CN101199135B - 电力线通信系统 - Google Patents

电力线通信系统 Download PDF

Info

Publication number
CN101199135B
CN101199135B CN2006800211133A CN200680021113A CN101199135B CN 101199135 B CN101199135 B CN 101199135B CN 2006800211133 A CN2006800211133 A CN 2006800211133A CN 200680021113 A CN200680021113 A CN 200680021113A CN 101199135 B CN101199135 B CN 101199135B
Authority
CN
China
Prior art keywords
communication
time slot
communication system
communicator
priority
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800211133A
Other languages
English (en)
Other versions
CN101199135A (zh
Inventor
黑部彰夫
池田浩二
黑田刚
古贺久雄
井形裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101199135A publication Critical patent/CN101199135A/zh
Application granted granted Critical
Publication of CN101199135B publication Critical patent/CN101199135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5408Methods of transmitting or receiving signals via power distribution lines using protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5441Wireless systems or telephone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5445Local network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5479Systems for power line communications using repeaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Small-Scale Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Communication Control (AREA)

Abstract

在与QoS类型的通信系统的QoS控制器具有相同功能的电力线通信调制解调器以及最大努力类型的通信系统的电力线通信调制解调器中提供了一种共存控制器,它管理和控制用于共存的时间划分。在QoS类型的通信系统中,共存控制器和QoS控制器合作,根据通信系统的优先级,控制通信频带的分配,故而,采用不同方案的电力线通信系统可以共存。

Description

电力线通信系统
发明领域
本发明所涉及的通信装置能实现多个系统的时间共存,具体而言,所涉及的通信系统能使多种不同通信方案(保证服务质量(QoS)的通信系统和执行最大努力通信的通信系统)共存于相同的通信介质(例如,电力线等)上。
背景技术
作为一种连接网络设备(如宽带路由器等)以便从家里的个人计算机(PC)等访问因特网的技术,电力线通信(PLC)已经引起了人们的关注。在电力线通信中,由于现有的电力线用作通信介质,所以,不必再构建新的基础设施,在家里只需把电源插头插入电源插座,就可以实现高速的通信。因此,在全球各地,很多研发和论证试验已经如火如荼地展开了,在欧洲和美国,有一些PLC项目已经实现了商业化。
PLC的一个例子是HomePlug版本1.0,这是HomePlug电力线联盟(USA)确立的一项规范。该规范的主要应用为,例如,由PC执行的因特网、邮件和文件传输。HomePlug利用CSMA/CA技术进行媒体访问控制,其中,电力线通信调制解调器访问电力线。因此,只能实现最大努力通信,而最大努力通信无法保证所要使用的频带。例如,参见Yu-Ju Lin,Haniph A.Latchman,and Richard E,″AComparative Performance Study of Wireless and Power Line Networks″,IEEE Communications Magazine,April 2003,pp.54-63。
图17给出了当使用PC从家里访问因特网时的总体配置图。
用户使用的PC 1101经由以太网1102连接到因特网接入路由器1104,通过因特网接入路由器1104,PC 1101经由接入线1103而连接到因特网1105。ADSL(非对称数字用户线路)、FTTH(光纤到户)等通常用作接入线1103。这时,常常会出现这样的情况:引入家里的接入线1103所来自的地方不同于摆放PC 1101所处的房间。在这种情况下,以太网1102的线缆需要从因特网接入路由器1104延伸到PC 1101。
在电力线通信领域中,为了降低延伸,介于电力线和以太网之间的转换适配器(后面称为P/E转换适配器)已经实现了商业化。图18示出了使用P/E转换适配器时接入因特网相关的总体配置图。
用户所用的PC 1101经由以太网1102连接到P/E转换适配器1205,PC 1101穿过P/E转换适配器1205,经由电源插座连接到家里的电源线1208。通过电力线通信,数据传输到因特网接入路由器1104的P/E转换适配器1205。P/E转换适配器1205经由以太网1102连接到因特网接入路由器1104。因特网接入路由器1104经由接入线1103连接到因特网1105。
另一方面,有一种趋势是:把在PC领域中成长起来的因特网技术运用到AV装置和通信装置,从而构建新的网络设备系统。该趋势正在向新的系统发展,例如,把AV服务器(DVD刻录机、HDD刻录机等)和放在不同房间里的TV关联起来(向AV装置中加入网络功能)、把IP电话或IP照相机与TV或PC融合起来(运用因特网技术)。
图19是上述新系统的具体举例。与传统的因特网、邮件和文件传输不同,AV流或语音的传送要求确保实时的通信。特别是,执行实时双向语音通信的电话业务等对通信延迟的限制有着严格的要求,一般情况下,延迟应限于大约10毫秒。对于需要保证QoS的这些业务而言,最大努力的通信无法满足所需的质量。
因此,有人提出了能保证QoS的电力线通信方案。例如,参见Shinichiro Ohmi,″A Media Access Control Method for High-SpeedPower Line Communication System Modems″,IEEE CCNC 2004。图20是执行最大努力通信的电力线通信(后面称之为最大努力类型的电力线通信)和需要保证QoS的电力线通信(后面称之为QoS类型的电力线通信)的示意图。在图20中,垂直轴表示频率,水平轴表示时间。
HomePlug版本1.0是一种最大努力类型的电力线通信,其中,所用的频率约为2MHz到21MHz。时间轴根据数据生成时机或数据量而变。如果延迟处于可容忍的范围内,那么,为了显示因特网上的站点或获取邮件,则服务仍能维持,而不管它们延迟的到达。
另一方面,很多QoS类型的电力线通信把视频数据的高速传输作为目标,因此,它们使用较宽的频带。此外,为了保证QoS,系统中还提供了QoS控制器。QoS控制器以恒定的间隔发送信标,以控制电力线调制解调器的发送时间和发送的数据量(图20的(b))。可以把QoS控制器作为电力线调制解调器的一项功能来提供,在图19的例子中,它包括在P/E转换适配器1309内。
如果假设视频数据量是恒定的并且假设通信速率也是恒定的,则以恒定的间隔在电力线上发送具有恒定持续时间的数据(图20的(b))。如果这些数据片段没有在各自的预定时间前到达,则视频就搅乱了,所以,服务无法维持。此外,连接到电力线的装置及其工作状态随时间而变,所以,通信状态实际上并不是恒定的,而是随时间变化的。如果通信速率降低,则传送相同数据量所需的时间也会变化。因此,当传送视频数据的电力线调制解调器检测到速率降低时,电力线调制解调器使用通信命令将其告知QoS控制器,以便分配传送相同数据量所需的时间,从而可以保证QoS。这正如图21所示。在图21中,检测到通信速率降低的电力线调制解调器把分配时间变化命令发送给QoS控制器,以将传送后续数据所需的时机改变成长时间。因此,可以继续维持每单位时间传送相同的数据量。
如上所述,虽然已经开发出了各种电力线通信技术,但是,由于家里提供的所有电力线都连接到配线板,所以,当采用不同通信方案的电力线调制解调器用在相同的家中时,采用一种通信方案的电力线调制解调器发送给电力线的信号对于采用另一种通信方案的电力线调制解调器来说就是噪声。因此,当采用不同通信方案的电力线调制解调器同时进行通信时,通信就会相互干扰,或者,所有的通信都会受到伤害,如图20的(c)所示,从而导致通信速率明显降低。
为了避免上述问题,例如,公开号为2002-368831的日本专利申请提出了一种方法,当采用不同通信方案的多个电力线调制解调器出现在相同的电力线上时,它控制每个电力线调制解调器的数据传输。图22是传统技术的示意图。
在图22中,例如,假设位于管理处理器6中的选择器61选择采用方案B的电力线调制解调器4a-4m作为准许传输的电力线调制解调器。在这种情况下,消息生成器62生成传输准许消息和传输禁止消息,所述传输准许消息向采用方案B的电力线调制解调器4a-4m指明传输准许,所述传输禁止消息向采用方案A的电力线调制解调器3a-3m指明传输禁止。之后,采用方案A的电力线调制解调器3n向采用方案A的电力线调制解调器3a-3m发送传输禁止消息,采用方案B的电力线调制解调器4n向采用方案B的电力线调制解调器4a-4m发送传输准许消息。
但是,上述管理数据通信的传统装置无法正确地判断把多少通信时间提供给QoS类型的电力线通信系统以及在什么时机把通信时间提供给系统从而保证QoS。此外,该管理数据通信的装置无法让QoS类型的电力线通信系统的QoS控制器判断把多少时间提供给另一电力线通信系统。因此,QoS控制器无法判断可以把多少时间提供给QoS控制器所属的系统的电力线调制解调器,所以就无法判断是否可以接受服务请求。故而,无法实现QoS类型的电力线通信系统和最大努力类型的电力线通信系统的共存。
发明内容
因此,本发明的一个目的是提供一种能使QoS类型的电力线通信系统和最大努力类型的电力线通信系统实现共存的通信系统。
在本发明的系统中,多个通信系统因时分通信而共存于相同的通信介质上,其中,有一个通信装置属于具有高优先级的通信系统A,另有一个通信装置属于不具有最高优先级的通信系统B。通信系统A和B所用的通信介质是电力线或无线介质。
为实现此目的,本发明的属于通信系统A的通信装置包括:QoS控制器,保证所述通信系统A的QoS;主通信管理器,与所述QoS控制器合作,对多个通信系统中的所有通信调制解调器执行的数据通信的传输时间进行统一管理;命令生成器,根据所述主通信管理器的指示,生成通信准许命令,其中,所述通信准许命令准许进行数据通信;发射机,把所述命令生成器生成的通信准许命令发送给属于其它通信系统的通信装置。
优选情况下,所述命令生成器以恒定的时间间隔生成活动状态命令,其中,所述活动状态命令把所述通信系统A的活动状态通知属于其它通信系统的通信装置。所述发射机把所述活动状态命令发送给属于其它通信系统的通信装置。
属于通信系统A的通信装置还包括:接收机,接收活动状态命令,其中,所述活动状态命令通知其它通信系统的活动状态,所述活动状态命令是由属于其它通信系统的通信装置生成的。当收到其它通信系统的活动状态命令时,所述主通信管理器把其它通信系统作为所述通信准许命令要发往的目标进行管理,而当在一定的时间或更长时间内未收到其它通信系统的活动状态命令时,所述主通信管理器把所述其它通信系统从所述通信准许命令要发往的目标中剔除出去。
此外,为了实现上述目的,本发明的属于通信系统B的通信装置包括:接收机,接收通信准许命令,其中,所述通信准许命令是从属于具有最高优先级的通信系统A的通信装置那里发出的并且准许进行数据通信;从通信管理器,在所述通信准许命令定义的恒定时间里,管理数据通信的执行情况。
优选情况下,所述接收机从属于通信系统A的通信装置那里接收活动状态命令,其中,所述活动状态命令通知通信系统A的活动状态。当接收到通信系统A的活动状态命令时,所述从通信管理器进入从操作状态,而当在一定的时间或更长时间内未收到通信系统A的活动状态命令时,所述从通信管理器取消从操作状态。
优选情况下,属于通信系统B的通信装置还包括:命令生成器,以恒定的时间间隔生成活动状态命令,其中,所述活动状态命令把通信系统B的活动状态通知属于通信系统A的通信装置;发射机,把所述活动状态命令发送给属于通信系统A的通信装置。
请注意,属于通信系统A的通信装置可以包括:QoS控制器,保证所述通信系统A的QoS;主通信管理器,与所述QoS控制器合作,对多个通信系统中的所有通信调制解调器执行的数据通信的传输时间进行统一管理;命令生成器,根据所述主通信管理器的指示,生成通信时隙请求命令,其中,所述通信时隙请求命令请求使用通信时隙;发射机,把所述命令生成器生成的通信时隙请求命令作为具有高优先级的请求,发送给属于其它通信系统的通信装置。
在采用此种配置的情况下,更理想的是,属于通信系统A的通信装置还包括:状态信息生成器,生成与用于进行数据通信的通信时隙有关的信息,所述信息要经由所述发射机发往属于其它通信系统的通信装置;接收机,从属于其它通信系统的通信装置那里接收与用于进行数据通信的通信时隙有关的信息;状态信息解释器,解释与用于进行数据通信的通信时隙有关的信息,所述信息是由所述接收机接收的。
优选情况下,所述主通信管理器根据所述状态信息解释器解释的信息,确认其它通信系统释放的空闲通信时隙,并从所述空闲通信时隙当中确定所述通信系统A所需的通信时隙的使用。请注意,优选情况下,当所述接收机接收到具有高优先级的通信时隙请求命令时,所述主通信管理器释放迄今为止已经使用的通信时隙的一半。
类似地,属于通信系统B的通信装置包括:接收机,接收通信时隙请求命令,其中,所述通信时隙请求命令是从属于具有最高优先级的通信系统A的通信装置那里发出的并且请求使用通信时隙;从通信管理器,根据所述通信时隙请求命令进行控制,以释放迄今为止已经使用的通信时隙。
在采用此种配置的情况下,更理想的是,属于通信系统B的通信装置还包括:状态信息生成器,生成与用于进行数据通信的通信时隙有关的信息,所述信息要经由所述发射机发往属于通信系统A的通信装置;接收机,从属于通信系统A的通信装置那里接收与用于进行数据通信的通信时隙有关的信息;状态信息解释器,解释与用于进行数据通信的通信时隙有关的信息,所述信息是由所述接收机接收的。
优选情况下,所述主通信管理器执行以下操作:根据从属于通信系统A的通信装置那里发出的通信时隙请求命令,释放迄今为止已经使用的通信时隙;根据与用于进行数据通信的通信时隙有关的信息,确认空闲的通信时隙,所述信息是在经过预定长的时间后从属于其它通信系统的通信装置那里发出的;使用所述空闲的通信时隙进行通信。
根据本发明,QoS类型的通信系统与最大努力类型的通信系统按照各通信系统的优先级,可以共存。因此,当把具有不同通信方案的多个电力线通信调制解调器引入用户家中时,可以选择让哪种通信方案类型的电力线通信调制解调器去管理通信。此外,还可以防止主通信管理器功能的重叠,并且,对于每个用户,可以选择哪个电力线通信调制解调器的服务应当获得优先级。此外,即便主通信管理器或从通信管理器都处于不活动状态时,也可以实现共存,从而可以高效地利用电力线,避免浪费。
通过阅读下面结合附图给出的本发明详细描述,本发明的这些和其它目的、特色、方面和优点将变得更加显而易见。
附图说明
图1是依据本发明第一实施例的电力线通信系统的结构图;
图2是共存控制器104和204接收到的信号和命令的示例性定义图;
图3A的流程图示出了主共存控制器104的操作;
图3B的流程图示出了从共存控制器204的操作;
图4的时序图基于共存控制器104和204的操作;
图5的流程图示出了从共存控制器204的其它操作;
图6和7的时序图基于共存控制器104和204的其它操作;
图8A和8B的流程图示出了主共存控制器104的其它操作;
图9的时序图基于共存控制器104和204的其它操作;
图10是依据本发明第一实施例的另一电力线通信系统的结构图;
图11和12的时序图基于图10的另一电力线通信系统的操作;
图13是依据本发明第二实施例的电力线通信系统的结构图;
图14是共存控制器304和404发送和接收的信号和命令的示例性定义图;
图15和16的流程图示出了共存控制器304和404的操作;
图17-19是当从家里的PC访问因特网时传统系统的示例性配置图;
图20的示意图给出了在通信介质上传输的示例性数据流;
图21的示意图给出了在通信介质上传输的示例性QoS数据流;
图22是能使多个电力线调制解调器共存的传统通信系统的示例性配置图。
具体实施方式
本发明的一个目的是使QoS类型的通信系统和最大努力类型的通信系统实现共存。QoS类型的通信系统包括至少一个QoS控制器,而且,它让提供一项服务的通信调制解调器报告该服务所需的通信频带和延时。与此同时,QoS类型的通信系统还让提供该服务的通信调制解调器报告随时间而变化的通信速率。根据所报告的该服务所需的通信频带和延时,就可以判断新请求的服务是否能够与已经提供的服务同时提供,从而接受或者拒绝请求(接纳控制)。
如果已经接受了一项服务的请求,那么,在需要该服务的时间段内就必须保证该服务的QoS。因此,QoS控制器为每一项已接受的服务在提供服务的通信调制解调器的系统的周期时间内分配恒定的时间,并向通信调制解调器指明传输时机。QoS控制器还具有通信调制解调器的功能,所以,通过在通信调制解调器之间传送规定的通信控制命令,可以实现报告、请求的接受/拒绝以及传输时机的指示。当QoS类型的通信系统需要与其它通信系统共存时,某一服务请求的接受是在减去其它共存通信系统所用的时间之后才确定的。当其它通信系统提供的服务是最大努力服务时,就得到了保证QoS所需的时间,此后,把剩余的时间分给其它通信系统。
下面将描述本发明的实施例,其中,本发明适用于把电力线用作通信介质的电力线通信系统。请注意,通信介质也可以是无线介质或者除电力线之外的有线介质。
(第一实施例)
图1是依据本发明第一实施例的电力线通信系统的结构图。在第一实施例的电力线通信系统中,QoS类型的通信系统A和最大努力类型的通信系统B通过电力线相连。在这一例子中,通信系统A是主系统,通信系统B是从系统。
通信系统A包括一个电力线通信控制调制解调器101和多个电力线通信调制解调器102,电力线通信控制调制解调器101包括电力线通信调制解调器102、QoS控制器103和共存控制器104。共存控制器104执行各种通信,从而实现与其它电力线通信系统的共存控制。共存控制器104包括优先级设定器105、主/从通信管理器106、命令解释器107、命令生成器108、接收机109和发射机110。在这个例子中,在优先级设定器105里,事先把通信系统A的优先级排名设为处于第一名。
通信系统B包括一个电力线通信控制调制解调器201和多个电力线通信调制解调器202,电力线通信控制调制解调器201包括电力线通信调制解调器202和共存控制器204。共存控制器204执行各种通信,从而实现与其它电力线通信系统的共存控制。共存控制器204包括优先级设定器205、主/从通信管理器106、命令解释器107、命令生成器108、接收机109和发射机110。在这个例子中,在优先级设定器205里,事先把通信系统B的优先级排名设为处于第二名。
图2是共存控制器104和204接收到的信号和命令的示例性定义图。对于共存控制器104和204来说,在具有恶劣通信状况的电力线上需要便宜的实践价格和较高的通信精度。因此,在本发明中,将以通信系统之间收发的共存信号把交流电源的零交叉点用作时隙基准而高精度地相互同步为例来进行描述。
在本发明所用的共存信号中,第一恒定时间为时隙H1,下一恒定时间为时隙H2,其中,把交流电源的零交叉点用作基准。在时隙H1和H2中设定的比特的组合定义了以下四个控制命令。请注意,这些控制命令仅仅出于举例说明目的,也可以通过其它方式任意设定。
[H1,H2]=[0,0]:没有变化
[0,1]:从激活状态(SOT:传输开始)
[1,0]:主激活状态(SOT)
[1,1]:准许传输(EOT:传输结束)
下面,将对共存控制器104和204执行的共存控制进行分类,然后再结合图3A至9加以描述。图3A、8A和8B的流程图示出了主共存控制器104的操作。图3B和5的流程图示出了从共存控制器204的操作。图4、6、7、9的时序图基于共存控制器104和204的操作。
(1)当主控制器和从控制器都被激活时
首先,具有第一优先级的主共存控制器104命令QoS控制器103开始通信(步骤S301)。QoS控制器103考虑到主控制器进行通信所用的预定时隙时间Nm和从控制器进行通信所用的预定时隙时间Ns,把通信的时间调度表存入信标中,并且,把通信的时间调度表通知属于通信系统A的电力线通信调制解调器102。请注意,如果时隙时间Nm与时隙时间Ns之和等于信标周期,则总是把时隙时间Nm及时隙时间Ns分配给信标周期中的固定位置。每个电力线通信调制解调器102按照存储在信标中的时间调度表,进行通信。
在经过了时隙时间Nm之后(步骤S302),共存控制器104暂停通信,并发出EOT(步骤S303和S304,图4所示的①)。该EOT由命令生成器108生成,并从发射机110发出,发送时机为零交叉点,且频率不同于数据通信的频率。请注意,EOT最好在传输结束前一个时隙发出。自EOT发送以来经过时隙时间Ns之后(步骤S305),共存控制器104判断是结束通信还是继续通信(步骤S306)。
另一方面,具有第二优先级的从共存控制器204进入从共存控制器204能从主共存控制器接收命令的状态(步骤S311)。当从共存控制器204从主共存控制器接收到EOT(步骤S312)时,共存控制器204命令QoS控制器203开始通信(步骤S313、图4中的②)。经过了时隙时间Ns之后(步骤S314),共存控制器204暂停通信,并判断后续的通信是结束还是继续(步骤S315和S316、图4中的④)。
(2)当从控制器被激活而主控制器未被激活时
激活后,从共存控制器204也连续X次发送SOT,以防止其它通信系统无法接收到SOT(步骤S501、图6中的①)。例如,一般假设X约为8。共存控制器204判断是否从主控制器接收到命令(步骤S311、S312和S502)。在这种情况下,由于主控制器不执行通信,所以,共存控制器204判定没有事件。统计判定没有事件的连续次数(步骤S506)。当该计数值超过预定数Xc时,可以判定主控制器不处于激活状态(步骤S507),于是启动从控制器的自由通信(步骤S508、图6中的②)。
(3)当从控制器被激活而主控制器已经被激活时
激活后,从共存控制器204连续X次发送SOT(步骤S501、图7中的①)。共存控制器204判断是否从主控制器接收到命令(步骤S311、S312和S502)。在这种情况下,由于正在传送的SOT是从主控制器那里收到的,所以,共存控制器204判定主控制器处于激活状态,并暂停通信(步骤S502和S503)。在这种情况下,把判定没有事件的连续次数的计数值进行复位。之后,从共存控制器204确认从主控制器那里收到了EOT命令(图7中的③),然后开始通信(步骤S311和S312、图7中的④)。
(4)当主控制器被激活而从控制器已经被激活时
激活后,主共存控制器104连续X次发送SOT(步骤S801、图9中的①)。从共存控制器204从主控制器收到SOT后,就回复自己的SOT。在这种情况下,共存控制器204判定主控制器处于激活状态,并暂停迄今为止执行的通信(步骤S502和S503、图9中的②)。共存控制器204继续回复SOT,直到SOT的接收结束为止(步骤S504、图9中的③),在SOT的接收结束后的一个时隙,连续X次发送SOT(图9中的④)。
共存控制器104判断是否从从控制器那里接收到了SOT(步骤S802)。在这种情况下,由于共存控制器104从从控制器那里接收到了SOT,所以,把时隙时间Nm及时隙时间Ns分别设成初始值Nm0和Ns0(步骤S803),然后执行与(1)相似的通信过程。
(5)当主控制器被激活而从控制器未被激活时
激活后,主共存控制器104连续X次发送SOT(步骤S801)。此后,共存控制器104判断是否从从控制器那里接收到了SOT(步骤S802)。在这种情况下,由于共存控制器104没有从从控制器那里接收到SOT,所以,时隙时间Ns被设为0,而时隙时间Nm则被设为Nm0+Ns0(步骤S804),然后执行与(1)相似的通信过程。在这种情况下,用来统计未收到SOT的连续时隙个数的计数值Nno和由主控制器用来定期发送SOT的计数值Nsot都增加了时隙时间Nm。采用该过程,所有的通信时间都会被主控制器使用,从而可以防止在从控制器处于非激活状态时把时隙分配给从控制器。
之后,共存控制器104判断由主控制器用来定期发送SOT的计数值Nsot是否已经达到了预定的时隙数Na(步骤S806),如果达到了预定的时隙数Na,就发送SOT并把计数值Nsot复位(步骤S807)。此外,共存控制器104还判断用来统计未收到SOT的连续时隙个数的计数值Nno是否已经达到了预定的时隙数Nc(步骤S808),如果在达到了预定的时隙数Nc之前还没有收到SOT,则判定从控制器处于非激活状态,则把Nm、Ns、Nno分别设为Nm0+Ns0、0、0(步骤S809)。采用该过程,所有的通信时间都会被主控制器使用,在从从控制器那里接收到后续SOT之前无需发送EOT。
如上所述,根据本发明第一实施例的电力线通信系统,当共存控制器和QoS控制器合作时,QoS类型的通信系统和最大努力类型的通信系统可以根据相应通信系统的优先级而共存。因此,当把多个电力线通信调制解调器引入用户家里时,可以选择让哪个电力线通信调制解调器来管理通信。此外,还可以防止主控制器功能的重叠,并且,对于每个用户,还可以选择给哪个电力线通信调制解调器的服务分配优先级。而且,即便主控制器或者从控制器都进入非激活状态,也可以实现高效使用电力线的共存,从而避免浪费。
当QoS类型的通信系统得到第一优先级时,可以把保证QoS所需的时间或时机分配给QoS类型的通信系统,而把剩余时间分配给最大努力类型的通信系统。此外,最大努力类型的通信系统的发射权可以由QoS类型的通信调制解调器加以控制。此外,返回QoS类型的通信调制解调器的发射权总是在最大努力类型的通信系统开始发射后的预定长时间返回。因此,电力线的通信状态随时间的变化可以由QoS类型的通信系统调整分配给最大努力类型的通信调制解调器的时间间隔来进行平滑,从而肯定能保证要求QoS的调制解调器的QoS。此外,即便分配给电力线调制解调器的时间和时间间隔的最大值是事先确定的,在减去要分配的带宽(由这些计算出来)后也可以很容易地确定接纳控制,从而能够在共存状态下实现合适的接纳控制。
上面描述了有主控制器和从控制器两个优先级的情况。如果命令的类型增加,那么,本发明也可以实现在具有三个或更多主控制器和从控制器的电力线通信系统中。
此外,也可以提供不设定优先级的平等分布模式。在这种情况下,例如,提供了可以设为主系统的通信系统,并且,所设定的主系统可以在时间上平等地设定准许哪个通信系统进行通信。
传送命令的方法不局限于上述方法,例如,它也可以是与通信调制解调器使用相同的宽带信号的方法。在这种情况下,可以通过收发前导码或者同步标志来建立同步,而不依赖交流电源的周期,从而可以获得类似的效果。
此外,在一个兼容系统中,共存控制器用在具有共存控制器的通信系统和一个或多个其它通信系统之间,此时,本发明的在主控制器和从控制器之间的共存控制机制也是适用的。下面将结合图10-12做出更具体的描述。
在图10中,通信系统A-C具有相互向上兼容性。在这里,例如,可以想到的是,当通信系统B和C能够接收到由通信系统A发出的信标并对其进行破译时,通信系统A就用此信标指明了通信系统B和C的发射时机。采用这种配置,所有的通信系统A-C都可以属于QoS类型,或者,它们中的任何一个属于最大努力类型。这里,除了信标接收之外,QoS类型的通信系统还需要有把保证QoS所需的频带或时间告知通信系统A的手段。对于彼此兼容的通信系统,告知手段是容易获得的。可以想到的是,当一组这样相互兼容的通信系统是一组主系统时,与这组主系统不兼容的一个或多个通信系统就是一组从系统。在此情况下,本发明照样适用。
图11示出了上述情况下的信号收发的例子。所有的通信系统A-C都能够接收到由通信系统A的QoS控制器发出的信标并对其进行破译,并根据调度表在各自分配的时间进行发射。在QoS类型的通信系统B中,它的QoS控制器可以在分配的时间开始发送信标,此信标描述了属于通信系统B的一组调制解调器的发射时间。此外,在最大努力类型的通信系统C中,属于通信系统C的一组调制解调器可以进行发射,同时根据CSMA访问控制方法,在分配的时隙中确认空闲的信道。在这些兼容的通信系统A-C耗费掉所需的时间之后利用本发明,那么,与通信系统A-C不兼容的通信系统作为从系统进行发射。
此外,当这组从系统具有接收这组主系统发送的信标并对其进行破译的功能时,这组主系统可以通知根据图12所示的本发明的信标的调度表中的这组从系统的使用时间,从而达到类似的效果。在这种情况下,就以下观点而言,通信系统B和通信系统D是彼此不同的。通信系统B具有向通信系统A传送QoS参数(例如,保证QoS所需的频带、传输时间等)的手段。原本与通信系统A不兼容的通信系统D具有接收和破译信标的功能,但不具有把QoS参数传送到通信系统A的手段。
(第二实施例)
图13是依据本发明第二实施例的电力线通信系统的结构图。在图13所示的第二实施例的电力线通信系统中,QoS类型的通信系统A和最大努力类型的通信系统B通过电力线相连。通信系统A包括电力线通信控制调制解调器101和多个电力线通信调制解调器102,电力线通信控制调制解调器101包括电力线通信调制解调器102、QoS控制器103和共存控制器304。通信系统B包括电力线通信控制调制解调器201和多个电力线通信调制解调器202,电力线通信控制调制解调器201包括电力线通信调制解调器202和共存控制器404。
通过对比图1和图13可以看出,与第一实施例相比,第二实施例的通信系统A还包括状态信息解释器301和状态信息生成器302,通信系统B还包括状态信息解释器401和状态信息生成器402。其它部件与第一实施例所述的相似,因此用相同的附图标记来表示,并且这里不再赘述。
图14是共存控制器304和404发送和接收的信号、命令和状态的示例性定义图。共存控制器304和404也是把交流电源的零交叉点用作时隙基准,理由与上面关于共存控制器104和204的描述相似。在本发明所使用的共存信号中,把交流电源的零交叉点用作基准,第一恒定时段为时隙H1,后面的恒定时段为时隙H2到H4,再后面的恒定时段为时隙J1和J2。
时隙H1到H4对应于通信时隙S1到S4,通信时隙S1到S4是通过细分通信时隙基本单元而获得的,通信时隙基本单元是因TDM(时分复用)而共存的基本单元,它们各自被定义为用一个比特来表示时隙的使用状态。例如,比特“1”表示时隙被使用了,比特“0”表示时隙未被使用。在因TDM而共存的电力线通信系统中,通信时隙S1到S4的全部或一部分用来执行通信。在正常状态下,通信系统使用预定的时隙连续执行通信,而不会相互冲突。时隙J1和J2中设定的比特的组合定义了下面的三个控制命令。请注意,这些控制命令只是出于举例说明的目的,它们也可以按其它方式任意设定。
[J1,J2]=[0,0]:无请求
[1,0]:低优先级的通信时隙请求命令
[1,1]:高优先级的通信时隙请求命令
图15的流程图示出了当请求通信时隙时共存控制器304和404的操作。
请求通信时隙的通信系统的共存控制器304或404发送一条请求命令,即,共存信号,其中,在时隙J1中设定了比特“1”(步骤S1501)。为了防止故障,发射方可以按指定的次数或更多次数连续地发送共存信号,而接收方则可以解释出有指定次数或更多次数的信号发射(其中,接收到了共存信号)。在具有高优先级的系统中,在时隙J2中也设定了比特“1”。
接下来,请求通信时隙的通信系统的共存控制器304或404确认时隙H1到H4当中具有比特“0”的空闲时隙(步骤S1502和S1503),并使用与该空闲时隙相对应的通信时隙S1到S4开始数据通信(步骤S1504)。如果没有空闲时隙,共存控制器304或404就放弃通信。请注意,至于一个通信系统可以同时得到多少个时隙,这是可以任意设定的。例如,当可以同时获得最多两个通信时隙时,则禁止同时获得三个或更多个通信时隙。但是,在这种情况下,通过重复资源请求过程,可以总共占用三个或更多个通信时隙。但是,后面的时隙J1和J2中的信号只能在获得资源后的预定时间间隔内发送(步骤S1505)。
图16的流程图示出了当使用通信时隙的共存控制器304和404在时隙J1和J2中检测到信号时的操作。
如果某一信号(即,命令和状态信号)把交流电源的零交叉点用作基准而由共存控制器304或404收发,并且在恒定的周期通过电力线传递,则通信系统总是确认它。之后,当在时隙J1中收到信号(比特=1)时,就启动图16的操作。请注意,假设事先确定出请求通信时隙的通信系统在时隙J1和J2中以预定次数发送信号,当信号被多次接收到时如果图16的操作启动,就可以实现具有较少故障的控制。
在图16中,在时隙J1里已经接收到信号的通信系统判断在时隙J2中是否也有信号(比特=1)(步骤S1601)。当确定出在时隙J2中也有信号时,通信系统确定一个具有高优先级的通信系统正在请求参与。之后,该通信系统确定它自己的优先级(步骤S1602),并确认当前使用的通信时隙(步骤S1603和S1606)。
当通信系统具有高优先级并使用三个或更多个通信时隙时,只有两个通信时隙可以继续使用,其它的通信时隙则需要释放(步骤S1604)。另一方面,当通信系统具有高优先级并使用两个或更少的通信时隙时,当前使用的通信时隙可以继续使用,或者,如果还有通信时隙的话,可以将其释放(步骤S1605)。
当通信系统具有低优先级并使用三个或更多个通信时隙时,释放两个或更多个通信时隙(步骤S1607)。另一方面,当通信系统具有低优先级并使用两个或更少个通信时隙时,释放当前使用的所有通信时隙(步骤S1608)。
当通信系统确定在时隙J2中没有信号时,该通信系统就确定出,在时隙J1中设定了一个比特的通信系统具有低优先级。之后,通信系统确定它自己的优先级(步骤S1609)。当通信系统确定它自己的优先级为高时,通信系统继续使用当前所用的通信时隙,或者,如果有通信时隙要释放的话,则把它释放掉(步骤S1610)。另一方面,当通信系统确定它自己的优先级为低时,该通信系统释放当前所用的通信时隙的一半(步骤S1611)。
如上所述,根据本发明第二实施例的电力线通信系统,具有高优先级的通信系统使用能确保系统QoS所需的最小数量的通信时隙,如果还有通信时隙剩余的话,就把剩余的时隙分配给具有低优先级的通信系统。请注意,如果两个通信系统具有相同的优先级,则半数的通信时隙可用于各自相应的通信时隙。例如,可以看出,如果相对于公寓房等相邻家中的电力线的传输距离远,从而电力线通信调制解调器相互干扰,那么,每家的用户设定相同的高优先级。因此,本发明在这种情况下也是适用的。
请注意,第一和第二实施例中所描述的共存控制器的所有或一部分功能块通常可以实现成集成电路(LSI:LSI被称为IC、系统LSI、超大规模LSI、甚大规模LSI等,这取决于封装密度)。各个功能块可以分别装配在一个芯片上,或者,这些功能块的全部或一部分可以装配在一个芯片上。
集成电路不限于LSI。集成电路可以用专用电路或者通用处理器来实现。此外,也可以使用FPGA(现场可编程门阵列)或者可配置处理器,FPGA可以在LSI生产后进行编程,而在可配置处理器中,LSI里的电路单元的连接或装配可以进行配置。
此外,如果半导体技术进步或者由此派生的其它技术的出现能开发出取代LSI的集成电路技术,那么,这些功能块也可以用这些技术进行封装。生物技术也是可用的。
请注意,第一和第二实施例的电力线通信系统的功能都可以通过让CPU解释和执行能够执行上述过程的预定程序数据来实现,该程序存储在存储装置中(ROM、RAM、硬盘等)。在这种情况下,程序数据可以通过记录介质存储到存储装置中,或者,也可以直接从记录介质执行。记录介质是指:半导体存储器,例如ROM、RAM、闪存等;磁盘存储器,例如软盘、硬盘等;光盘,例如CD-ROM、DVD、BD等;存储卡;等等。记录介质这一概念包括通信介质,例如电话线、传输线等。
包括本发明的家用通信装置可以采用适配器的形式,其中,适配器把以太网接口、IEEE1394接口、USB接口等信号接口转换成电力线通信接口,由此,包括本发明的家用通信装置可以连接到具有信号接口的多媒体装置,如个人计算机、DVD刻录机、数字电视、家庭系统服务器等。因此,可以构造出通过作为媒介的电力线高速地发送数字数据(例如,多媒体数据等)的网络系统。所以,家庭、办公室等场所已经提供的电力线可以直接用作网线,而无需引入新的网络线缆,例如传统的有线LAN。因此,就成本和安装容易度而言,本发明极其有用。
在未来,本发明的功能可以整合到多媒体装置中。因此,通过多媒体装置的供电线,可以在装置之间实现数据传输。在这种情况下,适配器、以太网线缆、IEEE1394线缆、USB线缆等不再是必须的,从而简化了布线。此外,本发明的高速电力线传输系统可以通过路由器连到因特网,或者通过集线器等连到无线LAN或传统的有线LAN,从而扩展LAN系统,其中,本发明的高速电力线传输系统的使用没有任何问题。
电力线传输通过电力线而传输的通信数据可以由和电力线直接相连的装置拦截,而不会发生无线LAN的窃听问题。因此,就安全性而言,该电力线传输方案对于数据保护是卓有成效的。而且,可以通过IP协议的IPSec、内容本身的加密、其它DRM方案等,保护电力线上传输的数据。
与传统的电力线通信相比,使用采用了上述内容加密或高效的通信媒介(本发明的效果)的版权保护功能,并进一步实现QoS功能,则可以在电力线上实现高质量的AV内容传输。
虽然前面已经对本发明进行了详细的描述,但前面描述的各方面都是举例说明性的,而非限制性的。需要理解的是,可以设计出很多其它的修改和变化,这并不偏离本发明的保护范围。
产业实用性
本发明的适用对象是:把电力线或无线介质用作通信介质的调制解调器,以及使用此调制解调器且具有通信功能的家用电器等。当相互无法连接的多个通信系统需要共存于相同的通信介质上而不相互造成干扰时,本发明尤其适合。

Claims (4)

1.一种通信装置,属于多个通信系统因时分通信而共存于相同的通信介质上的系统中、优先级最高的通信系统,该通信装置包括:
QoS控制器,保证所述优先级最高的通信系统的QoS;
主通信管理器,与所述QoS控制器合作,对多个通信系统中的所有通信调制解调器执行的数据通信的传输时间以及数据通信所使用的通信时隙进行统一管理;
命令生成器,根据所述主通信管理器的指示,生成用于请求使用所述通信时隙的通信时隙请求命令;
发射机,将由所述命令生成器生成的所述通信时隙请求命令作为优先级高的请求,发送给属于其它通信系统的通信装置;以及
接收机,从属于所述其它通信系统的通信装置那里接收所述数据通信正在使用的通信时隙的信息;
当所述接收机接收到优先级高的所述通信时隙请求命令时,所述主通信管理器释放迄今为止已经使用的通信时隙的一半。
2.一种通信装置,属于多个通信系统因时分通信而共存于相同的通信介质上的系统中、不具有最高优先级的通信系统,该通信装置包括:
接收机,接收属于优先级最高的通信系统的通信装置所发送的、请求使用通信时隙的通信时隙请求命令;
从通信管理器,根据所述通信时隙请求命令进行控制,以释放迄今为止已经使用的通信时隙;
状态信息生成器,生成与用于进行数据通信的通信时隙有关的信息,所述信息要经由发射机发往属于优先级最高的通信系统的通信装置;以及
状态信息解释器,解释与用于进行数据通信的通信时隙有关的信息,所述信息是由所述接收机接收的,
其中所述接收机还从属于优先级最高的通信系统的通信装置那里接收与用于进行数据通信的通信时隙有关的信息。
3.一种共存通信系统,属于优先级最高的第一通信系统的通信装置与属于其它优先级的第二通信系统的通信装置,至少在同一通信介质上通过时分通信而共存,其特征在于:
属于所述第一通信系统的通信装置包括:
QoS控制器,保证所述第一通信系统的QoS;
主通信管理器,与所述QoS控制器合作,对多个通信系统中的所有通信调制解调器执行的数据通信的传输时间以及数据通信所使用的通信时隙进行统一管理;
命令生成器,根据所述主通信管理器的指示,生成请求使用通信时隙的通信时隙请求命令;
发射机,将由所述命令生成器生成的所述通信时隙请求命令作为优先级高的请求,发送给属于所述第二通信系统的通信装置;以及
接收机,从属于所述第二通信系统的通信装置那里接收所述数据通信正在使用的通信时隙的信息;
当所述接收机接收到优先级高的所述通信时隙请求命令时,所述主通信管理器释放迄今为止已经使用的通信时隙的一半,
属于所述第二通信系统的通信装置包括:
接收机,接收属于所述第一通信系统的通信装置所发送的、请求使用通信时隙的通信时隙请求命令;
从通信管理器,根据所述通信时隙请求命令进行控制,以释放迄今为止已经使用的通信时隙。
4.一种共存通信方法,是属于优先级最高的第一通信系统的通信装置与属于其它优先级的第二通信系统的通信装置至少在同一通信介质上时分通信而共存的共存方法,其特征在于,具备下述步骤:
属于所述第一通信系统的通信装置保证所述第一通信系统的QoS,并对多个通信系统中的所有通信调制解调器执行的数据通信的传输时间及数据通信所使用的通信时隙进行统一管理的步骤;
属于所述第一通信系统的通信装置生成请求使用通信时隙的通信时隙请求命令的步骤;
属于所述第一通信系统的通信装置将所生成的所述通信时隙请求命令作为优先级高的请求,发送给属于所述第二通信系统的通信装置的步骤;
从属于所述第二通信系统的第二通信装置那里接收所述数据通信所正在使用的通信时隙的信息的步骤;
当接收到优先级高的所述通信时隙请求命令时,释放迄今为止已经使用的通信时隙的一半的步骤;
属于所述第二通信系统的通信装置接收属于所述第一通信系统的通信装置所发送的、请求使用通信时隙的通信时隙请求命令的步骤;
属于所述第二通信系统的通信装置根据所述通信时隙请求命令进行控制,以释放迄今为止已经使用的通信时隙的步骤。
CN2006800211133A 2005-05-26 2006-05-24 电力线通信系统 Active CN101199135B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005154501 2005-05-26
JP154501/2005 2005-05-26
JP2006086191 2006-03-27
JP086191/2006 2006-03-27
PCT/JP2006/310838 WO2006126725A1 (en) 2005-05-26 2006-05-24 Power line communication system

Publications (2)

Publication Number Publication Date
CN101199135A CN101199135A (zh) 2008-06-11
CN101199135B true CN101199135B (zh) 2012-09-05

Family

ID=36758397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800211133A Active CN101199135B (zh) 2005-05-26 2006-05-24 电力线通信系统

Country Status (8)

Country Link
US (2) US7953105B2 (zh)
EP (1) EP1878124B1 (zh)
JP (1) JP4739339B2 (zh)
KR (1) KR101233873B1 (zh)
CN (1) CN101199135B (zh)
ES (1) ES2679693T3 (zh)
TW (1) TWI381671B (zh)
WO (1) WO2006126725A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233873B1 (ko) * 2005-05-26 2013-02-15 파나소닉 주식회사 전력선 통신시스템 및 방법
JP4635947B2 (ja) 2005-10-12 2011-02-23 パナソニック株式会社 電力線通信装置、集積回路、及び電力線通信方法
JP4572970B2 (ja) * 2008-08-07 2010-11-04 ソニー株式会社 通信装置、伝送線通信用チップ及び通信方法
US8675651B2 (en) * 2010-01-18 2014-03-18 Qualcomm Incorporated Coexistence mechanism for non-compatible powerline communication devices
US8520696B1 (en) * 2010-07-30 2013-08-27 Qualcomm Incorporated Terminal selection diversity for powerline communications
JP5510275B2 (ja) 2010-11-08 2014-06-04 株式会社デンソー 通信システム、マスタノード、スレーブノード
JP2012156861A (ja) * 2011-01-27 2012-08-16 Renesas Electronics Corp 電力線通信装置及びノイズ検出方法
US8995461B2 (en) * 2011-02-08 2015-03-31 Texas Instruments Incorporated Channel selection in power line communications
KR102012248B1 (ko) * 2013-03-27 2019-08-22 한국전자통신연구원 무선 통신 시스템에서의 동기 그룹 관리 장치 및 방법
US9130658B2 (en) 2013-05-06 2015-09-08 Qualcomm Incorporated Selection diversity in a powerline communication system
US9537641B2 (en) * 2013-05-30 2017-01-03 Qualcomm Incorporated Channel adaptation to compensate for interference from neighbor powerline communication networks
CN103560840B (zh) * 2013-10-28 2015-11-25 华为技术有限公司 一种终端状态监测的方法、设备和系统
US10334588B2 (en) 2013-12-11 2019-06-25 Qualcomm Incorporated Carrier sense adaptive transmission (CSAT) coordination in unlicensed spectrum
CN107006015B (zh) 2014-12-03 2020-01-17 华为技术有限公司 使用频谱资源进行通信的方法和通信设备
CN113676202B (zh) * 2020-04-30 2022-10-18 华为技术有限公司 一种多射频抗干扰方法及相关设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567869A (zh) * 2003-06-30 2005-01-19 叶启翔 可避免干扰损坏并增加空间再用率的干扰控制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359595A (en) * 1991-01-09 1994-10-25 Rockwell International Corporation Skywave adaptable network transceiver apparatus and method using a stable probe and traffic protocol
US6097707A (en) * 1995-05-19 2000-08-01 Hodzic; Migdat I. Adaptive digital wireless communications network apparatus and process
US6141336A (en) * 1996-12-13 2000-10-31 International Business Machines Corporation Traffic scheduling method, system and article of manufacture for a wireless access to an asynchronous transfer mode network
EP0924896A1 (en) * 1997-12-17 1999-06-23 Hewlett-Packard Company Communicating isochronous and asynchronous data
US6256317B1 (en) * 1998-02-19 2001-07-03 Broadcom Homenetworking, Inc. Packet-switched multiple-access network system with distributed fair priority queuing
US6975613B1 (en) * 1999-12-06 2005-12-13 Telefonaktiebolaget L M Ericsson (Publ) System and method for scheduling communication sessions in an ad-hoc network
US7352770B1 (en) * 2000-08-04 2008-04-01 Intellon Corporation Media access control protocol with priority and contention-free intervals
US7212495B2 (en) * 2001-02-21 2007-05-01 Polytechnic University Signaling for reserving a communications path
JP3685740B2 (ja) 2001-06-07 2005-08-24 三菱電機株式会社 データ通信装置管理装置及びデータ通信装置管理方法
US20020191588A1 (en) * 2001-06-13 2002-12-19 Drexel University Integrated circuit and packet switching system
JP2006505969A (ja) * 2002-05-28 2006-02-16 アンペリオン,インコーポレイティド 電力系統の中圧ケーブルを使用して広帯域通信を提供する通信システム
JP2004048356A (ja) 2002-07-11 2004-02-12 Sony Corp アクセスポイント調停装置及びそれを用いたデータ通信システム
US6947409B2 (en) * 2003-03-17 2005-09-20 Sony Corporation Bandwidth management of virtual networks on a shared network
US7346021B2 (en) * 2003-08-06 2008-03-18 Matsushita Electric Industrial Co., Ltd. Master station in communications system and access control method
US7092693B2 (en) * 2003-08-29 2006-08-15 Sony Corporation Ultra-wide band wireless / power-line communication system for delivering audio/video content
JP2007516662A (ja) * 2003-11-07 2007-06-21 シャープ株式会社 ネットワークチャンネルの特性値の測定およびネットワーク管理のシステムおよび方法
KR101233873B1 (ko) * 2005-05-26 2013-02-15 파나소닉 주식회사 전력선 통신시스템 및 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567869A (zh) * 2003-06-30 2005-01-19 叶启翔 可避免干扰损坏并增加空间再用率的干扰控制方法

Also Published As

Publication number Publication date
CN101199135A (zh) 2008-06-11
US20110222554A1 (en) 2011-09-15
US7953105B2 (en) 2011-05-31
TWI381671B (zh) 2013-01-01
EP1878124A1 (en) 2008-01-16
WO2006126725A1 (en) 2006-11-30
TW200705865A (en) 2007-02-01
KR20080017024A (ko) 2008-02-25
US20060268705A1 (en) 2006-11-30
US8451857B2 (en) 2013-05-28
JP2008543116A (ja) 2008-11-27
EP1878124B1 (en) 2018-05-09
KR101233873B1 (ko) 2013-02-15
JP4739339B2 (ja) 2011-08-03
ES2679693T3 (es) 2018-08-30

Similar Documents

Publication Publication Date Title
CN101199135B (zh) 电力线通信系统
CN101494914B (zh) 通信系统的主站和访问控制方法
US8689272B2 (en) Devices, systems, and methods for managing multimedia traffic across a common wireless communication network
US7724767B2 (en) Adaptive network to dynamically account for hidden nodes
CN101472342B (zh) 在主从系统中的媒体访问控制
TWI441466B (zh) 可使系統間之時間共存之通信裝置
US9106435B2 (en) Efficient data transmission within MoCA
CN101010886B (zh) 传输调度表构造装置
US9848446B2 (en) System and methods for synchronizing edge devices on channels without carrier sense
US20060077997A1 (en) Terminal Apparatus
US20120093177A1 (en) Communication method using time-division multiplexing
CN105573193A (zh) 网络布置和融合承载网络中实时电报区分优先次序的方法
EP1039696A2 (en) Radio transmission in a local area network
WO2002008444A2 (en) System and method for communicating data over multiple networks
CN114204964A (zh) 一种电力线网络流通道建立方法、装置和系统
Wang et al. Cross Layer QoS Provisioning in Home Networks
Secerbegovic et al. Distributed MAC for OFDM based powerline communication networks
Kamel Performance evaluation of CEBus power line communication in the presence of X-10 module signaling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant