CA2526118A1 - Closed loop feedback system for improved down link performance - Google Patents

Closed loop feedback system for improved down link performance Download PDF

Info

Publication number
CA2526118A1
CA2526118A1 CA002526118A CA2526118A CA2526118A1 CA 2526118 A1 CA2526118 A1 CA 2526118A1 CA 002526118 A CA002526118 A CA 002526118A CA 2526118 A CA2526118 A CA 2526118A CA 2526118 A1 CA2526118 A1 CA 2526118A1
Authority
CA
Canada
Prior art keywords
space
antenna
signal
station
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002526118A
Other languages
French (fr)
Inventor
Juha Ylitalo
Marcos Katz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intellectual Ventures I LLC
Original Assignee
Nokia Corporation
Juha Ylitalo
Marcos Katz
Spyder Navigations L.L.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/586,561 external-priority patent/US7139324B1/en
Application filed by Nokia Corporation, Juha Ylitalo, Marcos Katz, Spyder Navigations L.L.C. filed Critical Nokia Corporation
Publication of CA2526118A1 publication Critical patent/CA2526118A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

A method includes receiving at least two space-time coded signals from an antenna system associated with a first station, determining complex channel state information based on the received space-time coded signals, and sending the complex channel state information to the first station. In an alternative embodiment, a method includes transmitting at least two space-time coded signals in respective beams of a mufti-beam antenna array, measuring a channel impulse response for each space-time coded signal at a second station, and sending an indicia of a selected set of least attenuated signals from the second station to the first station. The multi-beam antenna array is associated with a first station. The beams transmit a signature code embedded in each respective space-time coded signal, and the signature codes are orthogonal so that the second station can separate and measure the channel impulse response corresponding to each space-time coded signal. The space-time coded signals include the selected set of least attenuated signals and a remaining set of most attenuated signals. In an alternative embodiment, a method includes selecting at least two beams of plural beams formed by a multi-beam antenna array associated with a first station for transmission of a corresponding at least two space-time coded signals produced by a space-time encoder, determining a time delay associated with each of the at least two space-time coded signals as received in each respective beam, and setting into a variable delay line the time delay corresponding to each beam, each variable delay line being coupled between the multi-beam antenna array the space-time encoder.

Description

CLOSED LOOP FEEDBACK SYSTEM
FOR IMPROVED DOWN LINK PERFORMANCE
BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to a system to control down link signal transmission from a base station of a cellular radio system to a remote station. In particular, the invention relates to a closed loop phase and amplitude control system to adjust the phase and amplitude of down link transmitted signals.
Description Of Related Art Cellular telephone systems are operated in environments that give rise to multi-10 path or reflections of their signals, particularly in urban environments. In FIG. 1, base station transmitter 1 broadcasts its signal to remote station 2 (often mobile) along direct path 3. However, owing to the presence of tall building 4, transmitter 1 also broadcasts its signal to remote station 2 along indirect path 5, thus, giving rise to angular spread AS
between the direction of arrival of direct path 3 at remote station 2 and the direction of arrival of indirect path 5 at remote station 2. Direct path 3 and indirect path 5 are recombined at remote station 2 where constructive and destructive superimposed signals cause random or what appears to be random fading and black out zones.
To reduce the effects of multi-path, known systems employ space time transmit diversity techniques. In FIG. 2, a known transmitter includes space time transmit diversity encoder 10, complex multipliers 12 and 14, and antennas 16 and 18. Space time
2 transmit diversity encoder l 0 processes input signal Sa,, inio two channel signals CH, and CH2. Multipliers l2 and I4 may impart a same orthogonalizing code OC on the two channel signals CHI and CHZ to identify the two channels as containing information about input signal Sue; however, different orthogonal identifiers (e.g., pilot sequences or training sequences) are applied to the different antenna signals so that the remote station can separately identify the signals from the two antennas. The multiplied channel signals are transmitted on respective antennas 16 and 18 substantially spaced apart by a distance (e.g., 20 wavelengths). Such spaced apart antennas are referred to as diversity antennas.
. r In multi-path environments severe fading results when different propagation paths sum destructively at the receiving antenna. Using diversity antennas, the probability that both signals CH, and CHZ will be in deep fade is low since the two signals are likely to propagate over different paths such as the multi-paths 3 and S. Diversity antennas may be omni-directional antennas or antennas directed at antenna sectors with overlayed sectors. When diversity antennas are sufficiently separated in space, they can be regarded as orthogonal since they propagate signals in non-correlated channels (i.e., paths).
Input signal Sue, carries two symbols, S~ and S2, in time succession, the first symbol in symbol slot between 0 and T, and the second symbol in symbol slot bet~.veen T and 2T. In FIG. 3, exemplary encoder 10 uses a QPSK modulation technique and includes time align register 20 and hold registers 22 to hold the hvo symbols.
Base band carrier signal SBBC is inverted in inverter 24 to produce negative base band carrier -SBBC. QPSK modulator 26 encodes symbol S, onto base band carrier signal SBBC
to produce a modulated first symbol, and QPSK modulator 28 encodes symbol S, onto negative base band carrier signal -SBBC to produce a modulated conjugate of the first symbol. QPSK modulator 30 encodes symbol SZ onto base band carrier signal SBBC
to produce a modulated second symbol, and QPSK modulator 32 encodes symbol S2 onto negative base band carrier signal -SBBC to produce a modulated conjugate of the second symbol. The modulated conjugate of the second symbol is inverted in inverter 34 to produce a negative modulated conjugate of the second symbol. Analog multiplexer 36 switches the modulated first symbol into the first channel signal during the first symbol time slot (i.e_, 0 to T, FIG_ 2) and switches the negative modulated conjugate of the second symbol into the first channel signal during the second symbol time slot (i.e., T to
3 2T, FIG. 2) so that the signal on CH1 is [S,, - Sz']_ Analog multiplexer 38 switches the modulated second symbol into the second channel signal during the first symbol time slot (i.e., 0 to T, FIG. 2) and switches the modulated conjugate of the first symbol into the second channel signal during the second symbol time slot (i.e., T to 2T, FIG.
2) so that the signal on CH2 is [S2, S,'~.
In F1G. 2, code OC consists of one code applied to both multipliers 12, 14 that is used as a CDMA. spreading function to isolate the two signals transmitted from antennas 16 and 18 from other signals that may generate co-chancel interference.
Multipliers 12 and 14, multiply the first and second channel signals before being transmitted through antennas 16 and 18. RF up converters are not shown for simplicity.
At remote station 2, a receiver receives signals from both antennas 16 and 18 on a single antenna, down-converts the signals, despreads the signals using code OC, and recovers a composite of channels CHl and CH2 as transmitted from antennas 16 and 18, respectively. In the first symbol time slot between 0 and T, the composite QPSK
modulated signal R, is received {where R, = k"S, + k,ZS~, and in the second symbol time slot between T and 2T, the composite QPSK modulated signal R2 is received (where RZ
- -kz,Sz' + kz2S,' and the asterisk refers to a complex conjugate)_ Constant k,~ is a transmission path constant from first antenna 16 to remote station 2 during the first time slot, constant k,2 is a transmission path constant from second antenna 18 to remote station 2 during the firsttime slot, constant k2, is a transmission path constant from first antenna 16 to remote station 2 during the second time slot, and constant k~ is a transmission path constant from second antenna 18 to remote station 2 during the second time slot: The receiver derotates the channel to recover soft symbols S,' and SZ', where S,' = k"R, + k,ZRZ and SZ' = kZ,R2' + knR~'_ In this time space encoder technique, the first and second symbols are redundantly transmitted from.separate antennas. The first symbol is encoded to be transmitted in both the first and second symbol time slots, and the second symbol is also encoded to be transmitted in both the first and second symbol time slots. The effect of this symbol recovery technique is that fading or drop out regions that may appear during one symbol time slot are Less likely io appear during both symbol time slots when interleaving is also exploited. Interleaving is used before space-time coding to make adjacent bits less
4 correlated in time. Since the received s;nnbols are recovered from received signals during both time slots, R~ and R2, the effect of fading is diminished.
However, the prior art does not exploit advantages provided by independent power and phase management of individual beams transmitted by different diversity type antennas to achieve greater spectral efficiency at the base station while minimizing co-channel interference.
The prior art does not exploit advantages provided by spatial power management of independently directed beams to achieve greater spectral efficiency at the base station while minimizing co-channel interference.
SUMMARY OF THE INVENTION
It is an object to the present invention to improve the down link performance of a cellular radio system. It is another object to minimize undesired effects of fading and drop out.
These and other objects are achieved with a method comprising steps of:
transmitting at least two space-time coded signals in respective beams of a multi-beam antenna array associated with a first station, the beams transmitting a signature code embedded in each respective space-time coded signal, the signature codes being orthogonal so that a second station can separate and measure a channel impulse response corresponding to each space-time coded signal;
measuring the channel impulse response for each space-time coded signal at the second station, the space-time coded signals including a selected set of least attenuated signals and a remaining set of most attenuated signals; and sending an indicia of the selected set of least attenuated signals from the second station to the first station.
These and other objects are also achieved with a system comprising a base station and a remote station wherein:
the base station includes a multi-beam antenna array and a transmitter to transmit at least two space-time coded signals in respective beams of the multi-beam antenna array, the beams transmitting a signature code embedded in each respective space-time coded signal, the signature codes being substantially orthogonal so that the remote station can separate and measure a channel impulse response corresponding to each space-time coded signal;
the remote station includes a receiver and a processor to measure the channel impulse response for each space-time coded signal, the space-time coded signals including a selected set of least attenuated signals and a remaining set of most attenuated signals;
and the remote station further includes a transmitter to send an indicia of the selected set of least attenuated signals from the remote station to the base station.
5 BRIEF DESCRIPTION OF DRAWINGS
The invention will be described in detail in the following description of preferred embodiments with reference~io the following figures wherein:
FIG. 1 is a schematic view of the radio environment in which the present invention is employed;
FIG. 2 is a block diagram of a known base station;
FIG. 3 is a block diagram of a known space time encoder, FIG. 4 is a block diagram of a base station apparatus according to an embodiment of the present invention;
FIG. 5 is a block diagram of a base station apparatus according to another embodiment of the present invention;
FIG. 6 is a schematic diagram of a known hex comer reflector antenna system;
FIG. 7 is a schematic diagram of a known phase array antenna;
F1G_ 8 is a schematic diagram in plan view of an exemplary three sector antenna system;
F1G. 9 is a schematic diagram of a known "Butler matrix" antenna;
FIG. l0 is a schematic diagram of a dual beam phase array antenna;
F1G. l l is a block diagram of a base station apparatus according to another embodiment of the present invention;
FIG. 72 is a block diagam of a TDMA base station apparatus according to another embodiment of the present invention;
FIG. 13 is a block diagram of a closed loop beam power management system according to the present invention;
F1G. 14 is a block diag-am of a radio system according the present invention;
FIGS. I S-l7 are slow charts of methods of determining the angular power speclrum according to the present inventoon;
6 FIG. 18 is a graph of an angular power spectrum as received and/or computed by the present invention;
FIG. 19 is a block diagram of an embodiment of the present invention;
FIG. 20 is a flow chart of a method of feedback control according to the present 5 invention;
FIG. 21 is a schematic view that illustrates the mufti-path signal processed by the invention with a sector coverage antenna;
FIG. 22 is a graph showing the direct and mufti-path signal of FIG. 21 that is received by a remote station;
FIG. 23 is a schematic view that illustrates the mufti-path signal processed by the invention with a mufti-beam antenna covering a sector;
FIG. 24 is a graph showing the direct signal and a delayed replica of the direct signal of FIG. 21 or 23 that is received by a remote station;
FIG. 25 is a graph showing the mufti-path signal of FIG. 21 or 23 that is received 15 by a remote station;
FIG. 26 is a block diagram of a base station apparatus with a programmable delay line according to an embodiment of the present invention;
FIG. 27 is a graph depicting a delay distribution profile according to the invention;
FIG. 28 is a flow chart of a set up method according to the present invention;
FIG. 29 is a flow chart of a time align method according to the present invention; and FIG. 30 is a flow chart of a method of feedback according to the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
To achieve greater spectral efficiency of transmissions from the base station while minimizing co-channel interference, independent power management of individual beams transmitted by different antennas of the diversity antennas has been developed, and beamspace time encoder techniques have been developed to exploit angle of arrival
7 diversity and exploit spatial power management of independently directed beams.
Beamspace time techniques differ from known space time encoder techniques by its use of two or more independently directed orthogonal beams to exploit power and beam width management and angle of arrival diversity. Orthogonal beams are separately S identifiable to the receiver by using perpendicular polarization (two beam case), by using a different pilot code for each beam in a CDMA system in addition to the CDMA
spread spectrum code that is common to all beams, by using a different spread spectrum code for each beam in a CDMA system without pilot codes, by using a different training sequence {e.g., pilot code) multiplexed into each beam in a TDMA system.
Persons skilled in the art will appreciate that there are other orthogonal beam techniques not listed above or techniques that use different combinations of the above techniques that are equivalent for providing a means for the receiver at the remote station to separately identify the individual beams and recover the signals they carry.
Power management techniques to transmit different powers in different 1 S orthogonal beams improve spectral efficiency at the base station on a system wide basis by minimizing co-channel interference even when this power management control is applied to overlaid sector directed beams or omni directional beams of diversity antennas_ Iqowever, with orthogonally coded beams that are directed differently, spatial power -management of independently directed beams provides even further improvements.
The relatively poor downlink performance of radio environments with large angular spreads is significantly improved by applying the beamspace time encoder techniques described herein.
In FIG_ 4, a first embodiment of an improved transmitter 100 (referred to as power management of diversity antennas) includes known space time transmit diversity encoder 10 and complex multipliers l2 and 14. Improved transmitter 100 further includes scaling amplifiers 102 and 104 and diverse antennas 16 and 18. In a CDMA system, multipliers l~, I4 impart different spread spectrum codes to different beams so that a receiver at remote station 2 can discern the beams separately.
Although separate distinguishable spreading codes in a CDMA system are applied to multipliers 12, 14 as described here to create the orthogonal beams, it will be appreciated that any means to create orthogonal beams enable the separate power
8 management of the transmissions from the diversity antennas (i.e., overlaid coverage), or from controllable directional antermas for that matter. For example, in a CDMA
system where the multipliers 12 and 14 are provided with the same spreading codes, another set of multipliers 12' and 14' (not shown) may be used for imparting pilot codes to the channel signals. Multipliers 12' and 14' are then provided with orthogonal pilot codes so the receiver in remote station 2 can separately discern the beams. In another variant, antennas 16 and 18 are constituted by a single antenna with two exciter elements arranged to generate two beams that are orthogonally polarized (e.g., polarized at a +/-45 degree slant to the vertical or some other reference), but otherwise cover the same sector. Such beams are orthogonal, and transmissions over the respective signal paths experience uncorrelated fading_ Scaling control signals SAI and SA2 separately control the amplification or attenuation achieved by separate scaling amplifiers 102 and 104, respectively_ Sealing control signals SAI and SAZ maybe real to scale amplitudes, or imaginary to shift phases 1 S or complex with both real and imaginary components to both scale amplitudes and shift phases_ It will be appreciated that the amplification may be applied at the output of encoder 10, before multipliers 12 and 14, after multipliers 12 and 14 or in antennas 16 and 18.
Antennas 16, 18 are diversity antennas that cover overlaid sectors or are omni directional. This first embodiment differs from known space-time coded systems in that the power transmitted in each beam is separately controlled by SA1 and SA2_ In FIG. 5, a second embodiment of an improved transmitter 100 (referred to as angular spectral power management) includes known space time transmit diversity encoder 10 and complex multipliers 12 and 14_ Improved transmitter 100 further includes scaling amplifiers 102 and 104 and controlled directional antennas 106 and 108.
Unlike antennas 16 and 18 of FIG. 2, directional antennas 106 and 108 are directed toward direct path 3 and indirect path 5 (FIG. 1) or some other direction to cover angular ' spread AS or that portion of the angular power spectrum that exceeds a threshold as described herein. In a CDMA system, multipliers 12, 14 impart different spread spectrum codes to different beams or use other means so that a receiver at remote station 2 can discern the beams separately as described for the first embodiment using diversity
9 antennas. Scaling control signals SA1 and SA2 separately control the amplification or attenuation achieved by separate scaling amplifiers 102 and 104, respectively.
Scaling control signals SAl and SA2 may be real to scale amplitudes, or imaginary to shift phases or complex with both real and imaginary components to both scale amplitudes S and shift phases. It will be appreciated that the amplification may be applied at the output of encoder 10, before multipliers 12 and 14, after multipliers 12 and 14 or in antennas 106 and 108. Although separate spreading codes in a CDMA system are applied to multipliers 12, 14 as described here to create the orthogonal beams, it will be appreciated that any means to create orthogonal beams enable the separate-power IO management of the transmissions from the controlled directional antennas (i.e., directions selected as described herein).
In a third embodiment (referred to as directional diversity and not separately shown), amplifiers 102 and 104 of FIG. 5 are removed from transmitter 100 so that no differential amplification is achieved, and both channels CH1 and CHZ have balanced 15 and equal amplification, but their signals are transmitted directionally through controlled directional antennas 106 and 108.
There are several means to implement controlled directional antennas. In FIG.
6, known hex controlled directional antenna system 600 includes six co-sited corner reflector antennas, such as corner reflector antenna 608, arranged in a circle and all 20 depicted in plan view. Each corner reflector antenna 608 includes a single half wave dipole 612 as an exciter element and corner reflectors 614. Each corner reflector antenna 608 illuminates a 60 degree beam width in plan view. Hex diversity antenna system 600 has been shown to provide angle location information that gives the bearing angle from a base station to the remote station based on received signal strength at 820 25 MHz (Rhee, Sang-Bin, "Vehicle Location In Angular Sectors Based On Signal Strength", IEEE Trans. Veh. Technol., vol. VT-27, pp 244-258, Nov. 1978). Such co shed corner reflector antennas could divide a 360 degree coverage into three sectors ( 120 degree antennas), four sectors (90 degree antennas), five sectors (72 degree antennas), eight sectors (45 degree antennas), or any convenient number of sectors that 30 may be realizable.
In the second and third embodiments of the present invention, a controlled directional antenna system is used for cellular radio transmitter 1 (FIG. 1 ).
A controlled directional antenna system is defined as being capable of providing two or more distinguishable and separately controllable beams. It may be a single antenna with two or more exciter elements arranged to generate two or more beams (e.g., arranged to generate two discernable beams respectively polarized at a +/- 45 degree slant to the 5 vertical, but otherwise cover the same sector). It may be a multi-antenna system to generate beams that cover different sectors. For example, the controlled directional antenna system may advantageously be a hex corner reflector system, such as the antenna system depicted in FIG. 6. The controlled directional antenna system is used in a receive mode to determine the angle location of remote station 2 based on a signal
10 transmitted from remote station 2. The two sectors with the strongest received signals are identified as the likely direction of arrival of direct path 3 and indirect path 5 (see FIG. 1). The antennas illuminating these two sectors are selected to be directional antennas 106 and 108 of the second and third embodiments of the present invention (FIGS. 4 and 5). Alternatively, the respective directions of arrival may be determined based on a calculation of the angular power spectrum as discussed below.
In FIG. 7, known steerable beam phased array antenna 720 includes an array of exciter elements 722 (e.g., half wave dipole) disposed to be spaced from ground plane or reflector plane 724. FIG. 7 depicts eight radiating elements, but more or fewer elements may be used. Each exciter element 722 is fed with a signal from a corresponding phase shifter 726. Each phase shifter 726 alters the phase and attenuates (or amplifies) the amplitude of signal S according to a corresponding individual control portion of control signal C. For example, control signal C includes 8 phase shift parameters and 8 attenuation parameters. Each phase and amplitude parameter individually controls the phase and amplitude radiated from a corresponding element of the eight exciter elements of antenna 720. The angular beam width of such an antenna is limited by the ratio of the wavelength of the signal being radiated divided by the aperture dimension D; however, by controlling signal amplitudes on exciter elements 722 as distributed across the antenna with what is called a weighting function, the beam may be shaped to broaden the beam, flatten the center of the beam and/or suppress side lobes. By controlling the gradient of the phase at the exciter elements across the antenna, the beam may be electronically directed to point in a controlled direction.
11 In a variant of the second and third embodiments, the antenna system for transmitter 1 (FIG. 1) includes plural phased array antennas 720 organized in a multi-antenna system. In FIG. 8, an exemplary multi-antenna system may include three antennas (taken to be phased array antennas 720) arranged to point outward in equally spaced angular direction so that the three phased array antennas 720 are formed into the antenna system at the base station. Each antenna 720 is designed to cover a 120 degree sector. The base station locates the remote station by electronically scanning antenna 720. Amplitude weights for each radiating element are preferably set to a maximum and are all equal so that the antenna provides its narrowest beam (most directional beam). The receive beam is scanned in steps by first computing the phase parameters for control signal C that represent a gradient in phase across the antenna to achieve a desired beam point, and then controlling antenna 720 to point in the desired direction.
Second, a receiver at transmitter 1 (FIG. 1) detects any received signal strength. The steps of pointing a receive beam and detecting a signal strength are repeated at each of several beam positions until the entire sector covered by antenna 720 has been scanned.
In this way, the angle location of remote station 2 is determined to a precision limited only by the narrowest achievable beam width of antenna 720. Once the location of direct path 3 and indirect path 5 are determined to be in different sectors (e.g., 120 degree sectors), antennas 106 and 108 (FIG. 5) are selected from the plural antennas 720 of the antenna system that are closest to direct path 3 and indirect path 5, and within the sector covered by each selected antenna 720, the phase gradients that define beams pointing at the angle locations for direct path 3 and for indirect path S are determined.
Alternatively, when paths 3 and 5 lie in a single sector, two transmitting beams can be formed within the single sector to be directed along paths 3 and 5 if the antenna system is capable of forming the two beams in the single sector (see discussion below with respect to FIG. 10).
In FIG. 9, antenna system 930 includes four radiating elements 932 disposed to be spaced from ground plane or reflector plane 934. Each radiation or exciter element 932 is fed with a signal from known Butler matrix 936. The Butler matrix provides phase shifting and combination functions that operate on signals Sl, S2, S3 and S4 so that the radiation from the four exciter elements 932 combine to generate four fixed angularly directed and orthogonal beams B1, B2, B3 and B4.
12 In general, a Butler matrix performs a Fourier processing function to feed M
radiating elements so as to form M fixed and orthogonal beams ("angular bins"). For example, in antenna system 930, signal S1 is transmitted only in first beam B1, signal S2 is transmitted only in second beam B2, signal S3 is transmitted only in third beam B3, and S signal S4 is transmitted only in fourth beam B4. A switching matrix may be used to direct desired signals (e.g., the signals CHl and CH2 of FIG. 5) onto any of the lines for signals Sl, 52, S3, and S4 and from there into respective beams B1, B2, B3 and B4.
In a variant of the second and third embodiments, the antenna system for transmitter 1 (FIG. 1) includes plural "Butler matrix" antennas 930 organized in a multi antenna system. In FIG. 8, an exemplary multi-antenna system includes three antennas (taken here to be "Butler matrix" antennas 930) arranged to point outward in equally spaced angular direction so that the three "Butler matrix" antennas 930 are formed into the antenna system at the base station. Each antenna 930 is designed to cover a 120 degree sector with, for example, four beams. The base station locates the remote station 1 S by electronically switching between the four beams (each 30 degrees) of each of the three antennas 930 and detecting the signal strength received. In this way, the angle location of remote station 2 is determined to a precision of one beam width of antenna 930. Once the locations of direct path 3 and indirect path 5 are determined, antennas 106 and 108 (FIG. 5) are selected from the two different "Butler matrix"
antennas 930 that make up the antenna system for transmitter 1 (FIG. 1) if direct path 3 and indirect path S lie in different sectors. The two particular "Butler matrix" antennas 930 are selected to cover the sectors that are closest to direct path 3 and indirect path 5, and from there, a particular beam within each selected antenna 930 is selected that most closely aligns with the path. Alternatively, antennas 106 and 108 may be selected to be different beams of the same "Butler matrix" antenna 30. Within the sector covered by each antenna 930, the beam pointing at the angle location for each of direct path 3 and indirect path 5 is selected by a switch matrix (not shown).
In FIG. 10, antenna 40 is a modified version of phased array antenna 720 to provide 30 two independently steerable and shapable beams. Antenna 40 includes an array of exciter elements 42 (e.g., half wave dipole) disposed to be spaced from ground plane or reflector plane 44.
13 FIG. 10 depicts eight radiating elements, but more or fewer elements may be used.
However, unlike antenna 720, each exciter element in antenna 40 is fed by a signal from a corresponding summer 48. Each summer 48 superimposes (e.g., adds) signals from two corresponding phase shifters 46-1 and 46-2. All phase shifters 46-1 form a first bank of phase shifters, and all phase shifters 46-2 form a second bank of phase shifters.
Each phase shifter 46-1 in the first bank alters the phase and attenuates (or amplifies) the amplitude of signal S 1 according to a corresponding individual control portion of control signal C 1. For example, control signal C 1 includes 8 phase shift parameters and 8 attenuation parameters to individually control the phase and amplitude output from the corresponding phase shier 46-1. Correspondingly, each phase shifter 46-2 in the second bank alters the phase and attenuates (or amplifies) the amplitude of signal S2 according to a corresponding individual control portion of control signal C2.
For example, control signal C2 includes 8 phase shift parameters and 8 attenuation parameters to individually control the phase and amplitude output from the corresponding phase shifter 46-2. Summers 48 combine the outputs of respective phase shifters 46-1 and 46-2 and provide the combined signal to radiating elements 42. In this way, control signal C1 controls a first beam that radiates signal S1, and control signal C2 simultaneously controls a second beam that radiates signal S2.
In a variant of the second and third embodiments, the antenna system for transmitter 1 (FIG. 1 ) includes plural phased array antennas 40 organized in a multi-antenna system. In FIG. 8, an exemplary multi-antenna system includes three antennas (taken here to be phased array antennas 40) arranged to point outward in equally spaced angular direction so that the three phased array antennas 40 are formed into the antenna system at the base station. Each antenna 40 is designed to cover a 120 degree sector with two independently shapable and steerable beams. The base station locates the remote station by electronically scanning a beam of antenna 40 as discussed above with respect to antenna 720 (FIG. 7). Once the location of direct path 3 and indirect path 5 are determined, antennas 106 and 108 (FIG. 5) are selected from the plural antennas 40 of the antenna system that are closest to direct path 3 and indirect path 5, and within the sector covered by each selected antenna 40, the phase gradients that define beams pointing at the angle location for direct path 3 and for indirect path 5 are determined.
14 Alternatively, antennas I 06 and l 08 may be selected to be different beams of the same dual beam antenna 40. In FIG. l l, antennas 106 and 108 (FIG. 5) are implemented in separate beams (i.e., beams l and 2) of dual beam antenna 40, and scaling amplifiers l 02 and 104 (of FIG. 5) are not needed since the scaling function may be achieved by , scaling the amplitude coefficients of control signals Cl and C2 (FIG. 10).
In a fourth embodiment, the base station uses a time division multiple access (TDMA) transmitter instead of a spread spectrum CDMA transmitter. In F1G. 12, training sequence TSI is modulated in QPSK modulator l Ol and from there fed to a first input of mulliplexer l O5, and training sequence TS2 is modulated in QPSK
modulator 103 and from there fed io a f rst input of multiplexer I 07. Training sequences TS I and TS2 are orthogonal and provide the means by which remote station 2 can discern between the beams in much the same way as pilot codes help distinguish beams in a CDMA
system. In the TDMA system, multipliers 72 and l4 (of FIGS. 4, S and l 1) are omitted and channel signals CHl and CN2 are fed to second inputs to multiplexers 105 and 107, respectively- In this fourth embodiment amplifiers 102 and J 04 independently amplify or attenuate the outputs of respective multiplexers l05 and 707. The outputs of amplifiers l02 and 104 are fed to the antenna system (through up converters, etc., not shown). The antenna system may provide the overlaid coverage of diversity antennas I ti, 18 (FIG. 4) as in the first embodiment or may provide controlled directional coverage of directional antennas 106, l08 {F7GS_ 5 and 11) as in the second and third embodiments.
I\9oreover, in the case of controlled directional coverage, a variant may be to i'orego po~~er management and omit amplifiers l O2, l 04 and rely on angle (beam) diversity by steering beams from directional antennas 106, 7 08. A data slot in a time division system may include, for example, 58 data bits followed by 26 bits of a training sequence followed by 58 data bits as in a GSM s~~slem. The training sequence identifies the source of signal Sp,, and the individual beam to remote station 2 so that the remote station can separately discern the beams. In this way, remote station 2 can separately receive the two beams using the training sequences, instead of using orthogonal spreading codes OC as in a CDMA sysi em.
Although two beams ate discussed. extensions to higher order coding techniques with more beams are straightforv~ard. for example. four svm~bols (S~. S2. S~.
Sa) encoded JS
into four channel signals (CH1, C1~2, CN3, CH4) in four symbol time slots so that the original symbols are recoverable from the encoded channel sisals. The four channel signals are then transmitted from the base st anon in four beams; each beam corresponding to a channel signal of the channel signals CNI, CH2, CH3, and C1v34. Although QpSK
modulation techniques are discussed herein, extensions to other PSK modulation techniques are straightforward, and extensions to other modulation techniques (e.~:, QAM) are equally useable.
In FIG. l 3, a closed loop control system to manage transmit powers is depicted as process Sl 0. In step 5102, the base station selects the power Level to be transmitted from each anlenna_ For example, in a two antenna system, the base station selects powErs Pl and P2 based on the total power (i.e., Pl + p2) as defined by a conventional power control loop (e.g., a control loop typical to a CDMA system) and the relative powers (i.e., Pl /P2) as defined by power control coefficients measured ai remote station 2.. In step S7 04, a value representing the selected transmit power level is sent to the remote station l5 in a signaling charme). In step 5306, the power level received at the remote station from each antenna radiation pattern is measured, and corresponding power control coefficients are determined. The pov~~er control coefficients for each antenna radiation pattern are determined at remote station 2 1o be propo~ional to the received power at remote station 2 divided by the transmitted power as indicated by the power level value that is sent to the Temote station in a signaling channel. In step 106 the power control coefficients are sent from the remote station io the base station in a signaling channel. In step S108, the power control coefficients from step 5106 are compared for each antenna. In step Sl 10, adjustments in transmit signal power are determined according to the comparison of step S108. The adjustments are made to increase transmit pov~~ers sent in channels chat have favorable transmission qualities and reduce transmit powers in channels chat have poor transmission qualities. 'Then. in step S J 02 at the beginning of the cycle, the base station selects adjusted transmit po»lers to form the basis for the powers to be transmitted from the antennas during the next cycle of the closed loop beam power management.
The loop cycle delay may be one lime slot as in a third generation TDMA system.
Alternatively, the remote station may compare (in step 5108) the power control coefficients for each antenna from step SJ 06 and then compute power.eoeffieient l6 indicator information to be sent from the remote station to the base station in an up link signaling channel. For example, a ratio of the power control coefficients (e.g., PI fP2 in a two antenna case) may be advantageously computed as the power coei~cient indicator information and transmitted in the up link direction. Or the power coefficient indicator S information may be the quantized value of the ratio (e.g., a single bit indicating whether Pl > P2 or not).
Alternatively, in seep SJ 04, the selected transmit power is saved for a cycle lime of the closed loop control system. For ex ample, in a two antenna system, the base station selects powers PJ and P2 based on the total power (i.e., Pl + P2) as defined by a l 0 conventional power control loop (e.g., a control loop typical to a CDMA~sysiem) and the relative powers (i.e., PJ/P2) as defined by power control coefficients measured at remote station 2. In step Sl 06, the power levels received at the remote station from each antenna radiation pattern are measured a1 remote station 2 and sent as power control coefficients in an up link signaling charnel from remote station 2 io base station 1. The power
15 control coefficients are normalized io their respective transmit powers as saved in step 5104. In step 5108, the normalized power control coefficients from step 5106 are compared at the base station for each antenna. In step SI 7 0, adjustments in transmit si~aJ power are determined according to the comparison of step 5108. Then, in step S7 02 ai the beginning of the cycle, the base station selects adjusted transmit powers 10 20 form the basis for the powers to be transmitted from the antermas during the next cycle of the closed loop beam power management.
In F1G. J4, a cellular radio system with closed loop beam power management controls includes base station 2J0 and remote station 230. Base station 210 includes space-time encoders 212 to encode a scream of symbols info first and second space-time 25 coded signals, antenna system 216, transmitter 214 to transmit the first and second space-time coded signals at re~ective first and second initial transmit powers from the antenna sysiern so as to form respective f~rsi and second radiation patterns, base station receiver 220 io receive power coefficient indicator information from the remote station, and power management controller 222 to determine first and second adjusted transmit powers based 30 on the respective first and second initial transmit powers and the power coefficient indicator information.

l7 Antenna system 276 may include plural antennas where each antenna is an antenna chat generates either a substantially omni-directional radiation pattern or a radiation pattern directed to a sector. Omni-directional antennas are advantageously spaced apart. Antenna system 216 may form the first and second radia~ion patterns as orthogonal radiation patterns capable of being separately received at the remote station.
Alternatively, transmitter 2l4 includes a circuit io process the first and second space-time ceded signals so Thai the signals transmitted from the anterma system are orthogonal and can be separately received at the remote station.
Antenna system 216 is capable of generating plural beams (i.e., a mufti-beam l0 antenna) and the base station includes antenna control 218 to control the mufti-beam antenna to form the plural beams. In one embodiment, the mufti-beam antenna maybe a mufti-port Butler matrix antenna, and in this case, transmitter 214 will include aJnplifiers to scale the first and second space-lime coded signals to form respective first and second scaled space-time coded signals based on. the respective first and second adjusted transmit powers, and antenna control 27 8 will include a switch to couple the first and second scaled space-time coded signals into respective first and second input ports of the Butler matrix antenna to form the respective first and second beams.
Alternatively, the mufti-beam antenna includes a phased array antenna system, and antenna control 2l S includes a beam steering controller 1o form first and second weighting functions. The beam steering controller includes logic to input the first and second ~~eighting functions into the phased array antenna system to scale antenna gains of the respective first and second beams based on the respective first and second adjusted transmit powers without scaling amplifiers in transmitter 274_ The phased array antenna system may include either a plural beam phased array antenna (e.g., 40 of FJG.
l 0) or plurality of phased array antennas (e.g., 720 of FIG. 7).
In some embodiments. the power coeff~cieni indicator information includes first and second power conllol coefficients, and base station receiver 220 receives up link signaling information and detects values ofihe first and second power control coefficients in the up Iink signaling information.
Power management controller 222 includes a circuit (e.g., logic or a processor) io determine the f~rsi adjusted transmit power 1o be greater than the second adjusted transmit power when the indicated first path attenuation characteristic (or first power control coefficient) is less than the indicated second path attenuation charact~-istic (or second power control coefficient).
Remote station 230 includes remote station receiver 234, defector 236, power measurement circuil 238 and processor 240. Receiver 234, detector 236, power measurement circuit 238 and processor 240 constitute a circuit by which remote station 230 can deiertnine an indicated path attenuation characteristic based on apower received from the first radiation pattern and measured in circuit 238 and an initial transmit power determined in detector 236. With this circuit, remote station 230 can determine an indicated first path attenuation characteristic for a frsi radiation pattern of antenna system 2l 6 and an indicated second path attenuation characteristic for a second radiation pattern of system 2l 6 since the two radiation patterns are separately receivable-Detector 236 determines the initial transmit power, power measurement circuit 238 measures the power received from the radiation patlern as received by receiver 234, and processor 240 determines a power control coefficient to be proportional io the powerTeceived divided by the value of the initial transmit power. Power measurement circuit 238 measures an instantaneous power received, or in an alternative embodiment, measures an averaged power received, or in an alternative embodiment measures both and forms a combination of the instantaneous power received and the average power received. Remote station 230 further includes transmitter 242 to send values of the power coefficient indicator information or of the indicated first and second path attenuation characteristics to the base station.
In a variant, processor 240 forms the power coefficient indicator information as a ratio of the indicated first path atlenuation characteristic divided by the indicated second path attenuation characteristic. In an aJtemative variant, processor 240 forms the power coefficient indicator information »~iih a frst value »~hen the indicated first path attenuation characteristic is less than the indicated second path attenuation characteristic and 1o form the power coefficient indicator information u~iih a second value v~~hen the indicated first path attenuation characteristic is Beater than the indicated second path attenuation characleri~tic.

1n an exemplary embodiment, the base station transmits a first signal at first predetemnined signal power Pl frorn the first antenna, and a receiver in.remote station 2 determines first power control coefficient PCCl to be a power received from the first antenna at the remote station. The base station also transmits a second signal at second predetermined signal power P2 from the second antenna, and a receiver in remote station 2 determines second power control coefficient PCC2 to be a power received from the second antenna at the remote station.
Both the first and second signals are transmitted simultaneously from respective first and second antennas in ordinary operation at their respective predetermined power levels. The transmit powers are distinguishable at remote station 2 by use of different orthogonal codes OC in multipliers 12 and 14 (FI iS. 4, 5 and l,l) or by use of orthogonal training sequences as may be used in a TDMA base station (FIG. 12). The receiver in remote station 2 determines the signal power received from each antenna and transmits a value representing these received signal powers to the base station in a portion of the I S up link signaling data as separate power control coefficients PCCI and PCC2 or as a relative power control coefficient PCC1/PCC2.
In a preferred embodiment, the base station first transmits signals in ordinary operation from the plural antennas at selected powers that may be unequal (5102). In one variant, the base station sends the power levels selected to be transmitted from each of the plural antennas in a down link signaling channel_ The remote station (1) receives the base station's selected power levels (5104), (2) determines the signal powers received from the antennas (5106), and (3) compares the power transmitted from the base station from each antenna to the powers received at the remote station to determine the relative attenuations in the down link paths (S108) as the ratio of the received power to the corresponding transmitted power. The remote station sends this ratio determined for each antenna as power control coefficients back to the base station in the up link signaling data. 'Then, the base station adjusts the power allowed to be transmitted from the base station from each antenna according to the determined relative attenuations for all further down link transmissions (SI 10).
In another variant, (1) the remote station determines power control coefficients to be the signal powers received from the antennas (5106), and (2) the remote station sends the power control coefficients back to the base station in the up link signaling data.
Then, the base station ( l ) adjusts for closed loop time delays in its receipt of the power control coefficients from remote station 2 (5104), (2) compares the power transmitted from the base station from each antenna 1o the power control coefficients received at the 5 remote station to determine the relative atienuations in the down link paths {S108), and {3) adjusts the power allowed to be transmitted from the base station from each antenna according to the determined relative attenuations for all further down link transmissions (S l l 0).
In either variant, the power allowed 1o be transmitted from an antenna will be 10 greater for antennas associated with paths determined to possess a lesser path attenuation.
For example, an indicated path attenuation characteristic is advantageously determined to be the ratio of the power received at remote station 2 io the power transmitted from base station 1. In this way, Iiiile or no power is transmitted in a path that is not well received by remote station 2, while a greaser power is transmitted in a path that is well 15 received by remote station 2_ In many molts-path environments, increasing power transmitted in a path that has too much attenuation does little to improve reception at remote station 2, but such increased power would contribute to co-channel interference experienced by other remote stations. To improve the overall cellular radio system, the paths with the least attenuation are perrniited the greatest transmit beam powers. .'The 20 base station adjusts the power transmitted from each antenna by control scaling signals SA1 and SA2 (FIGS. 4 and 5) or by controlling the overall antenna gain for each beam by adjusting the amplitude parameters in control signal C (of F7G. 6) or in signals C1 and C2 (of FIG. 9).
In an embodiment of this closed loop method of power control, the remote station determines which antenna (or beam) is associated wish the Ieast attenuation path. The remote station sends an indication of which antenna (or beam) is favored (i.e., least attenuation) back to the base station in an up link signaling path. To conserve the number of bits sent in ibis up link signaling path, the remote station preferably determines the favored antenna and indicates this by a single bit (i.e., a "0" means antenna
16 is favored and a "1'' means antenna l S is favored, see FIG. 4). The base station receives this singe bit in~licaior and applies it to determine a predeterTnined relative power balance- For example, it has been determined that applying 80% of full power to antenna 16 (e.g., when this is the favored antenna) and 20% of full power to antenna 18 consistently provides better performance than applying 100% of full power to antenna 16 and no power to antenna 18. Thus, the base station receives the single bit relative power indicator and selects the relative powerPl/P2 for antennas 16 and 18 to be 80%J20% for a "1" indicator bit and 20%/80% for a "0" indicator bit.
In slowly varying radio environments, the coefficients (or any related channel information) can be parsed into segments, and the segments (containing fewer bits than the entire coefficient) can be sent to the base station in the up link signaling data using more up link time slots. Within a segment {perhaps plural TDMA time slots), the most significant bits are preferably transferred first, and these course values are gradually updated to be more precise using consecutive bits. Conversely, in rapidly varying radio environments, a special reserved signaling symbol may indicate the use of one or more alternative compressed formats for the up link transmission of the coefficients where an average exponent of all of the coefficients is transmitted {or presumed according to the signaling symbol) in the up link, and then only the most significant bits of the coefficients are then transmitted (i.e_, truncating the less significant bits). In the extreme, only one bit is transmitted in the up link direction indicating that the power coniroi coefficient is 1 (e.g_, 80% of full power transmission) when the down link channel is good, and indicating that the power control coefficient is 0 (e.g., only ZO% of full power transmission) when the associated channel is not adequate.
This closed loop control over beam power management is self adapting. If power control coefficients are up linked to the base station that cause over compensation in beam power, this closed loop control system will con-ect for this during the next closed loop control cycle. Persons skilled in the art will appreciate that other data compression techniques may be employed in the up link signaling to adjust to rapidly varying radio environments_ Similarly, persons skilled in the art will appreciate that the remote station, not the base station, may compute commands to the base station to increase, or decrease, the power in specific beams.
In an alternative variant suitable for slowly varying radio environments, the first and second beams may be sequentially transmitted at their respective predetermined power levels in a calibration mode. In such a variant, only one beam is transmitted at a lime so that the remote station need not employ orthogonal codes OC or orthogonal pilot signals to determine from v~~hich beam the received signal strength (e.g., power control coefficient) has been received. Once the channel attenuation is determined, signal S~, is ' sent using the beamspace time coding technique.
In addition to embodiments chat rely on amplifiers l02 and 104 or beam gain in phase array antennas to conCrol closed loop power management, another embodiment relies on angular diversity management andlor beam width management with the power management being omitted. Yet another embodiment relies on both the power 7 0 management and either angular diversity management, beam width management, or both..
The performance of bearnspace time coding techniques depends at least in pari on angular spread AS that characterizes the radio environment and how the bast station adapts the beams to match the angular spread. Down link performance is generally improved when the down link beams are directed at angles of arrival at which sharp l S peaks occur in an angular power spectrum of a signal from a remote station The sharp peaks suggest good transmission along the indicated path (e.g., likely direction of paths 3 and 5). However, sharp peaks may not always be found. When the angular power spectnim is diffuse and sharp peaks cannot be found, an estimate of angular spread AS
is made, and the plural beams used for down link transmissions are allocated to 20 approximately cover the angular spread. In this way the down link transmission spatially matches the total channel as determined by the angular spread.
The circuit to measure the angular power spectrum includes receiver 220 (F7G_ l4) and such signal and data processing circuitry as is required to determine the angular power spectrum and peaks therein as discussed below. When a peak in the angular power 25 spectnrm is detected, an angular position is defined by the peak_ Then, to direct the beam direction tov~~ard an angular position as detected, antenna controller 218 computes an array steering vector to input info antenna system 216 (FIG. 14). When an excessive number of peaks are detected in the angular power spectrum, power management controller 222 (FI G. 7 4~ selects the angular directions to be used to form beams. Power 30 management controller 222 may select beam directions toward specific angle of arrival paths (i.e., peaks), or power management controller 222 may select beam directions, and possibly beam widths, so as to cover a detected angular spread. The selected directions are provided to antenna controller Zl8 to form the beam commands to the antenna system.
In systems using frequency division duplexing, the up link and down Iink transmissions take place at different frequencies. There is no guarantee that peaks measured in the up link power spectrum will occur at angle that correspond to angles with good transmission performance in the down link direction. However, by employing either angle diversity management or beam width management or both, there will be a greater likelihood of producing a good down link transmission.
I 0~ Both angular diversity and beam width management require a measurement ofthe angularpower spectrum in one form or another. The remote station broadcasts an up link signal in its normal operation (e.g., signaling operation), the antenna system at the base station receives the signal, and the base station determines an angular power spectnmz (i.e., a received power as a function ofbearing angle in a plan view). FIG. 18 is a graph I S depicting the angular location of signal power received from remote station 2. In FIG.
I 8, discrete power measurements at each of I Z angular locations are shown based on, for example, twelve fixed location antenna beams pointed at 30 degree intervals in the antenna sysfem for base station I . The exemplary 12 beam antenna system may include three Butler matrix antennas, triangularly an-anged, to form the l2 beam antenna system 20 where each Butler matrix antenna forms four beams. While a 12 beam antenna system is considered in this example, it will be appreciated that any number of beams in an antenna system may be applied to the present invention (e.g., 24 beams, etc).
Alternatively, the antenna system may include three phased array antennas, triangularly arranged, to form an antenna system capable of forming the 12 beam where 25 each phased array antenna forms a steerable beam with a beam width of 30 degrees so as to permit scanning over four beam positions. The 12 beam antenna system may also include 12 antennas of any type that have a 30 degree beam width and are angularly disposed at 30 degree increments around a 360 degree sector. While a 12 beam antenna system is considered in this example, it will be appreciated chat any number of beams in 30 an antenna system may be applied to the present invention (e.g., 24 beams, etc).

An antenna system based on a phased array antenna provides an opportunity to generate a more interpolated angular power spectrum (e.g., Gl of FIG_ 18) by steering the antenna beam to point at as many angular positions as desired to generate the angular power spectrum. Power management controller 222 (FJG. 14) generates the angular S power spec gum in process S20 (FIG. 15) by looping on 8 in steps S20A and S20B and determining the angular power in step 521. Given the angle 8, power management controller causes antenna controller 218 (F1G. 14) to compute an array steering vector and point the antenna (step S21 l of FIG. l 6). The phased array antenna then receives a signal in receiver 220 (F7G. l4) from remote station 2 in each radiating element of the l0 phased array antenna to form a signal vector in step 5212 of F1G_ J 6. Each radiating element is preferably spaced apart from an adjacent element by one-half of the wavelength. For example, if a phased array antenna were to include 12 radiating elements (only 8 radiating elements are shown in antenna 720 of FIG. 7), the signal received in each of the 12 radiating elements would be sampled to form a measwed 15 signal vector. The sampled signal is preferably a complex value having amplitude and phase information_ The signals from each of the 12 radiating elements are formed into a 12 element received signal vector as column vector x . l~lexi, the complex conjugate transpose of received signal vector X is formed as row vector x H , and the spatial covariance matrix of the received si final, R=XX H , is calculated in step S2l 3 (FIG. l ~.
20 When received signal vector X is l2 elements long, then the spatial covariance matrix of the received signal, R=Xx H , will be a 72 by 7 2 matrix_ Array steering vector a(8) is a column vector with one vector element for each radiating element of the phased array antenna. For example, if the phased array anlenna were to include l2 radiating elements (e.g., half dipoles), array steering vector 25 a(6) v~Jould include l2 vector elements. Array steering vector a'(8) is constant C of FIG. 7, and it is used to point the beam of the phased array antenna toward bearing angle 8. Each vector element is given by:
am(8)=exp( jXkxmXdxsin8) , where k is 2n divided by the wavelength, m is an index from 0 to M (e_g., from 0 to 11 5 for a 12 element antenna) defining a number associated with the radiating element of the phased array antenna, d is the separation between radiating elements of the phased array antenna (preferably one-half of the wavelength) and 8 is the bearing angle of the antenna beam formed.
Each vector element of array steering vector a(8) is a corresponding vector 10 element of constant C as depicted in FIG. 7 so that the full vector combines to define an angle of arrival 0 of the received signal in the receive beam, where 8 is an angle with respect to a convenient reference direction of the phased array antenna. The complex conjugate transpose of array steering vector a(8) is row vector a(8~ _ The product, XX ~(8) , is still a column vector with one vector element for each 15 radiating element of the phased array antenna. The product, a(8)HXX Ha(8) , is a single point, a scalar, determined at step S214 (FIG. I6) to give the value of the angular power spectrum P(6) at the angle of arrival 8_ Thus, the angular power spectmm P(8) is depicted in FIG. 18 at G I and is computed to be:
P(8)=a(A)HXX Na(8) 20 where a(8) is an array steering vector, x is the received signal vector, XX
H
is the spatial covariance matrix of the received signal, and H denotes the complex conjugate transpose.
The above described equation for computing the array steering vector assumes the half wavelength spaced radiating elements are arrayed linearly. However, it will be appreciated by persons skilled in the art how to compute an array steering vector for radiating elements arrayed long a curved path. Three slightly "bowed out"
antenna arrays may advantageously be employed in the antenna system depicted in FIG. 8. In fact, the antenna arrays may be severely "bowed out" so as to form a circle (e.g., FIG.
6). It will be appreciated by persons skilled in the art that computation of an array steering vector for such severely curved arrays of radiating elements will advantageously employ amplitude control as well as phase control in the array steering vector.
To provide improved performance the angular power spectrum is determined by averaging repeated measurements. ~ In FIG. 17, the array steering vector is prepared and the antenna beam is pointed in step 5211. The plural measurements are made by looping in steps S215A and S21 SB. Within this loop, received signal vector X is repeatedly measured in step 5216 and the covariance matrix R is repeatedly determined and saved in step 5217. Then, an average covariance matrix is determined in step S218, and angular power spectrum P(8) is determined in step 5214. This averaging determination is repeated several times over a time interval for each predetermined direction B. In this way, fast fading phenomena are averaged out_ The time period must be short enough that a mobile remote station 2 will not change position sufficiently to change the beam in which it is located during the averaging period. This time period, is preferably larger than the charmel coherence time to average out fast fading effects. While the channel coherence time is not rigorously and universally defined, it may be taken to be proportional to and approximately equal to an inverse of the Doppler spread_ The Doppler spread is more rigorously defined. Due to a relative velocity between the base station and a mobile remote station, there will be a physical shift in the received frequency with respect to the Transmitted frequency. The Doppler spread is twice this frequency shill. For example, the Doppler frequency shift is the ratio of the relative velocity to the wavelength (in Like units, meters/second divided by meters or feet/second divided by feet, etc.). If a mobile remote station is traveling 13_9 meters/second (about SO km/h) and the wavelength is about 0.15 meters (e.g., 2,000 MHz signal with the speed of Light equal to 300,000,000 meters per second), then the Doppler frequency shift is 92_7 Hz, the Doppler spread is 185 I-Iz, and the channel coherence time is about 5.4 milliseconds. 1t can be easily verified that at a relative velocity of 40 meters per second (about 144 kmlh) the channel coherence time is about 1.9 milliseconds, and that at a relative velocity of l meter per second (about 3.6 kmfh) the channel coherence time is about 75 milliseconds.
The averaging time interval is preferably set to be greater than. an inverse of the Doppler spread and less than a time in which a mobile station moving at an expected angular speed moves one-half of a beam width of the base station antenna system. The base station knows the remote station's range or can infer the range from signal strength.
The base station is designed to communicate with mobile stations that can move at speeds up to a predetermined speed. This speed divided by the range may be taken to be the angular speed if the mobile station is moving radially around the base station. Setting the averaging interval to be a half beam width divided by the angular speed provides an estimate of the time in which a mobile remote station 2 will not change position sufficiently to change the beam in which it is located during the averaging period.
The time period over which the power P(0) is averaged is usually much greater than the channel coherence time. For example, in a wide band CDMA system operating in an environment with a high incidence of mufti-path reflections (e.g., urban environment), the average period could be tens of time slots. For indoor environments with a high incidence of mufti-path reflections, the mobile is much slower and the averaging period can be much longer.
The base station computes the angular power spectrum and determines whether or not sharp peaks are indicated in the power spectrum. When sharp peaks are indicated, the angle location of each peak is determined. When the power spectrum is diffuse and no sharp peaks are indicated, the base station determines angular spread AS by first determining the angles at which the received angular power spectrum exceeds a predetermined threshold (G2 in FIG. I 8). The threshold may also be adaptable based on the radio environment (e.g_, signal density) detected by base station 1.
Sharp peaks in the angular power spectrum may be detected by, for example, using a two threshold test. For example, determine a first continuous angular extent (in degrees or radians) at which the power spectrum exceeds a first threshold G3.
Then, determine a second continuous angular extent at which the power spectrum exceeds a second threshold GZ (lower than first threshold G3)_ When the ratio of the first angular extent divided by the second angular extent is less than a predetermined value, peaks are indicated.
When peaks are indicated, angle diversiiy management (i_e_, the management of S the direction of arrival of the beams) is invoked, and possibly beam width management is invoked. The sharpness of the spectral peaks may be determined by comparing the angular power spectrum against two thresholds. For example, in FIG. 18, three peaks exceed the threshold G2, but only two peaks exceed the threshold G3. The angular spread of a single peak determined according to threshold G2 is broader than the angular l0 spread determined according to threshold G3_ The ratio of the angular spread of the single peak determined by G3 as compared to the spread determined by G2 is a measure of the sharpness of the peak. Alternatively, the threshold against which the angular power spectrum is measured may be moved adaptively until there are at most two peaks . in the angular power spectrum above the threshold to reveal the directions of paths 3 and l 5 S_ For example, when two sharp peaks occur in the angular power spectrum and the base station transmits two beams, the base station defrnes the direction of these peaks (i_e., the two distinct angular directions where the power spectrum exceeds threshold G3) to be the angular directions for paths 3 and S (FIG. l). This is referred to as angle of arrival diversity. The base station points steerable beams, or selects fixed beams to point, along 20 respective paths 3 and 5_ Persons skilled in the art will appreciate how to extend angular diversity management to more than two beams.
On some occasions, the angular power spectrum includes three or more angular positions that correspond to respective peaks in the angular power spectrum.
When the base station has two beams, the base station selects first and second angular positions 25 from the three or more angular positions either (1) based on the avoidance of angles at which co-channel users are located so as to minimize co-channel interference on a system wide basis, or (2) so as to balance power distribution in amplifiers of the transmit station.
The beam widths in a phased array antenna are generally selectable by controlling an amplitude of elements in the beam steering vector (e_g., vector C of FIG.
7)_ When 30 the antenna system includes a phased array antenna with controllable beam widths and the spectral peaks are sharp, the base station sets or selects beams to be as narrow as practical given the antenna system in order to concentrate the transmit power in directions along respective paths 3 and S. Paths 3 and 5 are expected to have good transmission properties since the spectral power peaks are sharp.
On the other hand, when the angular power spectrum is so diffuse that peaks are weak or not indicated, a general angular window is determined based on the angular extent over which the power spectrum exceeds a threshold (e.g., G2 of FIG. l S) or at least the continuous angular extent needed to cover the peaks where the angular power spectrum exceeds the threshold. In such a case, preferred embodiments of the invention select beams such that the sum of the beam widths for all beams used for down Iink transmissions approximately equals angular spread AS.
When the antenna system includes a phased array antenna with controllable beam widths but the spectral peaks are not so sharp, the base station first determines the angular spread to be the angular extent of the power spectrum .that is greater than a threshold or at least the continuous angular extent needed to cover the peaks where the angular power l S spectrum exceeds the threshold. Then, the base station sets or selects the beam widths for the beams to approximately cover the angular spread. This is referred to as angular power diversity or beam width management. For example, a two beam base station that seeks to cover the angular spread will select a beam width for both beams to be about half of the angular extent, and the base station points the two beams to substantially cover the angular spread.
Extensions to more beams are straightforward as will be appreciated by persons skilled in the ari. For example, when the base station has capability for beamspace time encoding in a four beam base station, a beam width is selected for each beam that is approximately one-fourth of the angular spread. In this way the down link transmission will spatially match the channel. It is advantageous to match the coverage of orthogonal beams to the angular spread of the channel to obtain maximum angular diversity gain.
However, usually two to four beams are adequate.
When the base station has an antenna system with plural fixed beams (as with a hex corner reflector antenna) and when the angular power spectrum is diffuse and angular spread AS exceeds the beam width of a single beam, a desirable variant of the invention combines two adjacent beams into a single broader beam (e_g., combine two 60 degree beams info a single l20 degee beam) to better match the radio channel. In such a case, the two adjacent beams are used as a single broader beam employing the same pilot code or orihogonalizing code. In fixed beam base stations, ii is advantageous chat the number of beams M Thai can be generated is large (e.g., M>4, and preferably at least 8) so that 5 high beam resolution can be achieved. When a broader beam is needed to better match the channel, two adjacent beams may be combined.
The present invention fits well in a base station where the antenna system employs digital beam forming techniques in a phase array antenna (e.g., antenna 720 of F1G. 7 and antenna 40 of F1G. 10). With digital beam forming techniqucs, the apparent 10 number elements in an antenna array (i.e., the apparent aperture dimension) can be electronically adjusted by using zero weighting in some of the elements according to the available angular spread. In ibis fashion, the beam wiaih can be easily adapted by the base station io match the angular spread. This beam width control operates as an open loop control system.
15 In an alternative embodiment, beaJn hopping techniques are employed when the angular power spectrum exceeds the threshold in one large angular exte~i. A
beam hopping technique is a technique that covers the angular spread sequential)y.
For example, when the transmit beams in any one time slot do not cover the angular spread, the angular spread may be covered during subsequent time slots. Consider an exemplary 20 system that has a two beam base station capable of forming 30 degree beams where the angular spread covers 120 degrees (i_e., the width of four beams). In a beam hopping system, the base station forms two 30 degree beams for transmission.during a first tune slot so as io cover a first 60 degree sector of the 120 degree angular spread, and forms two ocher 30 degee beams for transmission during a second time slot so as to cover the 25 remaining 60 degree sector of the 120 degree angular spread_ Beam hopping geatly improves performance in radio environments wish large angular spreads. Jt is known that the down )ink performance degrades in frequency division duplex cellular radio systems when the angular spread becomes large, due at least in pare to the increased angular uncertainhJ in the optima) selection of directions for 30 transmission- in frequency division duplex systems, the up link directions determined to have good power transmission capacity (low attenuation) could be in a deep fade for a down link transmission due to the different carrier frequencies.
With a large angular spread in the radio environment, the number of possible directions for down link transmission will be large. Instead of selecting the two best S directions, spatial diversity is achieved by sequentially forming down link beams to cover all of the potentially good directions where the angular power spectrum exceeds a threshold. This is particularly important in micro-cells or pico-cells where the angular spread can cover the whole sector or the whole cell.
In a scenario where remote station 2 is fixed or of low mobility, beam hopping has additional advantages over selection of the two strongest directions. When the best two directions are selected as the beam transmit directions for a large number of consecutive bursts, there is considerable penalty (in terms of loss of data) if the selected directions are a wrong choice (e.g., down link in deep fade even though up link is good).
However, by hopping the beams over a group ofpotential directions, the loss of data from any one direction that turns out to be in deep fade will be for only a limited duration (e.g., only one time slot). This angular diversity tends to "whiten" the errors generated by selection of bad transmission directions.
Furthermore, the co-channel interference to other remote stations generated during beam hopping transmissions will tend to be whitened by the spatial spreading of the transmitted signal. Co-channel interference can be particularly troublesome when high data bit rate connections are required since high bit rate connections are achieved with high beam powers. The large amount of beam power involved in the high bit rate connection generates highly colored interference (not uniformly distributed) when a non-hopping scheme is employed by the base station for beam selection.
In FIG.I 9, another embodiment of the invention includes base station 210 and remote station 230 as described with reference to FIG. 14_ In the present embodiment, base station 210 includes weighting amplifiers 102 and 104 to apply respective weights Wl and lN2 to respective feed signals CHl and CH2_ In the present embodiment, wei~ts W l and W2 are complex numbers or at least phase and amplitude pairs to control both the amplitude and phase of the signal transmitted from antennas 16 and 18. The wei~ted signals may alternatively be transmitted from directional antennas 106 and 108_ FIG. 19 depicts diplexers ltiD and 38D coupled between iheweighting amplifiers and the respective antennas to duplex the antennas so they may be used in an up link receive mode as well as a down link transmit mode; however, a separate base station antenna may be used to receive up link signals.
In a preferred variant, one antenna is used as a reference with its corresponding weight set to 1+j0 (or amplitude= l, phase = 0°). The other weight is determined relative to the reference weight, In general, base station Zl 0 may employ two or more channels, eachwiih an antenna, diplexer, weighting amplifier and a1J associated encoders_ TfM is the number of transnvriing antennas, then the number of weights that must be determined a is M - l since only differential information (i.e., we~ghis) need io be determined. Without loss of generality, the following description focuses on two transmitting antennas (M =
2) so chat only one complex number weighs need be determined.
In FIG. 19, remote station 230 includes remote station antenna 232, remote station receiver 234 coupled io remote station antenna 232 through diplexer 233, signal measurernenl circuit 238, and processor 240. Receiver 234 constitutes a circuit by which remole station 230 receives first and second signals from respective first and second transmit antennas. Signal measurement circuit 238 and processor 240 and control modules described herein constitute a circuit by which remote station ?30 determines channel slate information based on the received first and second sisals and segments the 0 channel slate information info a plurality of channel stale information segments. Signal measurement circuit 238 measures the signal strength (and phase) received from each of the plural orthogonal antennas, and processor 240 determines channel state information.
Signal measurement circuit 238 measures an instantaneous signal strength (and tihase) received, or in an alternative variant, measures an averaged signal slrength received and 'S a phase at a reference time.
The processor determines the channel stale information from information provided by signal measurement circuit 238. The processor selects a reference signal from among the signals received from the different. antennas_ For each of the plural anlennas, the processor di~~ides the received signal strength (and phase) detern3ined by signal measurement circuit 238 by the selected reference signal strength (and phase).
This ratio is determined as a ratio of complex numbers (or phase/amplitude pairs). The ratio for the reference antenna is, by definition, I +j0_ In the case of two antennas, there is only one ratio to be sent, the ratio of the reference antenna being a constant reference.
Processor 240 determines the channel state information from the normalized ratio or ratios. Each ratio includes both amplitude and angle information. It is the object of this process to adjust the phase of the signal transmitted from the two antennas {or more) so . that they will constructively reinforce at remote station 230. To ensure constructive reinforcement, ii~ is desired io phase delay or advance a signal transmitted from each antenna relative to the reference antenna. For example, if first antenna 16 is the reference antenna, then the angle portion of the ratio for the signal received from second antenna 70 I 8 is further examined. ~lf this angle is advanced 45 degrees relative to the reference antenna, it will be necessary to introduce a 45 degree delay ai the transmitter for second anlerma 18 to achieve constructive reinforcement at rernoie station 230. Thus, processor 240 determines the amount of phase delay or advance needed to achieve constructive reinforcement at remote station 230 by adding the desired additional delay to the phase I S of the initial transmitted signal, and if the addition result is greater than 360, then subtracting 360_ 'This phase angle then becomes the phase angle transmitted as part of the channel state information.
Processor 240 also determines the amplitude pari of the channel state information.
The object here is to emphasize the antenna with the best path (i.e., lowest attenuation 20 path) from the antenna io remote station 230. The total power transmitted from all antennas may be regarded here as constant. The question io be resolved by the amplitude part of the channel state information is how to divide up the total transmitted power.
To do this, processor 240 measures the channel gain (the inverse of the attenuation) by computing, for each antenna, the ratio of the power received divided by 25 the power received in the reference signal. The power received is the square of the signal strength measured by signal measurement circuit 238 (i.e., P~=(a~)2 where a;
is the signal strength from antenna i)_ The signal transmitted through each different antenna or antenna beam includes its unique and mutually orthogonal pilot code modulaietl on a signal transmitted a1 signal po»ler P-,~;. The remote station measures the complex channel a W, yuvmvvru impulse response, J~~=a~exp(~l) as a ratio of the signal received divided by the reference signal received where ~; is the relative phase of the signal being measured and a; is the relative signal strength. Then P; is determined as the square of a;. The relative channel response for each antenna is measured in terms of received power. If onlyone bit were reserved in the up link signaling channel for amplitude feedback information, the bit would preferably command 80% of the total power to be transmitted by the anterma with the lowest attenuation path to remote station 230 and command 20% of the total power to be transmitted by the antenna with the highest attenuation path.
if two bias were reserved in the up link signaling channel for amplitude feedback information, the bits could define four amplitude states. For example, .processor 240 would compute a ratio between the path attenuation from antenna 16 and the path attenuation from antenna 18 and then slice the ratio according a predetermined range of values chat this ratio can take. The slicing process defines four sob-ranges and identifies into which of the four ranges the computed ratio fits_ Each sub-range would define the desired split of the iota) power transmitted by two antennas 7 6 and antenna l 8 to be, for example. 85%/15%. 60%/40%. 40%/60% and 15%/85%, respectively. The two bits would thus encode one of these splits as the desired split in the total power transmitted by two antennas.
Persons skilled in the art will appreciate, in light of these teachings, that the amplitude portion of the channel stale information may be computed by various means.
Described here is a table look up.means, but other means io compute the split of the total power io be irarismitled are equivalent. li will be appreciated~ihat three orrnore bits may be used io define the power split.
Processor 240 also segments the channel state information (including the amplitude portion and phase angle portion described above) into a plurality of channel state information sepnents based on the design . Remote station 230 fin-ther includes transmitter 242 io send the plurality of channel stale information segrnenis to base station 2l 0.
'The channel state information to be transmitted is a complex coefficient in 'the form ofphase and amplitude information, and it is to be transmitted from remole slation 230 to base station 2l 0 in a number of segments (N segments) carried-in corresponding slots in an up link signaling channel. A partition of the N slots into Nl and N2 (where N = Nl + N2) is done in such a way chat the first N1 slots carry phase information and the remaining N2 slots carry amplitude information. In principle N1 and N2 can be 5 arbitrarily chosen, but a common value for these parameters could be Nl = N2 = N/2_ Assume that each slot reserves K bits for carrying the corresponding information segment. The phase can be resolved to an accuracy of _ 360 2N,x and the amplitude can be resolved to an accuracy of A
10 Arvin- N

where Amar is the maximum amplitude.
For example, assume that the number of slots, N, is 6, and three slots are reserved for each ofNl and N2. Assume that the number of bits per slot, K, is l, and assume that the maximum amplitude, A",~", is 3 volts. Then, the accuracy of the phase and amplitude I S are Vim;" = 45°, and the amplitude Am;" is 0.375 volts. However, if the number of bits per slot, K, were increased io 2, the accuracy of the phase and amplitude that could be sent would be Vim;" = 5.6°, and the arnpliiude Am;D is 0.05 volts.
In general, a quantized or truncated version of the exact channel slate information is formed so that the bits in the truncated version .exactly matches the number of bits 20 available in the up link signaling channel. The truncated version is segmented into phase segments ~; (i = 7 to Nl), and the segments are transmitted in a hierarchal order so that the most significanl bit (MSB) is transmitted in the first segnent and the least significant bit (LSB) is transmitted in the last segment. Similarly, each amplitude segment, A; (i =
7 to N2) contains a quaniized or truncated segment of the exact channel stale information 25 (the ratio) and it is transmitted in a hierarchal order.
The present embodiment of the invention improves the down link performance of mobile communications due to improved phase angle and amplitude accuracy for use in forming down link beams. This embodiment is particularly suitable for low mobility environments, and it suits high data rate. applications in indoor and pedestrian environments. The embodiment is particularly suited for high bit-rate wireless data applications for laptop computers.
For example, assume the remote station is moving at a speed of v = 1 meter per second (3.6 kilometer per hour) and the carrier frequency is 2 gigahertz (7l =
0.1 S meters).
The maximum Doppler frequency fD is vl~, and the channel coherence time Tc is computed to be:
T~ = 1 l(2fD) _ ~l./(2v) = 75 milliseconds.
It can be assumed that the channel state information will remain stable (nearly constant) over a time period equal to T~/10, and therefore, the channel state information may be sent from remote station 230 to base station 210 in during this stable time period of 7.5 milliseconds. Since wideband CDMA (WCDMA) standards define slot durations to be 0.625 milliseconds, one can use 12 slots to send the channel state information back to the base station.
There are several ways to pack the channel state information in the up link Slots.
Table 1 illustrates an example based on only one bit per slot (K = I ). In Table 1 three-bit accuracy is used for both the phase angle and the amplitude information. The phase angle is transmitted in the first 6 slots, and the amplitude information is transmitted iri the last 6 slots. In both cases, the most significant bits are transmitted first. In slot 1, the most significant bit of the three-bit phase angle is transmitted. In slot 2, the same bit is repeated to improve reliability. After that, the remaining phase angle bits are transmitted, and the amplitude information bits are sent in the same fashion. The first bit gives the phase angle to an accuracy of 180° as if in a one-bit . After slot 3, the phase angle is sent to an accuracy of 90° as if in a two-bit , and after slot 5, the phase angle is sent to an accuracy of 45° as in the three-bit . If it is assumed that the phase angle changes about 360° during the coherence time of the channel, then in the above example, the phase angle will change about 36° in the 7.5 millisecond time period it takes to send 12 slots_ This corresponds well to the phase accuracy achievable with three-bit data (45°).
After slot 7, the amplitude information is sent to an accuracy of 0.5 of the maximum amplitude as if in a one-bit . After slot 9, the amplitude information is sent to an accuracy of 025 of the maximum amplitude as if in a two-bit , and after slot l l, the amplitude information is sent to an accuracy of 0.125 of the maximum amplitude as in a three-bit .
Table 1 Format For Sending Channel State Information To The Base Station Slot Number Feedback Bit Slot Number Feedback Bit 1 Phase MSB 7 - Amplitude MSB

2 Phase MSB 8 Amplitude MSB

I 3 Phase Bit 2 9 Amplitude Bit 4 Phase Bit 2 I O Amplitude Bit 5 Phase LSB 11 Amplitude LSB

6 Phase LSB 12 Amplitude LSB

I S In general the phase information is more important than the amplitude information. The optimum maximal ratio combining performs only about 1 dB
better than the equal gain combining that would be used if there were no amplitude information feedback, and thus, a larger allocation to phase bits (N1) and a lesser allocation to amplitude bits (N2) has advantages. For example, one could allocate three phase bits and 20 two amplitude bits so chat the feed back channel state information could be sent in a WCDMA format without redundancy in 3.125 milliseconds.
The tradeoff between the allowed feedback capacity (e.g., one or more bits/slot), the feedback reliability (e.g., number of repeated or redundant bits) and the feedback accuracy (e.g., number of phase angle and amplitude bits) is application and environment 25 specific. For example, a three-bit check code in a well known SECDED
(single error correct, double error detect) format may be appended to 8 bits of information to provide redundancy error checking. Persons of ordinary skill in the art, in light of these teaching, will appreciate how to match the feedback capacity, the feedback reliability and the feedback accuracy to the application and environment_ 30 Processor 240 (FIG. 19) segments the channel state information into a plurality of channel state information segments according to the format defined by the system modes. In fact, a system may be designed with multiple modes, each mode defining different formats. For example, one mode may send only phase angle correction information commanding equal amplitudes to each of the antennas, and another mode may send three bits of phase angle information and one bit of amplitude information.
S Then transmitter 242 encodes the plurality of channel state information segments in an up )ink signaling channel and sends the encoded information through diplexer 233 and antenna 232 to base station 210.
In one variant of the embodiment, there are several modes requiring from I to, for example, 20 bits to express the channel state information in the up link signaling channel.
In this variant, processor 240 determines the rate at which the channel state information changes based on changes from update to update. When the rate is slow, indicating a slow moving or stationary remote station, the feedback mode is adaptively changed to a mode that permits more data bits of the channel state information to be sent to the base station. However, when the channel state information changes rapidly, indicating that the remote station is rapidly moving, then the feedback mode is adaptively changed to a mode that sends fewer bits for each channel state information update_ Base station 210 receives the information encoded in the up link signaling channel and decodes the plurality of channel state information segments in receiverldetector 220.
Processor 220P then reconstructs the channel state information from the received plurality of channel state information segments and produces weights Wl and W2.
Weights W1 and W2 are provided to respective amplifiers 102 and 104 to weight first and second feed signals CH1 and CH2 to feed to the respective first and second antennas I 6 and 18 based on the reconstructed channel state information_ Two variants of this embodiment may be implemented in processor 220P. First, .25 the processor may collect all segments to reconstruct the total channel state information before forming weights Wl and W2 to apply to amplifiers 102 and 104.
Alternatively, the channel state information is sent to the base station phase angle first and within the phase angle segments, most significant bit first. The values of Wl and W2 may be updated within the processor as each bit is received to provide more immediate feedback to amplifiers l02 and 104. This produces, in effect, a higher feedback bandwidth_ In FIG. 20, a method practiced on processor 240 includes several steps that are typically implemented in the processor with software modules and/or logic.
However, persons skilled in the art will appreciate that the steps may be implemented in the processor using ASIC or other custom circuitry.
In step 52002, for each of the plural antennas, the processor receives the received signal strength and phase (a complex number) as determined by signal measurement circuit 238. In step 52004, the processor selects one of the received signals to be a reference signal. This selection may be arbitrary or it may be to select the signal with the greatest phase lag (least likely to need to or want to be slowed down). In step 52006, the processor divides the received signal strength and phase (a complex number) determined by signal measurement circuit 238 by the received reference signal strength and phase (a complex number). The ratio for the reference antenna is, by definition, 1 +j0. In the case of two antennas, there is only one ratio to be determined and sent, the ratio of the reference antenna being a constant reference.
In step S2008 (FIG. 20), processor 240 determines the amount of phase delay or advance needed at each transmitting antenna to achieve constructive reinforcement at remote station 230. If the reference signal is chosen to be the signal with the most lag, the remaining signals may achieve phase alignment with the reference signal by adding a delay at the antenna. Step S2008 determines the required additional delay, but if the additional phase delay added to the phase of the non-reference signal results in a phase that is greater than 360 degrees, then subtract 360. This phase angle then becomes the phase angle transmitted as part of the channel state information. Persons skilled in the art in light of these teachings will appreciate that step 52008 may be performed in the base station so that only the phase angle of the channel impulse response need be sent in the up link signaling channel.
In step 52010, power management information to define the transmit distribution (the allocation of the total power among the transmit antennas) is determined. Persons skilled in the art will appreciate in light of these teachings, that the amplitude portion of the channel state information may be computed by various means.
Described here is a table look up means, but other means to compute the split of the total power to be transmitted are equivalent.

For example, the relative amplitude and relative phase of the signal from each antenna may be transmitted in the up link signaling channel for the base ~taiion to further process. Alternatively, the remote station may determine in step S2010 an indicia of the desired power disinbution. if only one bit were reserved in the up link signaling channel 5 for amplitude feedback information, the bit would preferably command 80% of the total power io be transmitted by the antenna with the Jowesi attenuation path to remote station 230 and command 20% of the total power to be transmitted by the antenna with the highest attenuation path. if two bits were reserved in the up link signaling channel for amplitude feedback information, the bits could define four amplitude sub-ranges. For l0 example, 85%/15%, 60%/40%, 40%/60% and 15%/85%, respectively. The two bits would thus encode one of these sub-ranges as the desired split in the total power transmitted by two antennas. fixiensions to more antennas or to the use of more bits to represent the amplitude portion of the channel state information will be apparent to persons of ordinary skill in the art. The exact nature of the table look up or ocher means 15 depends on the number of bits reserved in the up link format io carry the amplitude portion of the chanr~P~ state information_ In step S2012, the channel state information is segmented and packed into the formats described herein (e.g_, 7 able l). In step S14, the segments are sequentially transmitted in the up link signaling channel to the base station. From there, the respective 20 weights for the antennas are recovered and applied to amplifiers 102 and l04 (FIG. l9).
In Frequency Division Duplexed systems where up link and down link communications are carried out over different frequencies, ii is not possrble to exactly determine the down )ink channel slate from up link information since the two directions are based on different frequencies. The present system has the advantage of measuring 25 the down link channel slate from down link data and then sending commands in the up link signaling channel to adjust the amplitude and phase of the transmitted down link signals.
In FAG. 21. antenna 1 of the base station is a sector coverage type of antenna.
Antenna l sends a signal to remote station 2 over direct path 3; however, another rnulii 30 path signal reflects off of radio wave scalier 4 and travels o~~er mulli-path 5_ As a result, remote station 2 receives na~o replicas of the signal ai slightly different times. In FIG. 22, the two replicas are depicted as signals received at time nT and time nT+i where i is the additional time delay chat occurs due to the additional length of mufti-path 5 when compared to direct path 3_ The mufti-path delay may be such as to cause destructive interferences between the two signals received over the two paths_ Additional radio wave scatterers may create even more mufti-path signals.
A conventional Rake receiver correlates a local signal (e.g., the spreading code of a C'DMA signal) and the received signal that includes signal replicas received wish different delays. With correct delays, the signals are coherently combined to reinforce energies_ When the local signal (e.g_, desired spreading code) is correlated with a signal from a desired signal path, the local signal is also correlated wish every one of the other signal replicas (e.g., signal replicas from signal paths with different delays). The terms corresponding to the correlation with the other signal replicas are unwanted terms, and they tend to degrade the performance of the system_ The unwanted correlation terms also cause a loss of orthogonality between different users with different codes, and as a result, co-channel users start to interfere with each other_ The degradation effect becomes more pronounced with short spreading codes that are typically used in high bit rate links.
The present invention operates the Rake receiver in an unconventional fashion.
Using beam forming, the present invention separates different signal paths and applies pre-transmission time shift compensation on each signal replica (e.g., each beam) so that all sisal replicas arrive at the receiver simultaneously_ In this manner, the receiver appears to receive a signal processed only through a 1-tap channel even though it actually receives and coherently combines multiple signals over multiple paths (e.g., paths 3 and S in FiG. l)_ This avoids a loss of orthogonality and minimizes or eliminates cross correlation terms that might otherwise degrade system performance.
In an embodiment of the present invention, the desired data is included in two or more space-time coded signals. The signals are identified by unique and mutually orthogonal signature codes. If one of the space-time coded signals is significantly delayed with respect to another, the orthogonality of the signature codes may be reduced.
1t is preferred to delay'the shortest path signal so as to arrive at remote station 2 at the same time that the longer path signal arrives at remote station 2_ In FIG. 23, an exemplary system includes anterma l and remote station 2.
Exemplary antenna 1 may be a Butler matrix mufti-beam antenna array or any other mufti-beam antenna array. The desired data in this example are encoded into two space-lime coded signals 72 and 15. Space-lime coded signals L2 and IS are transmitted in beams D2 and D5, respectively. Beam DS sends signal 15 to remote station 2 over direct path 3. Beam D2 sends signal 12 to remote station 2 over. indirect mufti-path S:
In F7G. 26, an exemplary encoder for the generation of space-time coded signals 12 and 15 is depicted. FIG. 26 is similar to FIG. 2, except Thai antennas 16 and 18 of FIG.
2 are replaced by the mufti-beam antenna of FIG. 23 and a programmable delay line (e.g., l0 a selectable mufti-tap delay line) is coupled between multiplier 14 and the mufti-beam antenna. Multiplier l2 encodes signal CN l wish a signature code (OC) that is mutually orthogonal to the signature code that is encoded in the signal CH2 by multiplier 14. The signatwe codes may be variously orthogonal training sequences, pilot codes or spreading sequences. Using these signature codes, remote station 2 separates the signal that is l j ~G~.GiVi.d i ; .~. auTp~t paf_h_ f_rpm beam DS from the signal that is received in an indirect path from beam D2 as long as the signature codes remain orthogonal. Persons skilled in the art will appreciate chat the wo beams and corresponding space-lime coded signals depicted in FIGS. 23 and 26 may be generalized to more than tyvo and that additional programmable delay )fines may be needed io time synchronize all signals.
20 The diieci signal from beam DS is received at remote station 2 before the indirect signal from beam D2 is received by a time T as depicted in FIGS 24 and 25_ In order to maintain the best orthogonality between the signature codes, it is desirable to align the signals in lime. A receiver {possibly ai the base station and possibly at remote station 2 as discussed belov~~) determines the time delay i necessary to align the signals. The last 25 signal received ai remote station 2 (e_g., signal 12) may be regarded as a reference space-lime coded signal. The remaining signals may then be regarded as at Least one remaining space-time coded signal (e.g.. signal J 5). In this embodiment. at least one remaining space-lime coded signal is delayed in the programmable delay line of the base station (see FIG. 26) before being transmitted. The signal or signals is or are delayed by a sufficient 30 delay fo ensure that each of the at least one remaining space-lime coded signal will align in time with the reference si°nal when received at the remote station.
In the example depicted in FIG. 23, the last signal received at remote station 2 is signal 12 due to the extended length of mufti-path 5. Signal IS will need to be delayed so that it will arrive at remote station 2 at the same time that signal l2 arrives ai remote station 2.
In both the space-time diversity technology (F1G. 2) and the beam-space diversity (F1G. 23), ii is important for the remote receiver to separate signals CHI and C~-I2 as discussed above. This is achieved by using orthogonal signature codes in various forms.
The difference in time of aJrival when the signals from the tyvo paths, direct path 3 and mufti-path 5, arrive at remote station 2 is referred to as the delay spread.
When the delay spread does not exist or is minimal, the orthogonality of the signature codes is preserved.
l 0 l-3ovvever, in frequency selective channels where there exists a considerable delay sprEad of the signature codes, the orthogonality between the channels may be lost, and remote station 2 will find ii difficult to separate signals carried in the respective channels. IV~ost common coding sequences are characterized by non-ideal cross-correlation functions (CCFs) which have a low or zero value only for a given phase relationship between the signature codes, and for other phase relationships, the CCFs are non-zero.
Plural space-time diversity signals intended for transmission to remote station 2 over mufti-path channels will undergo different delays. Because the value of the CCF at a given out-of phase position is hPically non-zero and different from position to position, the effect of different path delays imposed by the radio channels on the transmitted signals will be to diminish the orihogonality between the signature codes used by remote station 2 io separate the signals. This Joss of orthogonaliiy results in a deterioration in the diversity gain that would otherwise be achieved by the space-time code transmission of signals betv,~een a base station and a remote station in a wireless communication system.
In the present embodiment, a mufti-beam antenna array associated with the base station receives an up link signal from the remote station of interest in each of the plural beams of the rnulti-beam antenna array_ The up )ink signal maybe a pilot signal, an up link signaling channel. or any oilier ~up link channel that identifies the source of the signal as the remote station of interest. The up Jink signal is received as plural signals derived from radio signals received in corresponding plural beams of the mufti-beam antenna array.

For each of the plural received signals, a receiver at the base station separates a signal component identified by a signature code as originating at the particular remote station of interest. The received signal component of each of the plural beams includes a replica of the identified signal for the particular remote station of interest at a particular S time delay or delay spread relative to the signal component of a reference beam. A
receiver at the base station processes the plural signal components from their respective beams to identify a reference beam as containing the Last received signal component and a delay spread needed to align each of the other signal components received from their respective beams with the signal component received in the reference beam.
When the I 0 base station serves more than one remote station, this process can be repeated for each remote station or for selected remote stations_ The selected remote stations could be those with high transmit power. Nigh transmit power might be required by, for example, high data rate requirements.
FIG_ 27 depicts a representative channel impulse response or delay distn~butiori I S profile 300 for a 16 beam base station system that is similar to the 8 beam base station system depicted in FIG. 23_ The base station measures the delay spreads i associated with each beam of the mufti-beam antenna_ For signals received that have signal strengths above a threshold, an "x" indicates instantaneous and/or averaged signal strength exceeding a given threshold. Directions D3, D6 and DI2 depicted at 304, 306 20 and 308 respectively, include signals with a minimum delay spread (e.g., sparming delays T4 through ~cb). If several potential directions are available, preferred directions among the available directions are selected based on additional criteria, such as the whitening of generated interference, the even distribution of power in the plurality of power amplifiers used by the base station and the avoidance of directions where greater than 25 average interference could be caused to co-charmel users. For example, a high power beam could cause interference to one or many low bit rate users if the low bit rate users are located within the area illuminated by the high power beam. In some favorable situations, beam hopping can also be applied in order to achieve more effeclive interference whitening_ 30 In operation, the base station selects directions having minimal delay spreads. For example, the base station selects at least two beams of plural beams that may be formed by the multi-beam antenna array for transmission of at least hvo space-time coded signals in corresponding beams of the at least two beams. The at )east two beams include a reference beam and at least one remaining beam. 'The base station also determines from delay distribution profile 300 a time delay corresponding io each beam of the at least one 5 remaining beam for use in progamming the progammable delay line.
The base station encodes each signal of the at least two space-time coded signals with a signature code chat is mutually orthogonal to each ocher signature code encoded in the ai least two space-lime coded signals so as to form a reference space-time coded signal and ai least one remaining space-time coded signal (see 12 and 14 of F1G. 26). In l 0 the examp)e of FIG. 23, the reference space-lime coded signal maybe regarded as signal 12 and the at least one remaining space-time coded si,g;ral may be regarded as signal I5.
However, persons skilled in the art will appreciate in light of these teachings how to extend the present embodiment to mote than two space-time coded signals.
The base station delays each signal of the ai least one remaining space-time coded l5 signal 1o form at least one delayed space-lime coded signal (e.g., signal IS in FIG. 26).
?he base station then transmits the reference space-lime coded signal (e.g., signal 1?) and the at least one delayed space-lime coded signal (e.g., signal IS) in respective beams of the at Jeast two beams so that both the reference space-time coded signal and the at least one remaining space-time coded signal arrive at remote station 2 at the same lime.
20 The present embodiment does not rely on a feedback channel from the remote station to the base station. Instead, directions of transmission are selected by the base station solely from up link rneaswements of normal signaling signals. By averaging the up link channel response over a long time io mitigate fast fading, the power response of the down link channel response can be estimated. The indicated up link and down link ZS channels are reciprocal in the power sense.
Nov~~ever, in frequency division duplex (FDD) systems. a feedback measurement could provide improved results at the cost of additional complexity. In frequency dig~sion duplexes systems where up lint; and down link communications are carried out over different fre9uencies, it is not pos~~ble to exactly determine the down link channel 30 stale from up link information since the h~~o directions are based on different frequencies.

The just described embodiment describes an embodiment where the base station measures the up link channel response as a surrogate for the down link channel response. To obtain the complete down link channel impulse response, it is necessary to measure the down link channel directly, and send the down link channel information in S a feedback channel from the remote station that does the measuring to the base station that needs the measurements (e.g., delay distribution profile 300).
Rather than performing the calculation required for direction selection and delay in the base station, the remote station participates in or performs these functions. An agreed upon standard signal is sent from the base stations to all remote stations with an identifier or signature coded encoded in each beam, such as mutually orthogonal pilot or training sequences or spreading codes. The remote station would then measure the channel impulse response (e.g., delay distribution profile 300) and inform the base station of the preferred directions and delays for transmission.
Persons skilled in the art will appreciate in light of these teachings that the channel performance may be measured in a two step process. In the first step, the base station makes an estimate of the ap link channel's impulse response and uses this estimate as a surrogate for the down link channel's impulse response. Then, the base station applies the delays to the at least one remaining space-time coded signal that are indicated by the first estimate process.
In the second step, the down link channel is measured directly. An agreed upon standard signal is sent from the base station to all remote stations with an identifier or signature coded encoded in each beam, such as mutually orthogonal pilot or training sequences or spreading codes. The remote station would then measure the channel impulse response (e.g., delay distribution profile 300) and inform the base station over a feedback channel of the preferred directions and delays for transmission.
In FIG. 28, set up process 52800 measures the up link channel response and sets the measured delays to control the down link channel transmission. Process includes step 52802 to measure the channel response, step 52804 to select beams to use, step 52806 to determine time delays for the selected beams, and step 52808 to configure variable delay lines in the base station (see FIG. 26) to impose the determined delays.
The variable delay lines may be constructed from a sequence of fixed delay elements with multiple taps disposed between the elements.

The delay line is varied by selecting different taps as an output using a switch. In step 52804, the base station selects at least two beams of plural beams formed by a multi-beam antenna array associated with a base station (although only two beams are shown in FIGS. 23 and 26). In the beams are transmitted corresponding at least two space-time coded signals produced by a space-time encoder (although only two signals are shown in FIGS. 23 and 26). The at least two beams include a reference beam and at least one remaining beam. In step S2806, the base station determines a time delay corresponding to each beam of the at least one remaining beam. In step 52808, the base station sets into a variable delay line the time delay corresponding to each beam of the at least one remaining beam. Each variable delay line is coupled between the multi-beam antenna array and the space-time encoder (see FIG. 26).
In FIG. 29, time align process 52920 marks the space-time coded signal for each selected beam with a signature code orthogonal to all other beams in step 52922, delays selected beams according to determined delay spreads in step 52924 and transmits the delayed signals to the base station in step 52926. In step 52922, the base station encodes each signal of the at least two space-time coded signals with a signature code that is mutually orthogonal to each other signature code encoded in the at least two space-time coded signals so as to form a reference space-time coded signal and at least one remaining space-time coded signal. In step 52924, the base station delays each signal of the at least one remaining space-time coded signal in a respective variable delay line to form at least one delayed space-time coded signal. In step S2926, the base station transmits the reference space-time coded signal and the at least one delayed space-time coded signal in respective beams of the at least two beams.
In FIG. 30, a remote station using feedback process 52940 measures down link complex channel state information and feeds this information back to the base station.
Process 52940 includes step 52942 to receive at least two identifier signatures (e.g., different pilot signals) from an antenna system associated with a base station, step S2944 to determine complex channel state information based on the received signals, step 52946 to segment the complex channel state information into a plurality of channel state information segments, and step 52948 to send the plurality of channel state information segments in a sequence to the base staiion_ The sequence of segnents sends the most significant bits of the phase angle before the least significant bits of the phase angle. The sequence of segments sends the most significant bits of the amplitude before the least significant bits of the amplitude. The sequence of segments sends a bit of the phase angle before a corresponding bit of amplitude having the same level of bit significance. It is noted that for feedback of the channel impulse response measurements, each beam (or antenna) should be associated with a unique pilot signatwe that is orthogonal to all other pilot signatures.
It will be appreciated by persons skilled in the art in light of these teachings that IO various system components may be implemented in electrical circuitry, special application specific integated circuits (ASICs) or computers or processors that executed software programs or use data tables. For example, encoder 10, multipliers I2, 14 and amplifiers 102, 104 of FIG. 4, S, 11 or 12 may be implemented in circuitry or ASICs or in some cases, software controlled processors, depending on performance requirements.
Beam former 40 of FIG. 11 is typically implemented in circuitry or ASICs and modulators 101,103 and multiplexers 105, 107 are typically implemented in circuitry or ASICs but may be implemented in sofhvare controlled processors. Various base station components 212, 214, 216, 2l 8, 220 and 222 and various remote station components 232, 234, 238, 240 and 242 of FIG. 14 may be implemented in circuitry or ASICs but may be implemented in software controlled processors. Various base station components 16D, 18D, 102,104, 220 and 220P and various remote station components 232, 233, 234, 238, 240 and 242 of FIG_ 19 may be implemented in circuitry or ASICs but may be implemented in software controlled processors. It will be appreciated by persons skilled in the art that the various functions described herein may be implemented in circuitry, ASlCs or in software controlled processors as the performance requirement dictate.
Having described preferred embodiments of a novel closed loop feedback system for improved down link performance (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in Jight of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the invention disclosed which are within the scope and spirit of the invention as defined by the appended claims_ Having thus described the invention with the details and particularity required by fhe patent Iaws, what is claimed and desired protected by Letters Patent is set forth in the appended claims_

Claims (4)

What is claimed is:
1. A method comprising steps of:
transmitting at least two space-time coded signals in respective beams of a multi-beam antenna array associated with a first station, the beams transmitting a signature code embedded in each respective space-time coded signal, the signature codes being orthogonal so that a second station can separate and measure a channel impulse response corresponding to each space-time coded signal;
measuring the channel impulse response for each space-time coded signal at the second station, the space-time coded signals including a selected set of least attenuated signals and a remaining set of most attenuated signals; and sending an indicia of the selected set of least attenuated signals from the second station to the first station.
2. The method of claim 1, further including steps of:
selecting at least two beams for transmission from the first station based on the indicia received from the second station;
transmitting the at least two space-time coded signals in the selected at least two beams;
determining complex channel state information based on the received space-time coded signals; and sending the complex channel state information to the first station.
3. A system comprising a base station and a remote station wherein:
the base station includes a multi-beam antenna array and a transmitter to transmit at least two space-time coded signals in respective beams of the multi-beam antenna array, the beams transmitting a signature code embedded in each respective space-time coded signal, the signature codes being substantially orthogonal so that the remote station can separate and measure a channel impulse response corresponding to each space-time coded signal;
the remote station includes a receiver and a processor to measure the channel impulse response for each space-time coded signal, the space-time coded signals including a selected set of least attenuated signals and a remaining set of most attenuated signals; and the remote station further includes a transmitter to send an indicia of the selected set of least attenuated signals from the remote station to the base station.
4. The system of claim 3, wherein:
the base station includes a processor to select at least two beams for transmission from the base station based on the indicia received from the remote station;
the base station further includes circuitry to transmit the at least two space-time coded signals in the selected at least two beams;
the processor of the remote station includes circuitry to determine complex channel state information based on the received space-time coded signals; and the transmitter of the remote station includes circuitry to send the complex channel state information to the base station.
CA002526118A 2000-06-02 2001-06-01 Closed loop feedback system for improved down link performance Abandoned CA2526118A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/586,561 US7139324B1 (en) 2000-06-02 2000-06-02 Closed loop feedback system for improved down link performance
US09/586,561 2000-06-02
CA002410982A CA2410982C (en) 2000-06-02 2001-06-01 Closed loop feedback system for improved down link performance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002410982A Division CA2410982C (en) 2000-06-02 2001-06-01 Closed loop feedback system for improved down link performance

Publications (1)

Publication Number Publication Date
CA2526118A1 true CA2526118A1 (en) 2002-01-03

Family

ID=35589075

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002526118A Abandoned CA2526118A1 (en) 2000-06-02 2001-06-01 Closed loop feedback system for improved down link performance
CA002525146A Abandoned CA2525146A1 (en) 2000-06-02 2001-06-01 Closed loop feedback system for improved down link performance

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002525146A Abandoned CA2525146A1 (en) 2000-06-02 2001-06-01 Closed loop feedback system for improved down link performance

Country Status (1)

Country Link
CA (2) CA2526118A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507305B (en) * 2021-07-31 2023-06-23 西南电子技术研究所(中国电子科技集团公司第十研究所) Digital array beam forming device

Also Published As

Publication number Publication date
CA2525146A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
EP1489756B1 (en) Closed loop feedback system for improved down-link performance
US6788661B1 (en) Adaptive beam-time coding method and apparatus
EP1229669B1 (en) Communications systems
JP5432879B2 (en) Method and apparatus for a multi-beam antenna system
JP4063674B2 (en) Wireless transmission method and mobile wireless transmission system for wireless transmission of digital data substreams in parallel in indoor area
US7072409B2 (en) Space multiplex radio communication method and radio communication apparatus
PT1628419E (en) Method and apparatus for measuring channel state information
KR20140084821A (en) Uplink power control method and apparatus in a beamforming based wireless communication system
KR20060121964A (en) Adaptive feedback for mimo communication systems
KR20020015668A (en) Method for enhancing mobile cdma communications using space-time transmit diversity
KR20050120441A (en) Transmission diversity apparatus and method using multiple antenna in a mobile communication system
CN1868147B (en) System and method for channel-adaptive antenna selection
CA2526118A1 (en) Closed loop feedback system for improved down link performance

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead