CA2002599A1 - Process for the electrochemical iodination of aromatic compounds - Google Patents

Process for the electrochemical iodination of aromatic compounds

Info

Publication number
CA2002599A1
CA2002599A1 CA002002599A CA2002599A CA2002599A1 CA 2002599 A1 CA2002599 A1 CA 2002599A1 CA 002002599 A CA002002599 A CA 002002599A CA 2002599 A CA2002599 A CA 2002599A CA 2002599 A1 CA2002599 A1 CA 2002599A1
Authority
CA
Canada
Prior art keywords
cathode
electrolyte
solvent
anode
diiodobenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002002599A
Other languages
French (fr)
Inventor
Michael R. Cushman
Carl M. Lentz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Chemical Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of CA2002599A1 publication Critical patent/CA2002599A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/27Halogenation

Abstract

ABSTRACT OF THE DISCLOSURE

The present invention discloses a process for the anodic electrochemical iodination of aromatic compounds to selectively and efficiently form a para-substituted iodobenzene. This process makes use of a graphitic carbon anode. Also disclosed is a process for cathodically deiodinating a diiodobenzene compound to form iodobenzene in the presence of a palladium on carbon catalyst.

Description

PROCESS FOR THE ELECTROCHEMICAL
IODINATION OF AROMATIC COMPOUNDS

Field of Invention The present invention relates to the electrochemical iodination of aromatic compounds to selectlvely and efflciently form a para-substituted iodobenzene derivative.

Back~round of the Invention Iodoaromatics are desirable materials because of the wide variety of transformations they can undergo. For example, they can be catalytically ; carbonylated to form aromatic carboxylic acids and esters. Iodoaromatics are therefore possible starting materials for polycarbonates,~polyamides, polysulfides, and polyesters. The halogenation with i molecular''halogen is one of the classic reactions of : ! aromatic substitution and has been thoroughly investigated owing to its'theoretical as well as synthetic value (H. P. Braendlin and E. T. McBee in ; ' Friedel-Crafts and Related'Reactions ed. G. A. Olan, Wiley, New York, 1964, Volume 3, Ch. 46.) The electrophilicity of molecular chlorine and bromine allo~s~thé~direct reactlon ~of these halogens with arenes. ~The diréct iodination of aromatic substrates with molecular iodine has~`proven difficult and needs the presènce of an activator to be successfully carried out except for a~"few~special cases. The most widely employed strategy consists of the use of a powerful oxidant in order to produce a strongly electrophilic species (A.-Shlmizu,~K. Yamataka, and T. Isoya,-Bull. Chem. Soc.~-JaP., 58, 1611 (1985) and references ci~ed therein.").; Other approaches have I included polarizing I2 with a Lewis acid, t ' ~ ~

(S. Uemura, A. Onoe, and M. Okano Bull. Chem. Soc.
JaP., 47(1), 147 (1974); T. Sugita, M. Idei, Y. Ishibashi, and Y. Takegami, Chem. Lett., 1481 (1982)), thallation followed by reaction with iodide ion, (A. McKillop, et al., J. Am. Chem. Soc., 93, 4841 (1971)), chloro mercuration followed by reaction with iodine, (L. F. Fieser and M. Fieser Rea~ents for Or~anic Smthesis, Wiley, New York, 1967, p 497), and diazonium salt reaction with iodide ion.
(N. I. Foster, N. D. Heindell, H. D. Burns, and W. Muhr, Smthesis, 572 (1980)). All of these procedures have deficiencies.
The electrochemical iodination of aromatics has been reported. (L. L. Miller, E. P. Kujawa, and C. B. Campbell, J. Am. Chem. Soc., 92, 2821 (1970);
R. Lines and U. D. Parker Acta Chem. Scand., Ser B, 34, 48 (1980)). Parker and co-workers found that the anodic oxidation of iodine in trifluoroacetic acid containing solvents produces a highly reactive iodine species. However, the selectivity of the system toward the desirable para disubstituted isomers was poor. (R. Lines and U. D. Parker Acta Chem. Scand., Ser B, 34, 48 (1980)). It would be desirable to have an electrolytic process that will afford high reactivity as well as high selectivity to the highly desirable para-disubstituted arenes.

SummarY of the Invention The present process is an electrolytic process that provides selective and efficient formation of a para-substituted iodobenzene derivative. This process makes use of a graphitic carbon anode. More specifically, the present invention is directed to an electrolytic process for the formation of a 20025i99 para-substituted iodobenzene derivative comprising contacting:
an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises:
an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises solvent and an electrolyte;
and a cathode compartment comprising a cathode and a catholyte solution which comprises solvent and an electrolyte;
wherein said anode compartment and cathode compartment are separated by a separator, with an iodine source, and a mono-substituted compound of the formula:
.~ \.
!\R

wherein R is alkyl, halo, unsubstituted aryl, or aryl substituted with up to 5 electron-donating groups such as hydroxyl, thiol, -SR', -OR', wherein R' is a Cl-C6 alkyl, or phenyl, and applying to the anode and the cathode an electric potential; the proportions of materials, electrical potential, and other conditions being effective to form a para-substituted iodobenzene derivative in said anode compartment.
This process for the formation of a para-substituted iodobenzene derivative shall be referred to herein as "Process I."
In a preferred process of the invention benzene is used as a starting material to form iodobenzene followed by the further iodination of the _ 4 _ iodobenzene. Therefore, the present invention also encompasses an electrolytic process for preparing iodobenzene comprising contacting:
an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises:
an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises a solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and an electrolyte; wherein said anode compartment and cathode compartment are separated by a separator, with an iodine source, and benzene, and applying to the anode and the cathode an electric potential; the proportion of materials, electric potential, and other conditions being effective to form iodobenzene.
This process for preparing iodobenzene shall be referred to herein as "Process II."
In carrying out the present invention, it was found that a diiodobenzene could conveniently be deiodinated cathodically, in the presence of a palladium on carbon catalyst, to iodobenzene, which facilitates a continuously run operation. Therefore, the present invention is also directed to an 30 electrolytic process for preparing iodobenzene comprising contacting a catholyte solution of a divided electrolytic cell wherein said divided electrolytic cell comprises an anode compartment comprising an anode and an anolyte solution which comprises a solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution S which comprises a solvent and an electrolyte;
wherein said anode compartment and cathode compartment are separated by a separator, with a diiodobenzene compound of the formula I~.,i!

in the presence of a catalytic amount of palladium on carbon, and applying to the anode and cathode an electric potential; the proportion of materials, electric potential, and other conditions being sufficie~nt to form iodobenzene.
This cathodic deiodination process shall be referred to herein as "Process III."
As used herein, the term "halo" refers to chloro, bromo, fluoro or iodo; the term "alkyl"
refers to Cl to C16 straight, branched or cyclic alkyls; and the term "aryl" refers to aryls containing six to 14 carbon atoms.

Detailed DescriPtion of the Invention ~ Any of Process I, Process II, or Process III can be carried out batchwise; however, for most industrial applications, it is preferred to perform these processes continuously. Therefore, it is preferred to couple Process I with Process II and/or Process III. A preferred process of the present invention is a continuous process in which Process I
is performed simultaneously with Process III. This preferred process can be described as a continuous Z00259!3 electrolytic process for the formation of para-diiodobenzene comprising:
(A) contacting an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises:
an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises a solvent and an electrolyte, and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and an electrolytet wherein said anode compartment and cathode compartment are separated by a separator, and wherein said catholyte solution and said anolyte solution are the same and comprise a tetrafluoroborate electrolyte and an acetonitrile solvent;
with an iodine source, and iodobenzene, and applying to the anode and the cathode an electric potential; the proportions of materials, electric potential, and other conditions being effective to form para-diiodobenzene, (B) filtering the anolyte solution containing para-diiodobenzene formed in Step (A) to obtain a solid which comprises para-diiodobenzene and a filtrate which comprises an electrolyte, a solvent and at least one diiodobenzene compound of the formula:

.~ \./

(C~ adding the filtrate from Step (B) to said cathode compartment, (D) deiodinating the diiodobenzene compound in the cathode compartment from Step (C) to form iodobenzene by applying to the anode and cathode an electric potential, wherein the catholyte solution and diiodobenzene compound are in the presence of a catalytic amount of palladium on carbon; the proportions of materials, electric potential, and other conditions being suficient ~o form iodobenzene; and (E) recycling the iodobenzene formed by Step (D) as a starting material for Step (A).
When Process I is coupled with Process II, it is preferred that such process be performed consecutively in the same electrolytic cell. As a result, the iodobenzene formed from Process II is used as a starting material for Process I.
In any of the processes of the present invention it is preferred that the electric potential applied to the anode and cathode is about 1.5 to about 2.5 volts, more preferred is about 2 volts.
It is preferred that the processes of the present invention are performed at a temperature of about 25 to about 100C, more preferred is about 25 to about 50C; and at a pressure of about 1 atmosphere (atm) to about 10 atm, more preferred is about 1-2 atms.
If one or more processes of the pre~ent invention is run as a batch process, typically the electric potential is applied for a period of time of about 1 to about 25 hours, preferred is about 2 to about 8 hours.
If desired, additives such as CF3CO2H, (Et)4NBF4, or trisbromophenyl amine can be added to the reaction medium in the processes of the present invention; however, the presence of such additives are not necessary. If one or more additives are used, they are typically present in a concentration of up to about 10 percent, based on solvent weight.
In the processes of the present invention, the cathode compartment and anode compartment are separated by a separator such as a membrane, fritted glass, and the like. Preferably this separator is a membrane. A preferred membrane is a Nafion membrane.
For Process I, the nature of the anode is important. It has been found that the anode must be comprised of graphitic carbon in order for the iodination process to be sufficiently effective. The graphitic anode can be comprised of spectral grade graphite or can be any other suitable graphite electrode.
The nature of the, cathode for any of the processes of the invention, is not particularly critical. The cathode can be comprised of platinum, carbon, copper, lead, tin, palladium, stainless cteel, or combinations thereof. However, since Process III must proceed in the presence of palladium or carbon, it is convenient for the cathode in Process III to be comprised of palladium on carbon.
The solvents and electrolyte in the cathode and anode compartments for any of the processes of the present invention can be the same or different;
however, it is usually more convenient for the electrolyte and solvents to be the same in each compartment.
Preferred solvents are polar organic aprotic or protic solvents. Examples include methanol, ethanol, acetonitrile, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, dimethyl ether, diethyl ether, 20025;99 _ g _ acetic acid (HOAc), or a mixture thereof. The most preferred solvent is acetonitrile.
The electrolyte is present in a concentration sufficient to give the total reaction medium sufficient conductivity at reaction conditions in order for the desired process to proceed satisfactorily. A preferred electrolyte is a tetrafluoroborate. Examples include substituted tetrafluoroborates such as, HBF4, NaBF4, (Me)4NBF4, (Et)4NBF4, (Pr)4NBF4, or (Bu)4NBF4 wherein Me is methyl, Et is ethyl, Pr is propyl and Bu is butyl. The most preferred electrolyte is HBF4, (Me)4NBF4 or ( )4 BF4.
In Process I, in addition to the formation of said para-substituted iodobenzene derivative, typically minor amounts of the other isomers are also formed, espécially an ortho-substituted iodobenzene derivative. It is an advantage of the present invention that the yield of the para-substituted compound is greater than the yield of the ortho-substituted compound. Preferably the mole ratio of para-substituted iodobenzene derivative to ortho-substituted iodobenzene derivative after reaction is greater than about 1:1 to about 100:1.
For Process I, the following are preferred embodiments: the weight ratio of the iodine source to the mono-substituted compound to the anolyte solution is about 2.5:3.0:100 to about 1.0:15.0:100, and the weight ratio of electrolyte to solent of the anolyte solution is about 1:1 to about 1:100; said election-donating group is alkyl, hydroxyl, thiol, -OR', or -SR'; the iodine source is iodine (I2) or an iodine salt such as HI, NaI, KI, or an alkyl ammonium iodide.

In Process I, most preferably R is I and the iodine source is most preferably I2.
It is also an advantage of Process I that the purity of the para-substituted iodobenzene derivative is typically greater than about 98 weight percent, preferably greater than about 99 weight percent, after isolation by standard techniques. When forming para-diiodobenzene, this compound can be isolated simply by cooling the electrolysis mixture until the desired compound becomes a solid, typically less than about 15C, followed by filtering. By this simple isolation procedure, typically greater than about 80 weight percent of the available para-isomer can be obtained. It is also preferred that the yield of para plus ortho derivatives is greater than about 60 percent preferably greater than about 90 percent, based on the weight of consumed iodine source.
Typical by-products formed include iodonium salts.
For Process I, the selectivity for para substitution appears to be independent of the working potential. It is not desired to be bound by any particular theory or mechanism; however, it is believed that the independence of para selectivity from working potential, together with the advantages of using a graphitic carbon anode, suggests that the mechanism of iodination may be more complex than a simple electrophillic attack on an "I+" species.
For Process II, it is preferred that the weight ratio of the iodine source to benzene to the anolyte solution is about 1.25:2.0:100 to about 2.5:1.0:100, the weight ratio of electrolyte to solvent in the anolyte and catholyte solutions is about 1:10 to about 1:100, and that the iodine source is iodine.
For Process III, it is preferred that the weight ratio of the diiodobenzene compound:catholyte solution is about l:10 to about 1:100; the weight 2002ti99 ratio of electrolyte:solvent in the anolyte and catholyte solutions is about 1:10 to about 1:100; and that the diiodobenzene starting material is ortho-diiodobenzene.
Process III must be performed in a catalytic amount of palladium on carbon catalyst. Such a catalytic amount is typically at least about 0.001~, based on the weight of diiodobenzene starting material, preferably about 0.01%.
For the examples that follow, the following experimental conditions were used: Electrolysis was performed in an H-type cell where the anode and cathode were separated by a Nafion membrane. In each case, the cathode was a spectroscopic (UltraCarbon, U50) carbon rod. All reactions were run at the indicated constant potential by way of an ESC Model 410 potentiostatic controller. The electrochemical apparatus was fitted with an ESC Model 630 digital coulometer and, in each case, the theoretical number of coulombs was collected. The cell temperature was not controlled and usually rose to about 28~C in the course of an experiment.
The following examples illustrate ~he invention but should not be interpreted as a limitation thereon.

EXAMPLES

ExamPle 1 - Iodination of Toluene To the anode side of a laboratory H cell fitted as previously described is added 100 milliliters (mL) of a solution made up by adding sufficient 50%
aqueous HBF4 to acetic anhydride/acetic acid so the final concentration of HBF4 is 10% by weight and the water concentration is from 1% to 3~ by weight.
To this solution is added 2.54 grams (g) (0.01 mole) iodine and 3.0 g (0.031 mole) toluene. The cell is fitted with the various anodes as shown in Tables 1 and 2. To the cathode compartment is added the same acetic acid/tetrafluoroboric acid solution as in the anode. The cathode is a carbon rod in each case.
The potential is set at 2.00 volts versus SCE
(saturated calomel electrode), and current is passed through the electrolysis solution. The electrolysis is stopped after 1930 coulombs are passed. The product is isolated by pouring the anode solution into 500 mL of water and extracting three times with 50 mL of methylene chloride each time. The extracts are combined and washed with 100 mL of water. The organic layer is dried over magnesium sulfate and the solvent is removed in vacuo to afford 4.3 8 of a light color oil. The product is analyzed by capillary gas chromatograph versus authentic samples to establish the yield and ortho-para ratio.

Example 2 - Iodination of Iodobenzene The electrolysis apparatus employed is as previously described. The catholyte and anolyte solutions are prepared as described for the electrolysis of toluene. To the anode compartment is added 1.26 8 of iodine (5 mmols) and 2.04 g of iodobenzene (10 mmols). The system is electrolyzed at a constant potential of 1.7 volts versus SCE.
After pa~sing 965 coulombs, the electrolysis is stopped. The anode mixture is cooled to 15C and the resulting solid isolated by filtration. After water wash and air drying, the solid weighs 2.1 g (64%
isolated yield) and is shown by capillary gas chromatography to be 100~ ~-diiodobenzene.

ExamPle 3 - Iodination of Benzene The electrolysis apparatus is as previously described. The catholyte and anolyte solutions are prepared as described for the electrolysis of toluene. To the anode compartment is added 2.54 g (0.01 mole) iodine and 2.42 g (0.031 mole) benzene.
The system is electrolyzed at a constant potential of 2.0 volts vs SCE. The electrolysis is stopped after 1950 coulombs are passed. The product is isolated by pouring the anode solution into 500 mL water and extracting three times with 50 mL of methylene chloride. The extracts are combined and washed with 100 mL water. The organic layer is dried over magnesium sulfate and the solvent removed in vacuo to afford 4.1 g of a light yellow oil. The product is analyzed by capillary gas chromatography to afford iodobenzene chemical yield of 95~ based on iodine.

ExamPle 4 - Iodination of Toluene The procedure of Example 1 is substantially repeated except that the working potential is varied. The para selectivity versus working potential is shown in Table 3.

TABLE l Electrochemical Iodination of Toluene in HoAc/10~ HBF4 Products - ~ Yield op + pp 5Iodine p-Iodo- o-Iodo- Iodonium Anode Source Additives toluene tolueneSalt Graphitic I2 None53.8 32.1 8.4 Carbon Graphitic HI None62.0 32.6 1.2 Carbon Graphitic I2 Et4NBF440.8 38.5 8.0 Carbon Graphitic I2 CF3C02H9.2 5.5 29.7 Carbon Pt I2 CF3CO2H1.0 0.4 2.8 RVC3 I2 None 3.9 2.5 20 Pt/Ir/Ti I2 None 2.9 1.8 Graphitic I2 Trisbromo- 54.0 32.9 7.2 Carbon phenyl Amine Ebonex I2 None 10.6 6.0 25 Footnotes:
All reactions were run in a divided cell with a Nafion membrane at 2.00 volts versus SCE.
Isolated yield based on iodine.
RVC = reticulated vitreous carbon.
op + pp = ortho para and para para.
Ebonex is a trade name for conductive TiO2.

20025i99 ~ o cl a~ ~ I _, ~ ,, o I o o . ~ ~
o ~ 0 l I Q~
o~ O C
~o :~ o o , ~ o O I O O ~ 0 o ~ Z _~

V ~ O O ~ ~

o Q~ ~I c o o V , :~ .

C U oC Q~ ~ C a~
Q~ ~ C ~: C
~t V V V ~ V _~ o . ' ' ~'` ~ , ~

- 16 ~-Para Selectivity of Toluene Iodination Versus Working Potential 5 Workin~__otential % Para Iodotoluene 1.7 v 62%
1.8 v 61%
1.9 v 66%
2.0 v 65%
2.1 v 62%

At carbon anode in a divided cell.
2Potential versus SCE.

The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims (32)

1. An electrolytic process for the formation of a para-substituted iodobenzene derviative comprising contacting:
an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises:
an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises solvent and an electrolyte;
wherein said anode compartment and cathode compartment are separated by a separator, with an iodine source, and a mono-substituted compound of the formula:

wherein R is alkyl, halo, unsubstituted aryl, or aryl substituted with up to 5 electron-donating groups, and applying to the anode and the cathode an electric potential; the proportions of materials, electrical potential, and other conditions being effective to form a para-substituted iodobenzene derivative in said anode compartment.
2. The process of Claim 1 wherein said electric potential applied is about 1.5 to about 2.5 volts.
3. The process of Claim 1 wherein said electric potential is applied for a period of time of about 1 to about 25 hours, at a temperature of about 25° to about 100°C and at a pressure of about 1 atm to about 10 atm.
4. The process of Claim 1 wherein the weight ratio of the iodine source to the mono-substituted compound to the anolyte solution is about 2.5:3.0:100 to about 1.0:15.0:100, and the weight ratio of electrolyte to solvent of the anolyte solution is about 1:1 to about 1:100.
5. The process of Claim 1 wherein the anolyte solution and the catholyte solution are the same.
6. The process of Claim 5 wherein the solvent is comprised of a polar organic aprotic or protic solvent and the electrolyte is present in a concentration sufficient to give the total reaction medium sufficient conductivity at reaction conditions.
7. The process of Claim 6 wherein said iodine source is iodine or an iodine salt and said electrolyte is a tetrafluoroborate.
8. The process of Claim 1 wherein R is I.
9. The process of Claim 6 wherein said electrolyte is HBF4, (Me)4NBF4, (Et)4NBF4, (Pr)4NBF4, or (Bu)4NBF4; and said solvent is methanol, ethanol, acetonitrile, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, dimethyl ether, diethyl ether, or acetic acid.
10. The process of Claim 1 wherein said election-donating groups are alkyl, hydroxyl, thiol, -OR', -SR', wherein R' is a C1-C6 alkyl, or phenyl; said separator is a membrane;
and said cathode is comprised of platinum, carbon, copper, lead, tin, palladium, or stainless steel.
11. The process of Claim 1 wherein the yield of said para-substituted iodobenzene derivative is greater than the yield of an ortho-substituted iodobenzene derivative.
12. The process of Claim 11 wherein the mole ratio of para-substituted iodobenzene derivative to ortho-substituted iodobenzene derivative after reaction is about greater than 1:1 to about 100:1.
13. The process of Claim 1 run continuously.
14. An electrolytic process for the formation of para-diiodobenzene comprising contacting:
an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises:
an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises a solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and an electrolyte; wherein said anode compartment and cathode compartment are separated by a separator, and wherein said catholyte solution and said anolyte solution are the same and comprise a tetrafluoroborate electrolyte and an acetonitrile solvent;
with an iodine source, and iodobenzene, and applying to the anode and the cathode an electric potential; the proportions of materials, electric potential, and other conditions being effective to form para-diiodobenzene.
15. The process of Claim 14 wherein said electric potential applied is about 1.5 to about 2.5 volts, for a period of time of about 1 to about 25 hours, at a temperature of about 25° to about 100°C, and at a pressure of about 1 atm to about 10 atm.
16. The process of Claim 14 wherein the weight ratio of the iodine source to iodobenzene to the anolyte solution is about 1.25:2.0:100 to about 2.5:1:100, and the weight ratio of tetrafluoroborate to acetonitrile is about 1:10 to about 1:100.
17. The process of Claim 16 wherein said iodine source is iodine and said electrolyte is HBF4, (Me)4NBF4, (Et)4NBF4, (Pr)4NBF4, or (Bu)4NBF4.
18. The process of Claim 16 wherein said separator is a membrane, and said cathode is comprised of platinum, carbon, copper, lead, tin, palladium or stainless steel.
19. The process of Claim 16 wherein the yield of para-diiodobenzene is greater than the yield of ortho-diiodobenzene.
20. The process of Claim 19 wherein the mole ratio of para-diiodobenzene to ortho-diiodobenzene after reaction is about 1:1 to about 10:1.
21. The process of Claim 14 wherein the purity of para-diiodobenzene is greater than about 98 percent after isolation by standard techniques.
22. An electrolytic process for preparing iodobenzene comprising contacting:
an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises:
an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises a solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and an electrolyte; wherein said anode compartment and cathode compartment are separated by a separator, with an iodine source, and benzene, and applying to the anode and the cathode an electric potential; the proportion of materials, electric potential, and other conditions being effective to form iodobenzene.
23. The process of Claim 22 wherein said electric potential applied is about 1.5 to about 2.5 volts, for a period of time of about 1 to about 25 hours, at a temperature of about 25° to about 100°C, and at a pressure of about 1 atm to about 10 atm.
24. The process of Claim 22 wherein the weight ratio of the iodine source to benzene to the anolyte solution is about 1.25:2.0:100 to about 2.5:1.0:100, and the weight ratio of electrolyte to solvent in the anolyte and catholyte solutions is about 1:10 to about 1:100.
25. The process of Claim 22 wherein said iodine source is iodine; the anolyte solution and the catholyte solution are the same; said electrolyte is HBF4, (Me)4NBF4, (Et)4NBF4, (Pr)4NBF4, or (Bu)4NBF4;
and said solvent is acetonitrile.
26. The process of Claim 14 wherein the iodobenzene is formed by the process of Claim 22.
27. The process of Claim 26 wherein the formation of iodobenzene and the formation of para-diiodobenzene are performed consecutively in the same electrolytic cell.
28. An electrolytic process for preparing iodobenzene comprising contacting a catholyte solution of a divided electrolytic cell wherein said divided electrolytic cell comprises an anode compartment comprising an anode and an anolyte solution which comprises a solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and an electrolyte;
wherein said anode compartment and cathode compartment are separated by a separator, with a diiodobenzene compound of the formula in the presence of a catalytic amount of palladium on carbon, and applying to the anode and cathode an electric potential;
the proportion of materials, electric potential, and other conditions being sufficient to form iodobenzene.
29. The process of Claim 28 wherein the cathode comprises palladium on carbon.
30. The process of Claim 28 wherein said electric potential applied is about 1.5 to about 2.5 volts, the weight ratio of the diiodobenzene compound catholyte solution is about 1:10 to about 1:100, and the weight ratio of electrolyte: solvent in the anolyte and catholyte solutions is about 1:10 to about 1:100.
31. The process of Claim 28 wherein the analyte solution and the catholyte solution are the same; said electrolyte is HBF4, (Me)4NBF4, (Et)rNBF4, (Pr)4NBF4, or (Bw)4NBF4;
said solvent is acetonitrile; and said diiodobenzene compound is ortho-diiodobenzene.
32. A continuous electrolytic process for the formation of para-diiodobenzene comprising:

(A) contacting an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises:
an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises a solvent and an electrolyte, and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and ana electrolyte; wherein said anode compartment and cathode compartment are separated by a separator, and wherein said catholyte solution and said anolyte solution are the same and comprise a tetrafluoroborate electrolyte and an acetonitrile solvent;
with an iodine source, and ioodobenzene, and applying to the anode and the cathode an electric potential; the proportions of materials, electric potential, and other conditions being effective to form para-diiodobenzene, (B) filtering the anolyte solution containing para-diiodobenzene formed in step (A) to obtain a solid which comprises para-diiodobenzene and a filtrate which comprises an electrolyte, a solvent and at least one diiodobenzene compound of the formula:

(C) adding the filtrate from step (B) to said cathode compartment, (D) deiodinating the diiodobenzene compound in the cathode compartment from step (C) to form iodobenzene by applying to the anode and cathode an electric potential, wherein the catholyte solution and diiodobenzene compound are in the presence of a catalytic amount of palladium on carbon; the proportions of materials, electric potential, and other conditions being sufficient to form iodobenzene; and (E) recycling the iodobenzene found by step (D) as a starting material for step (A).
CA002002599A 1988-11-25 1989-11-09 Process for the electrochemical iodination of aromatic compounds Abandoned CA2002599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27584788A 1988-11-25 1988-11-25
US275,847 1988-11-25

Publications (1)

Publication Number Publication Date
CA2002599A1 true CA2002599A1 (en) 1990-05-25

Family

ID=23054063

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002002599A Abandoned CA2002599A1 (en) 1988-11-25 1989-11-09 Process for the electrochemical iodination of aromatic compounds

Country Status (5)

Country Link
EP (1) EP0376858B1 (en)
AT (1) ATE101206T1 (en)
CA (1) CA2002599A1 (en)
DE (1) DE68912920T2 (en)
ES (1) ES2062081T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157156B2 (en) 2009-07-07 2015-10-13 Bracco Imaging S.P.A. Process for the preparation of a iodinating agent
US9193659B2 (en) 2008-02-20 2015-11-24 Bracco Imaging S.P.A. Process for the iodination of aromatic compounds

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575905A (en) * 1995-05-24 1996-11-19 Nycomed Imaging As Iodination process
JP4726806B2 (en) 2005-01-06 2011-07-20 日宝化学株式会社 Method for producing aromatic iodine compound
EP2123795B1 (en) 2007-03-09 2015-05-06 Japan Science and Technology Agency Method for producing iodizing agent and method for producing aromatic iodine compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU535271A1 (en) * 1974-10-22 1976-11-15 Предприятие П/Я В-8046 The method of obtaining iodobenzene
US4495036A (en) * 1983-07-11 1985-01-22 The Dow Chemical Company Electrochemical chlorination process
US4707230A (en) * 1985-09-23 1987-11-17 Tracer Technologies, Inc. Electrochemical dehalogenation of organic compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193659B2 (en) 2008-02-20 2015-11-24 Bracco Imaging S.P.A. Process for the iodination of aromatic compounds
US9157156B2 (en) 2009-07-07 2015-10-13 Bracco Imaging S.P.A. Process for the preparation of a iodinating agent

Also Published As

Publication number Publication date
EP0376858A2 (en) 1990-07-04
EP0376858A3 (en) 1990-11-28
ES2062081T3 (en) 1994-12-16
DE68912920T2 (en) 1994-08-18
ATE101206T1 (en) 1994-02-15
DE68912920D1 (en) 1994-03-17
EP0376858B1 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US4936966A (en) Process for the electrochemical synthesis of alpha-saturated ketones
NO128490B (en)
JP5535215B2 (en) Method for anodic dehydrogenation dimerization of substituted aryl alcohols
US4639298A (en) Oxidation of organic compounds using ceric ions in aqueous methanesulfonic acid
US4402804A (en) Electrolytic synthesis of aryl alcohols, aryl aldehydes, and aryl acids
US4601797A (en) Electrochemical carboxylation of p-isobutylacetophenone and other aryl ketones
CA1271484A (en) Oxidation of organic compounds using ceric methanesulfonate in an aqueous organic solution
EP0376858B1 (en) Process for the electrochemical iodination of aromatic compounds
US4794172A (en) Ceric oxidant
Lines et al. Electrophilic aromatic substitution by positive iodine species. Iodination of deactivated aromatic compounds
US4024032A (en) Electrochemical acyloxylation of certain aromatic compounds
Natarajan et al. Indirect electrochemical oxidation of substituted polycyclic aromatic hydrocarbons to corresponding para-quinones with potassium bromide in water–chloroform medium
SU612620A3 (en) Method of electrochemical obtaining of c1-c3 carboxylic acid esters
CN111809195B (en) Electrochemical catalytic oxidation coupling synthesis method of alpha-disulfide dicarboxylic acid compound
US4076601A (en) Electrolytic process for the preparation of ethane-1,1,2,2-tetracarboxylate esters and related cyclic tetracarboxylate esters
US4988416A (en) Process for the electrosynthesis of aldehydes
US6419814B1 (en) Methods for electrochemical synthesis of organoiodonium salts and derivatives
US3326784A (en) Electrochemical synthesis of esters
Batanero et al. Electrochemical synthesis of 3-phenylcinnamonitrile by reduction of benzophenone in acetonitrile
US3252878A (en) Electrolytic production of carboxylic acids from aromatic hydrocarbons
JPS6237386A (en) Electric synthesis of ketone
Kweon et al. Organic electrochemical synthesis utilizing mg electrodes (1)-Facile reductive coupling reactions of aromatic halides
CN114395770B (en) Method for electrochemically synthesizing 5-trifluoromethyl uracil compound
US4528076A (en) Electrochemical oxidation synthesis of bis-(5,5') -8 -Anilino -1-naphthalene Sulfonate (bis-Ans)
EP0278236B1 (en) Process for producing 7,7,8,8-tetracyanoquinodimethane

Legal Events

Date Code Title Description
FZDE Discontinued