CA2046344C - Arrangement for processing sensor signals - Google Patents

Arrangement for processing sensor signals Download PDF

Info

Publication number
CA2046344C
CA2046344C CA002046344A CA2046344A CA2046344C CA 2046344 C CA2046344 C CA 2046344C CA 002046344 A CA002046344 A CA 002046344A CA 2046344 A CA2046344 A CA 2046344A CA 2046344 C CA2046344 C CA 2046344C
Authority
CA
Canada
Prior art keywords
measuring
capacitor
operational amplifier
sensor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002046344A
Other languages
French (fr)
Other versions
CA2046344A1 (en
Inventor
Georg Schneider
Richard Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of CA2046344A1 publication Critical patent/CA2046344A1/en
Application granted granted Critical
Publication of CA2046344C publication Critical patent/CA2046344C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

The arrangement serves for the processing of sensor signals which are furnished by a capacitive sensor which includes a measuring capacitor having a measuring capacitance influenceable by a physical measured quantity to be determined and at least one reference capacitor having a reference capacitance influenceable in another manner and furnishing a measuring effect dependent on the measuring capacitance and the reference capacitance. The arrangement comprises a signal processing circuit which operates by the principle of quantized charge transport by means of switch-capacitor structures and charge balancing at least in time average and which receives the sensor signals representing the measuring effect and furnishes an output signal corresponding to the measuring effect. The first electrodes of the capacitors of the sensor are at a fixed potential and their second electrodes are connectable for performing the charge transport to the first input of an input operational amplifier, the second input of which lies at a reference potential. The reverse charging of the capacitors of the sensor necessary for forming the transported charge packets is effected by switching over the reference potential of the input operational amplifier. This permits a one-sided fixed binding of the sensor capacitors to any desired potential.

Description

E~H 158 CA
July 16, 1991 Arrangement far Processing Sensor Signals The invention consists in an arrangement for processing sensor signals furnished by a capacitive sensor which includes a measuring capacitance influenceable by a physical measured quantity to be determined and at least one refer'snce capacitor having a reference capacitance infl.u~nceable in another manner and furnishing a measuring effect dependent on_said measuring capacitance and said reference capacitance, comprising a signal processing circuit which operates by the principle of quantized charge transport by means of switch-capacitor structures and charge balancing at least in time average and which receives said sensor signals representing said measuring effect and furnishes an output signal corresponding to said measuring effect, wherein first electrodes of said capacitors of said sensor lie at a fixed potential and second electrodes of them for performing said charge transport are connectable to a first input of an input operational amplifier, a second input of which lies at a reference potential, and wherein a reverse charging of said capacitors of said sensor necessary for forming transported charge packets is effected by switching over said reference potential of said input operational amplifier.
In the periodical "IEEE Transactions on Instrumentation and Measurement", Dec. 1987, pp. 873 to 878, an arrangement for processing sensor signals furnished by a capacitive sensor is described which includes a measuring capacitance influenceable z~~s~~~
by a physical measured quantity to be determined and at least one reference capacitor having a reference capacitance influenceable in another manner and furnishing a measuring effect dependent on said measuring capacitance and said reference capacitance, comprising a signal processing circuit which operates by the principle of quantized charge transport by means of switch-capacitor structures and charge balancing at least in time average and which receives said sensor signals representing said measuring effect and furnishes an output signal corresponding to said measuring effect.
Signal processing by the principle of quantized charge transport by means of switch-capacitor structures and charge balancing has the advantages that offset voltages of the operational amplifiers used have no influence on the output signal, that the circuits are completely integrable in CMOS
technology and that no accurate long-term reference voltage is necessary. Furthermore, from the clock pulses with which the switch-capacitor structures are controlled for performing the charge transports two clock signals can be derived, the frequency or pulse ratio of which is directly proportional to the measuring effect so that the measurement result is available in digital form.
In this pre-described circuit, one electrode of each of the capacitors of the sensor or an electrode common to them is connected by the signal line leading to the signal processing circuit to an input of an operational amplifier, the other input of which lies at a fixed reference potential, for example ground potential. By periodically actuated switches the voltages which are necessary for reverse charging in order to produce the charge packets to be transported, are applied to the other electrodes of the sensor capacitors.

A disadvantage of this pre-described arrangement is that all said electrodes are active. The function can, therefore, be disturbed if charges are coupled onto the electrodes connected to the signal line by external electric fields. Shieldings necessary to suppress such charge couplings restrict the construction and use possibilities and consequently cannot always be applied.
An object of the invention is to provide an arrangement which whilst retaining the advantages of the signal processing by the principle of quantized charge transport by means of switch-capacitor structures and charge balancing permits a one-sided fixed connection of said capacitors to any desired potential.
In the arrangement according to the invention use is made of the fact that the two inputs of an operational amplifier, except for the offset voltage, lie virtually at the same potential. By switching over the reference potential of the input operational amplifier the potential of the respective capacitor electrode connected to the other input is therefore changed in the same manner. In this way the voltage changes necessary for reverse charging of the sensor capacitors can be executed at the capacitor electrodes connected to the signal line so that only said electrodes are active. In contrast, the other electrodes, which are always inactive, can be applied to any desired potential which may for example be the housing potential of a corresponding sensor. The only condition for this potential is that it must be stable in the short-time range relatively to the supply signal used for the signal processing.
Advantageous embodiments of further developments of the invention are characterized in the subsidiary claims.

Further features and advantages of the invention will be apparent from the following description of examples of embodiment which are illustrated in the Figures of the drawing.
Fig. 1 shows a fundamental scheme for explaining the problem underlying the invention, Fig. 2 shows a sectional view of a capacitive sensor, Fig. 3 shows the circuit diagram of a first embodiment of a signal processing circuit working with quantized charge transport by means of switch-capacitor structures and charge balancing and furnishing a frequency as output signal, Fig. 4 shows time diacjramms of signals occuring in the signal processing circuit of Fig. 3 during its operation, Fig. 5 shows the circuit diagram of a second embodiment of a signal processing circuit working with quantized charge transport by means of switch-capacitor structures and charge balancing and furnishing an analog output signal, and Fig. 6 shows time diagramms of signals occuring in the signal processing circuit of Fig. 5 during its operation.

~fl~~~3t~~
(o improve understanding, in Fig. 1 the principle of the processing of sensor signals on which the invention is based is shown. Fig. 1 shows a capacitive sensor 1 with the aid of which a physical quantity G is to be measured and a signal processing circuit 2 connected to the sensor 1. The sensor 1 contains a measuring capacitor the capacity of which is variable in dependence upon the physical quantity to be measured. A supply signal source 3 furnishes to the sensor 1 a supply signal V which makes it possible to convert the change of the measuring capacitance to an electrical sensor signal which is supplied to the signal processing circuit 2 and expresses the measuring effect M representing the relationship of the physical quantity G to be measured and the measuring capacitance. The signal processing circuit 2 converts the sensor signal to an output signal S of the desired form which is preferably related to a reference signal Sref' Depending on the construction of the signal processing circuit 2, the output signal S may for example be an analog signal, a digital signal or a frequency.
If it is assumed for example that the physical quantity G to be measured is a pressure the capacitive pressure sensor 10 illustrated in sectional view in Fig. 2 may be used for the sensor 1. The pressure sensor 10 has a base body 11 and a diaphragm 12 which are connected together at the periphery by a spacer ring 13. The face of the diaphragm 12 facing the base body 11 is provided with a metallization 14 which is connected to a connection conductor 15 led through the spacer ring 13 and the base body 11. The face of the base body 11 facing the diaphragm 12 carries a central circular metallization 16 which is connected to a connection conductor 17 led through the base body 11 and an annular metallization 18 surrounding the metallization 16 and connected to a connection or terminal conductor 19 led through the base body 11.
2~~~~r~~

When a pressure P acts on the outer surface of the diaphragm 12 the latter is deformed so that the distance between the centre region of the metallization 14 and the opposite central metallization 16 varies in dependence upon said prossure. The two metallizations 14 and 16 therefore form the electrades of a measuring capacitor having a capacitance Cx which depends on the pressure P and can be measured between the connection conductors 15 and 17. In contrast, the distance between the edge region of the metallization 14 and the opposite annular electrode 18 remains substantially unchanged during the pressure-dependent deformation of the diaphragm 12 because said distance is fixed by the spacer ring 13. The two metallizations 14 and 18 therefore form the electrode of a reference capacitor having a capacitance Cref which is independent of the pressure P and can be measured between the connection conductors 15 and 19.
The measuring effect M dependent on the pressure and used in the signal processing circuit 2 for generating the output signal S/Sref is therefore in such a capacitive pressure sensor the change of the measuring capacitance Cx relatively to the reference capacitance Cref' Depending on the particular use, the measuring effect can be differently represented. For example, the measuring effect M1 can correspond to the capacitance ratio Cx/Cref between the measuring capacitance and the reference capacitance but preferably the capacitance ratio (Cx - Cref~~Cref is used because by forming the difference larger relative changes are obtained. A further possibility would be the capacitance ratio (Cx - Cref~/Cx' Df course, the pressure-dependent measuring capacitance Cx may be used as measuring effect on its own but the quotient formation has the advantage that the measuring effect remains largely unaffected by disturbing influences acting in the same manner on the two capacitances Cx and Cref' Fig, 3 shows an example of embodiment of the signal processing circuit of Fig. 1 for the signal processing of the sensor signal furnished by a capacitive sensor 20. The sensor 20 includes a measuring capacitor 21 of capacitance Cx and a reference capacitor 22 of capacitance Cref. An electrode.24 is common to the measuring capacitor 21 and the reference capacitor 22. The measuring capacitor 21 is formed by an electrode 26 cooperating with the common electrode 24 and the reference capacitor 22 is formed by an electrode 28 cooperating with the common electrode 24. The capacitive sensor 20 may for example have the structure illustrated in Fig. 2, the electrodes 24, 26, 28 of Fig. 3 then corresponding to the metallizations 14, 16 and 18 respectively of Fig. 2. The measuring effect M
of interest is the capacitance ratio (Cx - Cref,~Cref' The common electrode 24 is connected via its connection conductor 25, corresponding to the connection conductor 15 of Fig. 2, to a fixed potential which may for example be the housing potential of the sensor 20. The sensor 20 is thus potential-bound on one side. In Fig. 3 the potential at the connection conductor 25 differs by a fixed voltage U1 from the potential of a reference conductor 30; the voltage U1 corresponds to the supply signal V of Fig. 1.
The electrodes 26, 28 are connected via shielded signal lines 27, 29 corresponding to the connection conductors 17 and 19 of Fig. 2 to a function block 31 of the signal processing circuit.
The function block 31 contains two switch groups 32 and 33.
The function block further includes a voltage divider 34 having three series-connected resistors 35, 36, 37 to which the voltage U1 existing between the connection conductor 25 and the reference conductor 30 is applied. The voltage divider 34 has a first tap 38 between the resistors 35 and 36 and a second tap 39 between the resistors 36 and 37. When the voltage U1 is present at the voltage divider 34 the voltage U2 is present between the tap 38 and the reference conductor 30 and the voltage U3 between the tap 39 and the reference conductor 30.

~0~~~~~~:

The function block 31 is followed by a buffer 40 including an operational amplifier A1, a storage capacitor 41 of capacitance Cs and two switches S1 and S2. When the switch S1 is closed it connects the output of the operational amplifier A1 to the noninverting input thereof. When the switch S2 is closed it connects the output of the operational amplifier A1 to the one electrode of the storage capacitor 41, the other electrode of which is connected to the inverting input of the operational amplifier A1 so that the storage capacitor 41 then lies in the feedback circuit of the operational amplifier A1. The reference potential of the operational amplifier A1 present at the non-inverting input differs from the potential of the reference conductor 30 by a voltage U4. The potential at the inverting input differs from the reference potential of the noninverting input by the offset voltage U01 of the operational amplifier A1. .
Between the inverting input of the operational amplifier A1 and the reference conductor 30 there is a parasitic capacitance Cp represented in Fig. 3 by a capacitor symbol.
The switch group 32 includes four switches S3, S4, S5. S6~
When the switch S3 is closed it connects the electrode 26 of the measuring capacitor 21 to the inverting input of the operational amplifier A1 and when the switch S4 is closed it connects the electrode 26 of the measuring capacitor 21 to the reference potential at the noninverting input of the operational amplifier A1. When the switch S5 is closed it connects the electrode 28 of the reference capacitor 22 to the inverting input of the operational amplifier A1 and when the switch S6 is closed it applies the electrode 28 of the reference capacitor 22 to the reference potential at the noninverting input of the operational amplifier A1.

The switch group 33 contains two switches S~ and S8. When the switch S~ is closed it connects the noninverting input of the operational amplifier A1 to the tap 38 of the voltage divider 34 so that the voltage U4 present at the noninverting input of the operational amplifier A1 is formed by the voltage U2. When the switch S8 is closed it connects the noninverting input of the operational amplifier Al to the tap 39 of the voltage divider so that the voltage U4 present at the noninverting input of the operational amplifier A1 is formed by the voltage U3.
The buffer 40 is followed by an integrator 42. The integrator 42 includes an operational amplifier A2, an integration capacitor 43 of capacitance C1 lying in the feedback circuit of the operational amplifier A2 and a switch S9. When the switch S9 is closed it connects the inverting input of the operational amplifier A2 to the storage capacitor 41 in the buffer 40. The noninverting input of the operational amplifier A2 is applied to ground.
The potential at the inverting input differs from the ground potential of the noninverting input by the offset voltage U02 of the operational amplifier A2. Between the output of the operational amplifier A2 and the reference conductor 30 the output voltage UA2 appears.
A comparator 45 following the integrator 42 includes an operational amplifier A3 which is connected in known manner as threshold value comparator in that its feedback circuit is open. The inverting input of the operational amplifier A3 is connected to the output of the operational amplifier A2 in the integrator 42 and a threshold voltage US is applied to the noninverting input of the operational amplifier A3 with respect to the reference conductor 30. The offset voltage U03 is present between the two inputs of the operational amplifier A3. In accordance with the known function of such a threshold i value comparator the output voltage UA3 of the operational amplifier A3 has a low value when the voltage UA2 lies above the threshold voltage US and it assumos a high value when the voltage UA2 drops below the threshold voltage US.
The switches S1 to S9 are actuated by control signals. which are furnished by a control circuit 46 which is synchronized by a clock signal furnished by a clock generator 47. For simplification, the control signals are denoted by the same reference numerals S1, S2, ... S9 as the switches controlled by them. The time profile of the control signals is shown in the diagrams of Fig. 4. Each switch Si, S2 ... S9 is open when the signal controlling it has the low signal value and is closed when the signal controlling it has the_high signal value.
The switches S1, S2 ... S9 are represented symbolically as mechanical switch contacts but in reality of course they are highspeed electronic switches, for example field-effect transistors.
The control circuit 46 has a control input which is connected to the output of the operational ampl~.fier A3 in the comparator 45. Furthermore, the control circuit 46 has an output to which a measuring cycle counter 48 is connected and a further output to which a compensation cycle counter 49 is connected.
The circuit illustrated in Fig. 3 operates on the principle of charge balancing. In consecutive cycles, controlled by the switches S1 to S8 charge packets are applied to the capacitors 21 and 22 of the sensor 20, said packets depending on the voltages U2, U3 a.nd on the capacitances Cx, Cref of said capacitors. The maximum magnitude of the charge packets within the circuit for given capacitance values of the sensor 20 is defined by the voltage divider 34. The charge packets are buffered in the storage capacitor 41 and by closing of the ~o4s~~~~

switch S9 transferred to the integration capacitor 43 in which they are summated. The voltage UA2 corresponds to the voltage at the integration capacitor 43 which in turn depends on the charge integrated on the integration capacitor. The sequence of the circuit is controlled so that for Cx > Cref the voltage UA2 becomes progressively smaller. If the voltage UA2 drops below the predetermined threshold voltage US of the comparator 45 the output voltage UA3 of the latter flips to its maximum value, the control circuit 46 thereby being caused to perform a compensation cycle. In the compensation cycle the switches S1 to S8 are controlled in such a manner that on the next closing of the switch S9 a compensation packet is transferred to the integration capacitor 43 which is substantially proportional to the capacitance Cref of the reference capacitor 22 with a sign such that the voltage UA2 is again raised above the threshold voltage US. As a result, charge balancing takes place in the integration capacitor 43 because on a time average the sum of all the integrated charge packets is equal to zero. This equilibrium is always present at the instants in which the voltage UA2 drops below the threshold voltage US of the comparator 45.
The sequence of the function described generally above will now be explained in detail with the aid of the diagrams of Fig. 4. Apart from the already mentioned time profile of the switch control signals S1 to Sg the diagrams of Fig. 4 also show the time profile of the voltages U4, UA2 and UA3 and of the voltage Ups at the storage capacitor 41 in several cycles, one of which is a compensation cycle K. The other cycles, which are not compensation cycles, are referred to as measuring cycles M. Each cycle consists of six phases numbered 1 to 6.
The switches S1 and S2 are controlled by a periodic square-wave signal in antiphase relationship so that the switch S1 is open when the switch S2 is closed and vice-versa. In each 2~4~~~~

cycle the switch S1 is closed during the phases 1-2 and 4-5 and open during the phases 3 and 6. When the switch S1 is closed and the switch S2 is open the capacitors 21 and 22 of the sensor 20 lying in the input circuit of the operational amplifier A1 can be connected by the switches S3 and S5, respectively, to the voltage present at the inverting input of the operational amplifier A1 and correspondingly charged without thereby influencing the charge in the storage capacitor 41. This state is referred to as "conditioning phase".
The switches S7 and S8 are likewise controlled by a periodic square-wave signal in antiphase relationship so that the switch S7 is open when the switch S8 is closed and vice-versa.
When the switch S7 is closed and the switch S8 is open the voltage U4 is equal to the voltage U2; when the switch S~ is closed and the switch S7 is open the voltage U4 is equal to the voltage U3. Thereat U2 > U3. The measuring and compensation charge packets are generated substantially by these abrupt changes in the voltage U4.
The switch Ss is actuated in each case synchronously with the switch S3 and the switch S4 is actuated synchronously with the switch S5, except for the compensation cycles. The purpose of the switches S4 and Ss is to apply the respective inactive signal line 27 or 29 of the sensor 20 to a potential which differs from the potential of the active signal line only by the offset voltage U01 of the operational amplifier A1. As a result, the coupling of erroneous charges via the respective inactive sensor capacitor 21 or 22 and the signal line 27 or 29 thereof to the active signal line is avoided. This function is presumed in the following description; the respective positions of the switches S4 and S6 will therefore not be separately mentioned.
Hereinafter the time sequence of the operation of the signal processing circuit will be described first for a measuring cycle M and then for a compensation cycle K.

20~~~t~j~
1. Measuring cycle M
Phase 1:
At the start of phase 1 of each measuring cycle M the charge applied in the preceding cycle is still present on the storage capacitors. The switches S1 and SS are closed whilst at the same time the switch S2 is opened. As a result the storage capacitor is separated from the output of the operational amplifier A1 and connected to the input of the integrator 42 so that a charge transfer takes place from the storage capacitor 41 to the integration capacitor 43. Furthermore, in phase 1 the switch S~ is open and the switch S8 closed so that the voltage U4 at the noninverting input of the operational amplifier A1 is formed by the voltage U3. After the discharge of the storage capacitor 41 the impressed voltage UCs - U02 U3 U01 (1) is present at said storage capacitor 41. Thus, on the storage capacitor 41 there is the residual charge QCs(R) - (U02 U3 U01) ~ Cs (2) The reverse charge amount flows to the integration capacitor 43. In all further phases 2 to 5 of each cycle the switch S9 is open so that in these phases no reverse charging can take place from the storage capacitor 41 to the integration capacitor 43.
Furthermore, in phase 1 the switch S3 is closed so that the measuring capacitor 21 is connected to the inverting input of the operational amplifier A1. Since at the same time the switch S1 is closed and the switch S2 open, the circuit is in the conditioning phase for the measuring capacitor 21. The measuring capacitor 21 is charged with U4 = U3 to the charge QCx(1) _ (U01 + U3 _ U1) (3) (conditioned) without thereby influencing the charge on the storage capacitor 41.
Phase 2:
In phase 2 the switch S3 is opened whilst the switch S5 remains open so that the two capacitors 21 and 22 of the sensor 20 are separated from the inputs of the operational amplifier A1. At the same time the switch S~ is closed and the switch S8 opened so that the voltage U4 jumps from the value U3 to the value U2. The parasitic capacitance Cp is correspondingly reverse charged. Since the swatch S1 is still closed and the switch S2 open, the entire charge necessary for reverse charging the parasitic capacitance Cp is furnished by the output of the operational amplifier A1. The charges on the storage capacitor 41 and on the integration capacitor 43 remain uninfluenced by this reverse charging.
Phase 3:
In phase 3 the switch S1 is open and the switch S2 closed so that the buffer 40 is ready for the transfer of charge to the storage capacitor 41. At the same time the switch S3 is closed again so that the measuring capacitor 21 is connected to the inverting input of the operational amplifier A1 and reverse charged to the charge qCx(3) _ (U01 + U2 - U1) (4) The reverse charge amount dQCx (3) = QCx (3) QCx (1) - (U2 U3) ~ Cx ( 5) flows to the storage capacitor 41.

2~~~~~~
Phase 4:
Phase 4 is the conditioning phase for the reference capacitor 22 because the switch S1 is closed and the switch S2 is open and at the same time the switch S5 is closed so that the reference capacitor 22 is connected to the inverting input of the operational amplifier A1. Since the switch S~ is still closed and the switch S8 open, the voltage U4 has the value U2. The reference capacitor 22 is thus charged (conditioned) to the charge OCref(4) - (U01 + U2 U1) ~ Cref without the charge on the storage capacitor 41 being influenced thereby.
Phase 5:
The switch S5 is opened so that the reference capacitor 22 is separated from the inverting input of the operational amplifier A1. The switch S~ is opened and the switch S8 closed so that the voltage U4 jumps from the value U2 to the value U3 and the parasitic capacitance Cp is correspondingly reverse charged. Since the switch S1 is still closed and the switch S2 open, the entire charge necessary for reverse charging the parasitic capacitance Cp is furnished by the output of the operational amplifier A1 without the charges on the storage capacitor 41 and on the integration capacitor 43 being influenced thereby.
Phase 6:
In phase 6 the switch S1 is open and the switch S2 closed so that the buffer 40 is ready for the transfer of charge to the storage capacitor 41. At the same time the switch S5 is again closed so that the reference capacitor 22 is connected to the inverting input of the operational amplifier A1 and is reverse charged to the charge aCref(6) - (U01 ~ U3 U1) The reverse charge amount dQCref (6) - QCref (6) aCref (4) - (U2 U3) ~ Cref flows to the storage capacitor 41.
This completes the measuring cycle M. At the end of the measuring cycle M the storage capacitor 41 contains the resultant charge QCs = QCs(R) + dQCx(3) + dWCref(6) (9) - qCs (R) + (U2 U3) ~ (Cx Cref) In phase 1 of the following cycle the storage capacitor 41 is again discharged to the residual charge WCs(R) according to the equation (2), the reverse charge amount dQM = QCs(R) qCs - (U2 U3)~ (Cx Cref) (10) being transferred to the integration capacitor 43. The reverse charge amount dQM is referred to as measuring charge packet.
With Cx > Cref and U2 > U3, the measuring charge packet dQM is negative so that is causes a negative voltage jump in the voltage UA2.
The phases 1 to 6 of each measuring cycle M are cyclically repeated until the voltage UAZ drops below the threshold voltage US of the comparator 45 and the level of the voltage UA3 changes from a low to a high value. The control circuit 46 is thereby caused to perform a compensation cycle K.

~O~b~~~~
2. Compensation cycle K
The sequence for a compensation cycle K is identical to the sequence of the measuring cycles M except for the difference that~the switch S3 remains open and the switch S4 remains closed all the time. As a result, during the entire compensation cycle K no charge flows from the measuring capacitor 22 into the storage capacitor 41. Accordingly, instead of equation (5) we have dQCx(3) - ~ (11) if equations (11) and (8) are inserted into equation (9), this gives as resultant charge in the storage capacitor 41 at the end of the compensation cycle K:
QCs - QCs(R) + dQCx(3) + dQCref(6) (12) - QCs(R) (U2 - U3) ~ Cref In phase 1 of the following cycle the storage capacitor 41 is again discharged to the residual charge QCs(R) according to equation (2), the reverse charge amount dQK - QCs (R) QCs - fi(U2 U3) ~ Cref (13) being transferred to the integration capacitor 43. The reverse charge amount dQK is referred to as compensation charge packet. With U2 > U3 the compensation charge packet dQK is positive so that it causes a positive voltage jump in the voltage UA2. The positive voltage jump results in the voltage UA2 again being raised above the threshold voltage US so that the level of the voltage UA3 again goes from the high value to the low value. This causes the control circuit 46 to perform measuring cycles M again, the compensation cycle K thereby being completed.

20463~~~
Charge balance Equations (10) and (13) describe the measuring charge packets dQM and the compensation charge packets dQK respectively. The measuring method operates by the process of charge balancing, i.e. a charge equilibrium arises in the integration capacitor 43. The charge equilibrium in a time average is always present at the instants when the voltage drops below the threshold voltage US. If the charge state of the integration capacitor 43 is considered, then a predetermined number of measuring charge packets dQM is integrated until the voltage drops below the threshold voltage US; the integrated measuring charge packets are then compensated by a compensation charge packet dQK and the process starts again.
On each execution of a measuring cycle M the control circuit 46 supplies a pulse to the counting input of the measuring cycle counter 48 and on each execution of a compensation cycle a pulse to the counting input of the compensation cycle counter 49. If a time interval in which the measuring cycle counter 48 has counted a..~total of n measuring cycles M and the compensation cycle counter 49 a total of k compensation cycles K is considered, due to the charge balancing the following must be true:
n~dQM + k~dQK = 0 (14) -n' (UZ - U3) ~ (Cx Cref) + k~ (U2 - U3) ' Cref = 0 (15) Thus, the desired capacitance ratio is obtained directly from the ratio of the pulses counted in the counters 48 and 49 in the time interval considered:
k Cx ~ Cref a _ (16) n Cref 20463~~4 The same result is obtained if the ratio of the repetition frequencies of the pulse trains supplied to the two counters 48 and 49 is formed.
The capacitance values of the capacitors 41 and 43, the offset voltages of the operational amplifiers, the reference potential U1 of the sensor 20, the operating voltage of the circuit and the frequency with which the control circuit 46 is clocked, do not enter into the measurement result, as is apparent from equation (16).
The value of the voltage U1 is limited only by the working range of the circuit.
In Fig. 3 the shields of the signal lines 27 and 29 are connected to the line leading from the switch group 33 to the noninverting input of the operational amplifier A1. The potential of the shields is thereby made to follow up the changing reference potential of the input operational amplifier and thus always substantially corresponds to the potential of the shielded conductors. This step also contributes to avoiding error charges being coupled onto the active signal line.
Fig. 5 shows a second embodiment of the signal processing circuit 2 according to Fig. 1 for the signal processing of the sensor signal furnished by the capacitive sensor 20. The signal processing circuit according to Fig. 5 differs from that of Fig. 3 by the following features: The comparator 45 and the counters 48, 49 are not present, but the other circuit parts of Fig. 3 bearing the same reference numerals are present. A
further difference consists in the presence of a third switch group 50 consisting of the switches S10, S11-~~L.~~~3~~.~
The terminal of the voltage divider 34 not facing the reference conductor 30 is connected either via the switch S10 to the output of the integrator 42 or via the switch S11 to the connection conductor 25. The switches S11, S12 the control signals of which are also generated by the control circuit 46 are never closed at the same time. Furthermore, they are open -lii;,e the switches 51...59 - when the control signal has its low level and they are closed when the control signal has its high level. Again the control signals of the switches 511, S12 are denoted by the same reference numerals as the switches themselves. They are realized by means of fast electronic switches as already mentioned above.
The circuit of Fig. 5 operates like that of Fig. 3 according to the principle of charge balance. Again controlled by the switches S1...S8 charge packets are transferred to the capacitors 21, 22 of the sensor 20 during consecuting cycles.
The charge packets are depending on the voltages U1, U3 and on the capacitances Cx, Cref of these capacitors. The maximum value of the charge packets of a given circuit and given capac-itances of the sensor 20 is defined by the voltage divider 34.
The charge packets are buffered in the storage capacitor 41 and by closing of the switch S9 transferred to the integration capacitor 43 in which they are summated. The voltage UA2 corresponds to the voltage at the integration capacitor 43 which in turn depends on the charge integrated thereon.
The sequence of the common function of Fig. 5 just described will now be explained only so far as it deviates from the function of Fig. 3 and its diagramms of Fig. 4. Apart from the time profile of the switch control signals Sl...sll the Fig. 6 shows also the time profile of the voltages U4, UA2 and of the voltage UCs at the storage capacitor 41 in several cycles, each second of which is a compensation cycle K. The other cycles, which are not compensation cycles, are again referred to 2040~1~~

measuring cycles M. The alternate sequence of the cycle types of Fig. 6 is only an example; an optional number of compens-ation cycles can rather follow to an optional number of measuring cycles. Each cycle consists of six phases numbered again by 1 to 6.
Controlling of the switches S1...S8 and the functions thereby generated are equal to those of the switches 51...58 of Fig.3.
In contrary to Fig. 3 the switch S9 is open during each com-pensation cycle. Therefore, charge is transferred to the integration capacitor 43 only during phase 1 of the measuring cycles M.
Furthermore, switch S11 is closed during the measuring cycles M
as well as during phase 1 of the compensation cycles. There-fore, at these moments the terminal of the voltage divider 34 not facing the reference conductor 30 lies at the connection conductor 25 and at the fixed voltage U1.
In this phase the following equation holds:
U2 U3 - U1~R36~~R35 + R36 + R37~ Ul~vR (17) In the phases 2 to 6 of the compensation cycles K switch S11 is open and switch S10 is closed. Therefore, the voltage divi-der 34 is connected to the output of the integrator 42 and the analog output voltage UA2 of the operational amplifier A2 lies at the voltage divider 34.
In these phases the following equation holds:
U2 - U3 - UA2~R36~~R35 + R36 + R37~ - UA2~vR ~18~

2U~6~~4 2z The reference numerals R35, R36, R37 of equations (17), (18) designate the resistances of the resistors 35, 36, 37 of the voltage divider 34.
The equations (15), (16) holding for optional numbers n, k of cycles change, therefore, to:
-n'U1°VR°(Cx Cref) + k~UA2~vR~Cref - 0 (19) (kin)°(UA~~U1) ° (Cx - Cref)~Cref (20)

Claims (14)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. Arrangement for processing sensor signals furnished by a capacitive sensor which includes a measuring capacitor having a measuring capacitance influenceable by a physical measured quantity to be determined and at least one reference capacitor having a reference capacitance which is substantially unaffected by said physical measured quantity and which includes an operational amplifier, which furnishes a measuring effect dependent on said measuring capacitance and said reference capacitance, comprising a signal processing circuit which operates by the principle of quantized charge transport by means of switch-capacitor structures and charge balancing at least in time average and which receives said sensor signals representing said measuring effect and furnishes an output signal corresponding to said measuring effect, wherein first electrodes of said measuring capacitor and said reference capacitor of said sensor lie at a fixed potential and second electrodes of said measuring capacitor and said reference capacitor for performing said charge transport are selectively coupled through a selected portion of the switch-capacitor structures to a first input of the operational amplifier, a second input of which lies at a reference potential, and wherein a reverse charging of said measuring capacitor and said reference capacitor of said sensor necessary for forming transported charge packets is effected by switching over said reference potential of said second input of said operational amplifier between different voltage levels.
2. Arrangement according to claim 1, wherein one of said second electrodes of said measuring capacitor and said reference capacitor not connected to one of said inputs of said operational amplifier for performing said charge transport is switched to said reference potential of said operational amplifier.
3. Arrangement according to claim 1, wherein to eliminate a parasitic capacitance in a connection leading to said first input of said operational amplifier, said measuring capacitor and said reference capacitor of said sensor are separated from said operational amplifier during the switching over of said reference potential.
4. Arrangement according to claim 1, wherein between said sensor and said operational amplifier a function block is inserted which contains a first group of periodically actuated switches which selectively connect said second electrodes of said measuring capacitor and said reference capacitor to said first input of said operational amplifier or to said reference potential of said operational amplifier, and said function block includes a second group of periodically actuated switches which alternately apply a first or a second voltage to said second input of said operational amplifier for switching said reference potential over.
5. Arrangement according to claim 1, wherein signal lines leading from said second electrodes of said measuring capacitor and said reference capacitor to said first input of said operational amplifier are shielded and a potential of a shield of said signal lines is caused to follow up a reference of said operational amplifier.
6. Arrangement according to claim 4, wherein said function block contains a voltage divider at which said voltages serving for generating measuring charge packets are tapped and which is adjusted for matching said measuring charge packets to a working range of said single processing circuit.
7. Arrangement according to claim 6 delivering an analog output signal, wherein in order to generate compensation charge packets, a terminal of said voltage divider not connected to a reference conductor is coupled via a first switch of a third group of switches to an output of an integrator, and in order to generate said measuring charge packets said terminal of said voltage divider is coupled via a second switch of said third group of switches to a fixed potential.
8. An apparatus for processing sensor signals furnished by a capacitive sensor which includes a measuring capacitor having a first electrode and a second electrode for providing a measuring capacitance influenceable by a physical measured quantity to be determined and at least one reference capacitor having a first electrode and a second electrode for providing a reference capacitance which is substantially unaffected by said physical measured quantity and which furnishes a measuring effect dependent on said measuring capacitance and said reference capacitance, the apparatus comprising a signal processing circuit which operates by the principle of quantized charge transport by means of switch-capacitor structures and charge balancing at least in time average and which receives said sensor signals representing said measuring effect and furnishes an output signal corresponding to said measuring effect, the first electrodes of said measuring capacitor and said reference capacitor of said sensor being coupled to a fixed potential, and wherein the second electrodes of said measuring capacitor and said reference capacitor for performing said charge transport are selectively coupled through a selected portion of the switch-capacitor structures to a first input of an operational amplifier in the signal processing circuit, a second input of the operational amplifier being coupled to the reference potential, and wherein a reverse charging of said measuring capacitor and said reference capacitor of said sensor necessary for forming transported charge packets is effected by selectively switching over said reference potential of said second input of said operational amplifier between different voltage levels.
9. The apparatus of claim 8, wherein one of said second electrodes of said measuring capacitor and said reference capacitor not connected to one of the first and second inputs of said operational amplifier for performing said charge transport is switched to said reference potential of said operational amplifier.
10. The apparatus of claim 8, wherein to eliminate a parasitic capacitance in a connection leading to said first input of said operational amplifier, said measuring capacitor and said reference capacitor of said sensor are separated from said operational amplifier during the switching over of said reference potential.
11. The apparatus of claim 8, wherein signal lines leading from said second electrodes of said measuring capacitor and said reference capacitor to said first input of said operational amplifier are shielded and a potential of a shield of said single lines is caused to follow up a reference of said operational amplifier.
12. The apparatus of claim 8, wherein a function block is coupled between said sensor and said operational amplifier the function block including a first group of periodically actuated switches which selectively connect said second electrodes of said measuring capacitor and said reference capacitor to said first input of said operational amplifier or to said reference potential of said operational amplifier, and said function block including a second group of periodically actuated switches which alternately apply a first or a second voltage to said second input of said operational amplifier for switching said reference potential over.
13. The apparatus of claim 12, wherein said function block contains a voltage divider at which said voltages serving for generating measuring charge packets are tapped and which is adjusted for matching said measuring charge packets to a working range of said single processing circuit.
14. The apparatus of claim 13, delivering an analog output signal, wherein in order to generate compensation charge packets, a terminal of said voltage divider not connected to a reference conductor is coupled via a first switch of a third group of switches to an output of an integrator, and in order to generate said measuring charge packets said terminal of said voltage divider is coupled via a second switch of said third group of switches to a fixed potential.
CA002046344A 1989-12-20 1990-12-11 Arrangement for processing sensor signals Expired - Fee Related CA2046344C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DEP3942159.7 1989-12-20
DE19893942159 DE3942159A1 (en) 1989-12-20 1989-12-20 ARRANGEMENT FOR PROCESSING SENSOR SIGNALS
PCT/EP1990/002124 WO1991009278A1 (en) 1989-12-20 1990-12-11 Arrangement for processing sensor signals

Publications (2)

Publication Number Publication Date
CA2046344A1 CA2046344A1 (en) 1991-06-21
CA2046344C true CA2046344C (en) 2000-03-07

Family

ID=6395937

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002046344A Expired - Fee Related CA2046344C (en) 1989-12-20 1990-12-11 Arrangement for processing sensor signals

Country Status (8)

Country Link
EP (1) EP0458931B1 (en)
JP (1) JP2515456B2 (en)
CA (1) CA2046344C (en)
DE (2) DE3942159A1 (en)
DK (1) DK0458931T3 (en)
ES (1) ES2051584T3 (en)
IE (1) IE904484A1 (en)
WO (1) WO1991009278A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133426A1 (en) * 1991-10-09 1993-04-15 Bosch Gmbh Robert Capacitive sensor circuit providing measurement and function test - has dual mode operation with bridge measurement and separate test voltage for checking functional performance via reference capacitor
FR2682768A1 (en) * 1991-10-21 1993-04-23 Otic Fischer & Porter METHODS OF CONVERTING IMPEDANCE REPORTS APPLICABLE TO MEASURING DEVICES, IN PARTICULAR TO INDUSTRIAL PRESSURE TRANSMITTERS, AND THEIR IMPLEMENTING DEVICES.
DE4225113C2 (en) * 1992-07-30 1995-05-04 Erhardt & Leimer Gmbh Device for monitoring a running web
DE4227052C1 (en) * 1992-08-13 1994-03-10 Schmidt Werner Dr Non-contact capacitive sensor for scanning of labels on carrier - processes frequency-modulated signal by demodulator with post-controlled carrier reference frequency, amplifier, low=pass filter, and voltage-controlled filter which outputs both to trigger, and to peak detector in feedback circuit
DE4237196C1 (en) * 1992-11-04 1994-02-10 Vega Grieshaber Gmbh & Co Method and arrangement for measuring at least one capacitance
DE4434338C2 (en) * 1994-09-26 1996-12-19 Siemens Ag Readout circuit for a capacitive sensor
DE19744152A1 (en) * 1997-10-07 1999-04-29 Ifm Electronic Gmbh Circuit arrangement for detecting the capacitance or a change in capacitance of a capacitive circuit or component
DE19711215C1 (en) * 1997-03-18 1998-05-07 Heidenhain Gmbh Dr Johannes Method of switching between different output signal types of position measuring device
DE19833210C2 (en) * 1998-07-23 2000-06-21 Siemens Ag Amplifier circuit for measuring capacitance
DE19833211C2 (en) 1998-07-23 2000-05-31 Siemens Ag Method for determining very small capacities and use
JP3588276B2 (en) * 1999-07-26 2004-11-10 株式会社山武 Sensor signal processing circuit
JP2003028607A (en) 2001-07-12 2003-01-29 Sony Corp Capacitance detector and fingerprint collation apparatus using the same
EP1830182A1 (en) * 2006-02-22 2007-09-05 Glaverbel Laminated glazing
EP2228628B1 (en) * 2009-03-10 2011-09-28 EM Microelectronic-Marin SA Electronic circuit with a capacitive sensor for measuring a physical parameter, and method for activating the electronic circuit
DE102009057439B4 (en) * 2009-10-27 2012-09-27 Gerd Reime Device and method for error-free capacitive measured value acquisition
JP5680677B2 (en) * 2010-02-02 2015-03-04 エム ケー エス インストルメンツインコーポレーテッドMks Instruments,Incorporated Capacitive pressure sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039940A (en) * 1976-07-30 1977-08-02 General Electric Company Capacitance sensor
US4128985A (en) * 1977-10-31 1978-12-12 Package Machinery Company Control system for package making machine
DE3125927A1 (en) * 1981-07-01 1983-01-20 Herbert Dipl.-Ing. 6240 Königstein Niedecker METHOD FOR FILLING AND SEALING SAUSAGES

Also Published As

Publication number Publication date
JPH04503713A (en) 1992-07-02
DE3942159A1 (en) 1991-06-27
CA2046344A1 (en) 1991-06-21
JP2515456B2 (en) 1996-07-10
WO1991009278A1 (en) 1991-06-27
ES2051584T3 (en) 1994-06-16
EP0458931A1 (en) 1991-12-04
EP0458931B1 (en) 1994-04-27
DK0458931T3 (en) 1994-07-25
DE59005540D1 (en) 1994-06-01
IE904484A1 (en) 1991-07-03

Similar Documents

Publication Publication Date Title
US5451940A (en) Capacitive sensor signal processing arrangement using switch capacitor structures
CA2046344C (en) Arrangement for processing sensor signals
US4743836A (en) Capacitive circuit for measuring a parameter having a linear output voltage
US4806846A (en) High accuracy direct reading capacitance-to-voltage converter
US10338022B2 (en) Sensor circuit and method for measuring a physical or chemical quantity
US5159335A (en) Switched capacitance automatic meter reading device
US4149231A (en) Capacitance-to-voltage transformation circuit
US5585756A (en) Gated integrator with signal baseline subtraction
CA2133685C (en) Method and apparatus for feedback-control of an asymmetric differential pressure transducer
US4206401A (en) Length measuring system
US6940292B2 (en) Circuit configuration for a capacitive sensor
US4604584A (en) Switched capacitor precision difference amplifier
CN106598370A (en) Touch detection circuit and touch device thereof
US6684711B2 (en) Three-phase excitation circuit for compensated capacitor industrial process control transmitters
JPH0718900B2 (en) Method and apparatus for measuring resistance ratio in resistance half bridge
CA2042396C (en) Arrangement for processing sensor signals
EP0322802B1 (en) Watthour meter or wattmeter comprising hall sensors
JPS5921509B2 (en) Electrostatic meter
US4031533A (en) Differential floating dual slope converter
IE904150A1 (en) Arrangement for processing sensor signals
GB2167195A (en) Buffer circuit with differential structure for measurement of capacitive charges
US5019783A (en) Precision transducer circuit and linearization method
EP3296709B1 (en) Temperature-to-digital converter
Watanabe et al. A switched-capacitor digital capacitance bridge
JPS60178368A (en) Method and device for converting measured current into pulse rate proportional to said current

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed