nucleotide is the 8th exon of this genomic gene from 5 ' end 2353-2499 position, and Nucleotide is the 8th intron of this genomic gene from 5 ' end 2500-3085 position, and Nucleotide is the 9th exon of this genomic gene from 5 ' end 3086-3132 position; Nucleotide is the 9th intron of this genomic gene from 5 ' end 3133-3219 position; Nucleotide is the tenth exon of this genomic gene from 5 ' end 3220-3273 position, and Nucleotide is the tenth intron of this genomic gene from 5 ' end 3274-3345 position, and Nucleotide is the 11 exon of this genomic gene from 5 ' end 3346-3464 position; Nucleotide is the 11 intron of this genomic gene from 5 ' end 3465-3552 position; Nucleotide is the 12 exon of this genomic gene from 5 ' end 3553-3688 position, and Nucleotide is the 12 intron of this genomic gene from 5 ' end 3689-3766 position, and Nucleotide is the 13 exon of this genomic gene from 5 ' end 3767-4092 position.Its cDNA sequence is the nucleotide sequence of sequence 1 in the sequence table, and 5 of sequence 1 ' end 268-1770 position nucleotides sequence is classified encoding sequence (ORF) as in sequence table, and coding has the protein (ARD1) of the amino acid residue sequence of sequence 3 in the sequence table.
Three, of the present inventionly derive from Arabidopis thaliana and transgenic functional verification root development genes involved ARD1
Genome sequence and the carrier pCAMBIA1300 of the ARD1 that obtains according to step 1; The ARD1 gene is connected into the recombinant vectors that obtains between Sma I and the Sal I restriction enzyme site of carrier pCAMBIA1300 MCS; The primer of design amplification ARD1 sequence, primer sequence is as follows:
Primer 1 (upstream primer): 5 '- CCCGGGGTGAAGAACAAAATATTACA-3 ' (line part Nucleotide is the SmaI recognition site);
Primer 2 (downstream primer): 5 '- GGTACCATGGCAAAATAACCTTGAGG-3 ' (line part Nucleotide is Kpn I recognition site).
The genomic dna that extracts Arabidopis thaliana kind Col-0 is as template; Under the guiding of primer 1 and primer 2, carry out pcr amplification; Reaction finishes the back PCR product is carried out the detection of 1% agarose gel electrophoresis; Reclaim the also dna fragmentation of purifying 4881bp, promptly the ARD1 genomic fragment shows that through order-checking this fragment has the nucleotide sequence of sequence 2 in the sequence table.
With the ARD1 gene fragment of above-mentioned acquisition with restriction endonuclease sma I be connected with the carrier pCAMBIA1300 that cuts through the same enzyme enzyme after Kpn I carries out double digestion; To connect product and check order, will show correct recombinant vectors called after pCAMBIA1300-ARD1 through order-checking.
PCAMBIA1300-ARD1 is transformed ARD1 two mutants SALK_009847 (available from Arabidopsis Biological Resource Center under the mediation of agrobacterium tumefaciens; ABRC); Use selected marker's Totomycin (containing 50mg/L Totomycin MS substratum) to carry out resistance screening then, screening obtains the commentaries on classics pCAMBIA1300-ARD1 plant that on the substratum that contains the 50mg/L Totomycin, can grow.Carry out the PCR Molecular Identification with the above-mentioned primer 1 commentaries on classics pCAMBIA1300-ARD1 plant that screening obtains with the primer 2 antagonism, obtain the PCR evaluation and show the correct commentaries on classics pCAMBIA1300-ARD1 plant that changes the ARD1 gene fragment over to.
Evaluation shows the correct commentaries on classics pCAMBIA1300-ARD1 plant that changes the ARD1 gene fragment over to PCR; Advance phenotype analytical; Evaluation shows that the correct commentaries on classics pCAMBIA1300-ARD1 plant (pCAMBIA1300-ARD1 among Fig. 3) that changes the ARD1 gene fragment over to sows simultaneously on the MS substratum with PCR to be about to ARD1 two mutants SALK_009847 (available from Arabidopsis Biological ResourceCenter) (ARD1 among Fig. 3); 4 ℃ of dark culturing are after 3 days; Transfer to 22 degrees centigrade illumination cultivation 8 days, as shown in Figure 3, the result shows; It is better than the upgrowth situation of not genetically modified ARD1 two mutants to change the pCAMBIA1300-ARD1 plant, shows that the sudden change of ARD1 gene influences growing of root system of plant really.
Sequence table
Figure S2008101040829D00091
Figure S2008101040829D00101
Figure S2008101040829D00111
Figure S2008101040829D00121

Claims (6)

1. associated protein for plant root growth, the protein of forming by the amino acid residue sequence of SEQ ID № .3 in the sequence table.
2. the encoding sox of the described associated protein for plant root growth of claim 1 is following 1) or 2) or 3) or 4):
1) SEQ ID № in the sequence table: 5 ' end 268-1770 position nucleotide sequence of 1;
2) SEQ ID № in the sequence table: 1 nucleotide sequence;
3) SEQ ID № in the sequence table: 2 nucleotide sequence;
4) SEQ ID № in the code sequence tabulation: the polynucleotide of 3 protein sequences.
3. the recombinant expression vector that contains the described associated protein for plant root growth encoding sox of claim 2.
4. the transgenic cell line that contains the described associated protein for plant root growth encoding sox of claim 2.
5. the host bacterium that contains the described associated protein for plant root growth encoding sox of claim 2.
6. the application of the described associated protein for plant root growth encoding sox of claim 2 in promoting plant root growth, said plant is an Arabidopis thaliana.
CN2008101040829A 2008-04-15 2008-04-15 Associated protein for plant root growth and encoding gene and application thereof Expired - Fee Related CN101560251B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101040829A CN101560251B (en) 2008-04-15 2008-04-15 Associated protein for plant root growth and encoding gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101040829A CN101560251B (en) 2008-04-15 2008-04-15 Associated protein for plant root growth and encoding gene and application thereof

Publications (2)

Publication Number Publication Date
CN101560251A CN101560251A (en) 2009-10-21
CN101560251B true CN101560251B (en) 2012-01-25

Family

ID=41219250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101040829A Expired - Fee Related CN101560251B (en) 2008-04-15 2008-04-15 Associated protein for plant root growth and encoding gene and application thereof

Country Status (1)

Country Link
CN (1) CN101560251B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929852B (en) * 2019-04-09 2021-03-23 南京林业大学 Liriodendron hybrid somatic embryo radicle elongation key gene LhHB9 and application thereof
CN112481228A (en) * 2019-09-10 2021-03-12 山东舜丰生物科技有限公司 Application of TPST gene in regulation and control of plant traits
CN112851778A (en) * 2019-11-08 2021-05-28 中国科学院遗传与发育生物学研究所 Application of SEUSS protein in regulation and control of plant root growth and development
CN111690678B (en) * 2020-05-20 2023-04-07 山东农业大学 Method for obtaining whole transgenic woody plant by utilizing agrobacterium rhizogenes transformation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018627A1 (en) * 2001-08-22 2003-03-06 Genomine Inc. Gene controlling life span of leaves in plants and method for controlling life span of plants using the gene
CN1164748C (en) * 2002-09-18 2004-09-01 山东农业大学 Wheat cyclin gene and its separating method and use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018627A1 (en) * 2001-08-22 2003-03-06 Genomine Inc. Gene controlling life span of leaves in plants and method for controlling life span of plants using the gene
CN1164748C (en) * 2002-09-18 2004-09-01 山东农业大学 Wheat cyclin gene and its separating method and use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Brotman Y et al..Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization.《Plant Physiol》.2008,第147卷(第2期),779–789. *
王广立等.水稻10kD醇溶蛋白基因克隆、序列分析及对植物百脉根的转化.《植物学报》.1994,第36卷(第05期),351-357. *

Also Published As

Publication number Publication date
CN101560251A (en) 2009-10-21

Similar Documents

Publication Publication Date Title
DK2602325T3 (en) The corn plant MON87460 Event and compositions and methods for the detection thereof
CN110139872A (en) Plant seed character-related protein, gene, promoter and SNP and haplotype
US11879131B2 (en) Use of ZmSBP12 gene in regulation of drought resistance, plant height, and ear height of Zea mays L
CN110904071B (en) Application of RAF49 protein and encoding gene thereof in regulation and control of plant drought resistance
CN102803291B (en) There is the plant of the Correlated Yield Characters of enhancing and/or the abiotic stress tolerance of enhancing and prepare its method
CN109912702B (en) Application of protein OsARE1 in regulation and control of low nitrogen resistance of plants
CN101412751B (en) Protein related to cold resistance of plant, coding genes and application thereof
CN101560251B (en) Associated protein for plant root growth and encoding gene and application thereof
CN101812451B (en) Rice glume development gene promoter p-TRI1 and application thereof
CN105949291B (en) Rice MIS1 albumen and its encoding gene and application
CN111087457B (en) Protein NGR5 for improving nitrogen utilization rate and crop yield, and coding gene and application thereof
CN103172715A (en) Plant epidermal hair controlling gene and application thereof
CN102477091B (en) Rice male sterile protein and coding gene and application thereof
CN110283807A (en) A kind of corn alpha-amylase and its encoding gene and application
CN102229661A (en) DHHC-type zinc finger protein gene for controlling rice tillering and application of DHHC-type zinc finger protein gene
CN102373224A (en) Auxin transport protein gene of paddy rice and application thereof
CN102154337A (en) Gossypium hirsutum mitogen-activated protein kinas 6 (GhMAPK6) gene and application thereof
CN101525379B (en) Plant drought-enduring associated protein, encoding gene and application thereof
CN103626857A (en) Plant salt resistance related protein, and coding gene and application thereof
CN102942623B (en) AtTAR2 protein and application of AtTAR2 protein coding genes to regulation of plant lateral root growth
CN102558321B (en) Protein AtLPT4 related to deficient-phosphorus stress tolerance of plants, and coding gene and application thereof
CN114516906B (en) Corn and mycorrhizal fungi symbiotic related protein, and coding gene and application thereof
CN103710379A (en) Application of GmBRI1 protein and gene thereof in culture of transgenic plants
CN104610438A (en) Cotton stress response associated protein GhGeBP and coding gene and application thereof
CN116376964B (en) Gene for regulating low-temperature germination of rice and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120125

Termination date: 20170415

CF01 Termination of patent right due to non-payment of annual fee