CA2377629A1 - Biphenyl butyric acid derivative as a matrix metalloproteinase inhibitor - Google Patents

Biphenyl butyric acid derivative as a matrix metalloproteinase inhibitor Download PDF

Info

Publication number
CA2377629A1
CA2377629A1 CA002377629A CA2377629A CA2377629A1 CA 2377629 A1 CA2377629 A1 CA 2377629A1 CA 002377629 A CA002377629 A CA 002377629A CA 2377629 A CA2377629 A CA 2377629A CA 2377629 A1 CA2377629 A1 CA 2377629A1
Authority
CA
Canada
Prior art keywords
compound
oxo
hydrogen
biphenyl
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002377629A
Other languages
French (fr)
Inventor
Hae-Young Bae
Young-Jun Park
Eu-Gene Oh
Ji-Uk Yoo
Choon-Ho Ryu
Hye-Kyung Min
Myeong-Yun Chae
Jeoung-Wook Lee
Sang-Hyun Paek
Kyung-Chul Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2000-0021835A external-priority patent/KR100405914B1/en
Priority claimed from KR10-2000-0021834A external-priority patent/KR100405913B1/en
Application filed by Individual filed Critical Individual
Publication of CA2377629A1 publication Critical patent/CA2377629A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/70Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/72Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms
    • C07C235/76Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • C07C235/78Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton the carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • C07C255/60Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton at least one of the singly-bound nitrogen atoms being acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/26Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/192Radicals derived from carboxylic acids from aromatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/60Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides a novel biphenyl butyric acid derivative, isomer and pharmaceutically acceptable salts thereof which are useful as an inhibitor of matrix metalloproteinase (MMP) and a process for preparing the same. Since the biphenyl butyric acid derivative of the invention selectivel y inhibits the activity of MMP in vitro, it can be practically applied to the treatment and prevention of diseases caused by overexpression of MMP.</SDOAB >

Description

BIPHENYL BUTYRTC ACID DERIVATIVE AS A MATRIX
METALLOPROTEINASE INHIBITOR
BACKGROUND OF THE TNVENTION
Field of the Invention The present invention relates to biphenyl butyric to acid derivatives, more specifically, to novel biphenyl butyric acid derivatives represented as the following general formula (I), useful as matrix metalloproteinase inhibitor and pharmaceutically acceptable salts thereof and a process for preparing the compounds.
O, OH
R 1 n~ ~ (~J
~3 DPSCr~ption of t~h Prior Art Matrix metalloproteinase("MMP") is a Ca2+-dependent proteinase containing zinc ion(Zn2+) at its active site. To the present, at least 18 matrix metalloproteinases including stromelycin, collagenase and a family of gelatinise have been identified in the art. MMP degrades various extracellular matrix components of collagen, laminin, proteoglycan, fibronectin, elastin and gelatin under biological conditions, which, in turn, leads to growth of articulation tissue, bone tissue and connective tissue, and remodeling of the tissues. MMP is secreted as an inactive form of proenzyme, which is subsequently 3o activated in extracellular side, together with a naturally occuring inhibitor, TIMP(tissue inhibitor of metalloproteinase).
Meanwhile, MMP inhibitor is useful to prevention and treatment of all sorts of diseases caused by overexpression or overactivation of MMP. Such diseases are, for example, rheumatoid, arthrosteitis, unusual bone resorption, osteoporosis, periodontitis, interstitial nephritis, arteriosclerosis, pulmonary emphysema, cirrhosis, cornea injury, metastasis, invasion or growth of tumor cell, autoimmune disease, disease caused by Vascular emigration or infiltration of leukocytes, arterialization(see: Beeley et al., Curr. Opin. Ther. Patents, 4(1):7-16, 1994). For 1o instance, it was reported that synthetic MMP inhibitor has an anti-cancer activity in vivo along with inhibition of basement membrane remodeling in the mouse model bearing ovarian cancer(see: Cancer Res., 53:2087, 1993).
Particularly, considering the fact that MMP-2 and MMP-9 among the above MMP enzymes play an essential role in angiogenesis required for the growth of cancer cells (see:
Biochim. Biophys. Acta, 695, 1983), and that MMP-1 and MMP-3 among MMP enzymes play an important role in the progress of arthritis as observed in much higher concentration than 2o normal in the synovium and cartilage of a patient of rheumatoid arthritis(see: Arthritis Rheum., 35:35-42, 1992), the selectivity to MMP-1/MMP-2 is considered to play a crucial role in reducing side effects such as arthralgia.
Therefore, researches have been made while focusing on the development of selective inhibitors, and many MMP
inhibitors have been designed and synthesized in many aspects(,~ee J. Enzyme Inhibitor, 2:1-22, 1987; Current Medicinal Chemistry, 2:743-762, 1995; Progress in Medicinal Chemistry, 29:271-334, 1992; Exp. Opin. Ther. Patents, 5:1287-1296, 1995; Drug Discovery Today, 1:16-26, 1996;
Chem. Rev., 99:2735-2776, 1999; Drugs of the Future 2000, 25(6), 551-557; Exp. Opin. Invest. Drugs, 2000, 2167-2177).
Some compounds possessing inhibitory activity against MMP are known. In general, they have a zinc binding group("ZBG"), which is coordinated to the zinc ion of MMP
enzymes at the active site of them. Such ZBGs include hydroxamic acid, carboxylic acid, phosphoric acid, phosphinic acid, thiol and so forth(see: WO 92/09564; WO
95/04033; WO 00/04030; WO 00/43404; WO 95/13289; WO
96/11209; WO 95/09834; WO 95/09620; WO 00/40577; WO
00/40600; WO 98/03166; Chem. Rev. 99:2735-2776, 1999).
Especially, several kinds of succinic acid derivatives based on substrate backbone have been designed and synthesized as a peptide-mimic inhibitor. (see WO
99/25693; WO 90/05719; WO 94/02446; WO 95/09841; WO
95/19956; WO 95/19957; WO 95/19961; WO 96/06074; WO
96/16931; WO 98/43959; WO 98124759; WO 98/30551; WO
98/30541; WO 97/32846; WO 99/01428; EP 897908; WO 98/38179;
JP 95002797; WO 99/18074; WO 99/19296; EP 641323). The peptide-mimic inhibitors are known to contain a hydroxamic acid as a ZBG and display a broad spectrum for MMP enzymes.
However, some of the above peptide-mimic inhibitors induce the side effect of arthralgia in clinical trial(see:
Current Pharmaceutical Design, 5:787-819, 1999; Current Opinion in Drug Discovery & Development, 3:353-361, 2000).
They are also often poorly absorbed, exhibiting low oral bioavailability and furthermore, possess lower selectivity to MMP-1/MMP-2(see:Drugs of the Future, 21(12):1215-1220, 1996) .
In 1994, non-peptide inhibitors were developed to solve the said problems which are substantially distinguished in terms of chemical structure from the above peptide-mimic inhibitors having simple sulfonyl amino acid derivative represented as a chemical formula below(s_ee: USP
5,506,242; J. Med. Chem., 40:2525-2532, 1997).
~~~"~~.~~~~
Under a consideration that the small molecule of sulfonamide-derived MMP inhibitors have activities in vitro against MMP enzymes, and have advantages over the said peptide-mimic inhibitors, a variety of sulfonamide inhibitors have been synthesized and reported in the literature(see: WO 98/50348; WO 97/20824; WO 00/09485; WO
99/58531; WO 99/51572; WO 99/52889; WO 99/52910; WO
99/37625; WO 98/32748; WO 99/18076; WO 99/06410; WO
99/07675; WO 98/27069; WO 97/22587; EP 979816; EP895988; EP
878467; EP 1041072). To improve in vitro enzymatic activity, selectivity, and pharmacokinetic profiles, new sulfonamide derivatives have been designed and synthesized, by changing P1' of the above sulfonamide inhibitor which binds to S1' sub-site of the enzymes.
While the above sulfonamide inhibitors have relatively high inhibitory activity against MMP, they do not have a higher selectivity to MMP-1/MMP-2 as compared with previous peptide-mimic inhibitors. Some of them have also side effect of arthralgia in clinical trials(see:
2o Current Pharmaceutical Design, 5:787-819, 1999; Current Opinion in Drug Discovery & Development, 3:353-361, 2000;
Exp. Opin. Invest. Drugs, 9:2159-2165, 2000; SCRIP, 2467:19, 1999; Drugs of the Future, 24(1):16-21, 1999). Although the sulfonamide inhibitors containing a hydroxamic acid as a ZBG typically showed a very strong in vitro inhibitory activity as compared with those containing a carboxylic acid as a ZBG, they also have revealed a limitation in oral administration due to their lower bioavailability and lower metabolic stability in vivo(see: J. Med. Chem., 41:640-649, 1988; Investigational New Drugs 16:303-313, 1999; Exp. Opin.
Ther. Patents, 10:111-115, 2000: WO 00/63194; WO 00/27808;
WO 99/18079; USP 6,117,869).
Other non-peptide inhibitors, 3-oxo-3-biphenylbutyric acid derivatives, were found to solve the said problems and increase the selectivity which contain a butyric acid group represented as a chemical formula below(see WO 96/15096).
~H
~I ~''~--~
While the above inhibitors have a very low in vitro inhibitory activity against MMP as compared with peptide-s mimic succinic acid derivatives or sulfonyl amino acid derivatives, they have a far higher selectivity to MMP-1/MMP-2 and also little side effect of arthralgia in clinical trials(see: Drugs of the Future, 24(1):16-21, 1999). To improve the problem of said inhibitors, a 1o variety of biphenyl butyric acid derivatives as MMP
inhibitors have been designed and reported(see: USP
5,789,434; USP 5,854,277; USP 5,859,047; USP 5,861,427; USP
5,861,428; USP 5,874,473; USP 5,886,022; USP 5,886,024; USP
5, 886, 043) .
Another butyric acid derivatives represented as the following formula have been reported, however, they also have still the drawback of a low inhibitory activity against MMP(see: WO 98/09940; WO 98/06711).
~H
~H
I ~ ~'-~

Under the circumstance, there are strong reasons for developing alternative compounds whose inhibitory action on MMP and selectivity to MMP-1/MMP-2 are increased to reduce side effects.
SUMMARY OF THE INVENTION
The present inventors have made an effort to develop novel compounds whose inhibitory action on MMP and selectivity to MMP-1/MMP-2 are increased to reduce side effects, and finally found that novel synthetic inhibitors of biphenyl butyric acid derivatives selectively inhibit MMP activity in vitro.
A primary object of the present invention is, therefore, to provide biphenyl butyric acid derivatives inhibiting MMP activity.
to The other object of the invention is to provide a process for preparing the said compounds.
DETAILED DESCRIPTION OF THE INENTION
The present invention provides biphenyl butyric acid derivatives which inhibit the activity of MMP, represented as the following general formula(I), the isomers and the pharmaceutically acceptable salts thereof, and a process 2o for preparing the said compounds.
p ~H
n~ ~--~~J
O ~-Ra ~3 wherein, R1 is hydrogen, alkyl, cycloalkyl, halogen, vitro, cyano, -OCF3, -OCHZF, -I~-R.4 ~~4 -ORS, -SR4, -S (0) RQ or -S (O) 2 where RQ and RQa, which may be the same or different, are alkyl, aryl, arylalkyl, heteroaryl or cycloalkyl;
3o R2 and R3, which may be the same or different, are hydrogen, alkyl, aryl, arylalkyl, heteroaryl or cycloalkyl; and, n is 1 or 2.
In the above formula, RZ and R3 are taken together with carbon, nitrogen, oxygen or sulfur to form CS-6 ring, which includes the followings:
t~ t~ I~ I~ J-R ~
wherein, Rg is hydrogen, alkyl, aryl, arylalkyl, 1o heteroaryl or cycloalkyl; and, X is 0 or S.
Also, in case that R3 is hydrogen, R~ may further include a substituent represented as the following 25 structural formula:
R~
wherein, R5 is hydrogen, alkyl, aryl, arylalkyl, heteroaryl, hydroxyalkyl, alkoxyalkyl, alkylthioalkyl, 2o arylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, arylsulfinylalkyl, arylsulfonylalkyl or cycloalkyl; and, R6 and R7, which may be the same or different, are hydrogen, alkyl, aryl, arylalkyl, heteroaryl or cycloalkyl.
o In case that R3 is not hydrogen, R3 and R5 of the above formula(I) are taken together with carbon, nitrogen, oxygen or sulfur to form C5-6 ring in which 3o moiety includes the followings:
~I~ '10 ~1~
~ ~~
wherein, R6 and R, are the same as above;
R9 is hydrogen, hydroxy, alkoxy, aryloxy, thiol or alkylthio;
Rlo is oxo, hydroxyamine or hydrazone;
R11 and Rl~ are hydrogen or C1_6 lower alkyl; and, Y is CHz, 0 or S.
Also, R6 and R~ are taken together with carbon, nitrogen, oxygen or sulfur to form CS_6 ring, which includes the followings:
hJ f~ ~I f~ !-F~,~
wherein, Re and X are the same as above.
Otherwise mentioned, all kinds of isomers of the biphenyl butyric acid derivatives are fallen within the 2o scope of the invention.
The pharmaceutically acceptable salts of the invention include acid-added salts and hydrates. In general formula(I), the compound of the invention can be converted to the salts corresponding to them, preferably alkali metal salts(sodium, potassium, etc.), alkaline earth metal salts(calcium, magnesium, etc.), ammonium salts, non-toxic salts of pharmaceutical organic amine and water-soluble salts. The compound of the general formula(I) can be converted to inorganic acid salts(hydrochloride, hydrogen bromide, hydrogen iodide, sulfate, phosphate, nitrate, etc.) and organic acid salts(acetate, lactate, tartarate, oxalate, fumarate, glucuronate, etc.), preferably non-toxic salts and water-soluble salts. The compound of the general formula(I) and its salts can be also converted to the hydrates corresponding to them by the conventionally known method in the art.
Two processes for preparing the compounds of the general formula(I) are illustrated by the following steps.
First, the above compounds may be prepared by the following Process 1.
Proces3s l:
~ 0~ OEt Br ~ Et feet ---~. I ~,.i -~t-Bu0 OEt OBu-t ~~
R ~ (a7 (n~ R 1 ~I'~
~ O OEt ~ 0 OEt ~Et d epratectia n O Et H~~s ~ I ~ O
r I ~H I R ~'R
R~ f~ R~ (~I) 3 hydrolysis decarba~tvlati~ a R
L~J
2o wherein, R1, R~ and R3 are the same as above .

t~~l: Synthesis of t-butylester compound(IV) A compound(II) is reacted with a compound(III) to 5 give t-butylester compound(IV): the compound(II) may be commercially available or prepared by the conventionally known methods and the compound(III) may be prepared by partial modification of the conventionally known methods(see: B.S. Furniss, et al., VOGEL's Textbook of so Practical Organic Chemistry, 5th ed., pp942-943, 1988; WO
96/15096). ' Step 2: Synthesis of a compound(V) The t-butylester compound(IV) is deprotected to give a butylester group-free compound(V): the deprotection is preferably accomplished by using TFA or anhydrous HCl.
_~p 3: Synthesis of a compound(VI) The compound(V) is condensed with an amine compound to give a compound(VI) containing diethylester group: the amine compound comprises R~ and R3 defined in the above and condensation with the amine compound can be carried out by a variety of methods such as acid chloride method, active ester method, mixed anhydride method, etc.
Ste~4: Synthesis of a compound(I) Diethylester groups of the compound(VI) are hydrolyzed to carboxylic groups and then the compound is decarboxylated to give a compound(I).
The compounds of the general formula(I) may also be prepared by the following Process 2.
Process 2:

gr Et +t-goo oEt (B~
a ~,.~Et ~ o h~rdralysis ~~~~,,.f",. dePratectian decarbouylatian ~. ~ O~W-t OBu~t ~ 1 Cl'q5 ~ 1 f ~~
HN
~H ~3 '~~

~1'R
l~J
0~
h~dral~sis ~ '1 ~1 wherein, R1, RZ and R3 are the same as above .
S~_ep l: Synthesis of t-butylester compound(IV) A compound(II) is reacted with a compound(III) to give t-butylester compound(IV): the compound(II) may be l0 commercially available or prepared by the conventionally known methods and the compound(III) may be prepared by partial modification of the conventionally known methods(see: B.S. Furniss, et al., VOGEL's Textbook of Practical Organic Chemistry, 5t'' ed., pp942-943, 1988; WO
i5 96/15096) .
Step 2: Synthesis of a compound(VII) One of ethylester groups of t-butylester compound(IV) is hydrolyzed to a carboxylic group and then decarboxylating the compound to give a compound(VII): the hydrolysis is carried out in the presence of a base and decarboxylation in the presence of an organic solvent; and, the base includes, but not limited to, preferably 1 equi.
of KOH/EtOH and the organic solvent includes preferably 1,4-dioxane.
Ste~~ 3 Synthesis of a compound(VIII) The compound(VII) is deprotected to give a butylester group-free compound(VIII): the deprotection is preferably carried out by using TFA or anhydrous HCl.
Step 4: Synthesis of a compound(TX) The compound(VIII) is condensed with an amine 2o compound to give a compound(IX) containing ethylester group: the amine compound comprises RZ and R3 defined in the above and condensation with the amine compound can be carried. out by a variety of methods such as acid chloride method, active ester method, mixed anhydride method, etc., most preferably, active ester method.
Step 5: Synthesis of a compound(I) Ethylester group of the compound(IX) is hydrolyzed to a carboxylic group to prepare a compound ( I ) ( see : V~10 96/15096).
The present invention is further illustrated in the following examples, which should not be taken to limit the scope of the invention.
Exampl~l_: Preparation of 5-(Biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester(IV, R1=H ) To 100m1 flask were added NaH(95o, 505mg, 20.0mmo1) and high-purity THF(l5mL), and cooled to a temperature of -10'C. Then, diethyl t-butoxycarbonylmethylmalonate(III, 4.9g, 18.17mmo1) dissolved in THF(lOmL) was added slowly, and stirred for 30min at room temperature. And then, 4-phenyl-a -bromoacetophenone(II, R1=H, 5g, 18.17mmol) 1o dissolved in THF(l5mL) was added slowly, and stirred for 1hr and 30min at room temperature, and extracted with 1N
HCl(30mL) and ethylacetate(30mL). The organic phase was washed with water(lOmL), and added anhydrous MgS04, stirred for 5 min, filtered and distilled under reduced pressure to give the titled compound(8.65g, 950).
1H NMR(300MHz, CDC13) : S 1.24 (t, 6H) , 1.38 (s, 9H) , 3. 39 (s, 2H) , 3. 97 {s, 2H) , 4.24 (q, 4H) , 7 . 45 (m, 3H) , 7. 61 (d, 2H) , 7 . 69 (d, 2H) , 8 . 04 (d, 2H) 2o Example 2: Preparation of 5-(4'-methoxybiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester (IV, R1=OMe) The titled compound was prepared in a similar manner as in Example 1, except for employing 4-(4'-methoxyphenyl)-a -bromoacetophenone(II, R1=OMe).
1H NMR(300MHz, CDC13) : 8 1.24 (t, 6H) , 1.38 (s, 9H) , 3.21 (s, 2H) , 3. 86 (s, 3H) , 3. 94 (s, 2H) , 4.24 (q, 4H) , 7 . 0 (d, 2H) , 7 . 58 (d, 2H) , 7 . 65 (d, 2H) , 8 . 02 (d, 2H) Example 3: Preparation of 5-(4'-bromobiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester ( IV, R1=Br ) The titled compound was prepared in a similar manner as in Example 1, except for employing 4-(4'-bromophenyl)-a -bromoacetophenone (II, R1=Br) 1H NMR(300MHz, CDC13) : S 1.24 (t, 6H) , 1.39 (s, 9H) , 3.21(s, 2H), 3.95(s, 2H), 4.24(q, 4H), 7.48(d, 2H), 7.60(d, 2H), 7.65(d, 2H), 8.04(d, 2H) Example 4: Preparation of 5-(4'-chlorobiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester (IV, R1=Cl) The titled compound was prepared in a similar manner as in Example 1, except for employing 4- ( 4' -chlorophenyl ) -a -bromoacetophenone(II, Rl=Cl).
1H NMR(300MHz, CDC13) : 8 1.25 (t, 6H) , 1.39 (s, 9H) , 3.21(s, 2H), 3.95(s, 2H), 4.24(q, 4H), 7.44(d, 2H), 7.56(d, 2H) , 7 . 65 (d, 2H) , 8. 06 (d, 2H) Example 5: Preparation of 5-(Biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=H) To 5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonyl-valeric acid t-butyl ester(IV, R1=H, 1.5g, 3.2mmo1) dispersed in methylene chloride(MC)(20mL) was added TFA(2mL) and stirred for 24hr at room temperature. After MC was removed under reduced pressure, ethylacetate(20mL) and 1N NaOH were added slowly, and the separated organic layer was extracted with water. And then, the aqueous solution was collected, treated with 1N HCl(30mL) and extracted with ethylacetate. The separated organic layer was dried over anhydrous MgS04,filtered and distilled under reduced pressure to give the titled compound(1.2g, 910).
1H NMR (300MHz, CDC13) : s 1. 24 (t, 6H) , 3. 39 (s, 2H) , 3.97(s, 2H), 4.24(q, 4H), 7.45(m, 3H), 7.61(d, 2H), 7.69(d, 2H) , 8. 04 (d, 2H) Example 6: Preparation of 5-(4'-methoxybiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=OMe) 5 The titled compound was prepared in a similar manner as in Example 5, except for employing 5-(4'-methoxybiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester(IV, R1=OMe).
10 1H NMR (300MHz, CDC13) : s 1. 24 (t, 6H) , 3.21 (s, 2H) , 3. 86 (s, 3H) , 3. 94 (s, 2H) , 4.24 (q, 4H) , 7. 0 (d, 2H) , 7. 58 (d, 2H), 7.65(d, 2H), 8.02(d, 2H) Example 7: Preparation of 5-(4'-bromobiphenyl-4-yl)-5-oxo-15 3, 3-diethoxycarbonylvaleric acid (V, R1=Br) The titled compound was prepared in a similar manner as in Example 5, except for employing 5-(4'-bromobiphenyl 4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester (IV, R1=Br) .
1H NMR (300MHz, CDC13) : S 1. 24 (t, 6H) , 3.21 (s, 2H) , 3.95(s, 2H), 4.24(q, 4H), 7.48(d, 2H), 7.60(d, 2H), 7.65(d, 2H) , 8. 04 (d, 2H) Example 8: Preparation of N-phenyl-5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1=H) 5-(Biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric 3o acid(V, Rl=H, 0.5g, l.2mmol), EDC(0.23g, l.2mmol) and HOBt(0.16g, l,2mmol) were dissolved in MC(5mL) and cooled to a temperature of 0'C. And, TEA(170mL, l.2mmo1) was added and stirred for l0min, followed by addition of aniline(122mL, l.3mmol) and stirring for 2hr and 30min at room temperature. And then, 1N HCl was added and extracted by employing MC, and dried over anhydrous MgS04, filtered, and distilled under reduced pressure, and subjected to a column chromatography(Hx/EA=411, v/v) to give the titled compound ( 0 . 365g, 62 0 ) .
1H NMR (300MHz, CDC13) : s 1. 24 (t, 6H) , 3. 32 (s, 2H) , 4. 05 (s, 2H) , 4.24 (q, 4H) , 7. 07 (t, 1H) , 7.26 (m, 1H) , 7.45 (m, 5H), 7.65(m, 5H), 8.04(d, 2H) Example 9: Preparation of N-cyclopropyl-5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1=H) The titled compound was prepared in a similar manner as in Example 8, except for employing 5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=H) and cyclopropylamine.
1H NMR (300MHz, CDC13) : s 0. 41 (m, 2H) , 0. 69 (m, 2H) , 2.62(m, 1H), 3.08(x, 2H), 4.00(s, 2H),, 4.24(q, 4H), 5.9(s, 1H), 7.45(m, 3H), 7.61(d, 2H), 7.69(d, 2H), 8.04(d, 2H) 2o Example 10: Preparation of N-(a -methylbenzyl)-5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, Ri=H ) ( VI ) The titled compound was prepared in a similar manner as in Example 8, except for employing 5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=H) and a -methylbenzylamine.
1H NMR(300MHz, CDC13) : ~ 1.24 (t, 6H) , 1.41 (d, 3H) , 3. 17 (d, 2H) , 3. 97 (d, 2H) , 4 . 21 (q, 4H) , 5. 0 (m, 1H) , 5. 95 (d, 1H) , 7 .19 (m, 5H) , 7 . 46 (m, 3H) , 7. 61 (d, 2H) , 7 . 67 (d, 2H) , 8.04(d, 2H) Example 11: Preparation of N-phenyl-5-(4'-methoxybiphenyl 4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1=OMe ) The titled compound was prepared in a similar manner as in Example 8, except for employing 5-(4'-methoxybiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=OMe) and aniline.
1H NMR (300MHz, CDC13) : s 1.24 (t, 6H) , 3. 34 (s, 2H) , 3.86(s, 3H), 4.04(s, 2H), 4.24(q, 4H), 7.0(d, 2H), 7.05(t, 1H), 7.26(t, 2H), 7.44(d, 2H), 7.54(d, 2H), 7.62(d, 2H), 8.02 (d, 2H) Example 12: Preparation of N-[1,5-dioxo-5-(4'-methoxybiphenyl-4-yl)-3,3-diethoxycarbonylpentane-1-yl]-4-methylpiperazine (VI, R1=OMe) (VI) The titled compound was prepared in a similar manner as in Example 8, except for employing 5-(4'-methoxybiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=OMe) and N-methylpiperazine.
1H NMR(300MHz, CDC13) : s 1.24 (t, 6H) , 2.30 (s, 3H) , 2. 34 (br, 4H) , 3. 35 (s, 2H) , 3. 55 (br, 4H) , 3. 86 (s, 3H) , 4. 10 (s, 2H) , 4.24 (q, 4H) , 7. 0 (d, 2H) , 7. 58 (d, 2H) , 7. 65 (d, 2H) , 8 . 02 (d, 2H) Example 13: Preparation of N-[1,5-dioxo-5-(4'-bromobiphenyl-4-yl)-3,3-diethoxycarbonylpentane-1-yl]piperidine(VI, R1=Br ) The titled compound was prepared in a similar manner as in Example 8, except for employing 5-(4'-bromobiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=Br) and piperidine.
1H NMR (300MHz, CDC13) : s 1. 24 (t, 6H) , 2. 85 (Br, 4H) , 3. 37 (s, 2H) , 3. 64 (br, 4H) , 4 . 00 (s, 2H) , 4 . 26 (q, 4H) , 7. 48 (d, 2H) , 7. 59 (d, 2H) , 7. 66 (d, 2H) , 8. 04 (d, 2H) Example 14: Preparation of N-[1,5-dioxo-5-(4'-bromobiphenyl-4-yl)-3,3-diethoxycarbonylpentane-1-yl]-4-benzoylpiperazine (VI, R1=Br) The titled compound was prepared in a similar manner as in Example 8, except for employing N-L0 benzoylpiperazine(s~e ,: Kondo, K. et al, J. Chem. Soc, Perkin Trans 1, 1998, 2973-2974) and 5-(4'-bromobiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=Br).
1H NMR(300MHz, CDC13) : S 1.24 (t, 6H) , 3.18 (s, 2H) , 3. 54 (br, 4H) , 3. 75 (br, 4H) , 4. 00 (s, 2H) , 4.24 (q, 4H) , 7.40(m, 4H), 7.42(d, 2H), 7.62(m, 4H), 7.86(d, 1H), 8.02(d, 2H) Example 15: Preparation of 1,5-dioxo-1-(1-phenylcarbamoyl-1-ethylamino)-5-(4'-bromobiphenyl-4-yl)-3,3-diethoxycarbonylpentane(VI, R1=Br) 5-(4'-bromobiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid(V, R1=Br, 140mg, 0.285mmol), EDC(60mg, 0.313mmol) and HOBt(42.4mg, 0.313mmol) were dissolved in MC(5mL) and cooled to a temperature of 0'C.
And, TEA(44.3mL, 0.313mmol) was added and stirred for l0min, followed by addition of L-Ala-CONH-Ph(56mg, 0.342mmol) and stirring for l2hrs at room temperature. And then, 1N HC1 3o was added and extracted with MC, and dried over anhydrous MgS04, filtered, and distilled under reduced pressure, and subjected to a column chromatography(CHC13/MeOH=19/1, v/v) to give the titled compound(120mg, 69%).
1H NMR (300MHz, CDC13) : S 1. 24 (t, 6H) , 1. 43 (d, 3H) , 3. 06 (d, 1H) , 3. 17 (d, 1H) , 3. 94 (s, 2H) , 4.23 (q, 4H) , 4. 60 (m, 1H), 6.15(d, 1H), 7.07(t, 1H), 7.27(m, 1H), 7.45(d, 2H), 7.58(m, 6H), 7.97(d, 2H), 8.60(s, 1H) example 16: Preparation of N-phenyl-5-(biphenyl-4-yl)-5-oxo-3-carboxylvaleramide(I, R1=H) To N-phenyl-5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1=H,0.36g, 0.74mmol) dissolved in ethanol (lOmL) was added 1N NaOH(1.55mL, 1.55mmo1) and stirred for 2hr at room temperature. Ethanol to was removed under reduced pressure, added water and washed with ethylacetate, and then, acidified by adding 1N HCl, extracted with ethylacetate, and dried over anhydrous MgS04, filtered and distilled under reduced pressure. The resultant was dissolved in 1,4-dioxane(lOmL), refluxed for 3hr and solvent was evaporated under reduced pressure. The residue was recrystallized with MC/MeOH(19/1, v/v) and hexane to give the titled compound(0.17g, 600).
zH NMR (300MHz, CDC13) : 6 2. 76 (dd, 1H) , 2. 90 (dd, 1H) , 3. 42 (dd, 1H) , 3. 49 (m, 1H) , 3. 58 (dd, 1H) , 7. 10 (t, 1H) , 7.26(m, 1H), 7.45(m, 5H), 7.65(m, 5H), 8.07(d, 2H) Example 17: Preparation of N-cyclopropyl-5-(biphenyl-4-yI) 5-oxo-3-carboxylvaleramide(I, R1=H) The titled compound was prepared in a similar manner as in Example 16, except for employing N-cyclopropyl-5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1=H ) .
1H NMR(300MHz, CDC13) : S 0.47 (m, 2H) , 0.73 (m, 2H) , 2 . 48 (dd, 1H) , 2 . 68 (m, 2H) , 3. 39 (m, 2H) , 3. 54 (dd, 1H) , 7.40(m, 3H), 7.62(d, 2H), 7.69(d, 2H), 8.02(d, 2H) example 18: Preparation of N-(a -methylbenzyl)-5-(biphenyl-4-yl)-5-oxo-3-carboxylvaleramide(I, R1=H) The titled compound was prepared in a similar manner as in Example 16, except for employing N-(a -methylbenzyl)-5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1-H ) .

1H NMR(300MHz, CDC13) : s 1.44 (d, 3H) , 2.48 (dd, 1H) , 2.68(m, 2H), 3.39(m, 2H), 3.54(dd, 1H), 4.98(m, 1H), 7.40(m, 3H), 7.61(d, 2H), 7.69(d, 2H), 8.02(d, 2H) 1o Exanl~le 19: Preparation of N-phenyl-5-(4'-methoxybiphenyl-4-yl ) -5-oxo-3-carboxylvaleramide ( I, R1=OMe ) The titled compound was prepared in a similar manner as i.n Example 16, except for employing N-phenyl-5 15 (biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1=OMe ) .
1H NMR (300MHz, CDC13) : 8 2. 70 (dd, 1H) , 2. 91 (dd, 1H) , 3.40(dd, 1H), 3.49(m, 1H), 3.55(dd, 1H), 3.84(s, 3H), 20 6.98(d, 2H), 7.06(t, 1H), 7.30(m, 2H), 7.50(m, 4H), 7.62(d, 2H), 8.01(d, 2H) Example 20: Preparation of N-[1,5-dioxo-5-(4'-methoxybiphenyl-4-yl)-3-carboxylpentane-1-yl]-4-methylpiperazine(I, R1=OMe)(VI) The titled compound was prepared in a similar manner as in Example 16, except for employing N-[1,5-dioxo-5-(4'-methoxybiphenyl-4-yl)-3,3-diethoxycarbonylpentane-1-yl]-4-3o methylpiperazine (VI, R1=OMe) .
1H NMR(300MHz, CDC13) : S 1.20 (s,' 3H) , 2.45 (s, 1H) , 2.65(m, 4H), 2.82(dd, 1H), 3.28(dd, 1H), 3.39(br, 4H), 3. 65 (dd, 1H) , 3. 84 (s, 3H) , 4 . 23 (m, 1H) , 6. 98 (d, 2H) , 7. 54 (d, 2H) , 7 . 62 (d, 2H) , 8 . 00 (d, 2H) Example 2 Preparation of N-phenyl-5-(4'-bromobiphenyl-4-y1 ) -5-oxo-3-carboxylvaleramide ( I, R1=OMe ) ( I ) The titled compound was prepared in a similar manner as in Example 16, except for employing N-phenyl-5-(4'-bromobiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleramide(VI, R1=Br ) .
1H NMR (300MHz, CDC13+DMSO) : s 2. 73 (dd, 1H) , 2. 89 (dd, 1H), 3.33(dd, 2H), 3.55(m, 1H), 7.05(t, 1H), 7.28(t, 2H), 7 . 52 (m, 6H) , 7. 65 (d, 2H) , 8. 04 (d, 2H) Example 22: Preparation of N-[1,5-dioxo-5-(4'-bromobiphenyl-4-yl)-3-carboxylpentane-1-yl]
piperidine (I, R1=Br) The titled compound was prepared in a similar manner as in Example 16, except for employing N-[1,5-dioxo-5-(4'-bromobiphenyl-4-yl)-3,3-diethoxycarbonylpentane-1-yl]
piperidine (VI, R1=Br) .
1H NMR(300MHz, CDC13) : S 2.85 (Br, 4H) , 3.37 (m, 2H) , 3.64(br, 4H), 4.00(m, 2H), 4.13(m, 1H), 7.48(d, 2H), 7.59(d, 2H), 7.66(d, 2H), 8.04(d, 2H) Example23: Preparation of N-[1,5-dioxo-5-(4'-bromobiphenyl-4-yl)-3-carboxylpentane-1-yl]-4-benzoylpiperazine(I, R1=Br) The titled compound was prepared in a similar manner as in Example 16, except for employing N-[1,5-dioxo-5-(4'-bromobiphenyl-4-yl)-3,3-diethoxycarbonylpentane-1-yl]-4-benzoylpiperazine (VI, R1=Br) .
1H NMR (300MHz, CDC13) : s 2. 59 (dd, 1H) , 2. 86 (br, 4H) , 3.10(dd, 1H), 3.42(dd, 2H), 3.62(Br, 4H), 3.80(m, 1H), 7 . 40 (m, 4H) , 7 . 42 (d, 2H) , 7. 62 (m, 4H) , 7. 86 (d, IH) , 8 . 02 (d, 2H) Example 24: Preparation of 1,5-dioxo-1-(1-phenylcarbamoyl-1-ethylamino)-5-(4'-bromobiphenyl-4-yl)-3-carboxylpentane(I, Rz=Br) To 1,5-dioxo-1-(1-phenylcarbamoyl-1-ethylamino)-5-(4'-bromobiphenyl-4-yl)-3,3-diethoxycarbonylpentane(VI, R1=Br, 120mg, 0.197mmol) dissolved in ethanol(5mL) was added 1N NaOH(lmL, lmmol) and stirred for 5hr at room 1o temperature. Ethanol was removed under reduced pressure, added water and washed with ethylacetate, and then, acidified by adding 1N HCl, extracted with ethylacetate, and dried over anhydrous MgS04, filtered and distilled under reduced pressure. The resultant was dissolved in 1,4-dioxane(lOmL), refluxed for 2hr and solvent was evaporated under reduced pressure. The residue was recrystallized with MC/MeOH(19/1, v/v) and hexane to give the titled compound(64mg, 60%).
1H NMR (300MHz, CDC13) : s 1. 43 (d, 3H) , 3. 06 (d, 1H) , 3.17(d, 1H), 3.40(dd, 1H), 3.53(m, 3H), 4.56(m, 1H), 6.15(d, 1H), 7.07(t, 1H), 7.27(m, 1H), 7.45(d, 2H), 7.58(m, 6H), 7. 97 (d, 2H) , 8. 60 (s, 1H) Example 25: Preparation of 5-(4'-chlorobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid t-butyl ester(VII, R1=Cl) KOH(85%, 0.72g, ll.Ommol) dissolved in ethanol(30mL) was added slowly to 5-(4'-chlorobiphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester(IV, R1=Cl, 5.26g, 10.46mmol) dissolved in ethanol(30mL). The reaction mixture was stirred for 6hr at room temperature, and acidified by adding 1N HCl, extracted with ethylacetate, and dried over anhydrous MgSOa, filtered and distilled under reduced pressure. The resultant was dissolved in 1,4-dioxane(lOmZ), refluxed for 3hr and solvent was evaporated under reduced pressure to give the titled compound(3.51g, 780).
1H NMR (300MHz, CDC13) : 6 1. 24 (t, 3H) , 1. 45 (s, 9H) , 2.66(ddd, 2H), 3.24(dd, 1H), 3.45(m, 1H), 3.53(dd, 1H), 4. 16 (q, 2H) , 7. 42 (d, 2H) , 7.55 (d, 2H) , 7. 65 (m, 2H) , 8. 03 (d, 2H) Examz~le 26: Preparation of 5-(biphenyl-4-yl)-5-oxo-3-1o ethoxycarbonylvaleric acid t-butyl ester(VII, Ri-H ) The titled compound was prepared in a similar manner as in Example 25, except for employing 5-(biphenyl-4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester(IV, R1=H ) .
1H NMR(300MHz, CDC13) : S 1.24 (t, 3H) , 1. 45 (s, 9H) , 2.66(ddd, 2H), 3.24(dd, 1H), 3.45(m, 1H), 3.53(dd, 1H), 4 . 16 (q, 2H) , 7 . 45 (m, 3H) , 7 . 61 (d, 2H) , 7 . 69 (d, 2H) , 8 . 04 (d, 2H) Example 27: Preparation of 5-(4'-bromobiphenyl-4-yl)-5-oxo 3-ethoxycarbonylvaleric acid t-butyl ester(VII, R1=Br ) The titled compound was prepared in a similar manner as in Example 25, except for employing 5-(4'-bromobiphenyl 4-yl)-5-oxo-3,3-diethoxycarbonylvaleric acid t-butyl ester (IV, R1=Br) .
1H NMR(300MHz, CDC13) : 8 1.24 (t, 3H) , 1.45 (s, 9H) , 2.66(ddd, 2H), 3.24(dd, 1H), 3.45(m, 1H), 3.53(dd, 1H), 4 . 16 (q, 2H) , 7 . 48 (d, 2H) , 7. 60 (d, 2H) , 7 . 65 (d, 2H) , 8 . 04 (d, 2H) example 28: Preparation of 5-(4'-chlorobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=C1) To 5-(4'-chlorobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid t-butyl ester(VII, R1=Cl, 3.518, 8.14mmo1) dispersed in MC(50mL) was,added TFA(7.4mL) and stirred for 24hr at room temperature. MC was removed under reduced pressure, and added ethylacetate(20mL). Then, 1N
NaOH was added slowly and stirred for l0min, and the separated organic layer was extracted with water. And then, to the aqueous solution was collected, treated with 1N
HCl(30mL) and extracted with ethylacetate. The separated organic layer was dried over anhydrous MgS04, filtered and distilled under reduced pressure. The residue was recrystallized with CHC13 and hexane to give the titled compound(2.7g, 88%).
1H NMR (300MHz, CDC13) : S 1.24 (t, 3H) , 2. 84 (ddd, 2H) , 3.30(dd, 1H), 3.48(m, 1H), 3.57(dd, 1H), 4.18(q, 2H), 7.42(d, 2H), 7.55(d, 2H), 7.65(m, 2H), 8.03(d, 2H) 2o Example 29: Preparation of 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) The titled compound was prepared in a similar manner as in Example 28, except for employing 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid t-butyl ester((VII, R1=H).
1H NMR (300MHz, C.DC13) : S 1. 24 (t, 3H) , 2. 84 (ddd, 2H) , 3. 30 (dd, 1H) , 3. 48 (m, 1H) , 3. 57 (dd, 1H) , 4. 18 (q, 2H) , 7 . 45 (m, 3H) , 7 . 61 (d, 2H) , 7 . 69 (d, 2H) , 8 . 04 (d, 2H) Example30: Preparation of 5-(4'-bromobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=Br) The titled compound was prepared in a similar manner as in Example 28, except for employing 5-(4'-bromobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid t-butyl ester((VII, R1=Br ) .
1H NMR(300MHz, CDC13) : S 1.24 (t, 3H) , 2. 84 (ddd, 2H) , 3.30(dd, 1H), 3.48(m, 1H), 3.57(dd, 1H), 4.18(q, 2H), 5 7.48(d, 2H), 7.60(d, 2H), 7.65(d, 2H), 8.04(d, 2H) Examx~le 31: Preparation of N-(3-cyanophenyl)-5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleramide~(IX, R1=H) 10 5-(Biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid (VIII, R1=H, 50mg, 0.147mmo1) was dissolved in THF(3mL) and cooled to a temperature of OC. And, N-methylmorpholine(35mL, 0.323mmo1) and ethylchloroformate (l6mL, 0.162mmo1) were added slowly, and stirred for 30 min 15 at room temperature. And then, 3-aminbbenznitrile dissolved in THF(1mL) was added, stirred for 3hr and 30min, filtered and distilled under reduced pressure. After diluting with chloroform, washing with 1N HCl, 10o NaHC03 and water in a sequential order, the resultant was dried 20 over anhydrous MgS04, filtered and distilled under reduced pressure to give the titled compound(55.5mg, 860).
1H NMR (300MHz, CDC13) : s 1. 22 (t, 3H) , 2 . 74 (dd, 1H) , 3.01(dd, 1H), 3.54(m, 3H), 4.22(q, 2H), 7.42(m, 4H), 7.65(m, 25 5H) ., 8. 01 (m, 3H) , 8.20 (s, 1H) Example 32: Preparation of N-(3-acetylphenyl)-5-[(biphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleramide(IX, R1=H ) ( IX ) The titled compound was prepared in a similar manner as in Example 31, except for employing 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid((VIII, R1=H) and 3-aminoacetophenone.
1H NMR (300MHz, CDC13) : S 1. 23 (t, 3H) , 2. 59 (s, 3H) , 2.80(dd, 1H), 3.00(dd, 1H), 3.56(m, 3H), 4.20(q, 2H), 7.40(m, 4H), 7.60(m, 5H), 8.03(m, 3H), 8.20(s, 1H) xample 3333: Preparation of N-(3-acetylphenyl)-5-[(4' chlorobiphenyl-4-yl)]-5-oxo-3 ethoxycarbonylvaleramide(IX, R1=C1) The titled compound was prepared in a similar manner as in Example 31, except for employing 5-[(4' chlorobiphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvalerio acid (VIII, R1=Cl) and 3-aminoacetophenone.
1H NMR(300MHz, CDC13) : S 1.24 (t, 3H) , 2. 60 (s, 3H) , 2.80(dd, 1H), 2.94(dd, 1H), 3.56(m, 3H), 4.20(q, 2H), 7.44(m, 3H), 7.54(d, 2H), 7.66(m, 3H), 7.82(s, 1H), 8.04(m, 3H) Example 34: Preparation of N-(2-chlorophenyl)-5-[(biphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleramide(IX, R1=H ) The titled compound was prepared in a similar manner as in Example 31, except for employing 5-(-[(biphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) and 2-chloroaniline.
1H NMR (300MHz, CDC13) : 8 1.24 (t, 3H) , 2. 88 (dd, 1H) , 3.03(dd, 1H), 3.48~3.66(m, 3H), 4.24(q, 2H), 7.05(t, 1H), 7.43(m, 4H), 7.62(d, 2H), 7.70(d, 2H), 7.90(s, 1H), 8.06(d, 2H) , 8. 30 (s, 1H) Example 35: Preparation of N-(3-chlorophenyl)-5-[(biphenyl-4-yl)]- 5-oxo-3-ethoxycarbonylvaleramide(IX, R1=H ) The titled compound was prepared in a similar manner as in Example 31, except for employing 5-[(biphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) and 3-chloroaniline.
1H NMR(300MHz, MeOH-d4) : s 1.24 (t, 3H) , 2.88 (dd, 1H) , 3.03(dd, 1H), 3.48~3.66(m, 3H), 4.24(q, 2H), 7.23(d, 2H), 7 . 42 (m, 3H) , 7 . 48 (d, 2H) , 7 . 62 (d, 2H) , 7 . 69 (d, 2H) , 8 . 04 (d, 2H) Example 36: Preparation of N-(4-chlorophenyl)-5-[(biphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleramide(IX, R1=H)(IX) The titled compound was prepared in a similar manner as in Example 31, except for employing 5-[(biphenyl-4-yl)]
5-oxo-3-ethoxycarbonylvaleric acid(VIII, Rl=H) and 4 chloroaniline.
1H NMR(300MHz, DMSO-d6) : s 1.24 (t, 3H) , 2.76 (dd, 1H) , 2.90(dd, 1H), 3.53(m, 3H), 4.20(q, 2H), 7.06(d, 2H), 7.21(t, 1H) , 7 . 44 (m, 4H) , 7 . 62 (d, 2H) , 7 . 68 (d, 2H) , 8 . 04 (d, 2H) ao Example 37: Preparation of N-[3-(N,N-diethylcarbamoyl)phenyl]-5-[(4'-chlorobiphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleramide(IX, R1=C1)(IX) The titled compound was prepared in a similar manner as in Example 31, except for employing 5-[(4'-chlorobiphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleric acid (VIII, R1=Cl) and 3-(N,N-diethylcarbamoyl)aniline.
1H NMR ( 300MHz, CDC13) : 8 1. 11 (t, 3H) , 1. 23 (t, 6H) , 2.73(dd, 1H), 2.90(dd, 1H), 3.26(br, 2H), 3.52(m, 5H), 4.22(q, 2H), 7.08(d, 1H), 7.32(t, 1H), 7.44(d, 2H), 7.54(m, 3H), 7.65(d, 2H), 7.80(s, 1H), 8.03(d, 2H) Examble 38: Preparation of N-[3-(N-phenylcarbamoyl)phenyl]-5-[(4'-chlorobiphenyl-4-yl)]-5-oxo-3-thoxycarbonylvaleramide(IX, R1=C1) The titled compound was prepared in a similar manner as in Example 31, except for employing 5-[(4'-chlorobiphenyl-4-yl)]-5-oxo-3-ethoxycarbonylvaleric acid (VIII, R1=Cl) and 3-(N-phenylcarbamoyl)aniline.
1H NMR(300MHz, CDC13) : s 1.17 (t, 3H) , 2. 85 (dd, 1H) , 3.10(dd, 1H), 3.56(d, 2H), 3.65(m, 1H), 4.15(q, 2H), 7.15(t, 1H) , 7 . 34 (m, 4H) , 7 . 50 (d, 3H) , 7 . 61 (d, 3H) , 7 . 75 (d, 3H) , 8 . 00 (d, 2H) , 8. 35 (s, 1H) , 8. 50 (s, 1H) Example 39: Preparation of (L)-1,5-dioxo-1-(1-phenylcarbamoyl-1-ethylamino)-5-(biphenyl-4-yl)-3-ethoxycarbonylpentane(IX, R1=H) 5-(Biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H, 100mg, 0.29mmo1) was dissolved in THF(5mL) and cooled to a temperature of 0°C. And, N-2o methylmorpholine(70mL, 0.65mmol) and ethyl chloroformate(3lmL, 0.32mmo1) were added and stirred for 30 min. And then, L-Ala-CONH-Ph(see: Kruse, C. H, et al, J.
Org. Chem., 50:2792, 1985; Fink, C. A, et al, Bioorg. Med.
Chem. Lett., 9:195-200, 1999) dissolved in THF(1mL) was added, stirred for 3hr and 30min, filtered and distilled under reduced pressure. After diluting with chloroform, washing with 1N HCl, 10% NaHC03 and water in a sequential order, the resultant was dried over anhydrous MgS09, filtered and distilled under reduced pressure to give the 3o titled compound(105mg, 73%).
1H NMR (300MHz, CDC13) : s 1. 20 (dt, 3H) , 1. 47 (dd, 3H) , 2.55(ddd, 1H), 2.75(ddd, 1H), 3.48(m, 3H), 4.14(m, 2H), 4.63(m, 1H), 6.15(dd, 1H), 7.07(t, 1H), 7.27(m, 1H), 7.45(m, 3H), 7.58(m, 6H), 7.97(t, 2H), 8.40~8.60(d, 1H) Example 40: Preparation of (D)-1,5-dioxo-1-(1-phenylcarbamoyl-1-ethylamino)-5-(biphenyl-4-yl)-3-ethoxycarbonylpentane(IX, R1=H) The titled compound was prepared in a similar manner as in Example 39, except for employing 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid and D-Ala-CONH-Ph(105mg, 730) .
1H NMR (300MHz, CDC13) : 8 1. 20 (dt, 3H) , 1. 47 (dd, 3H) , 2.55(ddd, 1H), 2.75(ddd, 1H), 3.48(m, 3H), 4.14(m, 2H), 4.63(m, 1H), 6.15(dd, 1H), 7.07(t, 1H), 7.27(m, 1H), 7.45(m, 3H), 7.58(m, 6H), 7.97(t, 2H), 8.40~8.60(d, 1H) Examp a 41: Preparation of 1,5-dioxo-1-[1-(0-chlorophenyl)carbamoyl-1-ethylamino]-5-(biphenyl-4-yl)-3-ethoxycarbonylpentane (IX, R1=H ) ( IX ) The titled compound was prepared in a similar manner 2o as in Example 39, except for employing 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) and L-Ala-CONH-o-ClPh.
1H NMR (300MHz, CDC13) : s 1. 20 (dt, 3H) , 1. 47 (dd, 3H) , 2.55(ddd, 1H), 2.75(ddd, 1H), 3.48(m, 3H), 4.14(m, 2H), 4.63(m, 1H), 6.15(dd, 1H), 7.08(t, 1H), 7.29(t, 2H), 7.45(m, 3H) , 7 . 58 (m, 4H) , 7 . 70 (d, 2H) , 7 . 97 (t, 2H) , 8 . 60 (d, 1H) Example 42: Preparation of 1,5-dioxo-1-[1-(m-3o chlorophenyl)carbamoyl-1-ethylamino]-5-(biphenyl-4-yl)-3-ethoxycarbonylpentane(IX, R1=H ) ( IX ) The titled compound was prepared in a similar manner as in Example 39, except for employing 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) and L-Ala-~CONH-m-ClPh.

1H NMR (300MHz, CDC13) : 8 1.20 (dt, 3H) , 1. 47 (dd, 3H) , 2.55(ddd, 1H), 2.75(ddd, 1H), 3.48(m, 3H), 4.14(m, 2H), 4 . 63 (m, 1H) , 6. 15 (dd, 1H) , 7. 07 (t, 1H) , 7. 30 (t, 2H) , 7. 45 (m, 5 3H), 7.58(m, 4H), 7.68(d, 2H), 7.97(t, 2H), 8.60(d, 1H) Example 43: Preparation of 1,5-dioxo-1-[1-(p-chlorophenyl)carbamoyl-1-ethylamino]-5-(biphenyl-4-yl)-3-ethoxycarbonylpentane(IX, 10 R1=H ) ( IX ) The titled compound was prepared in a similar manner as in Example 39, except for employing 5-(biphenyl-4-yl)-5 oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) and L-Ala 15 CONH-p-ClPh.
1H NMR (300MHz, CDC13) : s 1. 20 (dt, 3H) , 1. 47 (dd, 3H) , 2.55(ddd, 1H), 2.75(ddd, 1H), 3.48(m, 3H), 4.14(m, 2H), 4.63(m, 1H), 6.15(dd, 1H), 7.08(t, 1H), 7.29(t, 2H), 7.45(m, 20 3H) , 7 . 58 (m, 4H) , 7. 70 (d, 2H) , 7. 97 (t, 2H) , 8 . 60 (d, 1H) Example 44: Preparation of N-X1,5-dioxo-5-[(biphenyl-4-yl)]-3-ethoxylcarbonylpentane-1-yl}-2-(N-phenylcarbamoyl)pyrrolidine(IX, R1=H) The titled compound was prepared in a similar manner as in Example 39, except for employing 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) and L-Pro-CONH-Ph.
1H NMR (300MHz, CDC13) : S 1. 17 (t, 3H) , 1. 90 (m, 1H) , 2.06(m, 1H), 2.58(br, 2H), 2.70~3.00(m, 2H), 3.50(m, 2H), 3.57(m, 2H), 3.70(m, 1H), 4.15(m, 2H), 4.78(m, 1H), 7.05(t, 1H), 7.27(m, 2H), 7.45(m, 3H), 7.58(m, 5H), 8.03(d, 2H), 9. 2~9. 4 (d, 1H) ~xamx~le 45: Preparation of 1,5-dioxo-1-[1-phenylcarbamoyl-2-phenyl-1-ethylamino]-5-(biphenyl-4-yl)-3-ethoxycarbonylpentane(TX, R1=H) The titled compound was prepared in a similar manner as in Example 39, except for employing 5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid(VIII, R1=H) and Z-Phe-CONH-Ph.
1H NMR (300MHz, CDC13) : S 1. 17 (dt, 3H) , 2. 382. 55 (ddd, 1H), 2.70(ddd, 1H), 3.20(m, 2H), 3.45(m, 3H), 4.13(dq, 2H), 4.75~4.90(dq, 1H), 6.10~6.30(dd, 1H), 7.08(t, 1H), 7.24(m, 6H) , 7 . 42 (m, 4H) , 7 . 63 (m, 5H) , 8 . 00 (d, 2H) , 7 . 90 & 8 . 30 (d, 1H) Examble 46: Preparation of N-X1,5-dioxo-5-[(4'-chlorobiphenyl-4-yl)]-3-ethoxylcarbonylpentane-1-yl}-2-(N-phenylcarbamoyl)pyrrolidine(IX, R1=H) 2o The titled compound was prepared in a similar manner as in Example 39, except for employing 5-(4'-chlorobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid (VIII, R1=C1) and Z-Pro-CONH-Ph.
1H NMR (300MHz, CDCl3) : 8 1. 20 (t, 3H) , 1. 90 (m, 1H) ;
2 . 06 (m, 1H) , 2 . 58 (br, 2H) , 2. 703. 00 (m, 2H) , 3. 50 (m, 2H) , 3.57(m, 2H), 3.70(m, 1H), 4.15(m, 2H), 4.78(m, 1H), 7.05(t, 1H), 7.27(m, 2H), 7.45(m, 2H), 7.58(m, 5H), 8.03(d, 2H), 9.29.4 (d, 1H) Example 47: Preparation of 1,5-dioxo-1-[1-phenylcarbamoyl-2-phenyl-1-ethylamino]-5-(4'-chlorobiphenyl-4-yl)-3-ethoxycarbonylpentane(IX, R1=Cl) The titled compound was prepared in a similar manner as in Example 39, except for employing 5-(4'-chlorobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleric acid (VIII, R1=C1) and L-Phe-CONH-Ph.
1H NMR(300MHz, CDC13).: 8 1.17 (dt, 3H) , 2.382.55 (ddd, 1H), 2.70(ddd, 1H), 3.20(m, 2H), 3.45(m, 3H), 4.13(dq, 2H), 4.75~4.90(dq, 1H), 6.10~6.30(dd, 1H), 7.07(t, 1H), 7.26(m, 6H), 7.45(m, 3H), 7.56(m, 5H), 7.99(d, 2H), 7.90 & 8.30(d, 1H) Example 48: Preparation of N-(3-cyanophenyl)-5-[(biphenyl-4-yl)]-5-oxo-3-carboxylvaleramide(I, R1=H) To N-(3-cyanophenyl)-5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleramide(IX, R1=H, 11.8mg, 0.0268mmo1) dissolved in ethanol(2mL) was added 1N NaOH(0.5 mL) and stirred for lhr and 30min at room temperature, added water and washed with ethylacetate. And, the resultant was acidified by adding 1N HCl, and extracted by employing MC, and dried over anhydrous MgS04. And then, the resultant was filtered and distilled under reduced pressure, and, 2o recrystallized with CHC13/MeOH(19/l, v/v) and hexane to give the titled compound(10.4mg, 940).
1H NMR (300MHz, CDC13) : S 2. 74 (dd, 1H) , 3. O1 (dd, 1H) , 3.54(m, 3H), 7.42(m, 4H), 7.65(m, 5H), 8.01(m, 3H), 8.20(s, lH) Example 49: Preparation of N-(3-acetylphenyl)-5-[(biphenyl-4-yl)]-5-oxo-3-carboxylvaleramide(I, R1=H) 3o The titled compound was prepared in a similar manner as in Example 48, except for employing N-(3-acetylphenyl)-5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleramide(IX,R1=H).
1H NMR(300MHz, CDC13) : 8 2.59 (s, 3H) , 2.80 (dd, 1H) , 3.00(dd, 1H), 3.56(m, 3H), 7.40(m, 4H), 7.60(m, 5H), 8.03(m, 3H) , 8.20 (s, 1H) example 50: Preparation of N-(3-acetylphenyl)-5-[(4'-chlorobiphenyl-4-yl)]-5-oxo-3-carboxylvaleramide(I, R1=H) The titled compound was prepared in a similar manner as in Example 48, except for employing N-(3-acetylphenyl)-5-(4'-chlorobiphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleramide (IX, R1=H) .
l0 1H NMR(300MHz, CDC13) : 8 2. 60 (s, 3H) , 2. 80 (dd, 1H) , 2.94(dd, 1H), 3.56(m, 3H), 7.44(m, 3H), 7.54(d, 2H), 7.66(m, 3H), 7.82(s, 1H), 8.04(m, 3H) Example 51: Preparation of N-(3-chlorophenyl)-5-[(biphenyl-4-yl) ] -5-oxo-3-carboxylvaleramide (I, R1=H) The titled compound was prepared in a similar manner as in Example 48, except for employing N-(3-chlorophenyl)-5-(biphenyl-4-yl)-5-oxo-3-ethoxycarbonylvaleramide(IX,R1=H).
1H NMR (300MHz, MeOH-d4) : s 2. 88 (dd, 1H) , 3. 03 (dd, 1H) , 3.48~3.66(m, 3H), 7.23(d, 2H), 7.42(m, 3H), 7.48(d, 2H) , 7 . 62 (d, 2H) , 7 . 69 (d, 2H) , 8 . 04 (d, 2H) Example 52: Preparation of 1,5-dioxo-1-(1-phenylcarbamoyl-1-ethylamino) -5- (biphenyl-4-yl) -3-carboxylpentane (I, Rl=H) To 1,5-dioxo-1-(1-phenylcarbamoyl-1-ethylamino)-5-(biphenyl-4-yl)-3-ethoxycarbonylpentane(IX, R1=H, 105mg, 0.215mmol) dissolved in ethanol(5mL) was added 1N NaOH(lmL, lmmol) and stirred for 90min at room temperature, added water and washed with ethylacetate. And then, the resultant was acidified by adding 1N HCl, and extracted with MC, and dried over anhydrous MgS04, filtered and distilled under reduced pressure. The residue was recrystallized with CHC13/MeOH(19/1, v/v) and hexane to give the titled compound(88mg, 890).
1H NMR(300MHz, CDC13) : s 1.47 (dd, 3H) , 2.55 (ddd, 1H) , 2.75(ddd, 1H), 3.48(m, 3H), 4.63(m, 1H), 6.15(dd, 1H), 7 . 07 (t, 1H) , 7 . 27 (m, 1H) , 7. 45 (m, 3H) , 7 . 58 (m, 6H) , 7. 97 (t, 2H) , 8. 408. 60 (d, 1H) Examx~le 53: Preparation of N-{1,5-dioxo-5-[(4'-chlorobiphenyl-4-yl)]-3-carboxylpentane-1-yl}-Lo 3-(N-phenylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline(I, R1=Cl) The titled compound was prepared in a similar manner as in Example 52, except for employing N-{1,5-dioxo-.5-[(4'-chlorobiphenyl-4-yl)]-3-ethoxycarbonylpentane-1-yl}-3-(N-phenylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline(IX, R~=C1).
1H NMR (300MHz, CDC13) : 6 2. 703.20 (m, 2H) , 3. 383. 57 (m, 4H), 4.11(m, 1H), 4.66(m, 2H), 5.33(d, 1H), 6.92(t, 1H), 7. 15 (m, 4H) , 7 . 45 (m, 7H) , 7. 93 (d, 2H) , 8. 66 (m, 1H) Examx~le 54: In vitro inhibition on gelatinase A(MMP-2) The present test was accomplished by measuring the fluorescence intensity of a fluorescent material(7-methoxycoumarin-4-acetyl-Pro-Leu-Gly) produced from the cleavage of a fluorescent synthetic peptide substrate((7-methoxycoumarin-4-acetyl-Pro-Leu-Gly-Leu-j3 -(2,4-dinitrophenylamino)Ala-Ala-Arg-NHz(Sigma Chem. Co., 3o U.S.A.)) by gelatinase A(Boehringer Manneheim cat# 1782916, from human fibrosarcoma cells).
Enzymatic reaction employing a fluorescent synthetic substrate was accomplished by leaving test compounds, TNBC
buffer solution(25mM Tris-HCl, pH 7.5, 0.1M NaCl, 0.010 Brij-35, 5mM CaCl2), gelatinase A(final concentration in well: 4.17nM) activated with 1 mM of APMA(aminophenylmercuric acetate) for 30 minutes at 37°C

just before the enzymatic reaction, and the substrate, fluorescent synthetic peptide(final concentration in well:
9.25uM) in 96 well plate and then reacting for 30 minutes at 37°C, and the fluorescence intensity was measured at 5 excitation 328nm and emission 393nm by spectrofluorimeter(Fmax(molecular device)). The inhibition rate(o) was calculated from the following equation:
~11~1~1t3~1. .~,~~~~,~o~ _ 1o wherein, A represents fluorescence intensity before the reaction with an inhibitor;
B represents fluorescence intensity after the reaction with an inhibitor 15 C represents fluorescence intensity before the reaction without an inhibitor; and, D represents fluorescence intensity after the reaction without an inhibitor.
2o Example 55: In vitro inhibition on gelatinase B(MMP-9) In vitro inhibition rate on gelatinase B(MMP-9) was measured in a similar manner as in Example 54, except for employing gelatinase B(Boehringer Manneheim cat# 1758896, 25 from human blood) with a different concentration(final concentration in well: 2.715nM) and a different concentration of the substrate, fluorescent synthetic peptide(final concentration in well: 4.575uM).
3o Example 5~: In vitro inhibition on collagenase(MMP-1) In vitro inhibition rate on collagenase(MMP-1) was measured in a similar manner as in Example 54, except for employing collagenase(AngioLab. Co., Ltd) with a final concentration in well of 7.25nM.
ht O
i Hhf -w~1 No R1 R~ R3 ICSO (u ICso (~1 . M) M) 1 Br (L)-Me Ph 0.018 0.3 2 H (D) -Me Ph 2. 79 27 . 22 3 H (L)-Me Ph 0.08 3.21 4 H (L)-Me o-Cl-Ph 0.17 6.13 H (L) -Me m-C1-Ph 0 .13 3. 65 6 H (L)-Me p-C1-Ph 0.27 7.18 7 C1 (L) -Me Ph 0. 015 0 . 22 8 H (L)-Ph Ph 0.037 0.28 9 Cl (L)-Ph Ph 0.007 0.099 Cl Ph 0.008 0.027 No. R1 Rz ICSO (u ICSO (~L
M) M) 1 H ~~~ 0 . 018 0 . 7 7 2 C1 ~ ~ 0.004 0.085 .~t~

3 H a N~ 0.0062 0.11 H
D hi~R~
R
No. R1 RZ R3 ICso (~i ICso (1~ ICso (u M) M) M) 1 H Ph H 2.68 2 H Cyclopropyl H 3.22 3 H (+) -a -MeanH 1.16 4 Me0 Ph H 0.29 Me0 1.30 lil~rf.~

6 Br Ph H 0.17 6.2 7 Br 0.98 16.5 8 Br ~' 0 . 7 9 . 6 9 Cl Ph H 0.11 3.39 H o-Cl-Ph H 1.25 2.16 11 H m-Cl-Ph H 0.57 10.46 12 H p-Cl-Ph H 1.03 12.10 13 H m-CN-Ph H 2.82 76.61 14 H m-acetyl-Ph H 0.99 36.25 C1 m-acetyl-Ph H 0.14 1.61 16 Cl ~~ H 0.0081 0.09 137.97 5 As clearly illustrated and demonstrated as above, the present invention provides novel biphenylbutyric acid derivatives which inhibit MMP activity, their isomers and the pharmaceutically acceptable salts thereof, and a process for preparing the compounds. Since the to biphenylbutyric acid derivatives of the present invention selectively inhibit MMP activity in vitro, the MMP
inhibitors comprising the biphenylbutyric acid derivatives as an active ingredient can be practically applied for the prevention and treatment of diseases caused by 15 overexpression and overactivation of MMP.

.Although the preferred embodiments of the present invention have been disclosed for illustrative purpose, those who are skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as described in the accompanying claims.

Claims (8)

WHAT IS CLAIMED IS:
1. A compound represented as the following general formula(I), its isomers and pharmaceutically acceptable salts thereof:

wherein, R1 is hydrogen, alkyl, cycloalkyl, halogen, nitro, cyano, -OCF3, -OCH2F, -OR4, -SR4, -S(O)R4 or -S(O)2 where R4 and R4a, which may be the same or different, are alkyl, aryl, arylalkyl, heteroaryl or cycloalkyl;
R2 and R3, which may be the same or different, are hydrogen, alkyl, aryl, arylalkyl, heteroaryl or cycloalkyl; and, n is 1 or 2.
2. The compound, its isomers and pharmaceutically acceptable salts thereof according to claim 1, wherein R2 and R3 are taken together with carbon, nitrogen, oxygen or sulfur to form C5-6 ring, which includes the followings:

where, R8 is hydrogen, alkyl, aryl, arylalkyl, heteroaryl or cycloalkyl; and, X is O or S.
3. The compound, its isomers and pharmaceutically acceptable salts thereof according to claim 1, wherein R2 further includes a substituent represented as a general formula below:

where, R5 is hydrogen, alkyl, aryl, arylalkyl, heteroaryl, hydroxyalkyl, alkoxyalkyl, alkylthioalkyl, arylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, arylsulfinylalkyl, arylsulfonylalkyl or cycloalkyl; and, R6 and R7 which may be the same or different, are hydrogen, alkyl, aryl, arylalkyl, heteroaryl or cycloalkyl.
4. The compound, its isomers and pharmaceutically acceptable salts thereof according to claim 3, wherein R2 is the same as defined in claim 3, provided that R3 is hydrogen; and, provided that R3 is not hydrogen, R3 and R5 are taken together with carbon, nitrogen, oxygen or sulfur to form C5-6 ring in which moiety includes the followings:

where, R6 and R7 are the same as above;
R9 is hydrogen, hydroxy, alkoxy, aryloxy, thiol or alkylthio;
R10 is oxo, hydroxyamine or hydrazone;
R11 and R12 are hydrogen or C1-6 lower alkyl; and, Y is CH2, O or S.
5. The compound, its isomers and pharmaceutically acceptable salts thereof according to claim 3 or claim 4, wherein R6 and R7 are taken together with carbon, nitrogen, oxygen or sulfur to form cyclic compounds which include the followings:
Where, R8 and X are the same as above.
6. The compound, its isomers and pharmaceutically acceptable salts thereof according to one of claims 1 to 5 which have an inhibitory activity against matrix metalloproteinase.
7. A process for preparing a compound represented as the general formula(I), which comprises:
(i) reacting a compound(II) with a compound(III) to obtain t-butylester compound(IV);
(ii) deprotecting t-butylester compound(IV) to obtain a butylester group-free compound(V);
(iii) condensing the compound(V) with an amine compound to obtain a compound(VI) containing diethylester group; and, (iv) hydrolyzing diethylester groups of the compound(VI) into carboxylic groups and then decarboxylating, to prepare a compound(I):

wherein, R1, R2 and R3 are the same as defined in claim 1.
8. A process for preparing a compound represented as the general formula(I), which comprises:
(i) reacting a compound(II) with a compound(III) to obtain t-butylester compound(IV);
(ii) hydrolyzing one of ethylester groups in t-butylester compound(IV) to a carboxylic group and then decarboxylating, to obtain a compound(VII);
(iii) deprotecting the compound(VII) to obtain a butylester group-free compound(VIII);
(iv) condensing the compound(VIII) with an amine compound to obtain a compound(IX) containing ethylester groups; and, (v) hydrolyzing ethylester group of the compound(IX) to a carboxylic group to prepare a compound(I):

wherein, R1, R2 and R3 are the same as defined in claim 1.

CA002377629A 2000-04-25 2001-04-24 Biphenyl butyric acid derivative as a matrix metalloproteinase inhibitor Abandoned CA2377629A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2000-0021835A KR100405914B1 (en) 2000-04-25 2000-04-25 Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor
KR2000-21835 2000-04-25
KR10-2000-0021834A KR100405913B1 (en) 2000-04-25 2000-04-25 Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor
KR2000-21834 2000-04-25
PCT/KR2001/000687 WO2001083445A1 (en) 2000-04-25 2001-04-24 Biphenyl butyric acid derivative as a matrix metalloproteinase inhibitor

Publications (1)

Publication Number Publication Date
CA2377629A1 true CA2377629A1 (en) 2001-11-08

Family

ID=26637911

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002377629A Abandoned CA2377629A1 (en) 2000-04-25 2001-04-24 Biphenyl butyric acid derivative as a matrix metalloproteinase inhibitor

Country Status (6)

Country Link
EP (1) EP1189882A1 (en)
JP (1) JP2003531894A (en)
CN (1) CN1366518A (en)
AU (1) AU5275901A (en)
CA (1) CA2377629A1 (en)
WO (1) WO2001083445A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405913B1 (en) * 2000-04-25 2003-11-14 삼성전자주식회사 Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor
KR100405914B1 (en) * 2000-04-25 2003-11-15 삼성전자주식회사 Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor
US20100022582A1 (en) * 2005-03-10 2010-01-28 Kenji Takahashi Tetrahydroisoquinoline Compound and Medicinal Use Thereof
PE20070505A1 (en) 2005-07-11 2007-05-15 Wyeth Corp GLUTAMATE INHIBITORS OF MATRIX METALOPROTEINASES AND AGRECANASES
KR20080058436A (en) 2005-10-13 2008-06-25 와이어쓰 Methods for preparing glutamic acid derivatives
EP2089012A2 (en) * 2006-11-09 2009-08-19 Wyeth Polymorphs of n²-(1,1'- biphenyl- 4-ylcarbonyl)-n¹-[2-(4-fluorophenyl)-1,1-dimethylethyl]-l-alpha -glutamine
CN101353320A (en) * 2007-07-24 2009-01-28 中国人民解放军军事医学科学院毒物药物研究所 Matrix metalloprotease inhibitors, medicinal composition containing the same, preparation and use thereof
CA2900116C (en) * 2013-02-06 2021-08-10 Merck Patent Gmbh Substituted carboxylic acid derivatives as aggrecanase inhibitors for the treatment of osteoarthritis
SG11201606080SA (en) 2014-02-03 2016-08-30 Vitae Pharmaceuticals Inc Dihydropyrrolopyridine inhibitors of ror-gamma
PT3207043T (en) 2014-10-14 2019-03-25 Vitae Pharmaceuticals Llc Dihydropyrrolopyridine inhibitors of ror-gamma
US9845308B2 (en) 2014-11-05 2017-12-19 Vitae Pharmaceuticals, Inc. Isoindoline inhibitors of ROR-gamma
US9663515B2 (en) 2014-11-05 2017-05-30 Vitae Pharmaceuticals, Inc. Dihydropyrrolopyridine inhibitors of ROR-gamma
ES2856931T3 (en) 2015-08-05 2021-09-28 Vitae Pharmaceuticals Llc ROR-gamma modulators
EP3377482B1 (en) 2015-11-20 2021-05-12 Vitae Pharmaceuticals, LLC Modulators of ror-gamma
TWI757266B (en) 2016-01-29 2022-03-11 美商維它藥物有限責任公司 Modulators of ror-gamma
US9481674B1 (en) 2016-06-10 2016-11-01 Vitae Pharmaceuticals, Inc. Dihydropyrrolopyridine inhibitors of ROR-gamma
AR112461A1 (en) 2017-07-24 2019-10-30 Vitae Pharmaceuticals Inc PROCESSES FOR THE PRODUCTION OF SALTS AND CRYSTAL FORMS OF RORg INHIBITORS
WO2019018975A1 (en) 2017-07-24 2019-01-31 Vitae Pharmaceuticals, Inc. Inhibitors of ror gamma

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4220493A (en) * 1992-05-07 1993-11-29 Merck & Co., Inc. New quinazolines as inhibitors of hiv reverse transcriptase
ES2148229T3 (en) * 1992-05-20 2000-10-16 Merck & Co Inc ATERES AND THIOETERES IN POSITION 17 OF 4-AZA-STEROIDS.
AU4159197A (en) * 1996-09-04 1998-03-26 Warner-Lambert Company Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases
AU9663798A (en) * 1997-10-06 1999-04-27 Warner-Lambert Company Heteroaryl butyric acids and their derivatives as inhibitors of matrix metalloproteinases

Also Published As

Publication number Publication date
JP2003531894A (en) 2003-10-28
EP1189882A1 (en) 2002-03-27
WO2001083445A1 (en) 2001-11-08
AU5275901A (en) 2001-11-12
CN1366518A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
CA2377629A1 (en) Biphenyl butyric acid derivative as a matrix metalloproteinase inhibitor
SK284127B6 (en) Cyclic thio substituted acylaminoacid amide derivatives
AU679474B2 (en) Carboxy-peptidyl derivatives as antidegenerative active agents
JP2006503019A (en) 2,5-Dioxoimidazolidin-4-ylacetamide and analogs as inhibitors of metalloproteinase MMP12
JP4008708B2 (en) Sulfonamide derivatives as inhibitors of matrix metalloproteinases
SK172004A3 (en) Aromatic hydroxamic acid derivatives useful as HDAC inhibitors
KR20080046716A (en) 4-phenyl-6-substituted-pyrimidine-2-carbonitrile derivatives
EP2024350A1 (en) Piperidine derivatives as human papilloma virus inhibitors
US6689785B2 (en) Epoxysuccinamide derivatives
AU2007347428A1 (en) Substituted carboxamides
PL198827B1 (en) N-ARYLSULFONYL AMINO ACID OMEGA AMIDES, method of making them, pharmaceutical agent and their application
JP2007536239A (en) Calcium receptor antagonist compound
US5684152A (en) Preparation of carboxyalkyl derivatives as inhibitors of matrix metalloproteinases
KR100405914B1 (en) Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor
Shinozuka et al. Potent and selective cathepsin K inhibitors
KR100405913B1 (en) Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor
US6242615B1 (en) Process for the preparation of N-(3-hydroxy-succinyl)-amino acid derivatives
KR19980041978A (en) Carboxylic acid derivatives, a process for their preparation and a therapeutic agent containing the compounds
KR100372757B1 (en) Sulfonamide Derivative as a Matrix Metalloproteinase Inhibitor
CN109232426A (en) A kind of N- hydroxyl -5- substitution -1H- pyrazole-3-formamide compound and its preparation method and application
JPWO2013111798A1 (en) Serine racemase inhibitor
KR100384693B1 (en) Sulfonamide Derivative as a Matrix Metalloproteinase Inhibitor
WO2009080722A2 (en) Carboxylic derivatives for use in the treatment of cancer
KR100432928B1 (en) Novel Hydroxamic Acid Derivatives, Novel Intermediates Thereof and Preparing Methods thereof
KR940011149B1 (en) Novel phenylacetamide derivatives and process for the preparation thereof

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead