BR112020023607A2 - systems and methods for focusing particles on microchannels - Google Patents

systems and methods for focusing particles on microchannels Download PDF

Info

Publication number
BR112020023607A2
BR112020023607A2 BR112020023607-1A BR112020023607A BR112020023607A2 BR 112020023607 A2 BR112020023607 A2 BR 112020023607A2 BR 112020023607 A BR112020023607 A BR 112020023607A BR 112020023607 A2 BR112020023607 A2 BR 112020023607A2
Authority
BR
Brazil
Prior art keywords
cells
sperm
microfluidic system
particles
flow
Prior art date
Application number
BR112020023607-1A
Other languages
Portuguese (pt)
Inventor
Gerson Aguirre
Zheng Xia
Gopakumar Kamalakshakurup
Original Assignee
Abs Global, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abs Global, Inc. filed Critical Abs Global, Inc.
Publication of BR112020023607A2 publication Critical patent/BR112020023607A2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0612Germ cells sorting of gametes, e.g. according to sex or motility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • G01N2015/1413Hydrodynamic focussing

Abstract

A presente invenção refere-se a um sistema microfluídico configurado para focalizar partículas suspensas em um fluido. Um aspecto geral inclui um sistema microfluídico compreendendo um ou mais substratos e um canal de focalização formado em um ou mais substratos e abrangendo um comprimento de uma entrada a uma saída para receber um fluxo de partículas suspensas em fluido, as partículas têm um diâmetro (a) e o canal de focalização tem um diâmetro hidráulico (dh).The present invention relates to a microfluidic system configured to focus particles suspended in a fluid. A general aspect includes a microfluidic system comprising one or more substrates and a focusing channel formed on one or more substrates and covering a length from an inlet to an outlet to receive a flow of particles suspended in fluid, the particles have a diameter (a ) and the focusing channel has a hydraulic diameter (dh).

Description

Relatório Descritivo da Patente de Invenção para “SISTEMAS E MÉTODOS PARA FOCALIZAÇÃO DE PARTÍCULAS EM MICROCANAIS”.Descriptive Report of the Invention Patent for “SYSTEMS AND METHODS FOR FOCUSING PARTICLES ON MICROCANALS”.

ANTECEDENTES DA INVENÇÃOBACKGROUND OF THE INVENTION

[001] Os citômetros de fluxo funcionam passando partículas individuais, como células, dentro de uma corrente de fluido por um detector, que mede certas características de cada partícula e executa ações com base nessa avaliação. Para fazer isso, o citômetro de fluxo deve regular o fluxo da amostra de modo que as partículas na amostra se movam para um fluxo de partículas substancialmente de fila única, o que permite que cada partícula seja medida individualmente pelo detector.[001] Flow cytometers work by passing individual particles, like cells, into a fluid stream through a detector, which measures certain characteristics of each particle and performs actions based on this assessment. To do this, the flow cytometer must regulate the sample flow so that the particles in the sample move into a substantially single-row particle flow, which allows each particle to be measured individually by the detector.

[002] Uma área em que os citômetros de fluxo encontraram uso prático é a conexão com a sexagem de espermatozoides, como esperma bovino, de acordo com as características das células espermáticas para uso pela indústria de reprodução animal para pré- selecionar o sexo da prole animal. O método mais comum para sexar células de esperma é discriminar com base no conteúdo de DNA. Neste contexto, o esperma é combinado com um extensor e um corante luminescente para manchar o DNA dentro da célula espermática. As células de esperma manchadas são então colocadas em um fluido de amostra que é introduzido em um canal de um chip microfluídico que usa técnicas de focalização para orientar a célula de esperma em um fluxo substancialmente de fila única. Depois de serem devidamente orientados, os espermatozoides são iluminados com uma fonte de luz (por exemplo, um laser), que excita o corante luminescente no DNA, emitindo uma luminescência fluorescente que é descoberta por um detector (por exemplo, um tubo fotomultiplicador ("PMT”) ou um fotodiodo de avalanche (APD)). Um espermatozoide contendo o cromossomo X tem mais DNA do que um espermatozoide portador do cromossomo Y, resultando em que o espermatozoide portador do cromossomo X produz mais luminescência em resposta à fonte de luz de detecção. A luminescência detectada é monitorada e o sistema toma uma ação seletiva, por exemplo, classificando ou matando espermatozoides sexados não selecionados com um laser mortal, nas células espermáticas individuais para alcançar um produto final com as características desejadas, por exemplo, uma amostra com uma alta concentração de espermatozoides com cromossomos X ou Y. Por exemplo, se as bezerras forem desejadas (por exemplo, para produção de leite), então o sistema é calibrado para coletar células tendo parâmetros de luminescência detectados que são o que seria esperado de uma célula de esperma portando o cromossomo X. Alternativamente, se os bezerros forem desejados (por exemplo, para produção de carne), então o sistema é calibrado para coletar células tendo parâmetros de luminescência detectados que são o que seria esperado de uma célula de esperma portando o cromossomo Y.[002] One area in which flow cytometers have found practical use is the connection with sexing of sperm, such as bovine sperm, according to the characteristics of the sperm cells for use by the animal breeding industry to pre-select the sex of the offspring animal. The most common method for sexing sperm cells is to discriminate based on the content of DNA. In this context, the sperm is combined with an extender and a luminescent dye to stain the DNA within the sperm cell. The spotted sperm cells are then placed in a sample fluid that is introduced into a channel of a microfluidic chip that uses focusing techniques to orient the sperm cell in a substantially single-row stream. After being properly oriented, the sperm are illuminated with a light source (for example, a laser), which excites the luminescent dye in the DNA, emitting a fluorescent luminescence that is discovered by a detector (for example, a photomultiplier tube (" PMT ”) or an avalanche photodiode (APD)). A sperm containing the X chromosome has more DNA than a sperm carrying the Y chromosome, resulting in the sperm carrying the X chromosome producing more luminescence in response to the light source of The detected luminescence is monitored and the system takes a selective action, for example, classifying or killing unselected sexed sperm with a deadly laser, on the individual sperm cells to achieve a final product with the desired characteristics, for example, a sample with a high concentration of sperm with X or Y chromosomes. For example, if calves are desired (for example, for the production of le ite), then the system is calibrated to collect cells having detected luminescence parameters that are what would be expected of a sperm cell carrying the X chromosome. Alternatively, if calves are desired (for example, for meat production), then the system is calibrated to collect cells having detected luminescence parameters that are what would be expected of a sperm cell carrying the Y chromosome.

[003] As células de esperma também podem ser diferenciadas com base no conteúdo de DNA por outros métodos que não utilizam um corante de DNA. Por exemplo, a Patente US No. 8.941.062 descreve sistemas e métodos de citometria envolvendo a apresentação de uma única célula de esperma a pelo menos uma fonte de laser configurada para fornecer luz à célula de esperma a fim de induzir vibrações de ligação no DNA da célula de esperma e detectar a assinatura as vibrações da ligação. As células de esperma também podem ser analisadas e diferenciadas com base na presença ou ausência de marcadores de superfície celular ou proteína, por meio da amarração de um ligante marcado com fluorescência, como um anticorpo. Outros métodos para discriminar células de esperma podem utilizar outras características das células de esperma, como massa ou volume, para diferenciar entre aqueles que contêm cromossomos X e aqueles que contêm cromossomos Y. Esses métodos de discriminação e detecção permitem que as células sejam diferenciadas seletivamente e que a amostra seja sexada.[003] Sperm cells can also be differentiated based on DNA content by other methods that do not use a DNA dye. For example, US Patent No. 8,941,062 describes cytometric systems and methods involving the presentation of a single sperm cell to at least one laser source configured to provide light to the sperm cell in order to induce binding vibrations in DNA of the sperm cell and detect the signature the vibrations of the connection. Sperm cells can also be analyzed and differentiated based on the presence or absence of cell surface markers or protein, by binding a fluorescently labeled ligand, such as an antibody. Other methods for discriminating sperm cells can use other characteristics of sperm cells, such as mass or volume, to differentiate between those containing X chromosomes and those containing Y chromosomes. These discrimination and detection methods allow cells to be selectively differentiated and that the sample is sexed.

[004] As técnicas de sexagem incluem uma variedade de métodos para classificar, separar, eliminar ou inativar células indesejadas. Por exemplo, os chamados métodos de destruição por laser envolvem a exposição de células específicas a um laser com energia suficiente para inativar as células. As células também podem ser separadas em populações por meio de classificação, por exemplo, através da formação de gotículas e deflexão, conforme descrito na Patente U.S. No. 5.700.692.[004] Sexing techniques include a variety of methods to classify, separate, eliminate or inactivate unwanted cells. For example, so-called laser destruction methods involve exposing specific cells to a laser with enough energy to inactivate the cells. Cells can also be separated into populations by sorting, for example, through droplet formation and deflection, as described in U.S. Patent No. 5,700,692.

[005] Em técnicas de discriminação de células, incluindo aplicações de sexagem de células de esperma, a orientação, ordenamento e localização adequada das células dentro do sistema microfluídico são essenciais para uma operação eficaz. Por exemplo, o posicionamento e a orientação ambos são essenciais para ser capaz de detectar efetivamente a diferença na fluorescência de células de esperma com cromossomos X e Y tingidas com um corante intercalante de DNA, assim como o posicionamento das células dentro do feixe do laser de detecção e a orientação das células em relação ao detector tem um impacto significativo na quantidade de fluorescência detectada. As alterações na fluorescência, por sua vez, afetam diretamente a capacidade de distinguir diferenças no sinal de fluorescência entre as células portadoras do cromossomo X e do cromossomo Y. Além disso, durante o processo de sexagem, as várias técnicas utilizadas dependem da capacidade de localizar com precisão as células dentro da corrente de fluido. Por exemplo, na sexagem de destruição por laser, o laser de destruição é estreitamente focalizado em um ponto específico e requer que as células sejam posicionadas adequadamente para que a exposição seja eficaz para inativar a célula. O posicionamento das células dentro do fluxo (ou seja, para cima, para baixo, à esquerda e à direita, em relação ao eixo de deslocamento) e o ordenamento (ou seja, a distância entre as células ao longo do eixo de deslocamento) também são importantes para as técnicas de classificação (ou seja, formação e deflexão de gotículas, classificação de bolhas térmicas, etc.). O ordenamento de células em um fluxo de amostra pode ser não determinístico (ou seja, segue uma distribuição de Poisson) ou determinístico (ou seja, espaçamento). O ordenamento, portanto, refere-se ao controle da incidência de células no fluxo da amostra.[005] In cell discrimination techniques, including sperm cell sexing applications, the orientation, ordering and proper location of cells within the microfluidic system are essential for effective operation. For example, positioning and orientation are both essential to being able to effectively detect the difference in fluorescence of sperm cells with X and Y chromosomes stained with an intercalating DNA dye, as well as the positioning of cells within the laser beam of Detection and orientation of cells in relation to the detector has a significant impact on the amount of fluorescence detected. Changes in fluorescence, in turn, directly affect the ability to distinguish differences in the fluorescence signal between cells carrying the X chromosome and the Y chromosome. In addition, during the sexing process, the various techniques used depend on the ability to locate accurately the cells within the fluid stream. For example, in laser destruction sexing, the destruction laser is closely focused on a specific point and requires cells to be positioned properly in order for the exposure to be effective in inactivating the cell. The positioning of cells within the flow (that is, up, down, left and right, relative to the axis of displacement) and the ordering (that is, the distance between cells along the axis of displacement) also they are important for classification techniques (ie formation and deflection of droplets, classification of thermal bubbles, etc.). The ordering of cells in a sample stream can be non-deterministic (that is, it follows a Poisson distribution) or deterministic (that is, spacing). The ordering, therefore, refers to the control of the incidence of cells in the sample flow.

[006] A focalização hidrodinâmica tem sido utilizada para alinhar células, incluindo células de esperma, em aplicações de citometria de fluxo por muitos anos, mas pode ter desvantagens. Em primeiro lugar, a focalização hidrodinâmica pode envolver múltiplas correntes de fluido, incluindo uma ou mais correntes de fluido atuando de invólucro. O fluido de invólucro é consumível no processo de citometria de fluxo e pode ter um custo significativo. Além disso, a focalização hidrodinâmica pode envolver chips microfluídicos sendo projetados e produzidos com amostras complexas e canais de fluxo de invólucro, levando a custos relativamente altos para os chips microfluídicos. O número de controladores de fluxo necessários para cada número de entradas de fluido também pode impactar o custo. Além disso, a focalização hidrodinâmica depende de uma taxa de fluxo consistente do fluxo de invólucro e as flutuações na taxa de fluxo, por exemplo, devido a uma perda de pressão ou oclusão de um canal de invólucro, podem ter efeitos adversos no desempenho do citômetro.[006] Hydrodynamic focusing has been used to align cells, including sperm cells, in flow cytometry applications for many years, but it can have disadvantages. First, hydrodynamic focusing can involve multiple streams of fluid, including one or more streams of fluid acting in a shell. The casing fluid is consumable in the flow cytometry process and can be costly. In addition, hydrodynamic targeting can involve microfluidic chips being designed and produced with complex samples and sheath flow channels, leading to relatively high costs for microfluidic chips. The number of flow controllers required for each number of fluid inlets can also impact the cost. In addition, hydrodynamic focusing depends on a consistent flow rate of the enclosure flow and fluctuations in the flow rate, for example, due to a loss of pressure or occlusion of an enclosure channel, can have adverse effects on the performance of the cytometer .

[007] A focalização de fluxo inercial tem sido utilizada para tipos de células, como células brancas do sangue e células cancerosas. Essas células são significativamente maiores do que as células de esperma e têm uma forma uniforme (quer dizer, substancialmente esféricas). Em contraste, os espermatozoides são significativamente menores, não uniformes e possuem cauda. Como resultado, o equilíbrio de forças atua de forma diferente nas células espermáticas do que em outros tipos de células.[007] Inertial flow targeting has been used for cell types, such as white blood cells and cancer cells. These cells are significantly larger than sperm cells and are uniform in shape (that is, substantially spherical). In contrast, sperm are significantly smaller, non-uniform and have tails. As a result, the balance of forces acts differently in sperm cells than in other types of cells.

SUMÁRIO DA INVENÇÃOSUMMARY OF THE INVENTION

[008] Certas concretizações da invenção reivindicada são resumidas abaixo. Estas concretizações não pretendem limitar o âmbito da invenção reivindicada, mas antes servir como breves descrições de possíveis formas da invenção. A invenção pode abranger uma variedade de formas que diferem destes resumos.[008] Certain embodiments of the claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather to serve as brief descriptions of possible forms of the invention. The invention can cover a variety of forms that differ from these summaries.

[009] De acordo com uma concretização, a focalização de partícula é alcançada usando um microcanal, em que a razão do diâmetro de partícula (a) para o diâmetro hidráulico do canal (Dh), definido pela fórmula a / Dh, está entre aproximadamente 0,03 e cerca de 0, 06, e / ou em que a razão de curvatura (raio "r" ou "parâmetro crítico") para o diâmetro hidráulico do canal, definido pela fórmula 2ra2 / Dh3, é menor que aproximadamente 0,03.[009] According to one embodiment, particle focusing is achieved using a microchannel, where the ratio of the particle diameter (a) to the hydraulic diameter of the channel (Dh), defined by the formula a / Dh, is between approximately 0.03 and about 0.06, and / or where the curvature ratio (radius "r" or "critical parameter") to the hydraulic diameter of the channel, defined by the formula 2ra2 / Dh3, is less than approximately 0, 03.

[010] Conforme usado neste documento, "focalização" se refere à organização espacial de células em uma formação desejada, em particular, em uma largura espacial definida com referência a um eixo ao longo do qual as células estão se movendo em um canal microfluídico e / ou em relação a um ponto de referência definido, tal como o ponto de foco de detecção ou do laser de destruição ou ambos). Em uma concretização, um fluxo focalizado de células estará todo de 3-5 vezes dentro de uma determinada dimensão de célula (isto é, largura, altura ou comprimento) da linha central do eixo de deslocamento. Em outras concretizações, um fluxo focalizado de células estará dentro de 2-3 vezes a dimensão da célula e em outras concretizações dentro de 1-2 vezes as dimensões da célula.[010] As used in this document, "focusing" refers to the spatial organization of cells in a desired formation, in particular, in a defined spatial width with reference to an axis along which the cells are moving in a microfluidic channel and / or in relation to a defined reference point, such as the detection focus point or the destruction laser or both). In one embodiment, a focused flow of cells will all be 3-5 times within a given cell dimension (i.e., width, height or length) of the center line of the displacement axis. In other embodiments, a focused flow of cells will be within 2-3 times the size of the cell and in other embodiments within 1-2 times the size of the cell.

[011] Ao entrar no sistema microfluídico, as células são inicialmente desfocalizadas (ou seja, não dentro dos parâmetros espaciais desejados); várias forças podem atuar nas células dentro da corrente de fluxo para trazê-las dentro dos parâmetros espaciais desejados (ou seja, as células são focalizadas).[011] Upon entering the microfluidic system, cells are initially defocused (that is, not within the desired spatial parameters); various forces can act on the cells within the flow stream to bring them within the desired spatial parameters (that is, the cells are focused).

[012] Outros aspectos serão evidentes para um perito na técnica após a revisão da descrição e aspectos exemplificativos e concretizações que se seguem.[012] Other aspects will be evident to a person skilled in the art after reviewing the description and exemplary aspects and embodiments that follow.

BREVE DESCRIÇÃO DOS DESENHOSBRIEF DESCRIPTION OF THE DRAWINGS

[013] Com a finalidade de ilustrar a divulgação, estão representadas nos desenhos certas características dos aspectos e concretizações da divulgação. No entanto, a divulgação não se limita aos arranjos e instrumentalidades precisas dos aspectos representados nos desenhos.[013] For the purpose of illustrating the disclosure, certain characteristics of the aspects and embodiments of the disclosure are represented in the drawings. However, the disclosure is not limited to the precise arrangements and instrumentalities of the aspects represented in the drawings.

[014] A Figura 1A mostra uma parte repetidamente curva de um microcanal de acordo com certos aspectos de uma concretização da presente divulgação. A Figura 1B mostra um projeto de focalização inercial modificado de acordo com certos aspectos de uma concretização da presente divulgação. A Figura 1C mostra um projeto de focalização inercial modificado diferente acordo com certos aspectos de uma concretização da presente divulgação. A Figura 1D mostra um projeto de focalização inercial de acordo com certos aspectos de uma concretização da presente divulgação.[014] Figure 1A shows a repeatedly curved part of a microchannel according to certain aspects of an embodiment of the present disclosure. Figure 1B shows an inertial targeting project modified according to certain aspects of an embodiment of the present disclosure. Figure 1C shows a modified modified inertial targeting project according to certain aspects of an embodiment of the present disclosure. Figure 1D shows an inertial targeting project according to certain aspects of an embodiment of the present disclosure.

[015] As Figuras 2A e 2B mostram vistas ampliadas de um segmento curvo de uma concretização do microcanal da Figura 1.[015] Figures 2A and 2B show enlarged views of a curved segment of an embodiment of the microchannel of Figure 1.

[016] As Figuras 3A e 3B mostram vistas ampliadas de um segmento curvo de outra concretização do microcanal da Figura 1.[016] Figures 3A and 3B show enlarged views of a curved segment of another embodiment of the microchannel of Figure 1.

[017] As Figuras 4A e 4B mostram o parâmetro crítico ou raio de curvatura "r".[017] Figures 4A and 4B show the critical parameter or radius of curvature "r".

DESCRIÇÃO DETALHADADETAILED DESCRIPTION

[018] Antes de continuar a descrever vários aspectos e concretizações em mais detalhes, deve ser entendido que esta divulgação não está limitada a composições ou etapas de processo específicas e pode variar. Conforme usado neste relatório descritivo e nas reivindicações anexas, a forma singular "um", "uma" e "o" incluem referentes plurais, a menos que o contexto dite claramente o contrário. Os intervalos expressos aqui são inclusivos.[018] Before proceeding to describe various aspects and embodiments in more detail, it should be understood that this disclosure is not limited to specific compositions or process steps and may vary. As used in this specification and the appended claims, the singular form "a", "an" and "o" includes plural referents, unless the context clearly dictates otherwise. The ranges expressed here are inclusive.

[019] Uma concretização do chip microfluídico pode ser usada em conexão com células de esperma de sexagem, como esperma bovino, por exemplo. Em particular, o chip pode ser usado em um aparelho que usa citometria de fluxo para sexar células de esperma de acordo com características de DNA para uso pela indústria de reprodução animal para pré-selecionar o sexo da prole animal. Brevemente, o esperma é combinado com um extensor e um corante luminescente para manchar o DNA dentro da célula espermática. As células de esperma manchadas com corante são então colocadas em um fluido de amostra que é introduzido em um canal do chip microfluídico. Como as células espermáticas não são esféricas, o chip microfluídico orienta substancialmente as células espermáticas para reduzir as diferenças na detecção de luminescência que podem ser causadas por diferenças na orientação da célula em relação ao detector.[019] An embodiment of the microfluidic chip can be used in connection with sexing sperm cells, such as bovine sperm, for example. In particular, the chip can be used in a device that uses flow cytometry to sex sperm cells according to DNA characteristics for use by the animal breeding industry to pre-select the sex of the animal offspring. Soon, the sperm is combined with an extender and a luminescent dye to stain the DNA inside the sperm cell. The dye-stained sperm cells are then placed in a sample fluid that is introduced into a microfluidic chip channel. Since sperm cells are not spherical, the microfluidic chip substantially guides sperm cells to reduce differences in luminescence detection that can be caused by differences in cell orientation relative to the detector.

[020] As células espermáticas orientadas são então iluminadas com uma fonte de luz (por exemplo, laser de detecção), que excita o corante luminescente no DNA, emitindo uma luminescência fluorescente que é detectada por um detector (por exemplo, um tubo fotomultiplicador (PMT) ou um fotodiodo de avalanche (APD)). O espermatozoide contendo o cromossomo X tem mais DNA do que o espermatozoide portador do cromossomo Y, resultando em que o espermatozoide portador do cromossomo X produz mais luminescência em resposta à iluminação original. A diferença no conteúdo total de DNA varia por espécie; por exemplo, em Bos taurus, o cromossomo X tem aproximadamente 3,8% a mais de DNA do que o cromossomo Y, o que resulta em uma diferença de aproximadamente 3,8% na fluorescência.[020] The targeted sperm cells are then illuminated with a light source (for example, detection laser), which excites the luminescent dye in the DNA, emitting a fluorescent luminescence that is detected by a detector (for example, a photomultiplier tube ( PMT) or an avalanche photodiode (APD)). The sperm containing the X chromosome has more DNA than the sperm carrying the Y chromosome, resulting in the sperm carrying the X chromosome producing more luminescence in response to the original illumination. The difference in the total DNA content varies by species; for example, in Bos taurus, the X chromosome has approximately 3.8% more DNA than the Y chromosome, which results in an approximately 3.8% difference in fluorescence.

[021] A fim de determinar quais células matar, um sinal de saída do detector que representa a amplitude da luminescência detectada é monitorado. Quando o valor de luminescência detectado excede um valor limite definido, um evento é considerado iniciado. O valor de luminescência é monitorado e, quando um ponto de inflexão ou “pico” é detectado, o pico é considerado o centro da célula e o valor de luminescência de pico é considerado o valor de luminescência para essa célula. Se mais de um pico for detectado em um único evento, o pico com a maior amplitude é considerado o centro da célula e o valor de luminescência de pico é considerado o valor de luminescência para essa célula e os outros picos são desconsiderados.[021] In order to determine which cells to kill, an output signal from the detector that represents the amplitude of the detected luminescence is monitored. When the detected luminescence value exceeds a defined limit value, an event is considered to have started. The luminescence value is monitored and, when an inflection point or “peak” is detected, the peak is considered the center of the cell and the peak luminescence value is considered the luminescence value for that cell. If more than one peak is detected in a single event, the peak with the highest amplitude is considered the center of the cell and the peak luminescence value is considered the luminescence value for that cell and the other peaks are disregarded.

[022] O valor de luminescência de cada espermatozoide é comparado a uma porta, que foi previamente definida, para determinar se a célula exibe a luminescência desejada. Por exemplo, se as bezerras forem desejadas (por exemplo, para produção de leite), em seguida, a porta é selecionada para incluir células tendo parâmetros de luminescência detectados que são o que seria esperado de uma célula de esperma portando o cromossomo X. Alternativamente, se os bezerros forem desejados (por exemplo, para produção de carne), então a porta é selecionada para incluir células tendo parâmetros de luminescência detectados que são o que seria esperado de uma célula de esperma portando o cromossomo Y.[022] The luminescence value of each sperm is compared to a port, which has been previously defined, to determine whether the cell exhibits the desired luminescence. For example, if calves are desired (for example, for milk production), then the port is selected to include cells having detected luminescence parameters that are what would be expected of a sperm cell carrying the X chromosome. Alternatively , if calves are desired (for example, for meat production), then the port is selected to include cells having detected luminescence parameters that are what would be expected of a sperm cell carrying the Y chromosome.

[023] Depois de passar pelo laser de detecção e ter sua luminescência detectada, os espermatozoides manchados, ainda no fluxo, em seguida passam para a zona de destruição. Uma segunda fonte de luz, por exemplo, o laser de destruição, é seletivamente ativada para matar células que caem fora da porta selecionada à medida que passam pela zona de destruição.[023] After passing through the detection laser and having its luminescence detected, the stained sperm, still in the flow, then move on to the destruction zone. A second light source, for example, the destruction laser, is selectively activated to kill cells that fall outside the selected door as they pass through the destruction zone.

[024] Em outras concretizações, a concentração de partículas de acordo com a presente invenção pode ser utilizada para células de esperma distintas com base no conteúdo de DNA por métodos que não utilizam um corante de DNA. Por exemplo, a Patente US No.[024] In other embodiments, the particle concentration according to the present invention can be used for different sperm cells based on the DNA content by methods that do not use a DNA dye. For example, US Patent No.

8.941.062 descreve sistemas e métodos de citometria envolvendo a apresentação de uma única célula de esperma a pelo menos uma fonte de laser configurada para fornecer luz à célula de esperma a fim de induzir vibrações de ligação no DNA da célula de esperma e detectar a assinatura as vibrações da ligação. Em outras concretizações, as células de esperma podem ser analisadas e diferenciadas com base na presença ou ausência de marcadores de superfície celular ou proteína, por meio da amarração de um ligante marcado com fluorescência, como um anticorpo. Outros métodos para discriminar células de esperma podem utilizar outras características das células de esperma, como massa ou volume, para diferenciar entre aqueles que contêm cromossomos X e aqueles que contêm cromossomos Y. Esses métodos de discriminação e detecção permitem que as células sejam diferenciadas seletivamente e que a amostra seja sexada. Em outras concretizações, as células de esperma podem ser diferenciadas com base em características diferentes do sexo. Por exemplo, as células espermáticas podem ser diferenciadas com base na presença ou ausência de um marcador genético ou combinação de marcadores ou proteína da superfície celular.8,941,062 describes cytometric systems and methods involving the presentation of a single sperm cell to at least one laser source configured to provide light to the sperm cell in order to induce binding vibrations in the sperm cell's DNA and detect signature the vibrations of the connection. In other embodiments, sperm cells can be analyzed and differentiated based on the presence or absence of cell surface markers or protein, by binding a fluorescently labeled ligand, such as an antibody. Other methods for discriminating sperm cells can use other characteristics of sperm cells, such as mass or volume, to differentiate between those containing X chromosomes and those containing Y chromosomes. These discrimination and detection methods allow cells to be selectively differentiated and that the sample is sexed. In other embodiments, sperm cells can be differentiated based on characteristics other than sex. For example, sperm cells can be differentiated based on the presence or absence of a genetic marker or combination of markers or cell surface protein.

[025] Em outras concretizações, a focalização de partícula, conforme descrito neste documento, pode ser usada para técnicas de sexagem de sêmen para classificar, separar, eliminar ou inativar células indesejadas. Por exemplo, os chamados métodos de destruição por laser envolvem a exposição de células específicas a um laser com energia suficiente para inativar as células. As células também podem ser separadas em populações por meio de classificação, por exemplo, através da formação de gotículas e deflexão, conforme descrito na Patente U.S. No. 5.700.692. Outras técnicas de classificação para uso na presente invenção incluem, por exemplo, classificação por bolha, acústica, pressão fotônica, direcionamento de laser holográfico e captura óptica.[025] In other embodiments, particle focusing, as described in this document, can be used for semen sexing techniques to classify, separate, eliminate or inactivate unwanted cells. For example, so-called laser destruction methods involve exposing specific cells to a laser with enough energy to inactivate the cells. Cells can also be separated into populations by sorting, for example, through droplet formation and deflection, as described in U.S. Patent No. 5,700,692. Other classification techniques for use in the present invention include, for example, bubble classification, acoustics, photonic pressure, holographic laser targeting and optical capture.

[026] O chip microfluídico de acordo com o presente projeto usa um microcanal curvado repetidamente para ordenar e focalizar partículas na mistura de fluido de amostra. O chip pode ser composto por um ou mais substratos nos quais o canal, ou uma parte do canal, é formado. O substrato pode ser composto por uma ou mais camadas. O canal é uma estrutura tridimensional dentro de uma ou mais camadas montadas de um ou mais substratos. Em uma concretização, o chip pode incluir duas camadas, uma camada inferior e uma camada superior, que são empilhadas juntas para formar o chip. Em uma concretização, uma parte repetidamente curva do microcanal é formada inteiramente na camada inferior, enquanto as entradas e saídas para o microcanal podem ser formadas em uma ou em ambas as camadas do chip. Em outras concretizações, o microcanal pode ser formado em duas ou mais camadas de um substrato, ou múltiplos substratos. A parte curvada repetidamente consiste em uma série repetida de voltas de formato idêntico, conforme ilustrado na Figura 1.[026] The microfluidic chip according to the present project uses a microchannel curved repeatedly to order and focus particles in the sample fluid mixture. The chip can be composed of one or more substrates on which the channel, or part of the channel, is formed. The substrate can be composed of one or more layers. The channel is a three-dimensional structure within one or more layers assembled from one or more substrates. In one embodiment, the chip may include two layers, a lower layer and an upper layer, which are stacked together to form the chip. In one embodiment, a repeatedly curved part of the microchannel is formed entirely in the lower layer, while the inlets and outlets for the microchannel can be formed in one or both layers of the chip. In other embodiments, the microchannel can be formed in two or more layers of one substrate, or multiple substrates. The curved part repeatedly consists of a repeated series of identical shaped loops, as shown in Figure 1.

[027] Em uso, um fluido de amostra é introduzido no microcanal através de uma entrada de amostra. No contexto do sêmen bovino, a amostra inclui um ejaculado e um amortecedor. Ao entrar no microcanal, as partículas são dispersas aleatoriamente dentro da amostra de fluido. À medida que a amostra flui, o microcanal das partículas é ordenado longitudinalmente de modo que, ao sair da parte curva, as partículas sejam alinhadas longitudinalmente em uma fileira. O microcanal pode incluir afunilamento horizontal / lateral e / ou vertical a jusante da parte curva para fornecer focalização adicional das partículas antes do fluido se mover através de uma região de detecção (não mostrada).[027] In use, a sample fluid is introduced into the microchannel through a sample inlet. In the context of bovine semen, the sample includes an ejaculate and a buffer. Upon entering the microchannel, the particles are randomly dispersed within the fluid sample. As the sample flows, the microchannel of the particles is ordered longitudinally so that, when leaving the curved part, the particles are aligned longitudinally in a row. The microchannel can include horizontal / lateral and / or vertical tapering downstream of the curved portion to provide additional focusing of the particles before the fluid moves through a detection region (not shown).

[028] As Figuras 2A e 2B são vistas ampliadas de um segmento curvo de uma concretização do microcanal da Figura 1. As Figuras 3A e 3B são vistas ampliadas de outra concretização do microcanal da Figura 1.[028] Figures 2A and 2B are enlarged views of a curved segment of an embodiment of the microchannel of Figure 1. Figures 3A and 3B are enlarged views of another embodiment of the microchannel of Figure 1.

[029] Os canais descritos acima, que permitem apenas uma única posição de focalização, devido ao efeito de regulação dos fluxos de Dean, compreendem 1,5 voltas (Figura 2A e Figura 3A) ou uma única volta (Figura 2B e Figura 3B). Com referência às Figuras 2B e 3B, cada volta inclui uma região menor; o parâmetro crítico é indicado (0,015 mm). Em ambas as Figuras 2 e 3, cada volta também inclui uma região maior (ou seja, a parte inferior da volta). A região menor e a região maior são escalonadas. Juntas, uma região menor e uma região maior constituem uma única volta do canal microfluídico. As curvas representadas nas Figuras 2 e 3 são assimétricas, em que as regiões menores e as regiões maiores são diferentes, e a curva geral, portanto, não é internamente simétrica. Em outras concretizações, a curva pode ser simétrica, em que o lado esquerdo e direito (isto é, as partes superior e inferior da curva) têm as mesmas geometrias. Em outras concretizações, as voltas dentro de um canal de focalização podem incluir uma ou mais voltas simétricas, uma ou mais voltas assimétricas ou combinações das mesmas. Em outras concretizações, os canais de focalização podem incluir ainda outros mecanismos hidráulicos para efetuar o posicionamento, orientação e / ou ordenamento de partículas dentro do fluxo de amostra.[029] The channels described above, which allow only a single focusing position, due to Dean's flow regulation effect, comprise 1.5 turns (Figure 2A and Figure 3A) or a single turn (Figure 2B and Figure 3B) . With reference to Figures 2B and 3B, each loop includes a smaller region; the critical parameter is indicated (0.015 mm). In both Figures 2 and 3, each loop also includes a larger region (that is, the bottom of the loop). The smaller region and the larger region are staggered. Together, a smaller region and a larger region constitute a single loop of the microfluidic channel. The curves shown in Figures 2 and 3 are asymmetric, in which the smaller and larger regions are different, and the general curve, therefore, is not internally symmetrical. In other embodiments, the curve can be symmetrical, in which the left and right sides (i.e., the upper and lower parts of the curve) have the same geometries. In other embodiments, the loops within a focusing channel can include one or more symmetrical loops, one or more asymmetric loops or combinations thereof. In other embodiments, the focusing channels can include still other hydraulic mechanisms for effecting the positioning, orientation and / or ordering of particles within the sample stream.

[030] As Figuras 4A e 4B ilustram como medir o parâmetro crítico "r".[030] Figures 4A and 4B illustrate how to measure the critical parameter "r".

[031] Conforme mostrado na Figura 4A, a área da seção transversal é determinada pela altura (H) e largura (W) do microcanal na região menor de uma volta. A Figura 4B mostra a determinação do raio da menor região de uma curva.[031] As shown in Figure 4A, the cross-sectional area is determined by the height (H) and width (W) of the microchannel in the smallest region of a turn. Figure 4B shows the radius determination of the smallest region of a curve.

[032] De acordo com um aspecto, a focalização de partículas é alcançada usando um microcanal curvado repetidamente:[032] According to one aspect, particle focusing is achieved using a microchannel curved repeatedly:

[033] Em que a razão do diâmetro de partícula (a) para o diâmetro hidráulico do canal (Dh), definido pela fórmula a / Dh está entre aproximadamente 0,03 e aproximadamente 0, 06, e / ou em que a razão de curvatura (raio "r" ou "parâmetro crítico") para o diâmetro hidráulico do canal) definida pela fórmula 2ra2 / Dh3 é menor que aproximadamente 0,03.[033] Where the ratio of the particle diameter (a) to the hydraulic diameter of the channel (Dh), defined by the formula a / Dh is between approximately 0.03 and approximately 0.06, and / or where the ratio of curvature (radius "r" or "critical parameter") for the hydraulic diameter of the channel) defined by the formula 2ra2 / Dh3 is less than approximately 0.03.

[034] Em um outro aspecto, a partícula podem ser células de esperma bovino. As células espermáticas bovinas têm formato irregular e as células espermáticas são menores, não uniformes (~ 3 pm de espessura x 5 pm de largura x 10 pm de comprimento) e têm uma cauda (picômetro (pm): 10−12 metros). Neste contexto, o diâmetro da célula é considerado na ordem dos 3 pm até aproximadamente 5 pm. A focalização de partículas substanciais de espermatozoides bovinos é observada quando as geometrias dos canais microfluídicos atendem a uma ou ambas as condições acima. No entanto, se as geometrias físicas caírem fora dessas faixas, por exemplo, se a / Dh for maior que aproximadamente 0,06 ou menor que aproximadamente 0, 03, as células de esperma bovino não se concentram.[034] In another aspect, the particle may be bovine sperm cells. Bovine sperm cells are irregularly shaped and sperm cells are smaller, non-uniform (~ 3 pm thick x 5 pm wide x 10 pm long) and have a tail (picometer (pm): 10−12 meters). In this context, the cell diameter is considered to be in the range of 3 pm to approximately 5 pm. The targeting of substantial bovine sperm particles is observed when the geometries of the microfluidic channels meet one or both of the above conditions. However, if the physical geometries fall outside these ranges, for example, if the / Dh is greater than approximately 0.06 or less than approximately 0.03, the bovine sperm cells do not concentrate.

[035] Qualquer número de configurações de sistema microfluídico pode ser projetado para atingir certos resultados e / ou propriedades específicas associadas à concentração de partículas dentro das várias geometrias de canal. Nos exemplos abaixo, certas propriedades associadas aos sistemas descritos neste documento serão agora discutidas em mais detalhes. Embora certas condições experimentais possam ser discutidas em referência a certas propriedades ou parâmetros, deve ser entendido que as propriedades e parâmetros são amplamente aplicáveis a qualquer uma das geometrias de canal. Exemplo 1[035] Any number of microfluidic system configurations can be designed to achieve certain results and / or specific properties associated with the concentration of particles within the various channel geometries. In the examples below, certain properties associated with the systems described in this document will now be discussed in more detail. Although certain experimental conditions can be discussed with reference to certain properties or parameters, it should be understood that the properties and parameters are widely applicable to any of the channel geometries. Example 1

[036] Em um aspecto, o projeto de focalização inercial (Figura 1D) foi testado em polidimetilsiloxano (PDMS) e vidro em 4 taxas de fluxo diferentes. As medidas foram tiradas da largura do fluxo central, porcentagem plana e porcentagem de borda e são mostradas na Tabela 1. Os números são mostrados para PDMS, e onde as medições diferem quando feitas em chips de vidro são mostrados entre parênteses.[036] In one aspect, the inertial focusing design (Figure 1D) was tested on polydimethylsiloxane (PDMS) and glass at 4 different flow rates. The measurements were taken from the width of the central flow, flat percentage and edge percentage and are shown in Table 1. The numbers are shown for PDMS, and where the measurements differ when made on glass chips are shown in parentheses.

[037] A largura do fluxo do núcleo (por exemplo, W_68, W_95, W_100) é a largura medida de certa porcentagem do fluxo do núcleo, conforme medido usando imagens tomadas por um estroboscópio da amostra fluindo através do chip microfluídico. Por exemplo, W_68 é a largura medida de 68% do fluxo principal.[037] The width of the core flow (eg, W_68, W_95, W_100) is the measured width of a certain percentage of the core flow, as measured using images taken by a sample strobe flowing through the microfluidic chip. For example, W_68 is the measured width of 68% of the main flow.

[038] A porcentagem plana, que é medida em um estroboscópio, é a medição de células que são orientadas com a seção transversal mais ampla paralela ao topo do canal e, portanto, também perpendicular ao detector e aos caminhos do feixe de laser de ablação.[038] The flat percentage, which is measured on a strobe, is the measurement of cells that are oriented with the widest cross section parallel to the top of the channel and therefore also perpendicular to the detector and the ablation laser beam paths .

[039] A porcentagem de borda, que é medida em um estroboscópio, é a medida de células com a seção transversal mais estreita perpendicular ao topo do canal e, portanto, paralela aos caminhos do feixe de laser.[039] The edge percentage, which is measured on a strobe, is the measure of cells with the narrowest cross section perpendicular to the top of the channel and therefore parallel to the laser beam paths.

Tabela 1 68% de largura 95% de largura 100% de largura Taxa de fluxo % Plana % de Borda de núcleo de núcleo de núcleo 37- 50% 23 - 29% 250 µL/min 6-8 µm 12 – 16 µm 24 – 30 µm (53 - 68%) (7- 13%) 22 - 27% 300 µL/min 4,5 - 7,5 µm 9- 14 µm 13-33 µm 42-50% (58-67%) 5 - 7% 15 - 21% 45-62% (52- 350 µL/min 5-7 µm 10 - 12,5 µm 14-28 µm 68%) 6 - 9% 12- 20 µm 15 - 31 µm 22 - 24% 400 µL/min 5 - 10 µm 42-47% (43-68%) (10-12 µm) (18 - 21µm) 7- 8% Exemplo 2Table 1 68% wide 95% wide 100% wide Flow rate% Flat% Core edge of core core 37- 50% 23 - 29% 250 µL / min 6-8 µm 12 - 16 µm 24 - 30 µm (53 - 68%) (7-13%) 22 - 27% 300 µL / min 4.5 - 7.5 µm 9- 14 µm 13-33 µm 42-50% (58-67%) 5 - 7% 15 - 21% 45-62% (52- 350 µL / min 5-7 µm 10 - 12.5 µm 14-28 µm 68%) 6 - 9% 12- 20 µm 15 - 31 µm 22 - 24% 400 µL / min 5 - 10 µm 42-47% (43-68%) (10-12 µm) (18 - 21µm) 7- 8% Example 2

[040] Em um aspecto, o projeto de focalização inercial modificado (Figura 1C) foi testado. O projeto modificado incorporou um elemento a montante que inclui uma curvatura no canal em combinação com a diluição no chip para obter a focalização da amostra na dimensão Z (ou seja, de cima para baixo, em relação à direção de deslocamento). Os parâmetros para a curvatura deste elemento a montante foram 200pm de raio e 100pm de largura (R200W100), 300pm de raio e 100pm de largura (R300W75) e 500pm de raio e 100pm de largura (R500W100). A diluição foi testada com uma diluição de 5%, 10%, 12,5% e 20%. A parte de focalização inercial do projeto modificado é idêntica ao projeto de focalização inercial testado no Exemplo 1 e as medições relatadas na Tabela 2 incluem largura da corrente de núcleo, porcentagem plana e porcentagem de borda. Tabela 2 68% de largura de 95% de largura de 100% de largura % de Borda Dimensões núcleo % de Plano núcleo de núcleo 5/10/12,5/20 % de de curvatura diluição[040] In one aspect, the modified inertial focusing design (Figure 1C) was tested. The modified design incorporated an upstream element that includes a curvature in the channel in combination with the dilution on the chip to obtain the focus of the sample in the Z dimension (that is, from top to bottom, in relation to the direction of travel). The parameters for the curvature of this upstream element were 200pm in radius and 100pm in width (R200W100), 300pm in radius and 100pm in width (R300W75) and 500pm in radius and 100pm in width (R500W100). The dilution was tested with a dilution of 5%, 10%, 12.5% and 20%. The inertial focusing part of the modified design is identical to the inertial focusing design tested in Example 1 and the measurements reported in Table 2 include core current width, flat percentage and edge percentage. Table 2 68% wide 95% wide 100% wide Edge% Core dimensions% Plan Core core 5/10 / 12.5 / 20% of curvature dilution

5/10/12.,5/20% 5/10/12,5/20% 5/10/12,5/20% 5/10/12,5/20 diluição (ao vivo.) diluição diluição % de diluição 13,3/14,1/14,0/13, 6µm R200W10 7,7/8,5/7,9/8,1µm 53/53/51/47% 11/16/15/19% 3,9/4,3/3,9/40,0µm (4,0) . 0 (8,0) (51%) (15%) (13,8) - -/3,6/3,8/4,0µm -/7,1/7,5/8 -/58/54/52% -/10/9/7% /10,1/12,4/14,1µm R300W75 (3,8) (7,5) (54%) (8%) (12,2) 4,2/3,5/6,3/4,8µ R500W10 8,4/7,0/12,5/9,5µm 18,3/7,8/16,4/12,0 65/57/58/62% 11/8/11/13% m 0 (9,4) (13,6) (60%) (11%) (4,7) Exemplo 35/10 / 12., 5/20% 5/10 / 12.5 / 20% 5/10 / 12.5 / 20% 5/10 / 12.5 / 20 dilution (live.) Dilution dilution% of dilution 13.3 / 14.1 / 14.0 / 13, 6µm R200W10 7.7 / 8.5 / 7.9 / 8.1µm 53/53/51/47% 11/16/15/19% 3, 9 / 4.3 / 3.9 / 40.0 µm (4.0). 0 (8.0) (51%) (15%) (13.8) - - / 3.6 / 3.8 / 4.0µm - / 7.1 / 7.5 / 8 - / 58/54 / 52% - / 10/9/7% / 10.1 / 12.4 / 14.1µm R300W75 (3.8) (7.5) (54%) (8%) (12.2) 4.2 / 3.5 / 6.3 / 4.8µ R500W10 8.4 / 7.0 / 12.5 / 9.5µm 18.3 / 7.8 / 16.4 / 12.0 65/57/58/62% 11/8/11/13% m 0 (9.4) (13.6) (60%) (11%) (4.7) Example 3

[041] Em outro aspecto, foi testado o projeto modificado diferente, que incorporou um elemento a jusante que inclui uma curvatura no canal sem qualquer diluição no chip (Figura 1B). Em outro aspecto, a região secundária a jusante do canal de focalização inercial neste projeto incluiu uma entrada secundária para ajustar potencialmente o ponto de entrada das células na seção curva do elemento de deriva, embora este elemento não tenha sido utilizado durante o teste. Os dados na Tabela 3 fornecem o mesmo tipo de resultados obtidos para os projetos de focalização inercial modificados e não modificados discutidos nos exemplos anteriores. As medições foram feitas usando uma taxa de fluxo de 300pl / min. Tabela 3 68% de largura de 95% de largura de 100% de largura de % de % de Borda núcleo núcleo núcleo Plano 8 µm 16µm 20 µm (50%) (11%) Embora concretizações ilustrativas tenham sido ilustradas e descritas, será apreciado que várias alterações podem ser feitas nas mesmas, sem se afastar do espírito e do escopo da invenção.[041] In another aspect, the different modified design was tested, which incorporated a downstream element that includes a curvature in the channel without any dilution on the chip (Figure 1B). In another aspect, the secondary region downstream of the inertial focusing channel in this project included a secondary input to potentially adjust the entry point of the cells in the curved section of the drift element, although this element was not used during the test. The data in Table 3 provide the same type of results obtained for the modified and unmodified inertial targeting projects discussed in the previous examples. Measurements were made using a flow rate of 300pl / min. Table 3 68% wide 95% wide 100% wide% Edge% core core core Flat 8 µm 16µm 20 µm (50%) (11%) Although illustrative embodiments have been illustrated and described, it will be appreciated that several changes can be made to them, without departing from the spirit and scope of the invention.

Claims (5)

REIVINDICAÇÕES 1. Sistema microfluídico para focalizar partículas suspensas em um fluido, caracterizado pelo fato de que compreende: um ou mais substratos; um canal de focalização formado em um ou mais substratos e abrangendo um comprimento de uma entrada a uma saída para receber um fluxo de partículas suspensas em fluido, as partículas têm um diâmetro (a) e o canal de focalização tem um diâmetro hidráulico (Dh), em que: a. em que a razão do diâmetro de partícula para a área de seção transversal do canal (a / Dh) está entre aproximadamente 0,03 e aproximadamente 0, 06, e / ou b. em que a razão de curvatura (parâmetro crítico; "r") para a curvatura hidrodinâmica (Dh) definida pela fórmula 2ra2 / Dh3 é menor que aproximadamente 0,03.1. Microfluidic system to focus particles suspended in a fluid, characterized by the fact that it comprises: one or more substrates; a focusing channel formed on one or more substrates and spanning a length from an inlet to an outlet to receive a flow of particles suspended in fluid, the particles have a diameter (a) and the focusing channel has a hydraulic diameter (Dh) , in which: a. wherein the ratio of the particle diameter to the cross-sectional area of the channel (a / Dh) is between approximately 0.03 and approximately 0.06, and / or b. where the curvature ratio (critical parameter; "r") to the hydrodynamic curvature (Dh) defined by the formula 2ra2 / Dh3 is less than approximately 0.03. 2. Sistema microfluídico, de acordo com a reivindicação 1, caracterizado pelo fato de que o microcanal compreende um segmento curvado repetidamente.2. Microfluidic system, according to claim 1, characterized by the fact that the microchannel comprises a repeatedly curved segment. 3. Sistema microfluídico, de acordo com a reivindicação 2, caracterizado pelo fato de que o segmento curvado repetidamente compreende uma série de repetição de seções curvas de formato idêntico.Microfluidic system according to claim 2, characterized by the fact that the curved segment repeatedly comprises a series of repetition of curved sections of identical shape. 4. Sistema microfluídico, de acordo com a reivindicação 3, caracterizado pelo fato de que as seções curvas de formato idêntico são de formato assimétrico.4. Microfluidic system according to claim 3, characterized by the fact that the curved sections of identical shape are asymmetrical. 5. Sistema microfluídico, de acordo com qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de que as partículas compreendem esperma bovino.Microfluidic system according to any one of claims 1 to 4, characterized in that the particles comprise bovine sperm.
BR112020023607-1A 2018-05-23 2019-05-22 systems and methods for focusing particles on microchannels BR112020023607A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862675512P 2018-05-23 2018-05-23
US62/675,512 2018-05-23
PCT/US2019/033557 WO2019226790A1 (en) 2018-05-23 2019-05-22 Systems and methods for particle focusing in microchannels
US16/419,756 2019-05-22
US16/419,756 US11331670B2 (en) 2018-05-23 2019-05-22 Systems and methods for particle focusing in microchannels

Publications (1)

Publication Number Publication Date
BR112020023607A2 true BR112020023607A2 (en) 2021-02-17

Family

ID=68614914

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112020023607-1A BR112020023607A2 (en) 2018-05-23 2019-05-22 systems and methods for focusing particles on microchannels

Country Status (6)

Country Link
US (2) US11331670B2 (en)
EP (1) EP3796998A1 (en)
AR (1) AR115161A1 (en)
BR (1) BR112020023607A2 (en)
UY (1) UY38239A (en)
WO (1) WO2019226790A1 (en)

Family Cites Families (311)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1119387A (en) 1912-10-17 1914-12-01 Fred Baker Electric motor.
GB502971A (en) 1937-09-28 1939-03-28 British Electricon London Ltd Improvements in means for detecting the presence of suspended matter in fluids
US5966457A (en) 1955-06-14 1999-10-12 Lemelson; Jerome H. Method for inspecting, coding and sorting objects
US3390449A (en) 1966-07-18 1968-07-02 Atomic Energy Commission Usa Method for preparation and encapsulation of germanium gamma ray detectors
US3661460A (en) 1970-08-28 1972-05-09 Technicon Instr Method and apparatus for optical analysis of the contents of a sheathed stream
US3649829A (en) 1970-10-06 1972-03-14 Atomic Energy Commission Laminar flow cell
DE2120793C3 (en) 1971-04-28 1975-05-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Measuring chamber for measuring certain properties of particles suspended in a liquid
BE793185A (en) 1971-12-23 1973-04-16 Atomic Energy Commission APPARATUS FOR QUICKLY ANALYZING AND SORTING PARTICLES SUCH AS BIOLOGICAL CELLS
US3791517A (en) 1973-03-05 1974-02-12 Bio Physics Systems Inc Digital fluidic amplifier particle sorter
DE2716095A1 (en) 1977-04-12 1978-10-19 Zoeld Tibor Dr Phys GAS CONTROLLED PROCESS FOR SORTING PARTICLES SUSPENDED IN AN ELECTROLYTE AND DEVICE FOR CARRYING OUT THE PROCESS
US4325706A (en) 1980-08-15 1982-04-20 Ortho Diagnostic Systems Inc. Automated detection of platelets and reticulocytes in whole blood
DE3274800D1 (en) 1981-02-05 1987-02-05 Asahi Chemical Ind Apparatus for separating blood components
US4424132A (en) 1981-02-05 1984-01-03 Asahi Kasei Kogyo Kabushiki Kaisha Apparatus and method for separating blood components
JPS5890513A (en) 1981-11-26 1983-05-30 Asahi Chem Ind Co Ltd Method and apparatus for fractional collection of blood component
JPS57131451A (en) 1981-02-05 1982-08-14 Asahi Chemical Ind Method and apparatus for separating blood components
US4667830A (en) 1981-06-15 1987-05-26 The Board Of Trustees Of The Leland Stanford Junior University Method and means for sorting individual particles into containers for culturing, cloning, analysis, or the like
US4409106A (en) 1981-09-08 1983-10-11 Asahi Kasei Kogyo Kabushiki Kaisha Apparatus and method for separating blood components
US4395397A (en) 1981-09-17 1983-07-26 Sidney Farber Cancer Institute, Inc. Apparatus and method for killing unwanted cells
US4660971A (en) 1984-05-03 1987-04-28 Becton, Dickinson And Company Optical features of flow cytometry apparatus
JP2881305B2 (en) 1986-08-11 1999-04-12 バクスター、インターナショナル、インコーポレイテッド Blood cell cleaning system and method
DE3708511A1 (en) 1987-03-16 1988-09-29 Kratzer Michael DEVICE FOR SELECTIVE DESTRUCTION OF CELLS
US4765737A (en) 1987-03-30 1988-08-23 Cornell Research Foundation Cell size measurements using light in flow cytometry and cell sorting
JPH07119686B2 (en) 1987-04-08 1995-12-20 株式会社日立製作所 Flow cell device
DE3851458T2 (en) 1987-04-08 1995-02-09 Hitachi Ltd Device with a vaginal flow cell.
JPS63262565A (en) 1987-04-20 1988-10-28 Hitachi Ltd Flow cell
JPS6474451A (en) 1987-09-16 1989-03-20 Showa Denko Kk Sell selection device
US4885473A (en) 1988-04-29 1989-12-05 Shofner Engineering Associates, Inc. Method and apparatus for detecting particles in a fluid using a scanning beam
JPH02105041A (en) 1988-10-13 1990-04-17 Canon Inc Particle measuring instrument
US5229297A (en) 1989-02-03 1993-07-20 Eastman Kodak Company Containment cuvette for PCR and method of use
DE69028526T2 (en) 1989-05-10 1997-02-06 Us Agriculture PROCEDURE FOR SELECTING THE GENDER'S GENDER
CA1341328C (en) 1989-06-07 2001-12-25 Glenn F. Spaulding Sex-associated membrane proteins and methods for increasing the probability that offspring will be of a desired sex
US5030002A (en) 1989-08-11 1991-07-09 Becton, Dickinson And Company Method and apparatus for sorting particles with a moving catcher tube
DE69025256T2 (en) 1989-10-11 1996-06-27 Canon Kk Apparatus and method for separating particles from liquid suspended particles in connection with their properties
US5100627A (en) 1989-11-30 1992-03-31 The Regents Of The University Of California Chamber for the optical manipulation of microscopic particles
JPH03297385A (en) 1990-04-16 1991-12-27 Nippon Steel Corp Cell fusion using light trapping by laser
ATE132252T1 (en) 1990-08-31 1996-01-15 Commw Scient Ind Res Org INTERFERENCE MICROSCOPE
US5125749A (en) 1990-09-24 1992-06-30 The Dow Chemical Company Probe for photoacoustic analysis
US5194909A (en) 1990-12-04 1993-03-16 Tycko Daniel H Apparatus and method for measuring volume and hemoglobin concentration of red blood cells
JPH0526799A (en) 1991-07-19 1993-02-02 Nippon Steel Corp Method for separating particle
JPH07109384B2 (en) 1991-08-29 1995-11-22 プリマハム株式会社 Automatic inspection device equipped with sample surface cutting device
JP2552582Y2 (en) 1992-01-08 1997-10-29 ニチコン株式会社 Assembly board for hybrid IC
DE4300698A1 (en) 1993-01-13 1994-07-14 Raimund Schuetze Device and method for handling, processing and observing small particles, in particular biological particles
WO1994018218A1 (en) 1993-02-01 1994-08-18 Seq, Ltd. Methods and apparatus for dna sequencing
JP2512387B2 (en) 1993-03-23 1996-07-03 理化学研究所 Cell sorting method and cell collection method
US5427663A (en) 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
JPH0724309A (en) 1993-07-08 1995-01-27 Canon Inc Method and apparatus for separation of particle
US5483469A (en) 1993-08-02 1996-01-09 The Regents Of The University Of California Multiple sort flow cytometer
JPH07286953A (en) 1994-04-19 1995-10-31 Toa Medical Electronics Co Ltd Imaging flow sight meter
US5700692A (en) 1994-09-27 1997-12-23 Becton Dickinson And Company Flow sorter with video-regulated droplet spacing
FI98765C (en) 1995-01-16 1997-08-11 Erkki Soini Flow cytometric method and apparatus
USH1960H1 (en) 1995-04-10 2001-06-05 Alpha Therapeutic Corp. Automated method and system for testing blood samples
US6053856A (en) 1995-04-18 2000-04-25 Cobe Laboratories Tubing set apparatus and method for separation of fluid components
US6797942B2 (en) 2001-09-13 2004-09-28 University Of Chicago Apparatus and process for the lateral deflection and separation of flowing particles by a static array of optical tweezers
US5620857A (en) 1995-06-07 1997-04-15 United States Of America, As Represented By The Secretary Of Commerce Optical trap for detection and quantitation of subzeptomolar quantities of analytes
CA2222126A1 (en) 1995-06-16 1997-01-03 Fred K. Forster Microfabricated differential extraction device and method
US5716852A (en) 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
US6146897A (en) 1995-11-13 2000-11-14 Bio-Rad Laboratories Method for the detection of cellular abnormalities using Fourier transform infrared spectroscopy
US5948684A (en) 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
US5786002A (en) 1996-04-04 1998-07-28 Siecor Corporation Guide block assembly for aligning bore forming pins during molding of multi-fiber optical connector ferrules
US5707808A (en) 1996-04-15 1998-01-13 The Regents Of The University Of California Optical selection and collection of DNA fragments
US5752606A (en) 1996-05-23 1998-05-19 Wilson; Steve D. Method for trapping, manipulating, and separating cells and cellular components utilizing a particle trap
US6368855B1 (en) 1996-06-11 2002-04-09 Antigen Express, Inc. MHC class II antigen presenting cells containing oligonucleotides which inhibit Ii protein expression
AU3570797A (en) 1996-06-14 1998-01-07 University Of Washington Absorption-enhanced differential extraction device
US5800690A (en) 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
AU4113297A (en) 1996-09-04 1998-03-26 Technical University Of Denmark A micro flow system for particle separation and analysis
US6221654B1 (en) 1996-09-25 2001-04-24 California Institute Of Technology Method and apparatus for analysis and sorting of polynucleotides based on size
US5858187A (en) 1996-09-26 1999-01-12 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing electrodynamic focusing on a microchip
US6008010A (en) 1996-11-01 1999-12-28 University Of Pittsburgh Method and apparatus for holding cells
CA2277860C (en) 1997-01-08 2005-11-29 Bristol-Myers Squibb Company Centrifuge apparatus for separating blood
US6416959B1 (en) 1997-02-27 2002-07-09 Kenneth Giuliano System for cell-based screening
US6159739A (en) 1997-03-26 2000-12-12 University Of Washington Device and method for 3-dimensional alignment of particles in microfabricated flow channels
ATE398185T1 (en) 1997-05-05 2008-07-15 Chemometec As METHOD AND SYSTEM FOR DETERMINING SOMA CELLS IN MILK
US5985216A (en) 1997-07-24 1999-11-16 The United States Of America, As Represented By The Secretary Of Agriculture Flow cytometry nozzle for high efficiency cell sorting
US6368871B1 (en) 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US6540895B1 (en) 1997-09-23 2003-04-01 California Institute Of Technology Microfabricated cell sorter for chemical and biological materials
US6185664B1 (en) 1997-11-17 2001-02-06 Micron Technology, Inc. Method for providing additional latency for synchronously accessed memory
US6149867A (en) 1997-12-31 2000-11-21 Xy, Inc. Sheath fluids and collection systems for sex-specific cytometer sorting of sperm
US6167910B1 (en) 1998-01-20 2001-01-02 Caliper Technologies Corp. Multi-layer microfluidic devices
US6055106A (en) 1998-02-03 2000-04-25 Arch Development Corporation Apparatus for applying optical gradient forces
US6519032B1 (en) 1998-04-03 2003-02-11 Symyx Technologies, Inc. Fiber optic apparatus and use thereof in combinatorial material science
DE19815882A1 (en) 1998-04-08 1999-10-14 Fuhr Guenther Method and device for manipulating microparticles in fluid flows
US6159749A (en) 1998-07-21 2000-12-12 Beckman Coulter, Inc. Highly sensitive bead-based multi-analyte assay system using optical tweezers
NZ510096A (en) 1998-08-21 2003-02-28 Surromed Inc Confocal scanning system having spot excitation scanner and light detectors
US6637463B1 (en) 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
EP1125105A2 (en) 1998-11-05 2001-08-22 ChemoMetec A/S A method for the assessment of particles and a system and a device for use in the method
JP3454173B2 (en) 1998-11-09 2003-10-06 三菱電機株式会社 Optical dust sensor optical system
US7116407B2 (en) 1998-12-15 2006-10-03 Union Biometrica, Inc. System for axial pattern analysis of multicellular organisms
US6062261A (en) 1998-12-16 2000-05-16 Lockheed Martin Energy Research Corporation MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
US6334842B1 (en) 1999-03-16 2002-01-01 Gambro, Inc. Centrifugal separation apparatus and method for separating fluid components
AT408376B (en) 1999-04-07 2001-11-26 Lendl Bernhard Dr METHOD FOR INFRARED-OPTICALLY DETERMINING THE CONCENTRATION OF AT LEAST ONE ANALYTIC IN A LIQUID SAMPLE
US6555389B1 (en) 1999-05-11 2003-04-29 Aclara Biosciences, Inc. Sample evaporative control
WO2000070080A1 (en) 1999-05-17 2000-11-23 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US6592821B1 (en) 1999-05-17 2003-07-15 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US6853654B2 (en) 1999-07-27 2005-02-08 Intel Corporation Tunable external cavity laser
DE19942265A1 (en) 1999-09-04 2001-03-08 Alup Kompressoren Gmbh Compressor system and method for compressing a gas
FR2798557A1 (en) 1999-09-22 2001-03-23 Christine Nicolino Insect trap and eliminator for flying insects involves selection of insects by their size by system of grilles, and eliminated by air turbulence
DE19952322C2 (en) 1999-10-29 2002-06-13 Evotec Ag Method and device for particle separation
US7208265B1 (en) 1999-11-24 2007-04-24 Xy, Inc. Method of cryopreserving selected sperm cells
FR2801671B1 (en) 1999-11-29 2001-12-21 Commissariat Energie Atomique DEVICE FOR MEASURING, BY DIFFRACTION, SIZES OF SUBSTANTIALLY SPHERICAL PARTICLES, ESPECIALLY OPAQUE DROPS
AU2001232805A1 (en) 2000-01-12 2001-07-24 Ut-Battelle, Llc A microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
US6944324B2 (en) 2000-01-24 2005-09-13 Robotic Vision Systems, Inc. Machine vision-based singulation verification system and method
US7250292B2 (en) 2000-01-26 2007-07-31 21St Century Medicine Hypertonic reduction of chilling injury
US6451264B1 (en) 2000-01-28 2002-09-17 Roche Diagnostics Corporation Fluid flow control in curved capillary channels
US20030186426A1 (en) 2000-03-15 2003-10-02 The Regents Of The University Of California Multichannel flow cell for interacting single optically trapped, DNA molecules with different chemical species
CA2408939C (en) 2000-05-09 2011-11-08 Xy, Inc. High purity x-chromosome bearing and y-chromosome bearing populations of spermatozoa
US7242474B2 (en) 2004-07-27 2007-07-10 Cox James A Cytometer having fluid core stream position control
US7420659B1 (en) 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US6549275B1 (en) 2000-08-02 2003-04-15 Honeywell International Inc. Optical detection system for flow cytometry
US6519954B1 (en) 2000-06-12 2003-02-18 Supachill International Pty. Ltd. Cryogenic preservation of biologically active material using high temperature freezing
US6749565B2 (en) 2000-07-08 2004-06-15 Victor Chudner Method for blood infrared spectroscopy diagnosing of inner organs pathology
WO2002014480A2 (en) 2000-08-16 2002-02-21 Duke University Decellularized tissue engineered constructs and tissues
EP2299256A3 (en) 2000-09-15 2012-10-10 California Institute Of Technology Microfabricated crossflow devices and methods
US7300803B2 (en) 2000-10-30 2007-11-27 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
JP4241038B2 (en) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション Optical method and system for tissue analysis
US20020160470A1 (en) 2000-11-13 2002-10-31 Genoptix Methods and apparatus for generating and utilizing linear moving optical gradients
US20030007894A1 (en) 2001-04-27 2003-01-09 Genoptix Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US6833542B2 (en) 2000-11-13 2004-12-21 Genoptix, Inc. Method for sorting particles
WO2002041906A2 (en) 2000-11-22 2002-05-30 Pharmacia Corporation Methods and apparatus for producing gender enriched sperm
JP4002720B2 (en) 2000-11-22 2007-11-07 独立行政法人科学技術振興機構 Single cell long-term culture microscope
CZ20031455A3 (en) 2000-12-01 2003-10-15 Yeda Research And Development Co. Ltd. Process and apparatus for investigating samples in vacuum-free environment by making use of scanning electron microscope ed medium
US6841388B2 (en) 2000-12-05 2005-01-11 Vysis, Inc. Method and system for diagnosing pathology in biological samples by detection of infrared spectral markers
AU2002234621A1 (en) 2001-01-22 2002-07-30 Ralf Masuch Rapid test for biological substances using ftir
FR2820502B1 (en) 2001-02-08 2004-04-16 Cetys Sa SPECTROPHOTOMETRY ANALYSIS DEVICE
WO2002078906A2 (en) 2001-03-29 2002-10-10 Cellect Technologies Corp. Methods devices and systems for sorting and separating particles
ATE500051T1 (en) 2001-04-06 2011-03-15 Fluidigm Corp POLYMER SURFACE MODIFICATION
US8174394B2 (en) 2001-04-11 2012-05-08 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US6416190B1 (en) 2001-04-27 2002-07-09 University Of Chicago Apparatus for using optical tweezers to manipulate materials
GB0116384D0 (en) 2001-07-04 2001-08-29 Diagnoswiss Sa Microfluidic chemical assay apparatus and method
US7105355B2 (en) 2001-07-18 2006-09-12 The Regents Of The University Of Michigan Flow cytometers and detection system of lesser size
WO2003008943A1 (en) 2001-07-19 2003-01-30 Tufts University Optical array device and methods of use thereof for screening, analysis and manipulation of particles
WO2003025563A1 (en) 2001-09-16 2003-03-27 Chemometec A/S Method and a system for detecting and optionally isolating a rare event particle
JP2003106980A (en) 2001-10-01 2003-04-09 Nec Corp Measuring device and measuring method for minute particle group
WO2003038401A2 (en) 2001-10-31 2003-05-08 The Regents Of The University Of California Semiconductor nanocrystal-based cellular imaging
AU2003216175A1 (en) 2002-02-04 2003-09-02 Colorado School Of Mines Laminar flow-based separations of colloidal and cellular particles
US7223371B2 (en) 2002-03-14 2007-05-29 Micronics, Inc. Microfluidic channel network device
US7560267B2 (en) 2002-03-18 2009-07-14 City University Of Hong Kong Apparatus and methods for on-chip monitoring of cellular reactions
US7312085B2 (en) 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
WO2003085379A2 (en) 2002-04-01 2003-10-16 Fluidigm Corporation Microfluidic particle-analysis systems
EP1715327A3 (en) 2002-04-03 2007-01-10 Johann Wolfgang Goethe-Universität Frankfurth am Main Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems
US9943847B2 (en) 2002-04-17 2018-04-17 Cytonome/St, Llc Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US6877528B2 (en) 2002-04-17 2005-04-12 Cytonome, Inc. Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US7157274B2 (en) 2002-06-24 2007-01-02 Cytonome, Inc. Method and apparatus for sorting particles
US6976590B2 (en) 2002-06-24 2005-12-20 Cytonome, Inc. Method and apparatus for sorting particles
US6808075B2 (en) 2002-04-17 2004-10-26 Cytonome, Inc. Method and apparatus for sorting particles
US6838056B2 (en) 2002-07-08 2005-01-04 Innovative Micro Technology Method and apparatus for sorting biological cells with a MEMS device
EP2806427A3 (en) 2002-07-31 2015-04-22 Premium Genetics (UK) Limited System and method of sorting materials using holographic laser steering
US7118676B2 (en) 2003-09-04 2006-10-10 Arryx, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US7150834B2 (en) 2003-07-31 2006-12-19 Arryx, Inc. Multiple laminar flow-based rate zonal or isopycnic separation with holographic optical trapping of blood cells and other static components
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US7699767B2 (en) 2002-07-31 2010-04-20 Arryx, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US20040043506A1 (en) 2002-08-30 2004-03-04 Horst Haussecker Cascaded hydrodynamic focusing in microfluidic channels
WO2004029221A2 (en) 2002-09-27 2004-04-08 The General Hospital Corporation Microfluidic device for cell separation and uses thereof
US20040098106A1 (en) 2002-11-14 2004-05-20 Williams Michael S. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
JP3891925B2 (en) 2002-12-03 2007-03-14 ベイバイオサイエンス株式会社 Device for obtaining information on biological particles
DK2309245T3 (en) 2003-03-28 2016-01-04 Inguran Llc Methods for providing sex-sorted animal semen
US7007710B2 (en) 2003-04-21 2006-03-07 Predicant Biosciences, Inc. Microfluidic devices and methods
NZ544103A (en) 2003-05-15 2010-10-29 Xy Llc Efficient haploid cell sorting for flow cytometer systems
US7115230B2 (en) 2003-06-26 2006-10-03 Intel Corporation Hydrodynamic focusing devices
SE0302074D0 (en) 2003-07-15 2003-07-15 Simon Ekstroem Device and method for analysis of samples using a combined sample treatment and sample carrier device
US7391795B2 (en) 2003-08-01 2008-06-24 Nippon Telegraph And Telephone Corporation Laser light source
US7413712B2 (en) 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7298478B2 (en) 2003-08-14 2007-11-20 Cytonome, Inc. Optical detector for a particle sorting system
US7307734B2 (en) 2003-08-14 2007-12-11 University Of Central Florida Interferometric sensor for characterizing materials
CN1860363B (en) 2003-08-28 2011-12-28 赛路拉公司 Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network
EP1663460B1 (en) 2003-09-04 2015-07-08 Premium Genetics (UK) Limited Multiple laminar flow-based particle and cellular separation with laser steering
IL158498A (en) 2003-10-20 2008-04-13 Gil Hecht Adjustable deburring tool
US7311476B2 (en) 2003-10-30 2007-12-25 Cytonome, Inc. Multilayer hydrodynamic sheath flow structure
EP1533605A3 (en) 2003-11-19 2006-05-31 Aisin Seiki Kabushiki Kaisha Micro control system for transfer of liquids
US20050124869A1 (en) 2003-12-08 2005-06-09 John Hefti Non-invasive, in vivo substance measurement systems
WO2005059510A2 (en) 2003-12-11 2005-06-30 The Regents Of The University Of California Catheter-based mid-infrared reflectance and reflectance generated absorption spectroscopy
US7271896B2 (en) 2003-12-29 2007-09-18 Intel Corporation Detection of biomolecules using porous biosensors and raman spectroscopy
JP2007518107A (en) 2004-01-13 2007-07-05 ユー.エス. ジェノミクス, インコーポレイテッド Detection and quantification of analytes in solution using polymers
NZ530972A (en) 2004-02-05 2005-04-29 Embrionics Ltd A method and apparatus for orientating and selecting cells
WO2005115737A2 (en) 2004-03-22 2005-12-08 Quantaspec Inc. System and method for detecting and identifying an analyte
US7697576B2 (en) 2004-05-05 2010-04-13 Chem Image Corporation Cytological analysis by raman spectroscopic imaging
WO2005108963A1 (en) 2004-05-06 2005-11-17 Nanyang Technological University Microfluidic cell sorter system
WO2006012352A2 (en) 2004-06-28 2006-02-02 Haemonetics Corporation Blood component separation system with stationary separation chamber
DE102004037519B4 (en) 2004-07-30 2008-12-18 Universität Kassel Sensor device and method for determining a physical quantity
US20060105453A1 (en) 2004-09-09 2006-05-18 Brenan Colin J Coating process for microfluidic sample arrays
EP2261650A3 (en) 2004-09-15 2011-07-06 IntegenX Inc. Microfluidic devices
US8486371B2 (en) 2004-09-17 2013-07-16 The Regents Of The University Of Michigan Quantitative two-photon flow cytometry
US9040305B2 (en) 2004-09-28 2015-05-26 Singulex, Inc. Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
CA2588753C (en) 2004-12-03 2014-02-18 Cytonome, Inc. Unitary cartridge for particle processing
US20060118167A1 (en) 2004-12-03 2006-06-08 Xy, Inc. Pressure regulated continuously variable volume container for fluid delivery
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays
WO2006083969A2 (en) 2005-02-01 2006-08-10 Amnis Corporation Blood analysis using a flow imaging cytometer
US20060172315A1 (en) 2005-02-01 2006-08-03 Anderson Amy L Methods for staining cells for identification and sorting
US7355696B2 (en) 2005-02-01 2008-04-08 Arryx, Inc Method and apparatus for sorting cells
EP2375239A3 (en) 2005-03-25 2012-01-18 Massachusetts Institute of Technology System and method for Hilbert phase imaging
US7574076B2 (en) 2005-04-08 2009-08-11 Arryx, Inc. Apparatus for optically-based sorting within liquid core waveguides
DE112005003572T5 (en) 2005-05-13 2008-03-27 Agilent Technologies Inc., Santa Clara Flow cell with envelope flow
US7466734B1 (en) 2005-06-15 2008-12-16 Daylight Solutions, Inc. Compact external cavity mid-IR optical lasers
WO2007005907A1 (en) 2005-07-01 2007-01-11 Honeywell International, Inc. A molded cartridge with 3-d hydrodynamic focusing
EP1904223A2 (en) 2005-07-08 2008-04-02 Velocys Inc. Catalytic reaction process using microchannel technology
US8153059B2 (en) 2005-07-25 2012-04-10 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Chip-holder for a micro-fluidic chip
US20090201504A1 (en) 2005-08-09 2009-08-13 Maxwell Sensors, Inc. Hydrodynamic focusing for analyzing rectangular microbeads
EP2537657A3 (en) 2005-08-09 2016-05-04 The University of North Carolina At Chapel Hill Methods and materials for fabricating microfluidic devices
JP2007148981A (en) 2005-11-30 2007-06-14 Univ Waseda Particle sorting microsystem and particle sorting method
TWI302941B (en) 2005-12-01 2008-11-11 Ind Tech Res Inst Microflow coverage ratio control device
US8149402B2 (en) 2006-02-22 2012-04-03 Accuri Cytometers, Inc. Optical system for a flow cytometer
US7659977B2 (en) 2006-04-21 2010-02-09 Intel Corporation Apparatus and method for imaging with surface enhanced coherent anti-stokes raman scattering (SECARS)
CN103948468A (en) 2006-04-28 2014-07-30 斯尔替克美学股份有限公司 Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
EP2026912B1 (en) 2006-05-05 2013-07-10 Cytonome/ST, LLC Actuation of parallel microfluidic arrays
EP2530168B1 (en) 2006-05-11 2015-09-16 Raindance Technologies, Inc. Microfluidic Devices
US8501099B2 (en) 2006-07-11 2013-08-06 The Curators Of The University Of Missouri Photo-acoustic detection device and method
ES2708573T3 (en) 2006-07-11 2019-04-10 Univ Missouri Photoacoustic detection device and method
US8079095B2 (en) 2006-08-31 2011-12-20 Ideal Standard International Bvba Limited volume high performance flush valve assembly
WO2008036614A1 (en) 2006-09-18 2008-03-27 California Institute Of Technology Apparatus for detecting target molecules and related methods
US20090051912A1 (en) 2006-10-02 2009-02-26 Agave Biosystems, Inc. Modular Microfluidic Flow Cytometer and Method Applications
WO2008063758A2 (en) 2006-10-05 2008-05-29 Massachussetts Institute Of Technology Multifunctional encoded particles for high-throughput analysis
DK2086556T3 (en) 2006-11-03 2011-05-09 Aastrom Biosciences Inc Mixed cell populations for tissue repair and cell separation techniques
US8062609B2 (en) 2006-11-10 2011-11-22 Luminex Corporation Flow cytometer and fluidic line assembly with multiple injection needles
US7826509B2 (en) 2006-12-15 2010-11-02 President And Fellows Of Harvard College Broadly tunable single-mode quantum cascade laser sources and sensors
DE102007004855B4 (en) 2007-01-31 2014-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for deposition of biological material in a target substrate
WO2008114458A1 (en) 2007-03-16 2008-09-25 Japan Science And Technology Agency Cell sorter chip and cell sorter
EP2479552B1 (en) 2007-04-02 2015-09-02 Acoustic Cytometry Systems, Inc. Methods for enhanced analysis of acoustic field focused cells and particles
US20090042241A1 (en) 2007-04-06 2009-02-12 California Institute Of Technology Microfluidic device
JP4710865B2 (en) 2007-04-13 2011-06-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2008130977A2 (en) 2007-04-16 2008-10-30 The General Hospital Corporation D/B/A Massachusetts General Hospital Systems and methods for particle focusing in microchannels
CN101657717A (en) 2007-04-17 2010-02-24 Nxp股份有限公司 A fluid separation structure and a method of manufacturing a fluid separation structure
US8691164B2 (en) 2007-04-20 2014-04-08 Celula, Inc. Cell sorting system and methods
KR20080110167A (en) 2007-06-14 2008-12-18 삼성전자주식회사 A apparatus for focusing and detecting particles in a sample and a method of manufacturing the same
US7701576B2 (en) 2007-06-15 2010-04-20 Microstructure Technologies Inc. Method for sorting and analyzing particles in an aerosol with redundant particle analysis
WO2009009081A2 (en) 2007-07-10 2009-01-15 Massachusetts Institute Of Technology Tomographic phase microscopy
WO2009020982A1 (en) 2007-08-06 2009-02-12 The Regents Of The University Of California Nano-microfluidic apparatus for continuous real-time analysis of targets in thin liquid films
JP4921307B2 (en) 2007-10-02 2012-04-25 日本電信電話株式会社 Optical absorption analyzer
US8101915B2 (en) 2007-10-24 2012-01-24 The United States Of America As Represented By The Secretary Of The Navy Detection of chemicals with infrared light
JP4509167B2 (en) 2007-11-05 2010-07-21 ソニー株式会社 Channel structure, channel substrate having the same, and fluid control method
JP2009115672A (en) 2007-11-08 2009-05-28 Sony Corp Optical measurement method and dispensing method for fine particle, and passage used for this optical measurement method and preparative method, and optical measurement device and flow cytometer
US20090156932A1 (en) 2007-12-13 2009-06-18 Board Of Trustees Of The University Of Arkansas Device and method for in vivo flow cytometry using the detection of photoacoustic waves
JP2011513752A (en) 2008-03-04 2011-04-28 カリフォルニア インスティテュート オブ テクノロジー Method using optofluidic microscope apparatus
US9664619B2 (en) 2008-04-28 2017-05-30 President And Fellows Of Harvard College Microfluidic device for storage and well-defined arrangement of droplets
US8184298B2 (en) 2008-05-21 2012-05-22 The Board Of Trustees Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
US9013692B2 (en) 2008-06-12 2015-04-21 East Carolina University Flow cytometer apparatus for three dimensional difraction imaging and related methods
US20110076712A1 (en) 2008-06-13 2011-03-31 Xy, Llc. Lubricious microfludic flow path system
JP2011528907A (en) 2008-07-23 2011-12-01 マリポサ バイオテクノロジー, インコーポレイテッド Automated system for cryopreservation of oocytes, embryos or blastocysts
JP5148440B2 (en) 2008-09-29 2013-02-20 富士フイルム株式会社 Liquid coating apparatus, liquid storage method, and ink jet recording apparatus
HU227875B1 (en) 2008-10-13 2012-05-29 Diatron Medicinai Instr Laboratoriumi Diagnosztikai Fejlesztoe Gyarto Zartkoerueen Muekoedoe Reszven Optical circulation cytometer furthermore testing method
JP2010117197A (en) 2008-11-12 2010-05-27 Sony Corp Microparticle dispenser and microparticle dispensing method
JP2010151777A (en) 2008-11-19 2010-07-08 Sony Corp Microparticle analyzer, microchip, and method for analyzing microparticle
US8209987B2 (en) 2008-11-26 2012-07-03 United Technologies Corporation Augmentor pilot
JP5382852B2 (en) 2009-02-06 2014-01-08 株式会社オンチップ・バイオテクノロジーズ Disposable chip type flow cell and flow cytometer using the same
JP5487638B2 (en) 2009-02-17 2014-05-07 ソニー株式会社 Apparatus for microparticle sorting and microchip
WO2010129441A2 (en) 2009-05-04 2010-11-11 Gpb Scientific, Llc Method for separating stem cells from their more differentiated progeny using microfluidic devices
WO2010141606A2 (en) 2009-06-02 2010-12-09 Davinci Biosciences Llc Human gonadal stem cells
CN102713640B (en) 2009-06-10 2015-09-16 辛温尼奥生物系统公司 Sheath stream apparatus and method
US8034629B2 (en) 2009-06-26 2011-10-11 Massachusetts Institute Of Technology High precision scanning of encoded hydrogel microparticles
US20110001963A1 (en) 2009-07-02 2011-01-06 Durack Gary P System and method for the measurement of multiple emissions from multiple parallel flow channels in a flow cytometry system
TW201109653A (en) 2009-07-06 2011-03-16 Sony Corp Microfluidic device
CN102472709B (en) 2009-07-06 2015-07-15 索尼公司 Microfluidic device having onboard tissue or cell sample handling capability
TWI495875B (en) 2009-07-06 2015-08-11 Sony Corp Microfluidic device
CN103398936A (en) 2009-07-07 2013-11-20 索尼公司 Microfluidic device
US8735088B2 (en) 2009-07-07 2014-05-27 Sony Corporation Method to analyze a sample fluid in a microfluidic cytometry system
WO2011005754A1 (en) 2009-07-08 2011-01-13 Sony Corporation Microfluidic device having a flow channel within a gain medium
US7956328B2 (en) 2009-07-29 2011-06-07 Battelle Memorial Institute System, device, and methods for real-time screening of live cells, biomarkers, and chemical signatures
US8559014B2 (en) 2009-09-25 2013-10-15 Hwan J. Jeong High-resolution, common-path interferometric imaging systems and methods
US8563325B1 (en) 2009-09-29 2013-10-22 Sandia Corporation Coaxial microreactor for particle synthesis
JP2011145185A (en) 2010-01-15 2011-07-28 Sony Corp Flow-channel structure, microchip, and solution sending method
WO2011097032A1 (en) 2010-02-05 2011-08-11 Cytonome/St, Llc Multiple flow channel particle analysis system
US9470617B2 (en) 2010-04-07 2016-10-18 Sony Corporation Flow cytometry apparatus
US8569069B2 (en) 2010-04-19 2013-10-29 Sony Corporation System and method for high throughput cell analysis and sorting
US8780347B2 (en) 2010-06-11 2014-07-15 Block Engineering, Llc QCL spectroscopy system and applications therefor
US9025850B2 (en) 2010-06-25 2015-05-05 Cireca Theranostics, Llc Method for analyzing biological specimens by spectral imaging
WO2012014405A1 (en) 2010-07-26 2012-02-02 株式会社エンプラス Microchannel chip and microanalysis system
US9246310B2 (en) 2010-08-03 2016-01-26 President And Fellows Of Harvard College Wavelength beam combining of quantum cascade laser arrays
SG190015A1 (en) 2010-11-16 2013-06-28 1087 Systems Inc System for identifying and sorting living cells
US8941062B2 (en) 2010-11-16 2015-01-27 1087 Systems, Inc. System for identifying and sorting living cells
US20120225475A1 (en) 2010-11-16 2012-09-06 1087 Systems, Inc. Cytometry system with quantum cascade laser source, acoustic detector, and micro-fluidic cell handling system configured for inspection of individual cells
WO2012075358A2 (en) 2010-12-02 2012-06-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tubular array for fluidic focusing with integrated optical access region
CN103460018B (en) 2011-02-04 2015-09-23 塞通诺米/St有限责任公司 Particle sorting device and method
BR112013020636A2 (en) 2011-02-15 2017-09-05 Microbix Biosystems Inc METHODS, SYSTEMS AND DEVICES TO PERFORM FLOW CYTOMETRY
WO2012149185A2 (en) 2011-04-28 2012-11-01 The Government Of The United States Of America As Represented By The Secretary Of The Navy Method of changing fluid flow by using an optical beam
EP2707699B1 (en) 2011-05-12 2021-07-07 Xy, Llc Uv diode laser excitation in flow cytometry
JP6003020B2 (en) 2011-08-03 2016-10-05 ソニー株式会社 Microchip and fine particle analyzer
EP2761303B1 (en) 2011-09-30 2017-03-01 The Regents of The University of California Devices and methods for shape-based particle separation
WO2013059835A1 (en) 2011-10-21 2013-04-25 Acea Biosciences, Inc. System and method for detecting multiple-excitation-induced light in a flow channel
US8741233B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Disposable cartridge for fluid analysis
US9429500B2 (en) 2012-02-29 2016-08-30 Fluidigm Corporation Methods, systems and devices for multiple single-cell capturing and processing using microfluidics
WO2013173446A1 (en) 2012-05-15 2013-11-21 1087 Systems, Inc. Cytometry system with interferometric measurement
DE102012013267A1 (en) 2012-07-04 2014-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrate device, preservative device and method for cryopreserving a biological sample
NZ725649A (en) * 2012-07-27 2018-05-25 Engender Tech Limited Method and system for microfluidic particle orientation and/or sorting
EP2879778B1 (en) 2012-08-01 2020-09-02 The Penn State Research Foundation High efficiency separation and sorting of particles and cells
GB2507959A (en) 2012-11-09 2014-05-21 M Squared Lasers Ltd Characterising hydrocarbon fluids using mid infrared absorption
US20140287243A1 (en) 2013-03-06 2014-09-25 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Superhydrophobic coatings
NZ743491A (en) 2013-03-14 2020-03-27 Cytonome St Llc Hydrodynamic focusing apparatus and methods
US9757726B2 (en) 2013-03-14 2017-09-12 Inguran, Llc System for high throughput sperm sorting
WO2014152048A2 (en) 2013-03-14 2014-09-25 Cytonome/St, Llc Assemblies and methods for reducing optical crosstalk in particle processing systems
CN105431725B (en) 2013-03-14 2019-04-19 塞通诺米/St有限责任公司 Without operator's formula particle handling systems and method
US9372143B2 (en) 2013-05-15 2016-06-21 Captl Llc Scanning image flow cytometer
US8961904B2 (en) 2013-07-16 2015-02-24 Premium Genetics (Uk) Ltd. Microfluidic chip
JP6055922B2 (en) 2013-08-08 2016-12-27 パナソニック株式会社 Microfluidic device
WO2015035246A1 (en) 2013-09-05 2015-03-12 Bio-Rad Laboratories, Inc. Multidimensional hydrodynamic focusing chamber
US9588100B2 (en) 2013-10-30 2017-03-07 Premium Genetics (Uk) Ltd Microfluidic system and method with focused energy apparatus
US11796449B2 (en) 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
CN106461548B (en) 2014-03-31 2019-11-01 红移系统有限公司 To the fluid analyzer of liquids and gases modulation
US9377400B2 (en) 2014-03-31 2016-06-28 Redshift Systems Corporation Motion modulation fluidic analyzer system
USD815754S1 (en) 2014-05-16 2018-04-17 Cytonome/St, Llc Droplet sorter
USD791338S1 (en) 2014-05-16 2017-07-04 Cytonome/St, Llc Droplet sorter
US10025322B2 (en) 2014-05-16 2018-07-17 Cytonome/St, Llc Fluid handling system for a fluid flow instrument
US9784960B2 (en) 2014-06-10 2017-10-10 Purdue Research Foundation High frame-rate multichannel beam-scanning microscopy
WO2016073481A1 (en) 2014-11-03 2016-05-12 The General Hospital Corporation Sorting particles in a microfluidic device
JP2018509615A (en) 2015-02-19 2018-04-05 プレミアム ジェネティクス (ユーケー) リミテッド Scanning infrared measurement system
NZ740697A (en) 2015-09-30 2022-07-01 Semen Refinement B V Microfluidic device for selection of semen
GB2566847B (en) * 2016-05-19 2022-04-20 Univ Leland Stanford Junior Systems and methods for automated single cell cytological classification in flow
US20170333903A1 (en) * 2016-05-20 2017-11-23 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Automated Single Cell Cytological Classification in Flow
WO2018021468A1 (en) 2016-07-28 2018-02-01 国立大学法人豊橋技術科学大学 Composite particle manufacturing device and composite particle manufacturing method
WO2018047011A2 (en) 2016-09-12 2018-03-15 Premium Genetics (Uk) Ltd. Method and system for hydrophobic coating of microfluidic chips
WO2018151680A1 (en) 2017-02-15 2018-08-23 Agency For Science, Technology And Research Methods and devices for identifying population clusters in data
RU2020107243A (en) 2017-07-19 2021-08-20 Ингуран, Ллк METHOD AND SYSTEM INCLUDING AN OPTICAL BEAM FORMATION AND BEAM STABILIZATION
US20210393853A1 (en) 2018-10-29 2021-12-23 Avery Therapeutics, Inc. Compositions and methods for cryopreservation and reconstitution of engineered tissues

Also Published As

Publication number Publication date
EP3796998A1 (en) 2021-03-31
AR115161A1 (en) 2020-12-02
US20190358634A1 (en) 2019-11-28
US11331670B2 (en) 2022-05-17
US20220226827A1 (en) 2022-07-21
UY38239A (en) 2019-12-31
WO2019226790A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
KR100746431B1 (en) Cell sorter chip
ES2709073T3 (en) Procedure and apparatus for selecting cells
US6592821B1 (en) Focusing of microparticles in microfluidic systems
US20050072677A1 (en) Dielectric particle focusing
BRPI0607095B1 (en) "FLOW DEVICE APPARATUS FOR CELL CLASSIFICATION AND ORIENTATION"
JP2009115672A (en) Optical measurement method and dispensing method for fine particle, and passage used for this optical measurement method and preparative method, and optical measurement device and flow cytometer
US11633737B2 (en) Microfluidic chip for focussing a stream of particulate containing fluid
Gao et al. Inertial lateral migration and self-assembly of particles in bidisperse suspensions in microchannel flows
JP2018524591A (en) Viscosity measurement
US20170023560A1 (en) Method for mutiplexed microfluidic bead-based immunoassay
KR102033701B1 (en) Microfluidic device
JP2023027157A (en) Microchip and microparticle sorting device
CA3076194A1 (en) Particle sorting in a microfluidic system
JP4556996B2 (en) Optical detection method
BR112020023607A2 (en) systems and methods for focusing particles on microchannels
US10399078B2 (en) Biased sample injection flow cell
US11525765B2 (en) Particle detection device and particle detection method
KR101930416B1 (en) Apparatus for sorting cells
WO2024020264A2 (en) Systems, methods, and apparatus for a microfluidic chip having a microchannel design which asymmetrically focuses particles
KR20220013701A (en) Apparatus for separating fine objects and method for separating fine objects using the apparatus
JP2022052326A (en) Flow channel device, in-fluid particle analysis system, and in-fluid particle sorting system
BRPI0914919B1 (en) METHOD FOR SELECTING A FIRST CELL GROUP FROM A CELL POPULATION AND SYSTEM FOR SELECTIVELY DETECTING AND ALTERING A DESIRED CELL SUBPOPULATION IN A SPECIMEN CELL POPULATION

Legal Events

Date Code Title Description
B350 Update of information on the portal [chapter 15.35 patent gazette]
B06W Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette]