CN100415912C - High-strength high-elasticity modulus titanium alloy - Google Patents

High-strength high-elasticity modulus titanium alloy Download PDF

Info

Publication number
CN100415912C
CN100415912C CNB2005101277489A CN200510127748A CN100415912C CN 100415912 C CN100415912 C CN 100415912C CN B2005101277489 A CNB2005101277489 A CN B2005101277489A CN 200510127748 A CN200510127748 A CN 200510127748A CN 100415912 C CN100415912 C CN 100415912C
Authority
CN
China
Prior art keywords
titanium alloy
elasticity modulus
weight
alloy
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005101277489A
Other languages
Chinese (zh)
Other versions
CN1978681A (en
Inventor
惠松骁
叶文君
王希哲
肖今声
于洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CNB2005101277489A priority Critical patent/CN100415912C/en
Publication of CN1978681A publication Critical patent/CN1978681A/en
Application granted granted Critical
Publication of CN100415912C publication Critical patent/CN100415912C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention relates to a titanium alloy which is alpha + beta two phase one. Its components are as follows: 4.5-9.0wt% aluminum, 0.2-1.5wt% boron, and 0.5-5wt% beta stable element. The titanium alloy of the invention not only has high intensity high elastic modulus, but also cannot worsen its process ability and plasticity index.

Description

A kind of titanium alloy of high-strength high-elasticity modulus
Technical field
The present invention relates to a kind of titanium alloy, particularly a kind of titanium alloy of high-strength high-elasticity modulus.
Background technology
When the recoverable deformation of metallic substance satisfied hooke's law fully, the ratio of its stress and strain was Young's modulus.Young's modulus is the physical parameter that characterizes solid interatomic bond intensity in essence, and atomic radius and ionic radius are more little, the material that valence is high more, and its Young's modulus is just big more.For the material that composition is selected, Young's modulus is insensitive to organizing.
Because titanium alloy has good specific tenacity and erosion resistance, therefore, it has been widely used in such as fields such as aviation, military affairs, space, deep-sea detecting and chemical plant.The Young's modulus of titanium alloy has only half of ferrous materials approximately, generally between 110~125GPa.
The Young's modulus of alpha titanium alloy is higher than the Young's modulus of beta titanium alloy.The Young's modulus of commercial alpha titanium alloy is about 120GPa, and the Young's modulus of commercial beta-titanium alloy is about 110GPa.Except that pure titanium, the process plastic of alpha titanium alloy is poor than beta titanium alloy, and the deflection in a cold rolling cycle has only 8%.
Beta stable element is not obvious to the raising of β phase Young's modulus.And α phase stable element aluminium (Al) commonly used is the α phase stable element that the most generally uses in the titanium alloy, and it can significantly increase the Young's modulus of α phase.Do not forming α 2(weight percent of aluminium will form ordered phase (TiAl greater than 8% in the scope of phase 3) be α 2Phase), the Al of every increase by 1 weight %, the Young's modulus of α phase increases 1.4GPa.
Boron (B) is though element is a α phase stable element, but it α mutually with the solubleness all very little (less than 0.2 atom %) of β in mutually, it exists with the form of TiB phase second phase in titanium alloy, its Young's modulus is up to 355GPa, and there is the Young's modulus that can improve titanium alloy in the titanium alloy significantly in it.In pure titanium, when the volume fraction of TiB phase increased to 15% by 0%, Young's modulus increased to 139Gpa by 110GPa.In Ti-6Al-4V (weight percent) alloy (a kind of multiduty alpha+beta alloy), when the volume fraction of TiB phase increased to 10% by 0%, Young's modulus increased to 140GPa by 116GPa.TiB exists with the form of the second phase particle in titanium alloy, and the time spent of doing that is subjected to external stress, it was indeformable substantially, and the compatibility of deformation ability between matrix.When the existence of TiB phase improves the titanium alloy elastic modulus significantly, the processing characteristics of titanium alloy, plasticity index are worsened.
Summary of the invention
The purpose of this invention is to provide and a kind ofly have high-strength high-elasticity modulus and don't make the titanium alloy processing characteristics and titanium alloy that plasticity index worsens.
For achieving the above object, the present invention takes following technical scheme:
A kind of titanium alloy of high-strength high-elasticity modulus, it is the alpha+beta diphasic titanium alloy, in the time will all counting 100 weight %, contains the main ingredient titanium, the aluminium of 4.5~9.0 weight %, the boron of 0.2~1.5 weight %, the beta stable element of 0.5~5 weight %.
A kind of optimal technical scheme is characterized in that, described beta stable element is one or more the mixing of arbitrary proportion in molybdenum, niobium, vanadium, chromium, the iron; When being the mixing of arbitrary proportion of multiple beta stable element, wherein the content of each beta stable element is not less than 0.5 weight %.
A kind of optimal technical scheme is characterized in that, also contains the neutral element of 0~3 weight % in the titanium alloy of described high-strength high-elasticity modulus.
A kind of optimal technical scheme is characterized in that, described neutral element is tin, zirconium, hafnium.
A kind of optimal technical scheme is characterized in that, also contains hydrocarbon oxygen nitrogen interstitial element in the titanium alloy of described high-strength high-elasticity modulus.
A kind of optimal technical scheme is characterized in that, the content of described oxygen is 0.05~0.25 weight %.
The diphasic titanium alloy control routinely of the amount of other interstitial element.
The titanium alloy of high-strength high-elasticity modulus of the present invention can utilize multiple melting method meltings such as vacuum consumable smelting, skull melting, beam-plasma melting, electron beam melting, shower furnace melting with commercially available pure metal or master alloy, also can adopt the combination melting of these melting method.Described pure metal comprises titanium, zirconium, aluminium, iron, chromium, vanadium and hafnium; Described master alloy comprises aluminium molybdenum alloy, aluminum-vanadium alloy and Ti-B alloy.
Beneficial effect
1) its tensile strength of titanium alloy of the present invention Rm>1000MPa, modulus in tension E 〉=130GPa, unit elongation>7%.
2) alloy of the present invention can be accomplished TiB phase an amount of, that self have high elastic coefficient, has increased the Young's modulus of alloy, does not significantly worsen the plasticity index and the processing characteristics of alloy simultaneously.
Titanium alloy of the present invention can be made products such as bar, sheet material, foil.
Embodiment
Embodiment 1
Titanium sponge, zirconium sponge, fine aluminium, pure hafnium, aluminium vanadium master alloy, aluminium molybdenum master alloy, aluminium niobium master alloy and titanium boron master alloy are pressed composition Ti-4.5Al-3Zr-0.5Hf-4Mo-1V-1Nb-1.2B-0.06O batching compacting electrode respectively, adopt skull melting and consumable electrode vacuum furnace melting, be smelted into ingot casting twice.Ingot casting is prepared into 12 millimeters bars of φ through forging and rolling.Bar is prepared into the standard tensile sample by standard GB/T228-2000 after 850 ℃/1h/AC finished products is handled, carry out Mechanics Performance Testing on the AG50KNE universal testing machine of Tianjin, island, the tensile strength Rm of gained, unit elongation A 5E sees Table 1 with modulus in tension.
Embodiment 2
Titanium sponge, zirconium sponge, fine aluminium, pure iron, pure chromium, aluminium molybdenum master alloy, aluminium niobium master alloy and titanium boron master alloy are pressed composition Ti-6Al-2Mo-2Cr-2Zr-0.5Fe-0.6B-0.22O batching compacting electrode respectively, adopt consumable electrode vacuum furnace to be smelted into ingot casting twice.Ingot casting is prepared into 12 millimeters bars of φ through forging and rolling.Bar is prepared into the standard tensile sample by standard GB/T228-2000 after 850 ℃/1h/AC finished products is handled, carry out Mechanics Performance Testing on the AG50KNE universal testing machine of Tianjin, island, the tensile strength Rm of gained, unit elongation A 5E sees Table 1 with modulus in tension.
Embodiment 3
Titanium sponge, fine aluminium, pure chromium, aluminium vanadium master alloy, aluminium molybdenum master alloy and titanium boron master alloy are pressed composition Ti-8Al-2Mo-2V-1Cr-0.7B-0.12O batching compacting electrode respectively, adopt plasma melting and vacuum consumable smelting, be smelted into ingot casting twice.Ingot casting forges and plate rolling through slab, and being prepared into thickness is 2.0 millimeters sheet materials.After 900 ℃/1h/AC of sheet material finished products was handled, the surface sand-blasting pickling was prepared into the standard tensile sample by standard GB/T228-2000, carries out Mechanics Performance Testing on the AG50KNE universal testing machine of Tianjin, island, the tensile strength Rm of gained, unit elongation A 5E sees Table 1 with modulus in tension.
Embodiment 4
Titanium sponge, zirconium sponge, fine aluminium, pure iron, pure chromium, titanium tin master alloy, aluminium molybdenum master alloy and titanium boron master alloy are pressed composition Ti-6Al-1Sn-2Zr-2Mo-2Cr-0.5Fe-0.3B-0.10O batching respectively, adopt the shower furnace melting, be smelted into ingot casting.Ingot casting is through hot cogging and slab rolling, and being prepared into thickness is 1.2 millimeters slabs, and slab is made 0.3 millimeter foil through the cold rolling and middle vacuum annealing that circulates.Foil is prepared into the standard tensile sample by standard GB/T228-2000 after adopting 1000 ℃/1h/FC vacuum annealing to handle, and carries out Mechanics Performance Testing on the AG50KNE universal testing machine of Tianjin, island, the tensile strength Rm of gained, unit elongation A 5E sees Table 1 with modulus in tension.
The tensile property of table 1 embodiment interalloy
Alloy Rm(MPa) A 5(%) E(GPa)
Ti-4.5Al-3Zr-0.5Hf-4Mo-1V-1Nb-1.2B-0.06O 1210 8.5 145
Ti-6Al-2Mo-2Cr-2Zr-0.5Fe-0.6B-0.22O 1250 8 138
Ti-8Al-2Mo-2V-1Cr-0.7B-0.12O 1150 7.5 136
Ti-6Al-1Sn-2Zr-2Mo-2Cr-0.5Fe-0.3B-0.10O 1050 10 132
Can its tensile strength Rm>1000MPa from last table, modulus in tension E 〉=130GPa, unit elongation>7%.

Claims (4)

1. the titanium alloy of a high-strength high-elasticity modulus, it is the alpha+beta diphasic titanium alloy, in the time will all counting 100 weight %, contains the aluminium of 4.5~9.0 weight %, the boron of 0.2~1.5 weight %, the beta stable element of 0.5~5 weight %, surplus is a titanium; It is characterized in that: described beta stable element is one or more the mixing of arbitrary proportion in molybdenum, niobium, vanadium, chromium, the iron; And when being the mixing of arbitrary proportion of multiple beta stable element, wherein the content of each beta stable element is not less than 0.5 weight %.
2. the titanium alloy of high-strength high-elasticity modulus according to claim 1 is characterized in that, also contains the neutral element of 0~3 weight % in the titanium alloy of described high-strength high-elasticity modulus: tin, zirconium or hafnium.
3. the titanium alloy of high-strength high-elasticity modulus according to claim 1 is characterized in that, also contains interstitial element oxygen in the titanium alloy of described high-strength high-elasticity modulus.
4. the titanium alloy of high-strength high-elasticity modulus according to claim 3 is characterized in that,, the content of described oxygen is 0.05~0.25 weight %.
CNB2005101277489A 2005-12-06 2005-12-06 High-strength high-elasticity modulus titanium alloy Active CN100415912C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101277489A CN100415912C (en) 2005-12-06 2005-12-06 High-strength high-elasticity modulus titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101277489A CN100415912C (en) 2005-12-06 2005-12-06 High-strength high-elasticity modulus titanium alloy

Publications (2)

Publication Number Publication Date
CN1978681A CN1978681A (en) 2007-06-13
CN100415912C true CN100415912C (en) 2008-09-03

Family

ID=38129982

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101277489A Active CN100415912C (en) 2005-12-06 2005-12-06 High-strength high-elasticity modulus titanium alloy

Country Status (1)

Country Link
CN (1) CN100415912C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330999A (en) * 2020-02-27 2020-06-26 中国船舶重工集团公司第七二五研究所 Medium-strength high-elasticity modulus titanium alloy seamless pipe and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101760668B (en) * 2008-12-24 2011-04-20 北京有色金属研究总院 Biological medical titanium alloy with low elastic modulus
CN104894432B (en) * 2015-06-17 2017-03-29 宝鸡石油钢管有限责任公司 A kind of 110ksi levels titanium alloy oil pipe and preparation method thereof
CN105400993B (en) * 2015-12-22 2017-08-25 北京有色金属研究总院 A kind of low-cost titanium alloy of resistance to high speed impact
KR20180123221A (en) * 2016-04-25 2018-11-15 아르코닉 인코포레이티드 Alpha-beta titanium alloys with aluminum and molybdenum, and products made therefrom
CN107034382A (en) * 2016-06-25 2017-08-11 上海大学 The preparation method of alpha+beta titanium alloys and its sheet material and bar containing Fe, Cr, Zr alloying element
CN106222486B (en) * 2016-10-08 2018-06-08 燕山大学 A kind of high intensity zirconium titanium ferro-aluminum vanadium alloy and preparation method thereof
CN107034384A (en) * 2017-04-26 2017-08-11 东北大学 A kind of excellent low cost titanium acieral of thermal deformation working ability
CN107746990B (en) * 2017-09-27 2019-06-11 西安交通大学 A kind of High-strength high-plasticity Ti-Al-Zr-Mo-V system's beta-titanium alloy and its heat treatment process
CN108842095A (en) * 2018-05-22 2018-11-20 南京工业大学 High strength and low cost alpha+beta titanium alloys and preparation method thereof
CN108754231A (en) * 2018-08-31 2018-11-06 浙江申吉钛业股份有限公司 Lightweight high-intensity high resiliency titanium alloy and its implementation
CN116254438A (en) * 2021-12-09 2023-06-13 华为技术有限公司 Titanium alloy, preparation method thereof, titanium alloy part, folding rotating shaft and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1031569A (en) * 1987-08-24 1989-03-08 北京有色金属研究总院 High-strength, high-tenacity titanium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1031569A (en) * 1987-08-24 1989-03-08 北京有色金属研究总院 High-strength, high-tenacity titanium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330999A (en) * 2020-02-27 2020-06-26 中国船舶重工集团公司第七二五研究所 Medium-strength high-elasticity modulus titanium alloy seamless pipe and preparation method thereof

Also Published As

Publication number Publication date
CN1978681A (en) 2007-06-13

Similar Documents

Publication Publication Date Title
CN100415912C (en) High-strength high-elasticity modulus titanium alloy
CN101348876B (en) Low cost high strength titanium alloy
CN101403058B (en) Low cost alpha and beta type titan alloy
JP2008266773A (en) Alpha-plus-beta type titanium alloy
CN102978438B (en) Medium/high-strength titanium alloy capable of being cold-rolled and enhanced by heat treatment
CN114836700B (en) Large-size zirconium-based amorphous alloy with high strength and high hardness and preparation method thereof
CN106521240B (en) A kind of high tough zircaloy and preparation method thereof
CN107460370A (en) A kind of low-cost high-strength high-ductility metastable β Titanium-alloy and preparation method thereof
CN104451213A (en) Preparation method for titanium alloy with high dynamic bearing performance and low cost
CN107488803A (en) Magnesium-yttrium-transition metal high-entropy alloy before a kind of bio-medical
CN108842095A (en) High strength and low cost alpha+beta titanium alloys and preparation method thereof
CN104313394A (en) Low-cost titanium alloy with addible titanium defective material
CN105506379A (en) Damage tolerant medium-strength titanium alloy
CN109487116A (en) High-strength CTB alloy band and preparation method suitable for electrically conductive elastic component
CN109266906A (en) A kind of beta titanium alloy material and its preparation method and application
CN107746993A (en) A kind of high-strength high-plasticity alpha and beta type titan alloy and preparation method thereof
CN108411156A (en) A kind of nearly β types high strength titanium alloy and preparation method thereof
CN100415913C (en) High-strength high-elasticity modulus titanium alloy suitable for preparing foil material
CN113652592B (en) TiNbHfFeNi eutectic high-entropy alloy with high strength and high elastic strain and preparation method thereof
CN107653397A (en) A kind of high Nb TiAl alloys of β γ with excellent high deformability
CN106636743A (en) Easy-to-cut titanium alloy
CN101988167A (en) High-temperature titanium alloy
CN113151711A (en) Novel low-cost high-strength high-plasticity titanium alloy
CN101838756B (en) Rare-earth-containing titanium alloy
CN107043869B (en) A kind of high performance-price ratio titanium alloy and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190627

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088, 2, Xinjie street, Beijing

Patentee before: General Research Institute for Nonferrous Metals