CA1173977A - Regulation of the scan width of a raster scanned crt deflection system - Google Patents

Regulation of the scan width of a raster scanned crt deflection system

Info

Publication number
CA1173977A
CA1173977A CA000374330A CA374330A CA1173977A CA 1173977 A CA1173977 A CA 1173977A CA 000374330 A CA000374330 A CA 000374330A CA 374330 A CA374330 A CA 374330A CA 1173977 A CA1173977 A CA 1173977A
Authority
CA
Canada
Prior art keywords
voltage
vertical deflection
coil
waveform
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000374330A
Other languages
French (fr)
Inventor
Terrance C. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrohome Ltd
Original Assignee
Electrohome Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrohome Ltd filed Critical Electrohome Ltd
Priority to CA000374330A priority Critical patent/CA1173977A/en
Application granted granted Critical
Publication of CA1173977A publication Critical patent/CA1173977A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/16Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by deflecting electron beam in cathode-ray tube, e.g. scanning corrections
    • H04N3/22Circuits for controlling dimensions, shape or centering of picture on screen
    • H04N3/23Distortion correction, e.g. for pincushion distortion correction, S-correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Details Of Television Scanning (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE

The input voltage to the deflection system of a raster scanned CRT is made variable and is controlled by a feedback network in such a way that the width of the raster remains constant regardless of scanning fre-quency variations.

Description

1~73~77 REGULATION OF THE SCAN WIDTH OF A RASTER
SCANNED CRT DEFLECTION SYSTEM
-Background of the Inventio_ This invention relates to systems for regulating the horizontal scan width of a raster scanned CRT
deflection system. The invention is particularly useful in conjunction with computer terminal displays, and data/graphics video pro~ectors, for example, which may employ a very wide range of non-television standard horizontal scan rates.
A standard shunt efficiency television line output system will both drastically change the picture size as well as the CRT anode voltage if adjusted over a wide range of operating frequencies. In Cana~ian patent application Serial No. 374,230 filed March 30, 1981 entitled R~gulation of the EHT Voltage of a CRT there is disclosed a network that overcomes the latter problem. In accordance with the instant invention there is disclosed herein a network that overcomes the former problem.
Summary of the Invention According to one aspect of this invention there is provided in combination with a horizontal scanning system for a CRT, said system being of the resonant shunt efficiency type and including a horizontal deflection coil; means for supplying a variable frequency drive r~

.. ' ':

. ~ ' .

~'7397~

signal to said scanning system to produce a horizontal scan of variable frequency; a variable output voltage power supply for supplying a variable power supply voltage to said horizontal scanning system; means for deriving an error signal indicative of a change in magnitude of deflection current in said coil from a predetermined magnitude; and means for supplying said error signal to said variable output voltage power supply to decrease said voltage in response to an increase in said deflection current and to increase said voltage in response to a decrease in said deflection current, thereby to maintain said deflection current substantially constant regardless of changes in frequency of the horizontal scan.
~rief Description of the Drawings This invention will become more apparent from the following detailed description, taken in conjunction with the appended drawings, in which:
Figure 1 shows a conventional shunt efficiency line output stage;
Figure 2 is a diagram illustrating horizontal yoke current waveforms in the horizontal deflection coil of Figure 1 at two different frequencies Fl and F2;
- Figure 3 is a circuit diagram illustrating one embodiment of the instant invention; and ~5 Figure 4 illustrates a network which can be used in conjunction with the network of Figure 3 for the purpose of keystone adjustment.
Referring to Figure 1, a standard shunt efficiency line output stage consisting of a power switching tran-sistor Q, a damper diode D and a tuning capacitor Ct is shown, these components being connected as indicated in the Figure. Ly is the horizontal deflection coil, Ls is an isolation coil and Cs is a D.C. blocking capacitor.
The operation of the shunt efficiency line output stage shown in Figure 1 is well known. The conduction of transistor Q is controlled by the horizontal drive network (not shown) which is connected .

~73~77 to the base of -transistor Q. The horizontal drive signal applied to the base of transistor Q is, in the instant invention, a signal that can vary widely in frequency.
An operating cycle may be considered to begin S with the scan at the centre of the screen. At this time transistor Q is turned on and becomes a low impedance path. As a consequence, coil Ly is connected across a voltage supply (B~) and current increases in the coil are linear with time. At the right extreme of -the CRT
screen, transistor Q is switched off rapidly, abxuptly breaking the flow of current from the power supply to coil Ly. However, current continues to flow in coil Ly but in the opposite direction as the magnetic field about the coil collapses returning its energy. The lS energy stored in the coil field, in fact, now is transferrPd to capacitor Ct, since capacitor Ct and coil Ly form a resonant circuit. A high voltage puLse is developed across capacitor Ct, and the oscillation of capacitor Ct and coil Ly is allowed to continue for one-half cycle, during which the current in coil Ly fallsto zero. In the latter part of this half-cycle the energy stored in capacitor Ct is transferred back to coil Ly, so that its current incrèases from zero but in a negative direction. At the same time the voltage across capacitor Ct falls until it has reached zero and then begins a negative excursion. As the voltage across capacitor Ct tends to swing negative, damper diode D
conducts, and damper current allows the transfer of energy stored in the magnetic field of coil Ly back to the B~ supply with the current in coil Ly decreasing linearly toward zero and effecting scan from the left to the centre of the screen, thus accomplishing a complete cycle involving scan from the centre of the screen to the righthand side, retrace and scan from the lefthand side to the centre of the screen.
Referring to the waveforms shown in Figure 2 and the governing equation also shown in that Figure, ,: . .

.
,., ~ .

~l~t7 it can be seen that with a constant B~ input voltage, if the frequency of operation (and thus ~t) is changed, the peak to peak current in the horizontal deflection coil also will change proportionately. Since picture width is dependent on this current, it is~this peak to peak current that must be maintained constant for constant picture width.
If the equation is rearranged as follows:
~i = L x ~t, it can be seen that to maintain a constant ~i with a changing ~t (variable frequency), the only practical answer is to vary the input voltage E, since the inductance L cannot be varied.
In accordance with the instant invention, the foregoing objective is achieved, in one embodiment of the invention, using the network shown in Figure 3.
Referring to that Figure, the line output stage of Figure 1 including coil Ly and capacitor Cs is shown at 10. The horizontal drive network is indicated at 11 and, as previously indicated, provides variable fre~uency drive pulses to the shunt efficiency line output stage 10. The latter is powered from B~+ via a variable output voltage power supply, details of which follow herein.
The horizontal deflection current is passed through a small resistor Rl and thus generates a small voltage across resistor Rl which is proportional to horizon-tal deflection current. This voltage is amplified by operational amplifier Al and with its negative peak clamped to ground by diode Dl and capacitor Cl, it is peak recti-fied by diode D2. The resultant D.C. voltage is a directmeasure of picture width, being directly proportional to the peak to peak current in yoke Ly. This D.C. voltage is applied to a resistive divider consisting of resistors R4, R5 and R6, the output of which is applied to one input of a linear comparitor A2. The other input to linear comparitor A2 is a reference voltage from a Zener diode ZDl. The error signal output of linear comparitor ~'7;~77 A2 drives the base of a transistor Ql which, in turn, controls the vol~age output of cascaded emitter followers Q2 and Q3, which output is supplied directly to the horizontal output stage. The feedback loop hereinabove described compensates for higher or lower operating frequency by automatically turning up or down respectively the B+ to the horizontal output stage to maintain a constant peak to peak horizontal deflection current. In this way the picture width is effectively regulated. In other words, the network consisting of transistors Ql' Q2 and Q3 constitutes a variable output voltage power supply and, of course, other types of such variable output voltage power supplies may be used without departing from this invention. The power supply receives an error signal from comparitor A2. If the scan frequency has increased, the nature of the error signal will be such as to increase the output voltage of the power supply to an extent suf-ficient to keep the peak to peak horizontal deflection current constant. If the scan frequency has decreased, the nature of the error signal will be such as to decrease the output voltage of the power supply to an extent suf-ficient to maintain peak to peak horizontal deflection current, and hence scan width, constant.
Turning now to Figure 4, and considering a data/
25 graphics video projector, the latter does not normally sit directly on-axis with the vertical centre of the screen because of interference with audience line of sight. It is usually lower or higher, except in some rear screen applications. This causes varying amounts 30 of geometric distortion of the picture. This is known as keystoning, due to the unequal throw distances to the top and bottom of the screen. Optical focusing can be optimized by a lens tilt adjustment with respect to the CRT, but picture keystone correction must be done 35 electrically.
The correction that is required is a linear variation in picture width during vertical scanning.

~739~7 .

In other words, a sawtooth voltage waveform in sychron-ization with the vertical rate must be applied to the horizontal deflection coil. It must be bi-directional and customer accessible because of the unknown mounting relationship with respect to the screen in various instal-lations, for example, floor mount, ceiling mount, and rear screen applications.
A keystone adjustment circuit to serve the fore-going function is shown in Figure 4. A vertical ramp waveform 12 already is available in the vertical deflection circuit at resistor Rl1 and is amplified by an operational amplifier A3 and inverted by an operational amplifier A4. Thus, identical but inverted vertical ramp waveforms are applied at both ends of keystone control potentiometer ~16 This means that with one control any level of positive, negative or zero (centered) correction waveform can be selected to appear at a buffer stage A5 by varying the location of the slider of potentiometer R16. At this point a bipolar transistor Q4 current buffers the waveform which is applied via a large capacitor C3 to the base of the first emitter follower transistor Q2 in the variable output voltage power supply shown in Figure 3. In this way the B~ available to the line output stage at the bottom of the screen, and thus picture width, can be greater than at the top, and vice-versa, to compensate for optical keystone. Being capacitively coupled, the keystone circuit has no effect on the average regulated picture width.
While preferred embodiments of this invention have been disclosed herein, those skilled in the art will appreciate that changes and modifications may be made therein without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (5)

CLAIMS:
1. In combination with a horizontal scanning system for a CRT, said system being of the resonant shunt efficiency type and including a horizontal deflection coil; means for supplying a variable frequency drive signal to said scanning system to produce a horizontal scan of variable frequency; a variable output voltage power supply for supplying a variable power supply voltage to said horizontal scanning system; means for deriving an error signal indicative of a change in magnitude of deflection current in said coil from a predetermined magnitude; and means for supplying said error signal to said variable output voltage power supply to decrease said voltage in response to an increase in said deflection current and to increase said voltage in response to a decrease in said deflection current, thereby to maintain said deflection current substantially constant regardless of changes in frequency of the horizontal scan.
2. The invention according to claim 1 wherein said means for deriving said error signal include means for deriving a D.C. voltage that is proportional to the peak to peak value of said deflection current in said coil and for comparing said D.C. voltage to a D.C. voltage of predetermined magnitude.
3. The invention according to claim 1 including a vertical deflection coil; means for deriving therefrom a vertical deflection waveform; means for inverting said vertical deflection waveform; means for applying said vertical deflection waveform and the inverted vertical deflection waveform to opposite ends of a potentiometer; means for deriving from said potentiometer a correction voltage; and means for utilizing said correction voltage to change said power supply voltage supplied to said horizontal scanning system to increase or decrease said deflection current in said horizontal deflection coil at the top or bottom of the scan to compensate for optical keystone.
4. The invention according to claim 2 including a vertical scanning system including a vertical deflection coil providing a vertical deflection waveform, and means for varying said power supply voltage in response to variations in said vertical deflection waveform to compen-sate for optical keystone.
5. The invention according to claim 2 including a vertical scanning system including a vertical deflection coil providing a vertical deflection waveform, means for inverting said vertical deflection waveform to provide an inverted vertical deflection waveform, and means for varying said power supply voltage in response to either said vertical deflection waveform or said inverted vertical deflection waveform to compensate for optical keystone.
CA000374330A 1981-03-31 1981-03-31 Regulation of the scan width of a raster scanned crt deflection system Expired CA1173977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000374330A CA1173977A (en) 1981-03-31 1981-03-31 Regulation of the scan width of a raster scanned crt deflection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000374330A CA1173977A (en) 1981-03-31 1981-03-31 Regulation of the scan width of a raster scanned crt deflection system

Publications (1)

Publication Number Publication Date
CA1173977A true CA1173977A (en) 1984-09-04

Family

ID=4119597

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000374330A Expired CA1173977A (en) 1981-03-31 1981-03-31 Regulation of the scan width of a raster scanned crt deflection system

Country Status (1)

Country Link
CA (1) CA1173977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311806A1 (en) * 1987-09-16 1989-04-19 Kabushiki Kaisha Toshiba Deflection unit for a colour cathode ray apparatus
US4935663A (en) * 1988-03-17 1990-06-19 Kabushiki Kaisha Toshiba Electron gun assembly for color cathode ray tube apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311806A1 (en) * 1987-09-16 1989-04-19 Kabushiki Kaisha Toshiba Deflection unit for a colour cathode ray apparatus
US4935663A (en) * 1988-03-17 1990-06-19 Kabushiki Kaisha Toshiba Electron gun assembly for color cathode ray tube apparatus

Similar Documents

Publication Publication Date Title
US4547708A (en) Variable picture size circuit for a television receiver
US5323092A (en) Deflection waveform correction circuit
US4101814A (en) Side pincushion distortion correction circuit
CA1160354A (en) Power supply and deflection circuit with raster size compensation
US4414494A (en) Regulation of the scan width of a raster scanned CRT deflection system
EP0183515B1 (en) Raster width regulation circuit
US5355058A (en) Horizontal deflection waveform correction circuit
CA1173977A (en) Regulation of the scan width of a raster scanned crt deflection system
US5831398A (en) Method and circuit for adjusting horizontal video size using a microcomputer
KR100688133B1 (en) Dynamic focus voltage amplitude controller
US4675581A (en) Raster positioning circuit for a deflection system
US6091212A (en) Circuit for adjusting a horizontal center of a raster for a monitor
JP3226876B2 (en) Video display
GB2135859A (en) Picture size control circuit
EP0384293B1 (en) Audio loading modulated side pincushion correction circuit
KR100482943B1 (en) Horizontal parallelogram correction combined with horizontal centering
EP0530809B2 (en) Deflection current generating circuits
US4679211A (en) Regulation of picture size with varying scan frequency
US5925991A (en) Electron beam focus voltage circuit
EP0336316B1 (en) Vertical deflection circuit with service mode operation
US6278246B1 (en) Dynamic focus voltage amplitude controller and high frequency compensation
KR100734835B1 (en) Switch control signal generator
US6621240B2 (en) Centering circuit
EP1142304B1 (en) Dynamic damping clamper arrangement associated with s-shaping capacitor
KR0140287B1 (en) A pin cushion compensating circuit of a monitor

Legal Events

Date Code Title Description
MKEX Expiry