CA2102587C - A process for the preparation of dinitrotoluene - Google Patents

A process for the preparation of dinitrotoluene Download PDF

Info

Publication number
CA2102587C
CA2102587C CA002102587A CA2102587A CA2102587C CA 2102587 C CA2102587 C CA 2102587C CA 002102587 A CA002102587 A CA 002102587A CA 2102587 A CA2102587 A CA 2102587A CA 2102587 C CA2102587 C CA 2102587C
Authority
CA
Canada
Prior art keywords
weight
acid
phase
temperature
dinitrotoluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002102587A
Other languages
French (fr)
Other versions
CA2102587A1 (en
Inventor
Thomas Schieb
Gerhard Wiechers
Rudolf Sundermann
Uwe Zarnack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4238390A external-priority patent/DE4238390A1/en
Priority claimed from DE4309140A external-priority patent/DE4309140C2/en
Application filed by Bayer AG filed Critical Bayer AG
Publication of CA2102587A1 publication Critical patent/CA2102587A1/en
Application granted granted Critical
Publication of CA2102587C publication Critical patent/CA2102587C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/16Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/06Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A continuous process for the preparation of isomeric mixtures of dinitrotoluene by a single stage nitration of toluene under adiabatic conditions. The reaction enthalpy is used for the removal by distillation of the water of reaction formed during nitration. In this process, toluene is reacted with a nitrating acid having from about 80 to about 100% by weight of an inorganic component having a specified composition and from about 0 to about 20% by weight of an organic component having a specified composition.

Description

-.
2102$7 Mo-3977 A PROCESS FOR THE PREPARATION OF DINITROTOLUENE
BACKGROUND OF THE INVENTION
The present invention relates to a process for the preparation of dinitro-toluene by a single stage nitration of toluene with nitrating acid under adiabatic conditions.
It is known that aromatic compounds can be converted into the corresponding nitroaromatic compounds by nitration with mixtures of sulfuric acid and nitric acid, also known as nitrating acid (See, e.g., Muspratt and Hofmann, Liebi s Ann. Chem. 57, 201 (1846).
On a large scale, nitration reactions have been and often still are carried out isothermally (i.e., the heat of reaction is removed at the site of its production (stirrer vessel, loop reactor, etc.) by a cooling agent). This also applies to the large scale production of dinitrotoluene. Dinitrotoluene is generally produced in two stages under isothermal conditions (See, e.g., Ullman, Encyclopadie der technischen Chemie, fourth edition, Volume 17, p.392).
The main disadvantage of this known procedure is that a large amount of energy is required both for maintaining the isothermal reaction conditions (cooling) and for the subsequent removal of the water of reaction from the acid phase by distillation (heating up).
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a new process for the dinitration of toluene in which the heat of the reaction (enthalpy) is used to remove the water of reaction from the acid phase produced during the nitration process.
It is also an object of the present invention to provide an energy efficient, continuous process for the production of dinitrotoluene under adiabatic conditions.
These and other objects which will be apparent to those skilled in the LeA 29 406-US

2L02j8~
art are accomplished by reacting toluene with a nitrating acid having a specified composition under adiabatic conditions, continuously removing some of the reactive mixture at a temperature of at least 120°C, separating the recovered reaction mixture into an upper product phase and a lower acid phase, working up the product phase to recover dinitrotoluene, removing water from the lower acid phase by flash evaporation, adding from 50 to 100% by weight nitric acid to the lower acid phase, and recycling the acid phase.
DETAILED DESCRIPTION OF THE INVENTION
The nitration of aromatic compounds under adiabatic reaction conditions has been disclosed in numerous prior Patent Specifications.
See, e.g., U.S. Patents 3,928,475; 4,021,498; 4,091,042; and 4,453,027;
and EP-A-O 436 443. Each of these prior art processes, however, is used only for mononitration. Toluene is not mentioned in any of the examples given in these disclosures as the aromatic compound to be nitrated. This is probably due to the fact that dinitration requires considerably more drastic reaction conditions (the use of at least equivalent quantities of nitrating acid and higher reaction temperatures) than mononitration. The formation of large quantities of unwanted by-products would be expected, regardless of the nature of the aromatic compound to be nitrated. The readily oxidizable methyl group of toluene would not be expected to survive the drastic conditions of dinitration.
It has now been found that dinitration of aromatic compounds, including the dinitration of toluene, can be carried out satisfactorily under the adiabatic reaction conditions described below.
The present invention is directed to a process for the continuous preparation of isomeric mixtures of dinitrotoluene by the nitration of toluene.
In this process, toluene is reacted with nitrating acid in a single stage under adiabatic conditions in a continuously operating reactor. The nitrating acid Mo3977 ~io~~8~
is made up of (i) from about 80 to about 100% by weight of an inorganic component and (ii) from 0 to about 20% by weight of an organic component.
The inorganic component is substantially composed of from about 60 to about 90% by weight of sulfuric acid, from about 1 to about 20% by weight of nitric acid and at least 5% by weight of water. The organic component is composed of from about 70 to about 100% by weight of dinitrotoluene isomers and from about 0 to about 30% by weight of by-products. The molar ratio of nitric acid to toluene is maintained at a level of at least 2:1.
The reaction mixture leaves the reactor continuously at a temperature of at least 120°C and is then separated into an upper product phase and a lower acid phase. The product phase is worked up in known manner to recover the product dinitrotoluene. At least 10% by weight of the water is removed from the acid phase by distillation (flash evaporation), optionally with concomitant supply of heat. The acid phase is then returned to the beginning of the process after the addition of from about 50 to about 100%
by weight nitric acid.
The nitrating acid used in the process of the present invention is made up of (i) from about 80 to about 100% by weight of an inorganic component composed substantially of from about 60 to about 90% by weight, preferably from about 65 to about 85% by weight, of sulfuric acid, from about 1 to about 20% by weight, preferably from about 1 to about 15% by weight, of nitric acid, and at least 5% by weight, preferably not less than 10% by weight, of water; and (ii) from about 0 to about 20% by weight of an organic component composed of from about 70 to about 100% by weight of dinitrotoluene isomers and from about 0 to about 30%
by weight of organic by-products. When nitrating acids having a nitric acid content of from about 5 to about 20 % by weight are used, the inlet temperature is preferably below 100°C. When nitrating acids having a nitric acid content of from 1 to 15 % are used, the inlet temperature is Mo3977 ~~o~~s~
preferably above 100°C.
The organic by-products which may be present in the organic component of the nitrating acid include: mononitrotoluenes, trinitrotoluene, cresols and carboxylic acids. These by-products do not interfere with the course of the continuous reaction cycle because they are oxidized to dinitrotoluene in a later cycle (mononitrotoluene), discharged when the product is washed under alkaline conditions (acids, cresols), oxidized to carbon dioxide and water or left in the product in trace amounts(trinitrotoluene).
At the beginning of the process, the nitrating acid is generally made up entirely of the inorganic component. However, because the process is a continuous process in which the inorganic acid phase containing organic components of the above-mentioned type is returned to the beginning of the process after the addition of nitric acid, the nitrating acid which is mixed with the toluene to be nitrated contains organic components of the above-mentioned type. While the process is in circulation, the nitrating acid produced from circulating acid and fresh nitric acid is preferably made up of from about 80 to about 99.9% by weight of inorganic component (i) and from about 0.1 to about 20% by weight of organic component (ii).
In the process of the present invention, the nitrating acid is continuously mixed with the toluene to be nitrated. The proportion of these components corresponds to a molar ratio of nitric acid to toluene of at least 2:1, preferably from 2:1 to 2.2:1.
Before mixing the nitrating acid and toluene, the temperature of the starting materials is preferably raised to a temperature selected on the basis of the nitric acid content of the nitrating acid. The temperature of the reactants may be raised to a temperature below 100°C, more preferably below 80°C when the nitrating acid contains from about 5 to Mo3977 about 20% by weight of nitric acid. The temperature of the reactants may be raised above 100°C, preferably above 120°C, when the nitrating acid contains from about 1 to about 15% by weight of nitric acid.
Any reactor in which back mixing can be substantially prevented in a continuous operation is suitable in principle for carrying out the process of the present invention. Tubular reactors, for example, are suitable for this purpose. Tubular reactors made of high grade steel, tantalum, enamelled steel or glass are particularly preferred.
Any of the known mixing apparatus such as stirrers, rotor-stator systems, mixing pumps, nozzles and static mixers may be used to mix the starting materials.
There is generally no removal of heat during the nitration of the present invention (adiabatic conditions). The reaction mixture leaving the reactor after a sufficient residence time for complete reaction of the toluene put into the process, is generally at a temperature of at least 120°C, preferably from about 140 to about 220°C. The outlet temperature of the product mixture is at least 10°C above the inlet temperature of the starting materials. External cooling may, in some cases, be used to prevent the temperature from rising too high.
After the hot reaction mixture has left the reactor it is subjected to phase separation. The mixture is separated into a product phase (upper phase) and an acid phase (lower phase).
After the product phase has been worked up by any of the known procedures (e.g., washing out the traces of acid adhering to the product), the product recovered is substantially (i.e., generally at least 98% by weight) isomeric dinitrotoluene containing less than 7% by weight, preferably less than 6% by weight, of ortho-isomers. The product has a ratio by weight of 2,4-dinitrotoluene to 2,6-dinitrotoluene of 80 ~ 2 : 20 ~
2.
The amount of mononitrotoluene in the product is less Mo3977Ca °

~° 2~ 0587 than 2,000 ppm (by weight). Trinitrotoluene is present in less than 2,000 ppm (by weight).
In a preferred embodiment of the present invention, the product is crystallized rather than worked up by other known methods (e.g., washing out traces of adhering acid).
The hot acid phase obtained from phase separation is freed from at least 10% of the water by evaporation under vacuum, optionally with concomitant supply of heat. The remaining acid phase is then mixed with from about 50 to about 100% by weight, preferably from about 60 to about 70% by weight nitric acid, so that a nitrating acid having the composition indicated above is again obtained and returned to the beginning of the process.
The invention is explained in more detail in the following examples. All percentages given in these Examples are percentages by weight.
EXAMPLES
Example 1 113.4 g/h (1.233 mol/h) of toluene and 1445.9 glh of nitrating acid having the composition 73.6 : 11.6 : 14:8 (parts by weight of H2S04:
HN03: H20), corresponding to a molar ratio of nitric acid to toluene of 2.16:1, were continuously pumped from two separate dosing pumps at 40°C (temperature of the starting materials) into a reactor which was designed so that back mixing would not occur. The reactor used for this purpose was a 20m long reaction tube of high grade steel having an internal diameter of 0.6 mm. The components were mixed immediately before their entry into the reactor. The residence time in the reactor was about 20 seconds. The reaction product, which had been obtained under adiabatic conditions and was at a temperature of about 160°C, was Mo3977 zloz~s~
immediately subjected to phase separation.
The upper, product phase was worked up in known manner (washing with water, washing with soda, 2 x washing with water). The yield of isolated product was 170.9 g/h (76.2%). Another 52.0 glh (23.2%) of product of nitration was obtained by extracting the aqueous acid phase with toluene. The combined products of nitration contained 76% 2,4-dinitrotoluene, 19% 2,6-dinitrotoluene and less than 4.5% o-dinitrotoluenes. The amount of mononitrotoluenes and of trinitrotoluene was in each case less than 1000 ppm (by weight).
Example 2 140.3 glh (1.52 mol/h) of toluene and 3552.5 glh of nitrating acid having the composition 76.9:5.8:17.3 (parts by weight of HZS04 : HN03 H2 O), corresponding to a molar ratio of nitric acid to toluene of 2.15 : 1, were continuously pumped into a reactor in which no backmixing could occur from two dosing pumps at 120°C (temperature of starting materials). The reactor used was a reaction tube of high grade steel m in length and 0.99 mm in internal diameter. The components were mixed immediately before their entry into the reactor. The residence time 20 in the reactor was about 20 seconds. The reaction product obtained under adiabatic conditions, which was at a temperature of about 165°C, was immediately subjected to phase separation.
The upper, product phase was worked up in known manner (washing with water, washing with soda, 2 x washing with water). The yield of isolated product was 140.3 g/h (50.6 %). Another 134.5 glh (48.5 %) of product of nitration was obtained by extraction of the aqueous acid phase with toluene. The combined products of nitration contained 74.8% 2,4-dinitrotoluene, 18.7% 2,6-dinitrotoluene and less than 5.6% o-dinitrotoluenes. The amount of mononitrotoluenes and of Mo3977 ~10~58'~
_8_ trinitrotoluene present was in each case less than 1000 ppm (weight).
Example 3 72.6 g/h (0.788 mol/h) of toluene and 3681.3 g/h of nitrating acid having the composition 78.5 : 2.9 : 18.6 parts by weight H2S04 : HN03 : H20 (corresponding to a molar ratio of nitric acid to toluene of 2.15 : 1 ) were continuously pumped into a reactor in which no backmixing could occur from two separate dosing pumps at 140°C
(temperature of the starting materials). The reactor used was a reaction tube of high grade steel 20 m in length and 0.99 mm in internal diameter.
The components were mixed immediately before their entry into the reactor. The residence time in the reactor was about 20 seconds. The reaction product obtained under adiabatic conditions, which was at a temperature of 152°C, was immediately subjected to phase separation.
The upper, product phase was worked up in known manner (washing with water, washing with soda, 2 x washing with water). The yield of isolated product was 142.4 glh {99.2 %). The amount of mononitrotoluenes and of trinitrotoluene present was in each case less than 1000 ppm (weight).
The waste acids obtained were concentrated and used again after replenishment with fresh nitric acid.
Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention, except as it may be limited by the claims.
Mo3977

Claims (5)

1. A single stage, continuous process for the production of isomeric mixtures of dinitrotoluene comprising a) reacting (1) toluene with (2) a nitrating acid composed of (i) from about 80 to about 100% by weight of an inorganic component made up of A) from about 60 to about 90% by weight of sulfuric acid B) from about 1 to about 20% by weight of nitric acid, and C) at least 5% by weight of water, and (ii) from about 0 to about 20% by weight of an organic component containing A) from about 70 to about 100% by weight of dinitrotoluene isomers, and B) from about 0 to about 30% by weight of by-products under adiabatic conditions and in amounts such that the molar ratio of nitric acid to toluene is maintained at a level of at least 2:1, b) continuously removing reaction mixture from the reactor at a temperature of at least 120°C, c) separating the reaction mixture removed in b) into an upper product phase and a lower acid phase, d) working up the product phase separated in c), to recover dinitrotoluene, e) removing at least 10% of water present in the acid phase separated in c) by flash evaporation, f) adding from about 50 to about 100% by weight of nitric acid to the acid phase from e) and g) returning the acid phase of f) to a).
2. The process of Claim 1 in which the starting materials are at a temperature below 100°C before being subjected to step a) and the nitrating acid comprises from about 5 to about 20% by weight of nitric acid.
3. The process of Claim 1 in which the starting materials are at a temperature >=100°C before being subjected to step a) and the nitrating acid comprises from about 1 to about 15% by weight of nitric acid.
4. The process of Claim 1 in which the reaction mixture leaving the reactor in step b) is at a temperature above 120°C, which temperature is at least 10°C higher than the temperature of the starting materials before they have been subjected to step a).
5. The process of Claim 1 in which the product phase is worked up by crystallization in step d).
CA002102587A 1992-11-13 1993-11-09 A process for the preparation of dinitrotoluene Expired - Fee Related CA2102587C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4238390A DE4238390A1 (en) 1992-11-13 1992-11-13 Continuous prepn. of di:nitrotoluene isomer mixts. under mild adiabatic reaction conditions
DEP4238390.0 1992-11-13
DEP4309140.7 1993-03-22
DE4309140A DE4309140C2 (en) 1993-03-22 1993-03-22 Process for the production of dinitrotoluene

Publications (2)

Publication Number Publication Date
CA2102587A1 CA2102587A1 (en) 1994-05-14
CA2102587C true CA2102587C (en) 2004-09-14

Family

ID=25920435

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002102587A Expired - Fee Related CA2102587C (en) 1992-11-13 1993-11-09 A process for the preparation of dinitrotoluene

Country Status (10)

Country Link
EP (1) EP0597361B1 (en)
JP (1) JP3461878B2 (en)
KR (1) KR100326214B1 (en)
CN (1) CN1040427C (en)
BR (1) BR9304716A (en)
CA (1) CA2102587C (en)
DE (1) DE59303857D1 (en)
ES (1) ES2091539T3 (en)
MX (1) MX9306835A (en)
TW (1) TW236610B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4428460A1 (en) * 1994-08-11 1996-02-15 Bayer Ag Process for the production of nitro aromatics
DE4428462A1 (en) * 1994-08-11 1996-02-15 Bayer Ag Process for the production of dinitrotoluene
DE4428459A1 (en) * 1994-08-11 1996-02-15 Bayer Ag Process for the production of dinitrotoluene
DE4428461A1 (en) * 1994-08-11 1996-02-15 Bayer Ag Process for the production of dinitrotoluene
DE4437047A1 (en) * 1994-10-17 1996-04-18 Bayer Ag Process for the dinitration of aromatic compounds
DE19521614A1 (en) * 1995-06-14 1996-12-19 Bayer Ag Process for the production of dinitrotoluene
DE19745119A1 (en) * 1997-10-13 1999-04-15 Bayer Ag Process for the production of dinitrotoluene in an adiabatic procedure
DE10307140A1 (en) * 2003-02-20 2004-09-09 Bayer Ag Two-stage nitration of toluene to produce dinitrotoluene has an adiabatic and then an isothermal stage so as to give heat savings and improve safety
US7122701B2 (en) * 2003-06-04 2006-10-17 Bayer Aktiengesellschaft Process for preparing aromatic amines
DE10345601A1 (en) * 2003-09-29 2005-05-12 Basf Ag Process for removing nitro cresols from mononitrotoluene wastewater and for further use of the extract
DE102004005913A1 (en) 2004-02-05 2005-08-25 Basf Ag Process for the preparation of dinitrotoluene
EP2158180B1 (en) * 2007-06-27 2014-08-13 H R D Corporation System and process for production of nitrobenzene
CN101445458B (en) * 2009-01-06 2010-10-06 烟台巨力异氰酸酯有限公司 Dinitrotoluene phase disengagement method
DE102010006984A1 (en) * 2010-02-05 2011-08-11 Bayer MaterialScience AG, 51373 Process for the continuous production of nitrobenzene
KR20140037139A (en) 2011-05-24 2014-03-26 바스프 에스이 Process for preparing polyisocyanates from biomass
US8933262B2 (en) 2011-05-24 2015-01-13 Basf Se Process for preparing polyisocyanates from biomass
DE102017110084B4 (en) 2017-02-03 2019-07-04 Josef Meissner Gmbh & Co. Kg Process and plant for the adiabatic nitration of aromatics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2256999A (en) * 1939-03-08 1941-09-23 Du Pont Nitration of organic compounds
FR1372978A (en) * 1963-10-31 1964-09-18 Du Pont Continuous production of m-dinitrobenzene
US3928475A (en) * 1974-08-09 1975-12-23 Du Pont Azeotropic nitration of benzene
US4021498A (en) * 1975-12-09 1977-05-03 American Cyanamid Company Adiabatic process for nitration of nitratable aromatic compounds
US4091042A (en) * 1977-08-19 1978-05-23 American Cyanamid Company Continuous adiabatic process for the mononitration of benzene
JPS5850211B2 (en) * 1978-08-30 1983-11-09 三井東圧化学株式会社 Method for producing dinitrotoluene
US5099078A (en) * 1990-12-21 1992-03-24 Olin Corporation Process for preparing dinitrotoluene

Also Published As

Publication number Publication date
KR940011433A (en) 1994-06-21
MX9306835A (en) 1995-01-31
JPH07309814A (en) 1995-11-28
DE59303857D1 (en) 1996-10-24
EP0597361A1 (en) 1994-05-18
CN1040427C (en) 1998-10-28
BR9304716A (en) 1994-11-01
JP3461878B2 (en) 2003-10-27
KR100326214B1 (en) 2002-11-18
MX186144B (en) 1997-09-26
ES2091539T3 (en) 1996-11-01
CA2102587A1 (en) 1994-05-14
TW236610B (en) 1994-12-21
EP0597361B1 (en) 1996-09-18
CN1095707A (en) 1994-11-30

Similar Documents

Publication Publication Date Title
CA2102587C (en) A process for the preparation of dinitrotoluene
US7495136B2 (en) Process for the production of dinitrotoluene
US5345012A (en) Process for the preparation of dinitrotoluene
KR101151068B1 (en) Method for producing dinitrotoluene
US4496782A (en) Nitric acid recovery by the adiabatic nitration of nitroaromatics with fortified spent acid
CA2142257C (en) Process for the adiabatic preparation of mononitrotoluenes
US4621157A (en) Nitration processes
US5057632A (en) Process for preparing dinitrotoluene
EP0468968A4 (en) Process for the production of dinitrotoluene using an inorganic salt as a phase separation agent
US5099078A (en) Process for preparing dinitrotoluene
JP4257890B2 (en) Continuous isothermal production method of mononitrotoluene
US5395995A (en) Process for the preparation and purification of nitroaromatics
US5245092A (en) Process for preparing dinitrotoluene with low by-product content
US3975452A (en) Reprocessing of final acid from nitroglycerine production
US3799993A (en) Process for the manufacture of trinitrotoluene
US3742072A (en) Nitration of toluene and nitrotoluenes to form tnt
EP0169441B1 (en) Production of dinitrotoluene
WO1989012620A1 (en) Process for the production of dinitrotoluene or mononitrobenzene
PL205526B1 (en) Continuous isothermal method of obtaining mononitrololuenes in presence of phosphoric acid
USRE33168E (en) Nitration processes
EP0649400A1 (en) Process for the production of dinitrotoluene

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed