CA2556122A1 - Electro-hydraulic manifold assembly with mounted pressure sensors - Google Patents

Electro-hydraulic manifold assembly with mounted pressure sensors Download PDF

Info

Publication number
CA2556122A1
CA2556122A1 CA 2556122 CA2556122A CA2556122A1 CA 2556122 A1 CA2556122 A1 CA 2556122A1 CA 2556122 CA2556122 CA 2556122 CA 2556122 A CA2556122 A CA 2556122A CA 2556122 A1 CA2556122 A1 CA 2556122A1
Authority
CA
Canada
Prior art keywords
interface
pressure
sensing
inserts
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2556122
Other languages
French (fr)
Inventor
Greg Edward Ford
Timothy John Green
David Edward Herbert
Harold Lamarr Bowman
Peter Martin Jacobsen
Mark Louis Dell'eva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corporation
Greg Edward Ford
Timothy John Green
David Edward Herbert
Harold Lamarr Bowman
Peter Martin Jacobsen
Mark Louis Dell'eva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/202,744 external-priority patent/US20060032541A1/en
Application filed by Eaton Corporation, Greg Edward Ford, Timothy John Green, David Edward Herbert, Harold Lamarr Bowman, Peter Martin Jacobsen, Mark Louis Dell'eva filed Critical Eaton Corporation
Publication of CA2556122A1 publication Critical patent/CA2556122A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Valve Housings (AREA)
  • Magnetically Actuated Valves (AREA)
  • Control Of Transmission Device (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

An electro-hydraulic manifold assembly with a plurality of solenoid operated valves disposed on a manifold block and each operable to control pressure from the inlet to a separate outlet. Sensing ports are provided in each outlet with a pressure sensor sealed over the sensing port for providing a signal indicative of the sensed pressure. The pressure sensors are mounted on a interface and electrically connected to the interface.
The interface has slots therein which permit the frame to be simultaneously electrically connected by bayonet connection to the terminals on each solenoid valve as the transducers are sealed over the sensing ports and the interface attached to the manifold block.

Description

ELECTRO-HYDRAULIC MANIFOLD
ASSEMBLY WITH MOUNTED PRESSURE SENSORS
BACKGROUND OF THE INVENTION
This is a continuation-in-part of application USSN 10/401,408 filed on March 28, 2003, which is now U.S. Patent No.6,929,031.
The present invention relates to manifold assemblies of the type having an hydraulic fluid pressure inlet communicating with a plurality of valve chambers, each having an electrically operated valve ported therein for controlling, upon energization, fluid pressure selectively to individual outlets for the respective valuing chambers. Manifolds of this type are employed for controlling pressure of hydraulic fluid in servo-actuators as, for example, clutch actuators in automatic speed-change power transmissions for motor vehicles where it is desired to control the speed change or shifting patterns of the transmission with an electronic controller. This arrangement has found widespread use in modern vehicle automatic transmissions because the electronic controller can receive in real time multiple inputs of vehicle operating parameters such as road speed, throttle position and engine RPM. The electronic controller can also be programmed to provide optimum shifting patterns based upon known engine power available, vehicle mass and the operating parameter inputs.
However, in providing a shifting pattern for controlling hydraulic fluid pressure to each of the transmission speed change clutch actuators for effecting the desired shifting, it has been found that providing pressure sensors at the outlet of each of the electrically operated valves can provide a clutch actuator pressure signal in real time which is in actuality an analog of the force on the clutch, which is in turn proportional to the torque transmitted by the clutch during engagement and disengagement. This arrangement gives an electrical signal proportional to torque transmitted for a particular gear set and thus provides real time closed loop control of the transmission shifting. This arrangement is a desirable alternative to predetermined shifting algorithms for open loop shift control by the electronic controller.
However, providing the pressure sensors at each electrical valve outlet to generate an electrical signal indicative of the shift clutch actuating pressure, increases the complexity, size and cost of the assembly because this structure requires individual electrical leads that connect the plurality of sensors and electrically operated valves on the manifold.
It has been desired to find a way or means of electrically connecting to the plurality of pressure sensors and solenoid operated valves in a transmission shift control module or manifold assembly in a manner which is simple and easy to install in mass production and yet is sufficiently low in cost to render the technique desirable for competitive high volume light vehicle production.
BRIEF SUMMARY OF THE INVENTION
The present invention provides an electro-hydraulic manifold assembly with a plurality of solenoid operated valves for controlling pressure to individual or discrete pressure outlets in the manifold block and has a sensing port in each outlet. A plurality of pressure sensors are mounted on an interface with electrical leads attached to electrically conductive strips provided in the interface to connect with terminals on each valve upon attachment of the interface to the block. When the interface is attached to the manifold block, the transducers each communicate respectively with one of the sensing ports.
The present invention thus permits individual connection of the electrical leads to the solenoid operated valves and installation of the pressure transducers in one operation when the interface is attached to the manifold block.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of the assembled manifold block, valve, pressure sensors and interface according to one embodiment of the invention;
FIGS. 2a and 2b are a single exploded view of the assembly of FIG. 1 divided along separation line II-II;
FIG. 3 is a plan view of the assembly of FIG. 1;
FIG. 4 is a section view taken along section indicating lines 4-4 of FIG. 3;
FIG. 5 is a section view taken along section indicating lines 5-5 of FIG. 3;

FIG. 6 is an enlarged view of a portion of FIG. 3 showing an alternate embodiment of the pressure sensor arrangement;
FIG. 7 is a section view taken along section-indicating lines 7-7 of FIG. 6;
FIG. 8 is a plan view of an interface that may be used in another embodiment of the invention; and FIG. 9 is a plan view of an interface that may be used in a further embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIGS. 1 through 5, one embodiment of the invention is indicated generally at 10 and includes a manifold block 12, an electrical interface indicated generally at 14 and a plurality of solenoid operated valves 16, 18, 20, 22, 24, 26, 28, 30. Although these figures show a lead frame as the interface 14, the interface 14 can be any structure that distributes communication signals and power, such as a fiber optic cables, plated traces, flexible circuits, wire harnesses, wireless interfaces, etc., as will be described in greater detail below.
The interface 14 includes a plurality of pressure sensors or transducers 32, 34, 36, 38, 40, each having leads secured or attached to electrically conductive pads denoted respectively by the primed reference numeral for each of the transducers.
The manifold block 12 has a plurality of valuing cavities 42, 44, 46, 48, 50, 52, formed horizontally in the vertically extending side 54 of the manifold block 12, with each of the valuing cavities having an outlet passage denoted respectively 56, 58, 60, 62, 64, 66 which are connected (not shown) to the underside of the block and are adapted to connect with corresponding hydraulic passages in the device to be controlled such as the control pressure passages in an automatic transmission valve body for shifting clutch actuation.
It will be understood that each of the valves 16 through 26 has an outlet passage (not shown) formed thereon between a pair of O-ring seals provided on the valve as denoted by reference numerals 68, 70, 72, 74, 76, 78 in FIG. 2b.
It will be understood that an inlet passage (not shown) formed through the valve block communicates with an inlet 90, 92, 94, 96, 98, 100 respectively in the bottom of each of the valuing chambers 42, 44, 46, 48, 50, 52 and provides pressurized fluid to the inlets at each of the solenoid valves denoted respectively 78, 80, 82, 84, 86, 88 in FIG. 2b.
Referring to FIGS. 2a and 2b, a pair of auxiliary valve chambers 102, 104 are formed in a horizontally extending upper face of the manifold 12; and, each has an inlet passage respectively 106, 108 formed in the bottom thereof. An outlet port is formed in the side of each of chamber 102, 104 thereof for providing flow to auxiliary functions in the transmission with one of the outlets visible in FIG. 2b and denoted by reference numeral 110. Solenoid operated valves 28, 30 are disposed in the chambers 102, 104 respectively.
Each of the valves 16 through 26 and 28, 30 has a pair of electrical connector terminals denoted respectively 103 through 132 extending in an upward direction therefrom for connection thereto as will hereinafter be described.
Block 12 has a plurality of spaced sensing ports provided on the upper surface thereof and denoted respectively by reference numerals 134, 136, 138, 140, 142; and, each of the ports 134 through 142 may be connected internally within the block to one of the outlet passages 56 through 66 respectively by intermediate passages (not shown) within the block. Alternatively, ports 134-may be connected to passages in the transmission valve body.
Referring to FIGS. 2a and 4, a pair of brackets having a generally right angle configuration denoted by reference numerals 144, 146 are provided with bifurcations or slots respectively 148 through 158 and are received over grooves denoted respectively 160 through 170 on the solenoid valves 16 through 26 respectively as shown in FIG. 2b for retaining the valves in their respective valuing cavities. Brackets 144, 146 are retained on the manifold block 12 by screws 172, 174, 176, 178 through apertures 173, 175, 177, 179 in the brackets and which threadedly engage tapped holes 180, 182, 184, 186 provided in the upper surface of the block 12.
The brackets additionally have apertures 180, 182, 184, 186, 188 respectively formed therein which coincide with retaining fastener holes 190, 192, 194, 196, 198 provided in the manifold block for retaining bolts or screws (not shown) to pass therethrough for connection to a transmission housing.
Similarly, manifold block has additional holes 193, 195, 197, 199 for receiving bolts or screws therethrough for attachment to a transmission deck.
Referring to FIG. 1, 2a, 3, 4 and 5, the interface 14 has a plurality of slots 200 through 224 formed therein in pairs in spaced arrangements and located on the interface so as to be positioned for connection to electrical terminals through 124 of valves 16 through 26 respectively. A second set of slots 225 through 230 is provided on the top of raised portions 232, 234 formed in the interface to accommodate the vertically extending valves 28, 30, and, slots through 230 are positioned so as to each be located directly above one of the electrical terminals 126 through 132 respectively.
The interface 14 has an electrical receptacle portion 240 formed on one end thereof which has a plurality of electrical connector pins provided therein, five of which are shown and denoted by reference numerals 242 through 250 in the drawings. It will be understood that the electrical terminals such as terminals 242 through 250 are respectively connected to conductive strips (not shown) extending within the frame 14 and which are each connected respectively to one of the pads such as 32', 34' , 36', 38', 40' and also to unshown strips which have portions thereof exposed in the slots 200 through 224 and slots 226 through 230.
Thus, the entire interface 14 in this embodiment is received over the manifold block 12 and simultaneous electrical connection is made with the terminals 103 through 132. The interface 14 is then secured to the block 12 by screws 252, 254, 256. Note that separate fasteners are not necessarily needed to secure the interface 14 to the block 12; for example, the interface may be attached directly to the block 12.
Referring to FIGS. 2a, 4 and 5, a plurality of O-rings denoted respectively 243, 245, 247, 249, 251 are disposed respectively each in a counter bore or annular groove formed at the top of each of the sensing ports 134 through 142 and provide for sealing about the upper end of the port with the undersurface of the respective pressure transducer 32 through 40 associated therewith. The O-rings are pre-placed in the counter bores and are each sealed respectively against the undersurface of one of the sensors 32 through 40.

Referring to FIG. 2a, it will be apparent that brackets 144 and 146 have clearance apertures denoted respectively 272, 274, 276 and 278, 280 formed therein to provide clearance about the sensing ports 134 through 142 for the pressure sensors 32 through 40 to extend upwardly through the brackets.
Referring to FIGS. 6 and 7, one possible arrangement or embodiment for mounting of a typical solid state pressure sensor die 340 is illustrated wherein the die is mounted on a ceramic disk 342 with leads 344 extending from the die for attachment to exposed pads 340' provided at the ends of the conductors, shown in dashed outline in FIG. 6, which are embedded in the interface 14. Die 340 is bonded such as by the use of epoxy resin or other suitable adherent to the ceramic disk. The lead wires 344 from the die are then attached one each to the pads 340' respectively by any suitable expedient such as weldment. A recessed cavity 346 provided in the interface 14 surrounding the die 340 is then filled with a suitable potting agent 345 as, for example, silicone gel, to protect the electrical connections. The recessed cavity as filled with the silicone gel may then be sealed with a suitable plastic cover 350 for further protection. It will be understood that the pressure signal enters through a suitable aperture or sensing hole 348 to apply the sensed pressure to the undersurface of the die 340. The disk 342 is sealed over the manifold sensing port by a suitable resilient seal ring 352. It will be understood that the sealing for the pressure sensor and the sensing port of the manifold for the embodiment of FIGS. 6 and 7 is accomplished in the same manner as that for the embodiment 10 of FIGS. 1 through 5.
FIGS. 8 and 9 show possible alternative structures that may be used for the interface 14. Those of ordinary skill in the art will understand how these alternative interfaces 14 may be incorporated into the inventive system 10.
FIG. 8 shows an example of a plated trace 400 that includes a conductive trace 402 and a conductive mounting area 404 applied to a non-conductive base 406, such as a polymer base. The conductive mounting area 404 is used to mount a pressure transducer and interconnect to a transmission control unit (TCU). Applying the plated trace 400 to the base 406 allows attachment of the pressure transducer to the manifold 12.

FIG. 9 shows an example of a flex circuit 410 that may be used as the interface 14. The flex circuit 410 would be mounted to the manifold 12 to allow interconnection of pressure transducer assemblies in the system 10. The flex circuit 410 includes a plurality of branches 412 that extend from a main line 414.
Each branch 412 may include a hole 416 for connecting the flex circuit 410 to electrical connector pins via any known manner.
The present invention thus provides a unique and novel construction of a interface with solid state pressure transducers electrically connected thereto such that the interface may be installed upon an electro-hydraulic manifold block and simultaneously electrically connected to electric terminals for the valve solenoid operators thereon and to also simultaneously make a pressure sealed connection with sensing ports provided in the manifold block. The present invention provides a simple and easy to assemble construction for an electro-hydraulic manifold assembly and eliminates the need for wiring harnesses, thereby providing a cost effective construction for high volume production of such a manifold.
The invention is not limited to systems having the interfaces shown in the figures. From these examples, one of ordinary skill in the art will understand that other interfaces, such as fiber optics, wire harnesses, wire systems, etc. may also be used without departing from the scope of the invention.
Although the invention has hereinabove been described with respect to the illustrated embodiments, it will be understood that the invention is capable of modification and variation and is limited only by the following claims.

Claims (13)

1. An electro-hydraulic manifold assembly (10) comprising:
a manifold block (12) having an inlet port communicating with a plurality of valving chambers (42, 44, 46, 48, 50, 52), with each chamber having a discrete outlet port (56, 58, 60, 62, 64, 66) and a pressure sensing port (134, 136, 138, 140, 142) communicating with each outlet port;
an electrically operated valve (16, 18, 20, 22, 24, 26, 28, 30) disposed to control pressure in each of said chambers between said inlet port and the respective discrete outlet port;
an interface (14) disposed on said block having a plurality of sets of electrical terminals (103 through 132), with each set making electrical connection with one of said valves, wherein the interface includes a plurality of inserts (342), each insert having a passage therethrough with each passage positioned to communicate respectively with one of said pressure sensing ports, and wherein each insert has a pressure transducer (32, 34, 36, 38, 40) thereon communicating with said passage.
2. The assembly defined in claim 1, wherein the interface is one selected from the group consisting of a lead frame, fiber optic cable, plated trace, flex circuit, wire harness, and wireless interface.
3. The assembly defined in claim 1, wherein the interface is a plated trace having a conductive trace and a conductive mounting area for mounting the pressure transducer, and wherein the plated trace is disposed on a non-conductive base.
4. The assembly defined in claim 1, wherein the interface is a flex circuit having a plurality of branches, each branch connected an electrical connector to form the electrical connections with said valves.
5. The assembly defined in claim 1, wherein said inserts are formed of ceramic material.
6. The assembly defined in claim 1, wherein each of said pressure transducers comprises a die (340) electrically connected to a conductor on said interface.
7. The manifold assembly defined in claim 1, wherein said sets of electrical terminals and said pressure transducers are connected to a common receptacle (240) on said interface for external electrical connection thereto.
8. The manifold assembly defined in claim 1, wherein said pressure transducers have leads (344) attached to pads (340') formed on electrical conductors on said interface.
9. The manifold assembly defined in claim 1, wherein the inserts are embedded with a surface thereof exposed.
10. A method of making an electro-hydraulic manifold assembly (10) comprising:
forming an inlet passage and a plurality of spaced valving chambers (42, 44, 46, 48, 50, 52) in a block (12), each valving chamber having a discrete outlet passage (56, 58, 60, 62, 64, 66) that communicates with a sensing port (134, 136, 138, 140, 142) formed in each outlet passage;
forming an electrical interface (14) having a plurality of sensing orifices.
wherein each sensing orifice is aligned with one of the sensing ports and disposing a plurality of inserts (342) therein each having a passage communicating with one of said sensing orifices;
mounting an electrically operated valve (16, 18, 20, 22, 24, 26, 28, 30) in each valving chamber and porting the valve for controlling pressure from the inlet passage to the respective discrete outlet;
mounting a pressure transducer (32, 34, 36, 38, 40) over each of said insert passages and electrically connecting the transducer to the interface;
and, attaching said interface to the block and aligning each of said sensing orifices with one of said sensing ports (348) and electrically connecting said interface to each of said valves.
11. The method of claim 9, wherein the step of attaching said interface comprises attaching to the block at least one component selected from the group consisting of a lead frame, fiber optic cables, plated traces, a flex circuit, a wire harness, and a wireless interface.
12. The method defined in claim 10, wherein the step of disposing the plurality of inserts includes disposing ceramic inserts.
13. The method defined in claim 10, wherein the step of disposing a plurality of inserts includes embedding the plurality of inserts to leave a surface of each insert exposed.
CA 2556122 2005-08-12 2006-08-14 Electro-hydraulic manifold assembly with mounted pressure sensors Abandoned CA2556122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/202,744 2005-08-12
US11/202,744 US20060032541A1 (en) 2003-03-28 2005-08-12 Electro-hydraulic manifold assembly with mounted pressure sensors

Publications (1)

Publication Number Publication Date
CA2556122A1 true CA2556122A1 (en) 2007-02-12

Family

ID=37744726

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2556122 Abandoned CA2556122A1 (en) 2005-08-12 2006-08-14 Electro-hydraulic manifold assembly with mounted pressure sensors

Country Status (3)

Country Link
JP (1) JP5136741B2 (en)
CN (1) CN1952454A (en)
CA (1) CA2556122A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728187A (en) * 2019-04-26 2021-11-30 株式会社富士金 Flow path forming block and fluid control device provided with same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237047B2 (en) * 2008-10-21 2013-07-17 ナブテスコ株式会社 Attachment of electromagnetic valve testing machine and electromagnetic valve testing machine using the same
KR101075074B1 (en) * 2011-06-09 2011-10-19 최경택 Pneumatic control-module for the leak tester
CN102313065B (en) * 2011-07-21 2013-07-17 同济大学 Pneumatic proportion regulator based on electromagnetic valve array
US20150283523A1 (en) * 2014-04-03 2015-10-08 Waterous Company Compressed air foam generation
DE102014216696A1 (en) * 2014-08-22 2016-02-25 Zf Friedrichshafen Ag Valve block for a hydraulic or pneumatic system of a gearbox
CN106641392B (en) * 2016-12-09 2019-10-18 南京源丰环境技术有限公司 Rabbet joint type solenoid valve
EP3740703B1 (en) * 2018-01-19 2021-12-29 KA Group AG Valve assembly and actuation assembly including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834212A1 (en) * 1998-07-29 2000-02-10 Siemens Ag Control device in a motor vehicle and pressure sensor used by this
EP1108163B1 (en) * 1998-08-24 2002-03-06 Siemens Aktiengesellschaft Control device in a motor vehicle
AU2030800A (en) * 1998-11-25 2000-06-13 Kelsey-Hayes Company Structure for mounting a cluster of pressure sensors upon an electro-hydraulic brake system control unit
JP3814467B2 (en) * 2000-06-28 2006-08-30 株式会社日立製作所 Electronic control device for vehicle
JP2005327716A (en) * 2001-02-02 2005-11-24 Mitsubishi Heavy Ind Ltd Logic plate
US7798174B2 (en) * 2003-08-20 2010-09-21 Eaton Corporation Electric fluid servo valve and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728187A (en) * 2019-04-26 2021-11-30 株式会社富士金 Flow path forming block and fluid control device provided with same

Also Published As

Publication number Publication date
CN1952454A (en) 2007-04-25
JP2007051778A (en) 2007-03-01
JP5136741B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
EP1462681B1 (en) Electro-hydraulic manifold assembly with lead frame mounted pressure sensors
US20060032541A1 (en) Electro-hydraulic manifold assembly with mounted pressure sensors
CA2556122A1 (en) Electro-hydraulic manifold assembly with mounted pressure sensors
US7707872B2 (en) Method for testing a hydraulic manifold
US7073410B2 (en) Hydraulic motor vehicle gearbox control device with a plastic hydraulic distribution plate and conductors integrated therein
KR101174506B1 (en) Electric fluid servo valve and method of making same
US6382738B1 (en) Pressure sensor assembly
CA2453029A1 (en) Electro-hydraulic manifold assembly and pressure sensor therefor
EP2561251B1 (en) Electro-hydraulic actuation group for an automotive servo-assisted mechanical transmission
CN101506560A (en) Valve control unit, particularly pilot control unit for a pressure modulator of a commercial vehicle
US6544138B2 (en) Electro-hydraulic module for automatic transmission control
CN1281109A (en) Multipath block type electromagnetic valve carrying relay device
US7908734B2 (en) Manifold assembly having a centralized pressure sensing package
KR20070019623A (en) Electro-hydraulic manifold assembly with mounted pressure sensors
US20030037828A1 (en) Electro-hydraulic module for transmission control
KR100577035B1 (en) Pressure sensor assembly
JP2007093604A (en) Pressure transducer package for manifold
Wieczorek et al. Growing function content of control units for automatic transmissions

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead