CN101140915A - Heat dissipation substrate for electronic components - Google Patents
Heat dissipation substrate for electronic components Download PDFInfo
- Publication number
- CN101140915A CN101140915A CNA2006101286942A CN200610128694A CN101140915A CN 101140915 A CN101140915 A CN 101140915A CN A2006101286942 A CNA2006101286942 A CN A2006101286942A CN 200610128694 A CN200610128694 A CN 200610128694A CN 101140915 A CN101140915 A CN 101140915A
- Authority
- CN
- China
- Prior art keywords
- electronic component
- heat radiation
- radiation substrate
- heat
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 38
- 230000017525 heat dissipation Effects 0.000 title abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 43
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 24
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 13
- 239000011737 fluorine Substances 0.000 claims abstract description 13
- 239000002322 conducting polymer Substances 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims description 22
- 230000005855 radiation Effects 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 17
- 239000002033 PVDF binder Substances 0.000 claims description 16
- 229920001577 copolymer Polymers 0.000 claims description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- 239000000178 monomer Substances 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical group [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 claims description 2
- 125000001153 fluoro group Chemical group F* 0.000 claims 5
- 239000012774 insulation material Substances 0.000 claims 5
- 239000013638 trimer Substances 0.000 claims 2
- MHWAJHABMBTNHS-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2,2-tetrafluoroethene Chemical group FC(F)=C.FC(F)=C(F)F MHWAJHABMBTNHS-UHFFFAOYSA-N 0.000 claims 1
- 229910017083 AlN Inorganic materials 0.000 claims 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims 1
- 229910052582 BN Inorganic materials 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 238000005336 cracking Methods 0.000 claims 1
- 239000011810 insulating material Substances 0.000 abstract description 18
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 12
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- 239000000945 filler Substances 0.000 abstract description 3
- 239000011889 copper foil Substances 0.000 description 14
- 239000003822 epoxy resin Substances 0.000 description 10
- 229920000647 polyepoxide Polymers 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 8
- 239000011231 conductive filler Substances 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 4
- 235000019592 roughness Nutrition 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 238000004898 kneading Methods 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920006355 Tefzel Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Laminated Bodies (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种散热衬底,尤其涉及用于电子元件散热的散热衬底。The invention relates to a heat dissipation substrate, in particular to a heat dissipation substrate used for heat dissipation of electronic components.
背景技术 Background technique
近几年来,白光发光二极管(LED)是最被看好且最受全球瞩目的新兴产品。它具有体积小、耗电量低、寿命长和反应速度佳等优点,能解决过去白炽灯泡所难以克服的问题。LED应用于显示器背光源、迷你型投影机、照明及汽车灯源等市场越来越获得重视。In recent years, white light-emitting diodes (LEDs) are the most promising emerging products that attract global attention. It has the advantages of small size, low power consumption, long life and good response speed, etc., and can solve the problems that incandescent bulbs were difficult to overcome in the past. LEDs are used in display backlights, mini projectors, lighting and automotive light sources and other markets are gaining more and more attention.
目前欧美和日本等国基于节约能源与环境保护的共识,都积极开发白光发光二极管作为本世纪照明的新光源。再加上目前许多同家的能源都仰赖进口,使得它在照明市场上的发展极具价值。根据专家评估,日本如果是将所有白炽灯以白光发光二极管取代,则每年可省下1~2座发电厂的发电量,间接减少的耗油量达10亿公升,而且在发电过程中所排放的二氧化碳也会减少,进而抑制了温室效应。基此,目前欧美和日本等先进国家都投注了非常多的人力推动研发。预计在未来十年内,可以普遍替代传统的照明器具。At present, countries such as Europe, America and Japan are actively developing white light-emitting diodes as new light sources for lighting in this century based on the consensus of energy conservation and environmental protection. In addition, many of Tongjia's energy sources are currently imported, making its development in the lighting market extremely valuable. According to expert evaluation, if Japan replaces all incandescent lamps with white light-emitting diodes, it can save the power generation of 1 to 2 power plants every year, indirectly reduce fuel consumption by 1 billion liters, and emit 100 million liters of electricity during power generation. Carbon dioxide will also be reduced, thereby inhibiting the greenhouse effect. Based on this, advanced countries such as Europe, America and Japan have invested a lot of manpower to promote research and development. It is expected that in the next ten years, traditional lighting fixtures can be generally replaced.
然而,对于照明用的高功率LED而言,其输入LED的功率约只有15~20%转换成光,其余80~85%转换成热。这些热如果无法适时逸散至环境,将使得LED元件的界面温度过高而影响其发光强度及使用寿命。因此,LED元件的热管理问题越来越受到重视。However, for high-power LEDs for lighting, only about 15-20% of the power input to the LED is converted into light, and the remaining 80-85% is converted into heat. If the heat cannot be dissipated to the environment in a timely manner, the interface temperature of the LED element will be too high, which will affect its luminous intensity and service life. Therefore, the problem of thermal management of LED components has been paid more and more attention.
不论是显示器背光源或一般照明,通常是将多个LED元件组装在一电路衬底上。电路衬底除了扮演承载LED模块的角色外,还需提供散热的功能。传统LED的工作电流仅约为20mA左右,因发热量不大,其散热问题也不严重,因此只要运用一般电子用的铜箔印刷电路板(PCB)即可。但随着高功率LED的普遍应用,其工作电流可达1A以上,常规利用玻璃纤维FR4表面设置铜箔的印刷电路板(散热系数约0.3W/m·K)已不足以应付散热需求。Whether it is a display backlight or general lighting, it is common to assemble a plurality of LED elements on a circuit substrate. In addition to playing the role of carrying the LED module, the circuit substrate also needs to provide the function of heat dissipation. The operating current of traditional LEDs is only about 20mA. Because the heat is not large, the heat dissipation problem is not serious. Therefore, it is only necessary to use a copper foil printed circuit board (PCB) for general electronics. However, with the widespread application of high-power LEDs, their operating current can reach more than 1A, and the conventional printed circuit board (heat dissipation coefficient of about 0.3W/m·K) using glass fiber FR4 surface with copper foil is not enough to meet the heat dissipation requirements.
发明内容 Contents of the invention
本发明的主要目的是提供一种散热衬底,其具有优异散热特性,且兼具耐高电压介电绝缘特性、可挠曲机械结构特性,以及金属层与导热高分子介电绝缘材料层间的优良接合拉力强度,而得以提供例如LED等高功率元件的应用(例如折叠式手机)。The main purpose of the present invention is to provide a heat dissipation substrate, which has excellent heat dissipation characteristics, and has both high-voltage dielectric insulation characteristics, flexible mechanical structure characteristics, and a gap between the metal layer and the thermally conductive polymer dielectric insulating material layer. The excellent joint tensile strength can provide applications such as high-power components such as LEDs (such as foldable mobile phones).
为了达到上述目的,本发明揭示一种电子元件的散热衬底,其包含一第一金属层、一第二金属层及一导热高分子介电绝缘材料层。所述第一金属层的表面承载所述电子元件(例如发光二极管(LED)元件)。所述导热高分子介电绝缘材料层叠设于所述第一金属层及第二金属层之间并形成物理接触,所述导热高分子介电绝缘材料层与所述第一和第二金属层的界面包含至少一微粗糙面(粗糙度Rz大于7.0,依据JIS B 06011994)。所述微粗糙面包含复数个瘤状突出物,且所述瘤状突出物的粒径主要分布于0.1至100微米之间,所述导热高分子介电绝缘材料层的导热系数大于1W/m·K,厚度小于0.5mm,且包含:(1)含氟高分子聚合物,其熔点高于150℃,且体积百分比介于30-60%之间;及(2)导热填料,散布于所述含氟高分子聚合物中,且其体积百分比介于40-70%之间。In order to achieve the above purpose, the present invention discloses a heat dissipation substrate for electronic components, which includes a first metal layer, a second metal layer and a thermally conductive polymer dielectric insulating material layer. The surface of the first metal layer bears the electronic components (such as light emitting diode (LED) components). The thermally conductive polymer dielectric insulating material layer is stacked between the first metal layer and the second metal layer and forms physical contact, and the thermally conductive polymer dielectric insulating material layer is connected to the first and second metal layers The interface contains at least one micro-rough surface (roughness Rz greater than 7.0, according to JIS B 06011994). The micro-rough surface contains a plurality of nodule-like protrusions, and the particle size of the nodule-like protrusions is mainly distributed between 0.1 and 100 microns, and the thermal conductivity of the thermally conductive polymer dielectric insulating material layer is greater than 1W/m K, with a thickness of less than 0.5 mm, and containing: (1) a fluorine-containing high molecular polymer with a melting point higher than 150°C and a volume percentage between 30-60%; and (2) a thermally conductive filler dispersed in the Among the above-mentioned fluorine-containing high molecular polymers, and its volume percentage is between 40-70%.
优选地,所述含氟高分子聚合物可选自聚偏二氟乙烯(Poly Vinylidene Fluoride;PVDF)或聚乙烯-四氟乙烯(polyethylenetetrafluoroethylene;PETFE),而熔点以大于150℃为佳,且以大于220℃为更佳。所述导热填料则可选用如氮化物及氧化物等陶瓷导热材料。Preferably, the fluorine-containing polymer can be selected from polyvinylidene fluoride (Poly Vinylidene Fluoride; PVDF) or polyethylene-tetrafluoroethylene (polyethylenetetrafluoroethylene; PETFE), and the melting point is preferably greater than 150 ° C, and More than 220°C is more preferable. The thermally conductive filler can be selected from ceramic thermally conductive materials such as nitrides and oxides.
本发明的散热衬底还可经过0~20Mrad的放射线照射使所述导热高分子介电绝缘材料层交链固化,除了具良好的导热及绝缘效果外,如果将所述第一金属层及第二金属层的厚度分别制作小于0.1mm及0.2mm,而所述导热高分子介电绝缘材料层的厚度小于0.5mm(0.3mm更佳),其可通过将1cm宽的试验衬底绕曲成5mm直径圆柱的挠曲测试,其表面不会有断裂或裂痕的情形发生,而得用于折叠式的产品应用。The heat dissipation substrate of the present invention can also be cross-linked and cured by irradiating the heat-conducting polymer dielectric insulating material layer through 0-20 Mrad of radiation. In addition to having good heat conduction and insulation effects, if the first metal layer and the second The thicknesses of the two metal layers are made to be less than 0.1mm and 0.2mm respectively, and the thickness of the thermally conductive polymer dielectric insulating material layer is less than 0.5mm (0.3mm is better), which can be formed by bending a 1cm wide test substrate. In the flexural test of a 5mm diameter cylinder, there will be no cracks or cracks on the surface, so it can be used for folding product applications.
此外,因含氟高分子材料一般均具有较高熔点(例如PVDF约165℃,PETFE约240℃)且具阻燃特性,可耐高温,且不易起火燃烧,而更具安全上的应用价值。In addition, because fluorine-containing polymer materials generally have a relatively high melting point (for example, PVDF is about 165°C, PETFE is about 240°C) and has flame retardant properties, can withstand high temperatures, and is not easy to catch fire, so it has more safety application value.
附图说明 Description of drawings
图1例示本发明一实施例的散热衬底。FIG. 1 illustrates a heat dissipation substrate according to an embodiment of the present invention.
具体实施方式 Detailed ways
参看图1,一LED元件10承载于一散热衬底20上。所述散热衬底20包含一第一金属层21、一第二金属层22及一叠设于所述第一金属层21及第二金属层22间的导热高分子介电绝缘材料层23。所述LED元件10设置于所述第一金属层21表面,且所述第一及第二金属层21和22与所述导热高分子介电绝缘材料层23间的界面形成物理接触,且其中至少一界面为微粗糙面,所述微粗糙面包含复数个瘤状突出物,且所述瘤状突出物的粒径主要分布于0.1至100微米之间,藉此增加彼此间的拉力强度。Referring to FIG. 1 , an
上述散热衬底20的制作方式例示如下:将批式混炼机(HAAKE-600P)进料温度定在材料熔点(Tm)+20℃,加入所述导热高分子介电绝缘材料层23的配方预混料(原料置于钢杯先以量匙搅拌均匀)。初始时混炼机旋转的转速为40rpm,3分钟之后将其转速提高至70rpm,继续混炼15分钟后下料,而形成一具有散热特性的散热复合材料。The manufacturing method of the above-mentioned
将上述散热复合材料以上下对称方式置入外层为钢板,中间厚度为所需厚度(例如0.15mm)的模具中,模具上下各置一层铁弗龙脱模布,先预热5分钟,再压合15分钟(操作压力150kg/cm2,温度同混炼温度),之后形成一厚度为0.15mm的散热薄片。Put the above-mentioned heat dissipation composite material into a mold whose outer layer is a steel plate and the middle thickness is the required thickness (for example, 0.15mm) in a symmetrical manner up and down. Put a layer of Teflon release cloth on the upper and lower sides of the mold, and preheat it for 5 minutes. Then press for 15 minutes (operating pressure 150kg/cm 2 , temperature is the same as the kneading temperature), and then form a heat dissipation sheet with a thickness of 0.15mm.
将所述散热薄片上、下置所述第一金属层21及第二金属层22再压合一次,先预热5分钟,再压合5分钟(操作压力150kg/cm2,温度同混炼温度),形成中间为所述导热高分子介电绝缘材料层23,而上下贴合所述第一金属层21及第二金属层22的散热衬底20。Place the
表一所示为不同粗糙度的拉力及耐电压测试实验结果,其中导热高分子介电绝缘材料层23选用聚偏二氟乙烯(Poly Vinylidene Fluoride;PVDF)(熔点约165℃)为基材,且于PVDF中散布导热填料氧化铝(Al2O3),且两者的体积百分比分别为40%及60%。本实施例中,所述导热高分子材料层23的厚度均小于0.3mm。所述拉力实验符合日本JIS C6481规范,以测试界面间的剥离强度。Table 1 shows the experimental results of tensile force and withstand voltage tests with different roughnesses, wherein the thermally conductive polymer dielectric
表一Table I
由表一可知,对照组的表面粗糙度(Rz)在于3.0~4.5之间,其小于编号1-6的实验组,而其拉力7.5N/cm远小于编号1-6的实验组的拉力(至少大于8.0N/cm)。显而易见较大的表面粗糙度可增加所述导热高分子介电绝缘材料层23与第一和第二金属层21和22间的剥离强度。另外,所有的实验组均可通过5kV(或至少大于3kV)的耐电压测试,且其导热系数均大于1.0W/m·K。It can be seen from Table 1 that the surface roughness (Rz) of the control group is between 3.0 and 4.5, which is smaller than that of the experimental group numbered 1-6, and its pulling force of 7.5N/cm is much smaller than that of the experimental group numbered 1-6 ( At least greater than 8.0N/cm). It is obvious that a larger surface roughness can increase the peeling strength between the thermally conductive polymer dielectric
表二是针对不同种类的高分子聚合物的测试比较表。Table 2 is a test comparison table for different types of polymers.
表二Table II
编号1及2的实验组分别选用PVDF及PETFE(TefzelTM)作为聚合物基材,而导热填料选用氧化铝(Al2O3),对照组1和2的聚合物则选用不含氟的高分子聚乙烯(HDPE)及环氧树酯(EPOXY)。上述实验组及对照组的聚合物及导热填料的体积百分比均为40%及60%,且采用粗糙度Rz同为7.0-9.0的铜箔作为第一及第二金属层。The experimental groups No. 1 and No. 2 used PVDF and PETFE (Tefzel TM ) as the polymer base material respectively, and alumina (Al 2 O 3 ) was used as the thermally conductive filler, and the polymers of the control groups 1 and 2 were made of fluorine-free high Molecular polyethylene (HDPE) and epoxy resin (EPOXY). The volume percentages of polymers and thermally conductive fillers in the above-mentioned experimental group and control group are both 40% and 60%, and copper foils with a roughness Rz of 7.0-9.0 are used as the first and second metal layers.
所述环氧树酯(EPOXY)对照组包含液态环氧树酯、Novolac树酯、双氰胺(dicyandiamide)、尿素催化剂(urea catalyst)、氧化铝(Al2O3)。所述液态环氧树酯采用陶氏化学公司(Dow Chemical Company)的型号DER331产品;Novolac树酯采用陶氏化学公司的型号DEN438产品;双氰胺采用Degussa Fine Chemicals公司的Dyhard 100S;所述尿素催化剂采用Degussa Fine Chemicals公司的Dyhard UR500;所述氧化铝的颗粒大小于5到45微米之间,其产自Denki Kagaku Kogyo Kabushiki Kaisya公司。The epoxy resin (EPOXY) control group includes liquid epoxy resin, Novolac resin, dicyandiamide, urea catalyst, and aluminum oxide (Al 2 O 3 ). Described liquid epoxy resin adopts the model DER331 product of Dow Chemical Company (Dow Chemical Company); Novolac resin adopts the model DEN438 product of Dow Chemical Company; Dicyandiamide adopts Dyhard 100S of Degussa Fine Chemicals Company; The urea The catalyst is Dyhard UR500 from Degussa Fine Chemicals; the aluminum oxide has a particle size between 5 and 45 microns, which is produced by Denki Kagaku Kogyo Kabushiki Kaisya.
所述环氧树酯(EPOXY)可依以下方法制备:混合50份的DER331及50份的DEN438于一80℃的树脂锅(resin kettle)中直到形成同质溶液(homogeneous solution)。其次加入10份Dyhard 100S和3份Dyhard UR300于所述树脂锅中于80℃继续混合20分钟。之后,加入570份的Al2O3填料于所述树脂锅中并持续进行混合直到所述填料完全散布于所述树酯中形成树酯浆(slurry)。真空去除树酯浆中所含气体30分钟,接着将树酯浆放置于一铜箔表面,且放置另一铜箔于所述树酯浆表面以形成一铜箔/树酯浆/铜箔复合结构。所述铜箔/树酯浆/铜箔复合结构置于一3mm厚的金属架中,使用橡胶滚筒对于所述铜箔表面进行平坦化。将所述复合结构(连同金属架)置于130℃炉中进行预固化(pre-cure)1小时。之后将所述复合结构连同金属架置于一真空热压机中(真空度为10torr,压力为50kg/cm2),进一步于150℃的温度进行固化1小时。将所述复合结构于50kg/cm2的压力下冷却至低于50℃,并由所述热压机中移除所述复合结构。The epoxy resin (EPOXY) can be prepared as follows: mix 50 parts of DER331 and 50 parts of DEN438 in a resin kettle at 80° C. until a homogeneous solution is formed. Next, 10 parts of Dyhard 100S and 3 parts of Dyhard UR300 were added to the resin pot and mixing was continued for 20 minutes at 80°C. Afterwards, 570 parts of Al 2 O 3 filler was added into the resin pot and the mixing was continued until the filler was completely dispersed in the resin to form a resin slurry. Vacuum remove the gas contained in the resin paste for 30 minutes, then place the resin paste on the surface of a copper foil, and place another copper foil on the surface of the resin paste to form a copper foil/resin paste/copper foil composite structure. The copper foil/resin pulp/copper foil composite structure was placed in a 3mm thick metal frame, and a rubber roller was used to planarize the surface of the copper foil. The composite structure (together with the metal frame) was placed in a 130°C oven for 1 hour to pre-cure. Afterwards, the composite structure together with the metal frame was placed in a vacuum hot press (vacuum degree of 10 torr, pressure of 50 kg/cm 2 ), and further cured at a temperature of 150° C. for 1 hour. The composite structure was cooled to below 50° C. under a pressure of 50 kg/cm 2 , and the composite structure was removed from the hot press.
将所述PVDF和PETFE实验组及HDPE和EPOXY对照组的试验衬底经过以下试验:The test substrate of described PVDF and PETFE experimental group and HDPE and EPOXY control group is through following test:
1.可绕曲性:将1cm宽的试验衬底绕曲成5mm直径的圆柱,表面不可有断裂或裂痕的情形。1. Flexibility: bend the 1cm wide test substrate into a 5mm diameter cylinder, and there should be no breaks or cracks on the surface.
2.锡炉测试:将试验衬底置于260℃的锡炉5分钟,表面不可有起泡或其它外观异常。2. Tin furnace test: place the test substrate in a tin furnace at 260°C for 5 minutes, and there should be no blisters or other abnormal appearance on the surface.
3.拉力(剥离强度)测试:依照日本工业标准JIS C6481进行。3. Tensile (peel strength) test: conducted in accordance with Japanese Industrial Standard JIS C6481.
4.介电强度(绝缘破坏电压)测试:即耐电压测试,依照日本工业标准JIS C2110进行。4. Dielectric strength (dielectric breakdown voltage) test: that is, the withstand voltage test, which is carried out in accordance with the Japanese Industrial Standard JIS C2110.
由表二可知,含氟的高分子聚合物PVDF及PETFE的实验组具有良好的可挠曲性及耐高温特性,且还可通过耐电压测试而可承受5kV以上的高电压。反观,采用HDPE为聚合物的对照组1,虽然通过可挠曲性测试,然而其并未通过260℃的锡炉高温测试,且耐电压小于2kV,明显小于编号1及2的实验组。至于采用EPOXY为聚合物的对照组2,虽然可通过高温的锡炉测试,然而其硬度较高而不具可挠曲性。It can be seen from Table 2 that the experimental group of fluorine-containing polymers PVDF and PETFE has good flexibility and high temperature resistance, and can also withstand high voltages above 5kV through the withstand voltage test. On the other hand, the control group 1 using HDPE as the polymer passed the flexibility test, but it failed the 260°C tin furnace high temperature test, and its withstand voltage was less than 2kV, which was significantly lower than that of the experimental groups 1 and 2. As for the control group 2 using EPOXY as the polymer, although it can pass the high-temperature tin oven test, it has high hardness and is not flexible.
此外,上述PVDF及PETFE的含氟材料具有不易燃烧及不助燃的特性(符合UL 94V-0),而与HDPE及EPOXY相比较更能提供安全上的应用。In addition, the above-mentioned fluorine-containing materials of PVDF and PETFE are non-flammable and non-combustible (according to UL 94V-0), and compared with HDPE and EPOXY, they can provide safer applications.
所述含氟高分子聚合物及导热填料的体积百分比可作某程度的调整而仍维持同样特性。优选地,所述含氟高分子聚合物的体积百分比介于30-60%之间;而导热填料的体积百分比介于40-70%之间,且尤其以百分比介于50-65%为更佳。The volume percentages of the fluorine-containing high molecular polymer and the thermally conductive filler can be adjusted to some extent while still maintaining the same characteristics. Preferably, the volume percentage of the fluorine-containing high molecular polymer is between 30-60%; and the volume percentage of the thermally conductive filler is between 40-70%, and especially the percentage is between 50-65%. good.
除了上述的材料选用外,导热高分子聚合物还可选用聚四氟乙烯(poly(tetrafluoroethylene);PTFE)、四氟乙烯-六氟丙烯共聚物(tetrafluoroethylene-hexafluoro-propylene copolymer;FEP)、乙烯-四氟乙烯共聚物(ethylene-tetrafluoroethylene copolymer;ETFE)、全氟烷氧改质四氟乙烯(perfluoroalkoxymodified tetrafluoroethylenes;PFA)、聚(氯三-氟四氟乙烯)(poly(chlorotri-fluorotetrafluoroethylene);PCTFE)、偏二氟乙烯-四氟乙烯聚合物(vinylidene fluoride-tetrafluoroethylene copolymer);VF-2-TFE)、聚偏二氟乙烯(poly(vinylidene fluoride))、四氟乙烯-全氟间二氧杂环戊烯共聚物(tetrafluoroethylene-perfluorodioxole copolymers)、偏二氟乙烯-六氟丙烯共聚物(vinylidenefluoride-hexafluoropropylene copolymer)、偏二氟乙烯-六氟丙烯-四氟乙烯三聚物(vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer)、及四氟乙烯-全氟甲基乙烯基醚(tetrafluoroethylene-perfluoromethylvinylether)加上固化域的单体三聚物(cure site monomer terpolymer)等。In addition to the above material selection, thermally conductive polymers can also be polytetrafluoroethylene (poly (tetrafluoroethylene); PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (tetrafluoroethylene-hexafluoro-propylene copolymer; FEP), ethylene- Tetrafluoroethylene copolymer (ethylene-tetrafluoroethylene copolymer; ETFE), perfluoroalkoxy modified tetrafluoroethylene (perfluoroalkoxymodified tetrafluoroethylenes; PFA), poly (chlorotri-fluorotetrafluoroethylene) (poly (chlorotri-fluorotetrafluoroethylene); PCTFE) , vinylidene fluoride-tetrafluoroethylene copolymer (vinylidene fluoride-tetrafluoroethylene copolymer); VF-2-TFE), polyvinylidene fluoride (poly(vinylidene fluoride)), tetrafluoroethylene-perfluorodioxane Pentene copolymer (tetrafluoroethylene-perfluorodioxole copolymers), vinylidenefluoride-hexafluoropropylene copolymer (vinylidenefluoride-hexafluoropropylene copolymer), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer (vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer), and tetrafluoroethylene-perfluoromethylvinyl ether (tetrafluoroethylene-perfluoromethylvinylether) plus cured domain monomer terpolymer (cure site monomer terpolymer), etc.
导热填料可选用氮化物(nitride)或氧化物(oxide)。氮化物包含氮化锆(zirconiumnitride;ZrN)、氮化硼(Boron nitride;BN)、氮化铝(Aluminum nitride;AlN)、氮化硅(Siliconnitride;SiN)。氧化物包含氧化铝(Aluminum oxide;Al2O3)、氧化镁(Magnesium oxide;MgO)、氧化锌(Zinc oxide;ZnO)、二氧化钛(Titaninum dioxide;TiO2)等。The thermally conductive filler can be selected from nitride or oxide. The nitride includes zirconium nitride (ZrN), boron nitride (BN), aluminum nitride (Aluminum nitride; AlN), and silicon nitride (Siliconnitride; SiN). The oxide includes aluminum oxide (Aluminum oxide; Al 2 O 3 ), magnesium oxide (Magnesium oxide; MgO), zinc oxide (Zinc oxide; ZnO), titanium dioxide (Titaninum dioxide; TiO 2 ), and the like.
另外,如果应用于LED的高功率发光元件,承载LED元件10的所述第一金属层21可采用铜,而得制作出LED元件的相关电路,而底部的第二金属层22则可采用铜、铝或其合金。In addition, if it is applied to a high-power light-emitting element of an LED, the
本发明的散热衬底,不仅具有高导热效率、耐高电压、耐高温等特性,更具备高拉力强度及可挠曲性,而得以应用于目前照明用的LED模块散热,甚至可用于笔记本计算机、手机等折叠式散热的应用。The heat dissipation substrate of the present invention not only has the characteristics of high thermal conductivity, high voltage resistance, and high temperature resistance, but also has high tensile strength and flexibility, so it can be applied to heat dissipation of LED modules for current lighting, and can even be used for notebook computers , mobile phones and other folding heat dissipation applications.
本发明的技术内容及技术特点已揭示如上,然而所属领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修改。因此,本发明的保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修改,并为所附的权利要求书所涵盖。The technical content and technical features of the present invention have been disclosed above, but those skilled in the art may still make various substitutions and modifications based on the teaching and disclosure of the present invention without departing from the spirit of the present invention. Therefore, the protection scope of the present invention should not be limited to the contents disclosed in the embodiments, but should include various replacements and modifications that do not depart from the present invention, and should be covered by the appended claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006101286942A CN101140915B (en) | 2006-09-08 | 2006-09-08 | Heat dissipation substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006101286942A CN101140915B (en) | 2006-09-08 | 2006-09-08 | Heat dissipation substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101140915A true CN101140915A (en) | 2008-03-12 |
CN101140915B CN101140915B (en) | 2011-03-23 |
Family
ID=39192773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101286942A Expired - Fee Related CN101140915B (en) | 2006-09-08 | 2006-09-08 | Heat dissipation substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101140915B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102216047A (en) * | 2008-11-12 | 2011-10-12 | 日东电工株式会社 | Method for producing insulating thermally conductive sheet, insulating thermally conductive sheet and heat dissipating member |
CN102390146A (en) * | 2011-06-23 | 2012-03-28 | 蔡州 | Manufacture method of heat transfer layer and heat-radiating layer arranged on surface of heat-radiating object, and heat-radiating layer structure |
CN102473683A (en) * | 2009-07-15 | 2012-05-23 | Io半导体公司 | Semiconductor-on-insulator with backside heat dissipation |
CN102593312A (en) * | 2011-01-14 | 2012-07-18 | 隆达电子股份有限公司 | Light emitting diode packaging structure |
CN102054806B (en) * | 2009-11-11 | 2013-01-02 | 台虹科技股份有限公司 | A thermally conductive substrate and its manufacturing method |
CN102943969A (en) * | 2012-11-21 | 2013-02-27 | 深圳华瀚新能源材料有限公司 | Light-emitting diode (LED) lamp using heat conduction high-polymer material for heat dissipation |
CN103413791A (en) * | 2013-08-22 | 2013-11-27 | 广州天极电子科技有限公司 | Ceramic copper-coated film heat sink module with good heat dissipation efficiency and manufacturing method thereof |
CN103594434A (en) * | 2013-10-23 | 2014-02-19 | 孔星 | Composite heat dissipation layer of power component, technology of composite heat dissipation layer of power component and power component with composite heat dissipation layer |
CN104040712A (en) * | 2011-12-22 | 2014-09-10 | 日东电工株式会社 | Semiconductor device, optical semiconductor device, and heat-dissipating member |
US9017817B2 (en) | 2008-04-30 | 2015-04-28 | Nitto Denko Corporation | Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles |
CN105161595A (en) * | 2015-08-07 | 2015-12-16 | 苏州晶雷光电照明科技有限公司 | Large-power light emitting diode |
US9368468B2 (en) | 2009-07-15 | 2016-06-14 | Qualcomm Switch Corp. | Thin integrated circuit chip-on-board assembly |
US9390974B2 (en) | 2012-12-21 | 2016-07-12 | Qualcomm Incorporated | Back-to-back stacked integrated circuit assembly and method of making |
US9466719B2 (en) | 2009-07-15 | 2016-10-11 | Qualcomm Incorporated | Semiconductor-on-insulator with back side strain topology |
US9496227B2 (en) | 2009-07-15 | 2016-11-15 | Qualcomm Incorporated | Semiconductor-on-insulator with back side support layer |
US9515181B2 (en) | 2014-08-06 | 2016-12-06 | Qualcomm Incorporated | Semiconductor device with self-aligned back side features |
CN106486457A (en) * | 2015-09-02 | 2017-03-08 | 英飞凌科技股份有限公司 | chip carrier, device and method |
CN108847450A (en) * | 2018-06-12 | 2018-11-20 | 武汉华星光电半导体显示技术有限公司 | A kind of substrate of Organic Light Emitting Diode and preparation method thereof |
CN111146179A (en) * | 2018-11-02 | 2020-05-12 | 英飞凌科技股份有限公司 | Semiconductor substrate |
CN111557125A (en) * | 2018-01-04 | 2020-08-18 | Lg 伊诺特有限公司 | Heat radiation substrate |
CN115605009A (en) * | 2022-12-14 | 2023-01-13 | 荣耀终端有限公司(Cn) | A kind of preparation method of middle frame, electronic equipment and middle frame |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7128979B2 (en) * | 2002-04-19 | 2006-10-31 | Mitsubishi Materials Corporation | Circuit board, method of producing same, and power module |
US20050061496A1 (en) * | 2003-09-24 | 2005-03-24 | Matabayas James Christopher | Thermal interface material with aligned carbon nanotubes |
-
2006
- 2006-09-08 CN CN2006101286942A patent/CN101140915B/en not_active Expired - Fee Related
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9017817B2 (en) | 2008-04-30 | 2015-04-28 | Nitto Denko Corporation | Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles |
CN102216047A (en) * | 2008-11-12 | 2011-10-12 | 日东电工株式会社 | Method for producing insulating thermally conductive sheet, insulating thermally conductive sheet and heat dissipating member |
US9748272B2 (en) | 2009-07-15 | 2017-08-29 | Qualcomm Incorporated | Semiconductor-on-insulator with back side strain inducing material |
US9466719B2 (en) | 2009-07-15 | 2016-10-11 | Qualcomm Incorporated | Semiconductor-on-insulator with back side strain topology |
CN102473683A (en) * | 2009-07-15 | 2012-05-23 | Io半导体公司 | Semiconductor-on-insulator with backside heat dissipation |
US10217822B2 (en) | 2009-07-15 | 2019-02-26 | Qualcomm Incorporated | Semiconductor-on-insulator with back side heat dissipation |
US9368468B2 (en) | 2009-07-15 | 2016-06-14 | Qualcomm Switch Corp. | Thin integrated circuit chip-on-board assembly |
CN102473683B (en) * | 2009-07-15 | 2015-07-22 | 斯兰纳半导体美国股份有限公司 | Semiconductor-on-insulator with backside heat dissipation |
US9496227B2 (en) | 2009-07-15 | 2016-11-15 | Qualcomm Incorporated | Semiconductor-on-insulator with back side support layer |
US9412644B2 (en) | 2009-07-15 | 2016-08-09 | Qualcomm Incorporated | Integrated circuit assembly and method of making |
US9029201B2 (en) | 2009-07-15 | 2015-05-12 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with back side heat dissipation |
CN102054806B (en) * | 2009-11-11 | 2013-01-02 | 台虹科技股份有限公司 | A thermally conductive substrate and its manufacturing method |
CN102593312A (en) * | 2011-01-14 | 2012-07-18 | 隆达电子股份有限公司 | Light emitting diode packaging structure |
WO2012174686A1 (en) * | 2011-06-23 | 2012-12-27 | Cai Zhou | Manufacturing method for disposing heat transfer layer and heat dissipation layer on surface of radiator and heat dissipation layer structure |
CN102390146B (en) * | 2011-06-23 | 2014-02-12 | 蔡州 | Manufacture method of heat transfer layer and heat-radiating layer arranged on surface of heat-radiating object, and heat-radiating layer structure |
CN102390146A (en) * | 2011-06-23 | 2012-03-28 | 蔡州 | Manufacture method of heat transfer layer and heat-radiating layer arranged on surface of heat-radiating object, and heat-radiating layer structure |
CN104040712A (en) * | 2011-12-22 | 2014-09-10 | 日东电工株式会社 | Semiconductor device, optical semiconductor device, and heat-dissipating member |
CN102943969A (en) * | 2012-11-21 | 2013-02-27 | 深圳华瀚新能源材料有限公司 | Light-emitting diode (LED) lamp using heat conduction high-polymer material for heat dissipation |
US9390974B2 (en) | 2012-12-21 | 2016-07-12 | Qualcomm Incorporated | Back-to-back stacked integrated circuit assembly and method of making |
US9576937B2 (en) | 2012-12-21 | 2017-02-21 | Qualcomm Incorporated | Back-to-back stacked integrated circuit assembly |
CN103413791A (en) * | 2013-08-22 | 2013-11-27 | 广州天极电子科技有限公司 | Ceramic copper-coated film heat sink module with good heat dissipation efficiency and manufacturing method thereof |
CN103594434A (en) * | 2013-10-23 | 2014-02-19 | 孔星 | Composite heat dissipation layer of power component, technology of composite heat dissipation layer of power component and power component with composite heat dissipation layer |
US9515181B2 (en) | 2014-08-06 | 2016-12-06 | Qualcomm Incorporated | Semiconductor device with self-aligned back side features |
CN105161595A (en) * | 2015-08-07 | 2015-12-16 | 苏州晶雷光电照明科技有限公司 | Large-power light emitting diode |
CN105161595B (en) * | 2015-08-07 | 2018-06-19 | 佛山市雄飞光电有限公司 | Large-power light-emitting diodes |
CN106486457B (en) * | 2015-09-02 | 2020-03-13 | 英飞凌科技股份有限公司 | Chip carrier, device and method |
US10163820B2 (en) | 2015-09-02 | 2018-12-25 | Infineon Technologies Ag | Chip carrier and method thereof |
CN106486457A (en) * | 2015-09-02 | 2017-03-08 | 英飞凌科技股份有限公司 | chip carrier, device and method |
CN111557125A (en) * | 2018-01-04 | 2020-08-18 | Lg 伊诺特有限公司 | Heat radiation substrate |
CN108847450A (en) * | 2018-06-12 | 2018-11-20 | 武汉华星光电半导体显示技术有限公司 | A kind of substrate of Organic Light Emitting Diode and preparation method thereof |
CN111146179A (en) * | 2018-11-02 | 2020-05-12 | 英飞凌科技股份有限公司 | Semiconductor substrate |
CN115605009A (en) * | 2022-12-14 | 2023-01-13 | 荣耀终端有限公司(Cn) | A kind of preparation method of middle frame, electronic equipment and middle frame |
Also Published As
Publication number | Publication date |
---|---|
CN101140915B (en) | 2011-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101140915B (en) | Heat dissipation substrate | |
TWI302372B (en) | Heat dissipation substrate for electronic device | |
JP5454226B2 (en) | Heat dissipation board and manufacturing method thereof | |
JP5385685B2 (en) | Cover-lay film, light-emitting element mounting substrate, and light source device | |
JP2018523592A (en) | Organosilicone resin aluminum-based copper-clad laminate and preparation method thereof | |
TW201004501A (en) | Metal base circuit board | |
KR101496061B1 (en) | Metal foil laminate, substrate for mounting led, and light source device | |
JP2011181650A (en) | Heat dissipation substrate and method of manufacturing the same | |
TWI339088B (en) | Heat dissipation substrate and heat dissipation material thereof | |
JP2008042120A (en) | Heat conducting substrate, manufacturing method thereof, and electronic apparatus employing the same | |
WO2015163054A1 (en) | Metal-based substrate, method for manufacturing metal-based substrate, metal-based circuit board, and electronic device | |
JP2009302110A (en) | Cover ray film | |
JP2010263165A (en) | LED reflective substrate and light emitting device | |
JP2011181652A (en) | Heat dissipation substrate, method of manufacturing the same, and module | |
JP5676785B2 (en) | Cover-lay film, light-emitting element mounting substrate, and light source device | |
CN101316499A (en) | Heat dissipation substrate and heat dissipation material thereof | |
KR101387086B1 (en) | Insulative and heat-dissipative master batch and insulative and heat-dissipative products | |
JP2011181648A (en) | Heat dissipation substrate and method of manufacturing the same | |
JP2010274540A (en) | White film, metal laminate, LED mounting substrate and light source device | |
JP2010189614A (en) | Resin composition, support material with insulative layer, prepreg, laminated board for light-emitting element, circuit board for light emitting element, and light emitting device | |
CN116614934A (en) | Metal-coated substrate | |
CN101553082A (en) | Printed circuit board and setting method thereof | |
JP2006124434A (en) | Epoxy resin-inorganic material composite sheet and molded article | |
JP2008106126A (en) | Thermally conductive material, heat releasing substrate using this and its manufacturing method | |
TW201108882A (en) | Thermal conductivity copper-clad substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20080312 Assignee: Kunshan Juda Electronic Co., Ltd. Assignor: Juding Science and Technology Co., Ltd. Contract record no.: 2014990000400 Denomination of invention: Semiconductor heat-dissipating substrate, and manufacturing method and assembly therefor Granted publication date: 20110323 License type: Exclusive License Record date: 20140612 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110323 Termination date: 20160908 |