CA1156550A - Method for improving the effective permeability of formations - Google Patents

Method for improving the effective permeability of formations

Info

Publication number
CA1156550A
CA1156550A CA000378280A CA378280A CA1156550A CA 1156550 A CA1156550 A CA 1156550A CA 000378280 A CA000378280 A CA 000378280A CA 378280 A CA378280 A CA 378280A CA 1156550 A CA1156550 A CA 1156550A
Authority
CA
Canada
Prior art keywords
well bore
well
fracturing
deviated
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000378280A
Other languages
French (fr)
Inventor
Thomas E. Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Development Corp
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Priority to CA000378280A priority Critical patent/CA1156550A/en
Application granted granted Critical
Publication of CA1156550A publication Critical patent/CA1156550A/en
Expired legal-status Critical Current

Links

Abstract

METHOD FOR IMPROVING THE EFFECTIVE PERMEABILITY
OF FORMATIONS
(D#76,689-F) ABSTRACT OF THE DISCLOSURE
A method to increase the effective permeability of a subterranean hydrocarbon-bearing formation employing a deviated well-drilling scheme and a fracturing technique.

-I-

Description

1 ~56550 FIEL~ OF THE INyENTION
This invention relates to a method for increasing the productivity or injectivity from hydrocarbon-bearing formations, employing a deviated well-drilling scheme and a fracture technique.
DESCRIPTION OF THE PRIOR ART
Production of hydrocarbons from a hydrocarbon-bearing formation is usually effected by drilling through the hydrocarbon-bearing formation or stratum and opening up the formation around the well bore so as to cause the hydrocarbons therein to flow into the well bore from which they are recovered by conventional methods. The particular method employed to cause the hydrocarbons to be displaced in the formation depends among other things upon the permeability of the hydrocarbon-bearing formation. In formations having a matrix with high permeability of the order of about 100 md. to above 200 md., displacement may be easily obtained with minimum resistance to passage through the matrix. However, many hydrocarbon-bearing formations exist that have low permeability and thus are not amenable to practical commercial production or recovery by conventional methods. These formations may be limestones or tight sand ~ormations in which the permeability may be of the order of 1-2 md.
Various methods have been proposed for increasing the productivity and increasing the drainage area within a desired producing zone or interval. Among these methods for stimulating production, the use of fracturing involving hydraulic fracturing techniques, has generally been employed.
Fracturing normally requires the in~ection into a well bore of a fracturing fluid that may contain a suspended propping agent under sufficient pressure to open a fracture in the exposed formation. Continued pumping of fluid into the well at a high rate extends the fracture and leads to the buildup of a bed of propping agent particles between the fracture walls. These particles prevent complete closure of the fracture as the fluid subsequently leaks off into the ad~acent formation and results in permeable channels extending from the well bore into the formation. The fluid conductivities of these channels depend upon the fracture dimensions, the size of the propping agent particles, the particle spacing, and the confining pressures. Equations that can be used to compute the fracture dimensions and fluid conductivities that will be obtained under particular operating conditions have been published in the technical literature and will be familiar to those skilled in the art.
Hydraulic fracturing may be defined as the process ln which fluid pressure is applied to the exposed formation rock or matrix until failure or fracturing occur~. After failure of the formation rock, a sustained application of fluid pressure extends the crevice or fracture outward from the polnt of failure. This fracture creates new and larger flow channels. Generally, once the fracture has been created, selected grades of propping agents are then added to the fracturing fluid in various quantities and deposited in the fractures to support and hold the fracture open. The propping agent is usually placed in the fracture at a 0 pressure equal to or greater than the pressure required to 1 ~S6550 initially fracture the formation. Once the propping agent has been placed and the pressure removed from the formation, the fractures in the formation will tend to close due to overburden pressures in the formation, but are held open by the propping agent. However, application has been limited by the inability to extend fracture channels appreciable distances without the necessity of multiple well drilling.
Accordingly, it is the object of the present invention to provide a method for increasing the effective size of the well bore or the drainage area without the necessity of multiple well drilling by providing a relatively high permeability for channels that interconnect in the producing area thereby increasing the drainage area.

STATEMENT OF INVENTION
The present invention is a method to increase the effective permeability of a suterranean hydrocarbon-bearing formation having at least one productive interval comprising the steps of:
a) drilling a first well bore traversing said productive interval of said hydrocarbon-bearing formation, b) fracturing said first well bore adjacent said productive interval, c) setting a bridge plug above said productive interval in said first well bore and thereafter undertaking a cementing operation in said first well bore to a desired depth, d) drilling a second well bore having the upper portion thereof in common with said first well bore and deviated from said first well bore from the top of said cementing operation and thereafter fracturing said productive interval adjacent said deviated second well bore, . .

e) setting a bridge plug above the productive interval in said second well bore and thereafter undertaking a cementing operation in said second well bore to a desired depth, f) repeating steps td) and (e) to provide additional similarly deviated well bores, g) drilling a final similarly deviated well bore and completing said final well bore by setting tubing and packer.
DESCRIPTION OF THE PREFERRED EMBODIMENT
In accordance with the present invention the method to improve the productivity or injectivity of a hydrocarbon-bearing formation comprises drilling a well bore traversing the hydrocarbon-bearing formation or the production stratum and thereafter fracturing the production stratum or productive interval adjacent the well bore.
After the fracturing has been accomplished and propped, if necessary, the well bore is isolated by setting a bridge plug -3(a)-~, , at the top of the formation and cementing to a desired depth intermediate between the top of the formation and the surface. A second well bore having its upper portion in common with the first well bore but deviated or diverted from the point of the cementing is then drilled. Thereafter, the productive stratum adjacent the deviated or diverted well bore is fractured through the productive interval so as to ~oin with the first fractures and provide communication between the well bores. The second well bore is plugged back by a cementing operation. Additional similarly directionally-drilled holes are then drilled from the common portion of the first well bore and similarly fracturing operations are carried out. By the method of the invention, the final directional well bore is completed by setting casing and perforating it across the desired productive interval so that the well bore becomes a producing well. The method may also be employe~d wherein the final well bore is completed as an in~ection well, thereby providing for improved lnjectivity, as for example, for a steam flood operation.
Thus, by the method of the invention, the productivity (or in~ectivity) of a large area of the formation is effectively increased by a method utilizing a single surface well bore.
In more detail, the practice of the invention involves first drilling a well bore in conventional fashion traversing the hydrocarbon-bearing or productive interval.
Thereafter a fracturing fluid is introduced via the drill pipe and is placed in the well bore adjacent with and in contact with the face of the formation to be fractured.
Retrievable packers and bridge plugs may be employed to 1 l~B550 isolate and con~ine the fracturing fluids to the portion of the productive interval or stratum ad~acent the well face desired to be fractured. After the packer is set in the well on the tubing to isolate and confine the selected portion of the formation which is to be fractured, the fracturing operation is carried out utilizing a fracturing fluid such as water or oil, and which may contain a propping agent such as sand, glass beads, or the like.
In hydrostatic fracturing, a low-penetrating fluid is pumped into the well. When it reaches the formation which is to be fractured, it tends to stay in the well and build up a high pressure due to its retarded tendency to penetrate the interstices of the formation. Pressure is then applied by the fracture fluid to cause the formation to be fractured and form fissures therein. The pressure required to fracture the formation will depend on the depth and/or the formation being fractured. Suitable fracturing pressures may be in the range of 1,000 to 15,000 psi.
In the situation where the formation thickness is such that more than one fracturing operation is required, or there are multiple hydrocarbon-bearing strata~ after the desired fracturing has been accomplished in the selected area, the retrievable packer and bridge plug may be collapsed and relocated across the next selected interval.
Thereafter, the fracturing operation is repeated. By continuing this procedure, the desired extent of the productive interval is fractured and propped from the given well bore.
~ ollowing the fracture stimulation procedure for each well bore the well bore is cleaned out, since it is - 1~5655~

desirable to insure that any residue resulting from the stimulation procedure is removed so that the well will flow properl~. Cleaning of fracture channels and determination of the effectiveness of the fracture treatment is especially important for the well bores that are to be sealed thereafter and which, therefore, would be inaccessible later. Along with the clean out procedure a production test or testing may also be employed to determine the flow characteristics of the well bore.
After testing the fracture treatment, an open hole brldge plug, that forms the upper limit of the desired producing interval, is set. The well bore or hole is then cemented above the bridge plug up to a point where the well can be side tracked and a second hole directionally is drilled from the point of cementing, and using the same surface well bore. At a level of the well bore, a second well is directionally drilled by the aid of a whipstock or a similar device at an angle from the surface well bore.
In locating and allowing for the directionally drilled second hole, this second well bore should be drilled such that the distance from the bottom of the second hole is in the direction of the first hole so that upon fracturing there will be provided communication between this deviated well bore and the previously drilled well bore.
Once the well bore has been directionally drilled at the desired angle and to the desired depth and desired bottom hole location, the well bore is fractured, cleaned out and tested in the manner as described above. Thereafter, the well bore is closed by means of a bridge plug and cemented at this depth.

After the completion of the second well bore, a third hole is directionally drilled having the desired angle of deviation, desired depth an~ desired bottom hole location.
The third deviated hole is then completed as a producing well and thereafter communication with the other two holes is established by induced fractures. Completion of the third hole follows conventional techniques. The hole may be open hole completed through the production interval or it may be cased, depending upon the type of productive formation. If a cased hole technique is employed, after setting the casing through the producing interval the well is cleaned and tested with the completion fluid and then perforated over the desired producing interval, then fractured employing a procedure similar to those used in the previously drilled deviated holes. The well is then completed as a producing well incorporating the conventional setting of a packer and the necessary tubing means for production.
Additional wells may then be drilled to provide additional directional bore holes in accordance with the procedures for drilling and completing as described above. For purposes of illustration, the method is described in which only three well bores are employed in the producing formation. Nonetheless, the method may be employed for two or more well bcres. In addition, although the illustration describes completing the well as a producing well, the well may be completed as an injection well.
Thus by the invention, productivity and recovery 0 of reservoir fluids is enhanced by increasing the effective permeability or drainage area in the formation and increasing flow into all three ~or more~ well bores and along the lines of the induced fractures, to the completed well bore from which the fluids are produced by conventional means.
Further, it is within the scope of the invention to apply the method for improving the in;ectivity of in~ection wells. The method may also be utilized in a steam huff-puff operation whereby the completed well serves not only as a steam in~ection well, but also as the producing well during the production portlon of the operation.

Claims (11)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows;
1. A method to increase the effective permeability of a subterranean hydrocarbon-bearing formation having at least one productive interval comprising the steps of:
a) drilling a first well bore traversing said productive interval of said hydrocarbon-bearing formation?
b) fracturing said first well bore adjacent said productive interval, c) setting a bridge plug above said productive interval in said first well bore and thereafter undertaking a cementing operation in said first well bore to a desired depth, d) drilling a second well bore having the upper portion thereof in common with said first well bore and deviated from said first well bore from the top of said cementing operation and thereafter fracturing said productive interval adjacent said deviated second well bore, e) setting a bridge plug above the productive interval in said second well bore and thereafter undertaking a cementing operation in said second well bore to a desired depth, f) repeating steps (d) and (e) to provide additional similarly deviated well bores, g) drilling a final similarly deviated well bore and completing said final well bore by setting tubing and packer.
2. The method of Claim 1 wherein said fracturing is accomplished by sequentially fracturing segments of said productive interval.
3. The method of Claim 2 wherein said fracturing of said segments employs the steps of:
a) setting a retrievable packer and a retrievable bridge plug to isolate one of said segments, b) fracturing said one segment, c) relocating said packer and said bridge plug to isolate a second segment of said interval, d) fracturing said second segment of said interval, e) repeating steps (a) and (b) to accomplish the fracturing of said productive interval.
4. The method of Claim 1 wherein said subterranean hydrocarbon-bearing formation comprises more than one productive interval.
5. The method of Claim 1 wherein said well bore is cleaned out and a production test is performed prior to the cementing operation.
6. The method of Claim 1 wherein a plurality of similarly deviated well bores are drilled through said productive interval.
7. The method of Claim 1 wherein said deviated well bores are spaced apart and whereby communication below said bridge plug is established among said deviated well bores upon said fracturing.
8. The method of Claim 1 wherein said deviated well bores are drilled to substantially the same productive depth.
9. The method of Claim 1 wherein said final deviated well bore is completed as a production well means.
10. The method of Claim 1 wherein said final deviated well bore is completed as an injection well means.
11. The method of Claim 1 wherein said final deviated well bore is completed to serve as both an injection well means and as a production well means.
CA000378280A 1981-05-26 1981-05-26 Method for improving the effective permeability of formations Expired CA1156550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000378280A CA1156550A (en) 1981-05-26 1981-05-26 Method for improving the effective permeability of formations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000378280A CA1156550A (en) 1981-05-26 1981-05-26 Method for improving the effective permeability of formations

Publications (1)

Publication Number Publication Date
CA1156550A true CA1156550A (en) 1983-11-08

Family

ID=4120048

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000378280A Expired CA1156550A (en) 1981-05-26 1981-05-26 Method for improving the effective permeability of formations

Country Status (1)

Country Link
CA (1) CA1156550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10385258B2 (en) 2015-04-09 2019-08-20 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10385257B2 (en) 2015-04-09 2019-08-20 Highands Natural Resources, PLC Gas diverter for well and reservoir stimulation
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation

Similar Documents

Publication Publication Date Title
US4869322A (en) Sequential hydraulic fracturing of a subsurface formation
US5074360A (en) Method for repoducing hydrocarbons from low-pressure reservoirs
US7819187B2 (en) System and method for producing fluids from a subterranean formation
US20190249527A1 (en) Simultaneous Fracturing Process
US5111881A (en) Method to control fracture orientation in underground formation
US2970645A (en) Producing multiple fractures in a well
US5036918A (en) Method for improving sustained solids-free production from heavy oil reservoirs
US4867241A (en) Limited entry, multiple fracturing from deviated wellbores
US4633948A (en) Steam drive from fractured horizontal wells
US3455392A (en) Thermoaugmentation of oil production from subterranean reservoirs
US3835928A (en) Method of creating a plurality of fractures from a deviated well
US20110139456A1 (en) Controlled Fracture Initiation Stress Packer
US11761315B2 (en) Non-fracturing restimulation of unconventional hydrocarbon containing formations to enhance production
US3825071A (en) Method and apparatus for fracturing of subsurface formations
US7478674B2 (en) System and method for fracturing and gravel packing a wellbore
US6135205A (en) Apparatus for and method of hydraulic fracturing utilizing controlled azumith perforating
Meese et al. Offshore hydraulic fracturing technique
US2938584A (en) Method and apparatus for completing and servicing wells
US20200270977A1 (en) Flow management in existing wells during adjacent well hydraulic fracturing
US4279301A (en) Method for improving the effective permeability of formations
US3674089A (en) Method for stimulating hydrocarbon-bearing formations
US4434848A (en) Maximizing fracture extension in massive hydraulic fracturing
Yost et al. Hydraulic fracturing of a horizontal well in a naturally fractured reservoir: gas study for multiple fracture design
Holditch et al. The GRI staged field experiment
US9074470B2 (en) Methods for drilling and stimulating subterranean formations for recovering hydrocarbon and natural gas resources

Legal Events

Date Code Title Description
MKEX Expiry