CA2259349C - Compositions and electric cables - Google Patents

Compositions and electric cables Download PDF

Info

Publication number
CA2259349C
CA2259349C CA002259349A CA2259349A CA2259349C CA 2259349 C CA2259349 C CA 2259349C CA 002259349 A CA002259349 A CA 002259349A CA 2259349 A CA2259349 A CA 2259349A CA 2259349 C CA2259349 C CA 2259349C
Authority
CA
Canada
Prior art keywords
ethylene
adhesion
composition
relatively small
small amounts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002259349A
Other languages
French (fr)
Other versions
CA2259349A1 (en
Inventor
Mark Richard Easter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Cable Technologies Corp
Original Assignee
General Cable Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9623733.4A external-priority patent/GB9623733D0/en
Priority claimed from GBGB9718345.3A external-priority patent/GB9718345D0/en
Application filed by General Cable Corp filed Critical General Cable Corp
Publication of CA2259349A1 publication Critical patent/CA2259349A1/en
Application granted granted Critical
Publication of CA2259349C publication Critical patent/CA2259349C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Abstract

A composition of matter for use as dielectric shield in an electric power cable having insulation of XLPE, EPR or EPDM comprises:
a base polymer which is a copolymer of ethylene with a mono-unsaturated ester;
conductive carbon black in an amount to give the composition an electrical resistivity below 500 Am; and as an adhesion-adjusting additive, 1-20 % by weight of the base polymer of a copolymer which consists essentially of ethylene and a comonomer having in its molecule at least one carbon-oxygen dipole, said copolymer having a molecular weight less than 20,000 Daltons but a melting point higher than 30 °C. This new class of additive permits use of EVA's with lower vinyl acetate content than prior art additives and so enables the composition to have less rubbery physical properties.

Description

COlllpo ; i on and Electric Cables Field of the Invention This invention relates to compositions of matter for use in making electric cables and to cables in which they are used. More particularly, it relates to compositions for use as "semiconducting" dielectric shield (also called core shield, dielectric screen or core screen) materials in power cables with crosslinked polymeric insulation, primarily at "medium" voltages, say from around 10kV to 75 or perhaps 100kV.

Description of related art While some customers desire to have polymeric cables in which the dielectric screen is securely bonded to the insulation so that stripping is only possible by use of a cutting tool that removes a little insulation with the shield, because they believe that this minimises risk of electrical breakdown at the interface, others prefer a "strippable" shield with limited adhesion to the insulation so that it can be peeled cleanly away (generally after cutting "tramlines" part-way through its thickness) without removing any insulation. Current strippable screen compositions for use over insulation of crosslinked polyethylene (XLPE) or one of the ethylene copolymer rubbers (EPR or EPDM, the latter incorporating a diene comonomer to provide unsaturation) are usually based on an ethylene/vinyl acetate copolymer (EVA) rendered conductive with an appropriate type and amount of carbon black: the required peel characteristics can be obtained by selecting an EVA with a high enough vinyl acetate content, with or without using a nitrile rubber as an adhesion-adjusting additive.
Formulations using these additives (e.g. Ongchin US patents 4,246,023 and 4,246,142, Burns et al European patent 0,420,271B, Kakizaki US patent 4,412,938 and Jansson US
patent 4,226,823) are expensive proprietary material and in the present applicants' experience do not sufficiently avoid a requirement to use EVA's of relatively high vinyl acetate content to achieve the optimum adhesion level, with the result that all the strippable screen compositions in general commercial use are more rubbery than is desirable.

Many alternative adhesion-adjusting additives have been proposed, for example waxy aliphatic hydrocarbons (Watanabe et al US patent 4,993,107); low-molecular weight ethylene homopolymers (Burns Jr US patent 4,150,193); various silicone compounds (Taniguchi U S Patent 4,493,787); chlorosulfonated polyethylene, ethylene-propylene rubber, polychloroprene, styrene-butadiene rubber, natural rubber, polyester rubber, and polyurethane rubber (all in Jansson US patent 4,226,823);

but none of these, except paraffin waxes, seems to have found commercial acceptance.

Summary of the invention This invention is based on the discovery of a new and unexpected class of adhesion-adjusting additive which surprisingly allows shield compositions to be formulated, if desired, utilizing EVA's of lower vinyl acetate content for a given level of adhesion, and thus to make strippable shields that are less rubbery and thus easier to process than current formulations utilising nitrile rubbers.

The composition of matter in accordance with the invention comprises:

a base polymer which is a copolymer of ethylene with a mono-unsaturated ester;

conductive carbon black in an amount to give the composition an electrical resistivity below 500 Qm; and as an adhesion-adjusting additive, 1-20% by weight of the base polymer of a copolymer which consists essentially of ethylene and a comonomer having in its molecule at least one carbon-oxygen dipole, said copolymer having a molecular weight less than 20,000 Daltons but a Mettler drop point higher than 30 C.

The invention includes an electric power cable having at least one conductor, insulation selected from the group consisting of cross-linked polyethylene and the ethylene copolymer rubbers, a dielectric shield and a surrounding jacket, said dielectric shield being of the composition specified in the preceding paragraph.
The invention also includes the use of a copolymer which consists essentially of ethylene and a comonomer having in its molecule at least one carbon-oxygen dipole, said copolymer having a molecular weight less than 20,000 Daltons but a melting point higher than 30 C, as an adhesion-adjusting additive in strippable shield composition for electric cables comprising a base polymer which is a copolymer of ethylene with a mono-unsaturated ester and a conductive carbon black in an amount to give the composition an electrical resistivity below 500 Qm.

Description of the Preferred Embodiments Preferably the base polymer is an EVA, but the invention is also applicable for base polymers such as ethylene-ethyl acrylate, ethylene-methyl acrylate and ethylene-methyl methacrylate copolymers and ternary (or higher-order) copolymers containing relatively small amounts of at least one additional monomer. Whereas for prior-art compositions in which the additive is a nitrile rubber, an EVA with a vinyl acetate content of at least 33% and an additive content of 298.84-5 about 30o would be recommended for use with crosslinked polyethylene insulation (or an EVA with a vinyl acetate content of 40 if the additive level were only 5%), in the practice of the present invention a vinyl acetate content of about 33% is often satisfactory in terms of adhesion with an additive content of about 59,; and this is preferred for giving the composition less rubbery physical properties; similarly for use with insulation based on EPR or EPDM, in the practice of the present invention an EVA content of about 40%

1o is often sufficient and preferred at an additive level about 5%-.
The invention does not require alteration to current practice regarding the types and quantity of carbon black to be used, and conventional types and proportions may be used.

Preferably the resistivity of the composition is in the range from 0.1 to the maximum of 500 Qm and preferably between 5 and 100 S2m.

The carbon-oxygen dipole in the adhesion-adjusting additive may be a C-O single-bond (ether) dipole, a C=0 double-bond (carbonyl) dipole or a -COO- ester dipole, and more than one such dipole of the same or different kinds may be present in the comonomer molecule. Thus the comonomer molecule may, inter alia be vinyl acetate, ethyl acrylate, methyl- or ethyl-methacrylate, maleic anhydride and carbon monoxide. Monomers with free carboxylic acid groups are not recommended because their use might entail a risk of introducing ionic contaminants into the composition and from there into the insulation. The more polar comonomers and most especially vinyl acetate are preferred, partly because, as a general rule, a smaller proportion of the comonomer will be needed.

The proportion of the adhesion-adjusting additive required naturally varies with its polarity and other characteristics, but will typically be in the range from about 1 to about 20% - preferably in the lower part of this 5 range, say about 2-10%, for the more polar additives such as the EVA's. It should be noted that these additives are generally less polar than the base polymer, in contrast to NBR which is much more polar, so that this observation is contrary to any supposition that the additives function by incompatibility with the base polymer.

The invention includes an electric power cable having at least one conductor, insulation selected from the group consisting of cross-linked polyethylene and the ethylene copolymer rubbers, a dielectric shield and a surrounding protective layer (such as a polymeric jacket and/or a layer of metal wires), said dielectric shield being of the composition previously defined.

Ethylene copolymer rubbers for use in the cable insulation include conventional EPR and EPDM rubbers, but also include copolymers with higher olefins (such as octene) that have recently become available through the application of "single-site" metallocene catalysts.

Examples The compositions tabulated below were made up by the procedure set out after the table, and made up into moulded plaques measuring 150 mm square by 2 mm thick, one face being bonded to an XLPE block of the same dimensions and the two compositions cured together in the press for 20 min at 180 C. Selected compositions only were made up in larger quantities by a similar procedure and dual-extruded under standard commercial conditions for the respective materials onto sample cables with either XLPE or EPR insulation having an external diameter of 20 mm to form a dielectric screen 1.0 mm thick. In each case adhesion was measured by the peel strength tests detailed below. Identification of ingredients also follows after the Table. In the table, numbered Examples are in accordance with the invention; lettered Examples are for comparison.

Table - part 1 Example A i B 2 base polymer type EVA 40 EVA 33 EVA 40 ;EVA 33 base polymer - parts 62.3 62.3 56.3 56.3 additive type none !none AC405T AC405T
-additive is parts 5 carbon black - parts 36 36 37 37 process aid - parts 1 jl 1 1 antioxidant - parts 0.7 0.7 0.7 0.7 peroxide - parts 0.8 10.8 0.8 0.8 plaque adhesion:
kN/m 4.2 6.65 3.5 5.25 lb per 1/2 inch 12 19 10 15 Table - part 2 Example 3 4 5 6 base polymer type EVA 40 EVA 40 EVA 33 EVA 33 base polymer - parts 53.8 56.3 56.3 58.5 additive type AC405T AC405S AC405S AC400 additive - parts 7.5 5 5 2.5 carbon black - parts 37 1 37 37 37 process aid - parts 1 1 1 1 antioxidant - parts 0.7 0.7 0.7 i0.7 peroxide - parts 0.8 0.8 0.8 0.8 plaque adhesion:
kN/m 3.85 2.6 4.55 3.5 lb per 1/2 inch 11 7.5 13 10 Table - part 3 Example 7 8 9 10 base polymer type EVA 40 EVA 33 EVA 40 EVA 33 base polymer - parts 58.5 56.3 56.3 53.3 additive type AC400 AC400 AC400 AC400 additive - parts 2.5 5 5 7.5 carbon black - parts 37 37 37 37 process aid - parts l 1 1 1 antioxidant - parts 0.7 0.7 0.7 0.7 peroxide - parts 0.8 0.8 0.8 0.8 plaque adhesion:
kN/m 3.5 3.15 1.4 2.8 lb per 1/2 inch 10 9 4 8 Table -- part 4 Example 11 base polymer type EVA 40 !EVA 33 EVA 40 'EVA 33 base polymer - parts 53.3 51.3 56.3 56.3 additive type iAC400 AC400 AC430 AC430 additive - parts 7.5 10 5 5 carbon black - parts 37 37 37 37 process aid - parts 1 1 1 1 antioxidant - parts 0.7 0.7 0.7 0.7 peroxide - parts 0.8 0.8 0.8 0.8 plaque adhesion:
kN/m 2.6 5.1 1.4 5.4 lb per 1/2 inch 7.5 1 14.5 14 15.5 Table - part 5 Example 15 16 17 18 base polymer type EVA 33 EVA 40 EVA 33 EVA 40 base polymer - parts 56.3 56.3 56.3 56.3 additive type AC580 AC580 AC575 AC575 additive - parts 5 5 5 5 carbon black - parts 37 37 37 37 process aid - parts 1 1 1 1 antioxidant - parts 0.7 0.7 0.7 0.7 peroxide - parts 0.8 0.8 0.8 0.8 plaque adhesion:
kN/m 5.8 2.1 5.95 2.8 lb per 1/2 inch 16.5 6 17 8 Table - part 6 Example 19 C D* E*
. base polymer type EVA 33 EVA 33 EVA 50 EVA 40 base polymer - parts 56.3 1 56.3 61.5 62 additive type AC830 500W none none additive - parts 5 5 --- ---carbon black - parts 37 37 136 35.4 process aid - parts 1 1 1 1 antioxidant - parts 0.7 0.7 0.5 0.7 peroxide - parts 0.8 0.8 1 0.09 plaque,adhesion:
kN/m 6.3 1 7.1 1.4 4.2 lb per 1/2 inch 18 20.5 4 12 cable adhesion:
Insulation type EPR XLPE
kN/m l2-3 5-6 lb per 1/2 inch 6-9 ' 15 -18 * Comparison Examples D and E are known compositions for use with insulation of EPR and XLPE respectively - compare with Examples 20 and 21 respectively.

-- -------------- --Table - part 7 Example 20 21 F
base polymer type iEVA 40 EVA 33 EVA 33 base polymer - parts 57.34 57.6 41.5 additive type AC400 1AC400 NBR
additive - parts 4.96 '4.96 20 carbon black - parts 35.71 35.71 process aid - parts 0.69 0.79 1.0 antioxidant - parts 0.7 1 0.5 0.5 peroxide - parts 0.79 10.79 1.0 plaque adhesion:
kN/m 1.4 3.15 1.4 lb per 1/2 inch 4 9 4 cable adhesion:
insulation type EPR XLPE XLPE
kN/m 13.85 5.6 4-5 lb per 1/2 inch i11 16 11 to 15 Table - Part 8 Example 22 23 F
base polymer type ;EMA 35 EMA 35 EMA 35 base polymer - parts 56.3 51.3 60.3 additive type AC 400 AC 400 none additive - parts 5 10 I carbon black - parts 37 37 37 process aid - parts 1 1 1 antioxidant - parts 0.7 0.7 0.7 peroxide - parts 0.8 0.8 0.8 plaque adhesion:
kN/m 3.6 2.9 8.0 lb per 1/2 inch 8 6.5 18 Mixing procedure:

Batches of about 1350.g (3.31b) of each composition were made up using a Farrell model BR Banbury mixer with a capacity of 1.57 1. Half the base polymer and half the adhesion-adjusting additive were first introduced into the cold Banbury and fluxed at its middle speed setting; the processing aid and antioxidant were added together, followed immediately by the carbon bl.ack. The ram was lowered and raised and the remainder of the base polymer and adhesion-adjusting additive were.added and blending continued until the temperature reached 135 C (275 F). The material was discharged and cooled to ambient temperature, and then half of it reintroduced to the cold Banbury, fluxed and the peroxide added, followed immediately by the remainder of the mixture; blending was continued until the temperature reached 110 C (230 F) and the mixture discharged and promptly moulded.

Ingredi en ts :
EVA 33: ethylene-vinyl acetate copolymer, 33o vinyl acetate content, 43 melt index, sold under the Trademark ELVAX
as Elvax 150.

EVA 40: ethylene-vinyl acetate copolymer, 40o vinyl acetate content, 52 melt index, sold under the Trademark ELVAX
as Elvax 40W.

EVA 50: ethylene-vinyl acetate copolymer, 50o vinyl acetate content, 25 Mooney viscosity, sold under the trademark Levapren as Levapren 500.

AC400: ethylene-vinyl acetate copolymer of molecular weight about 2500 Daltons, 13o vinyl acetate _content, 92 C
(198 F) Mettler drop point, sold by Allied Signal under *Trade-mark this designation.

AC405T: ethylene-vinyl acetate copolymer of molecular weight about 2600 Daltons, 6o vinyl acetate content, 102 C
(216 F) Mettler drop point, sold by Allied Signal under this designation.

AC405S: ethylene-vinyl acetate copolymer of molecular weight about 2600 Daltons, 11% vinyl acetate content, 94 C
(201 F) Mettler drop point, sold by Allied Signal under this designation.

AC430: ethylene-vinyl acetate copolymer of molecular weight about 2100 Daltons, 26o vinyl acetate content, 75 C
(167 F) Mettler drop point, sold by Allied Signal under this designation.

AC575: low-molecular weight ethylene-maleic anhydride copolymer, 105 C (201 F) Mettler drop point, sold by Allied Signal under this designation.

AC580: ethylene-acrylic acid copolymer of molecular weight about 1000, 95 C (203 F) Mettler drop point, sold by Allied Signal under this designation.

AC830: low-molecular weight ethylene-carbon monoxide copolymer, 96 C (205 F) Mettler drop point, sold by Allied Signal under this designation.

500W: an ethylene-vinyl acetate copolymer with a vinyl acetate content of about 140, molecular weight about 20,400 Daltons and D.S.C. melting point 87 C, sold by DuPont under this designation.

EMA 35: an ethylene-methyl acrylate of methyl acrylate content 35% by weight and melt index 5, sold under the trademark ATOCHEM as Atochem MA05 carbon black: a low surface area medium structure furnace black with a dibutyl phthalate number about 125.

process aid: stearic acid antioxidant: a polymerised dihydroquinoline antioxidant peroxide: dicumyl peroxide.

Adhesion tests Plaque samples were tested by cutting completely through the thickness of the layer of the experimental shield composition in parallel lines to define a strip 12.5mm (1/2 inch) wide; one end was lifted and turned back 1800 to lie along the surface of the portion still adhered, and the force required to peel at a rate of 0.0085m/s (20in/min) measured; peel strength was calculated in N/m and pounds per 1/2inch.

Cable samples were tested generally in the same way, with the cuts parallel to the cable axis, but the peeling force was applied an measured in a direction at 90 to the surface, instead of 180 . Because of the different preparation and crosslinking routes, as well as this difference in pulling direction, plaque and cable peel strengths are not directly comparable but plaque tests do provide a useful guide in the development process: typically cable peel force will prove to be roughly twice the plaque peel force.

Claims (25)

CLAIMS:
1. A composition of matter comprising:

a base polymer which is a copolymer of ethylene with a mono-unsaturated ester;

conductive carbon black in an amount to give the composition an electrical resistivity below 500 .OMEGA.m; and as an adhesion-adjusting additive, 1-20% by weight of the base polymer of a copolymer which consists essentially of ethylene and a comonomer having in its molecule at least one carbon-oxygen dipole, said copolymer having a molecular weight less than 20,000 Daltons but a Mettler drop point higher than 30°C.
2. A composition as claimed in claim 1 in which said base polymer is an EVA.
3. A composition as claimed in claim 1 in which said base polymer is selected from the group consisting of ethylene-ethyl acrylate copolymers containing relatively small amounts of at least one additional monomer, ethylene-ethyl acrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl acrylate copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl acrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl methacrylate copolymers containing relatively small amounts of at least one additional monomer, and ethylene-methyl methacrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer.
4. A composition as claimed in any one of claims 1-3 having a resistivity in the range from 0.1 to 500 .OMEGA.m.
5. A composition as claimed in any one of claims 1-3 having a resistivity in the range from 5 to 100 .OMEGA.m.
6. A composition as claimed in any one of claims 1-5 in which said adhesion-adjusting additive comprises a comonomer with at least one C-O single-bond (ether) dipole.
7. A composition as claimed in any one of claims 1-6 in which said adhesion-adjusting additive comprises a comonomer with at least one C=O double-bond (carbonyl)dipole.
8. A composition as claimed in any one of claims 1-7 in which said adhesion-adjusting additive comprises a comonomer with at least one -COO- ester dipole.
9. A composition as claimed in any one of claims 1-5 in which the comonomer of said adhesion-adjusting additive is selected from the group consisting of ethyl acetate, ethyl acrylate, methyl-methacrylate, ethyl-methacrylate, maleic anhydride and carbon monoxide.
10. A composition as claimed in any one of claims 1-9 comprising 1 to 20% of said adhesion-adjusting additive.
11. A composition as claimed in claim 2 comprising 2-10% of said EVA as said adhesion-adjusting additive.
12. An electric power cable having at least one conductor, an insulation selected from the group consisting of cross-linked polyethylene and the ethylene copolymer rubbers, a dielectric shield and a surrounding protective layer, said dielectric shield being of a composition comprising:

a base polymer which is a copolymer of ethylene with a mono-unsaturated ester;

conductive carbon black in an amount to give the composition an electrical resistivity below 500 .OMEGA.m; and as an adhesion-adjusting additive, 1-20% by weight of the base polymer of a copolymer which consists essentially of ethylene and a comonomer having in its molecule at least one carbon-oxygen dipole, said copolymer having a molecular weight less than 20,000 Daltons but a Mettler drop point higher than 30°C.
13. A cable as claimed in claim 12 in which said base polymer is an EVA.
14. A cable as claimed in claim 12 in which said base polymer is selected from the group consisting of ethylene-ethyl acrylate copolymers containing relatively small amounts of at least one additional monomer, ethylene-ethyl acrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl acrylate copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl acrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl methacrylate copolymers containing relatively small amounts of at least one additional monomer, and ethylene-methyl methacrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer.
15. A cable as claimed in claim 12 in which the insulation is of crosslinked polyethylene and said adhesion-adjusting additive is an ethylene-vinyl acetate copolymer with a vinyl acetate content of about 33%.
16. A cable as claimed in claim 12 in which the insulation is based on EPR or EPDM and said adhesion-adjusting additive is an EVA with a vinyl acetate content of about 40%.
17. A cable as claimed in claim 12 comprising 1 to about 20% of said adhesion-adjusting additive.
18. A cable as claimed in claim 13 comprising 2-10% of said adhesion-adjusting additive.
19. The use of a copolymer which consists essentially of ethylene and a comonomer having in its molecule at least one carbon-oxygen dipole, said copolymer having a molecular weight less than 20,000 Daltons but a Mettler drop point higher than 30°C, as an adhesion-adjusting additive in strippable shield composition for electric cables comprising a base polymer which is a copolymer of ethylene with a mono-unsaturated ester and a conductive carbon black in an amount to give the composition an electrical resistivity below 500 .OMEGA.m.
20. The use as claimed in claim 19 in which said base polymer is an EVA.
21. The use as claimed in claim 19 in which said base polymer is selected from the group consisting of ethylene-ethyl acrylate copolymers containing relatively small amounts of at least one additional monomer, ethylene-ethyl acrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl acrylate copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl acrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer, ethylene-methyl methacrylate copolymers containing relatively small amounts of at least one additional monomer, and ethylene-methyl methacrylate ternary (or higher order) copolymers containing relatively small amounts of at least one additional monomer.
22. The use as claimed in claim 19 in which said adhesion-adjusting additive is an ethylene-vinyl acetate copolymer with a vinyl acetate content of about 33%.
23. The use as claimed in claim 19 in which said adhesion-adjusting additive is an EVA with a vinyl acetate content of about 40%.
24. The use as claimed in claim 19 wherein the strippable shield composition comprises 1 to about 20% of said adhesion-adjusting additive.
25. The use as claimed in claim 20 wherein the strippable shield composition comprises 2-10% of said adhesion-adjusting additive.
CA002259349A 1996-11-14 1997-11-12 Compositions and electric cables Expired - Fee Related CA2259349C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB9623733.4A GB9623733D0 (en) 1996-11-14 1996-11-14 Compositions and electric cables
GB9623733.4 1996-11-14
GBGB9718345.3A GB9718345D0 (en) 1997-08-30 1997-08-30 Compositions and electric cables
GB9718345.3 1997-08-30
PCT/GB1997/003098 WO1998021278A1 (en) 1996-11-14 1997-11-12 Compositions and electric cables

Publications (2)

Publication Number Publication Date
CA2259349A1 CA2259349A1 (en) 1998-05-22
CA2259349C true CA2259349C (en) 2008-10-14

Family

ID=26310402

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002259349A Expired - Fee Related CA2259349C (en) 1996-11-14 1997-11-12 Compositions and electric cables

Country Status (3)

Country Link
AU (1) AU4956097A (en)
CA (1) CA2259349C (en)
WO (1) WO1998021278A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1292954A1 (en) * 2000-06-21 2003-03-19 Honeywell International, Inc. Ethylene-vinyl acetate copolymer waxes
US6274066B1 (en) * 2000-10-11 2001-08-14 General Cable Technologies Corporation Low adhesion semi-conductive electrical shields
EP2365010B1 (en) * 2010-03-01 2013-01-23 Borealis AG Semiconductive polymer composition comprising polar copolymer
US8287770B2 (en) 2010-03-05 2012-10-16 General Cable Technologies Corporation Semiconducting composition
EP3021390B1 (en) * 2013-07-08 2020-01-22 Sanyo Chemical Industries, Ltd. Dispersant for resin collectors, material for resin collectors, and resin collector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE440709B (en) * 1976-06-10 1985-08-12 Asea Ab IF USING AN EXTENSION MACHINE ON AN INSULATION OF NON-CIRCUIT OR CROSS-POLYTEN PROVIDED CABLES, APPLY A LEADING, REMOVABLE LAYER
JPS60260637A (en) * 1984-06-06 1985-12-23 Fujikura Ltd Semiconducting plastic mixture
JPS6164739A (en) * 1984-09-05 1986-04-03 Nippon Yunikaa Kk Semiconductive resin composition having both bondability and strippability
FI862569A (en) * 1985-06-21 1986-12-22 Nippon Unicar Co Ltd SAMMANSAETTNINGAR BASERADE PAO BLANDNINGAR AV ETYLEN-ETYLAKRYLATKOPOLYMERER OCH ETYLEN-VINYLACETAT -VINYLKLORID-TERPOLYMERER.

Also Published As

Publication number Publication date
WO1998021278A1 (en) 1998-05-22
AU4956097A (en) 1998-06-03
CA2259349A1 (en) 1998-05-22

Similar Documents

Publication Publication Date Title
CA2425491C (en) Low adhesion semi-conductive electrical shields
CA2606503C (en) Improved strippable cable shield compositions
EP0420271B1 (en) Insulated electrical conductors
US4150193A (en) Insulated electrical conductors
CA2524252C (en) Improved strippable cable shield compositions
CA1287420C (en) Stabilized olefin polymer insulating compositions
JP5795778B2 (en) Improved semiconductive composition
EP0179845B1 (en) Insulation composition for cables
CA2536948C (en) Strippable semiconductive shield and compositions therefor
CA2245343C (en) Compositions of matter and electric cables
US6294256B1 (en) Compositions and electric cables
CA2259349C (en) Compositions and electric cables
CA2381799C (en) High performance power cable shield
US4648986A (en) Compositions based on mixtures of ethylene-ethyl acrylate copolymers and ethylene-vinyl acetate-vinyl chloride terpolymers
US6592791B1 (en) Compositions and electric cables
CA1290879C (en) Compositions based on mixtures of ethylene-ethyl acrylate copolymersand ethylene-vinyl acetate-vinyl chloride terpolymers
CA2269419C (en) Tree resistant cable
EP1290700B1 (en) High performance power cable shield
CA1084696A (en) Insulated electrical conductors

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20151112