BR112016001036B1 - FUSOCINS EVOLVING CYTOKINES WITH STRONGLY REDUCED RECEPTOR BINDING AFFINITIES - Google Patents

FUSOCINS EVOLVING CYTOKINES WITH STRONGLY REDUCED RECEPTOR BINDING AFFINITIES Download PDF

Info

Publication number
BR112016001036B1
BR112016001036B1 BR112016001036-1A BR112016001036A BR112016001036B1 BR 112016001036 B1 BR112016001036 B1 BR 112016001036B1 BR 112016001036 A BR112016001036 A BR 112016001036A BR 112016001036 B1 BR112016001036 B1 BR 112016001036B1
Authority
BR
Brazil
Prior art keywords
cells
cytokine
cytokines
fusion protein
activity
Prior art date
Application number
BR112016001036-1A
Other languages
Portuguese (pt)
Other versions
BR112016001036A2 (en
Inventor
Jan Tavernier
Jennyfer Bultinck
Sarah Gerlo
Gilles Uzé
Franciane Paul
Yann Bordat
Original Assignee
Vib Vzw
Universiteit Gent
Centre National De La Recherche Scientifique
Centre Hospitalier Regional Universitaire De Montpellier
Université Montpellier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vib Vzw, Universiteit Gent, Centre National De La Recherche Scientifique, Centre Hospitalier Regional Universitaire De Montpellier, Université Montpellier filed Critical Vib Vzw
Publication of BR112016001036A2 publication Critical patent/BR112016001036A2/en
Publication of BR112016001036B1 publication Critical patent/BR112016001036B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/195Chemokines, e.g. RANTES
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2006IL-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/2264Obesity-gene products, e.g. leptin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/523Beta-chemokines, e.g. RANTES, I-309/TCA-3, MIP-1alpha, MIP-1beta/ACT-2/LD78/SCIF, MCP-1/MCAF, MCP-2, MCP-3, LDCF-1, LDCF-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/545IL-1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/5759Products of obesity genes, e.g. leptin, obese (OB), tub, fat
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

FUSOCINAS ENVOLVENDO CITOCINAS COM AFINIDADES DE LIGAÇÃO DE RECEPTORES FORTEMENTE REDUZIDA A presente invenção refere-se a uma proteína de fusão que compreende pelo menos duas citocinas, dos quais pelo menos uma é uma citocina modificada com uma afinidade de ligação fortemente reduzida ao seu receptor, ou um de seus receptores. De um modo preferido, ambas as citocinas são conectadas por um ligante, preferencialmente um ligante GGS. A invenção refere-se, ainda, à referida proteína de fusão para uso no tratamento de doenças.FUSOCINS INVOLVING CYTOKINES WITH STRONGLY REDUCED RECEPTOR BINDING AFFINITIES The present invention relates to a fusion protein comprising at least two cytokines, at least one of which is a modified cytokine with a greatly reduced binding affinity for its receptor, or one of your receivers. Preferably both cytokines are connected by a linker, preferably a GGS linker. The invention further relates to said fusion protein for use in treating diseases.

Description

[001] A presente invenção refere-se a uma proteína de fusão que compreende pelo menos duas citocinas, dos quais pelo menos uma é uma citocina modificada com uma afinidade de ligação fortemente reduzida ao seu receptor, ou um de seus receptores. De um modo preferido, ambas as citocinas são conectadas por um ligante, preferencialmente um ligante GGS. A invenção refere-se, ainda, à referida proteína de fusão para uso no tratamento de doenças.[001] The present invention relates to a fusion protein comprising at least two cytokines, of which at least one is a modified cytokine with a strongly reduced binding affinity to its receptor, or one of its receptors. Preferably both cytokines are connected by a linker, preferably a GGS linker. The invention further relates to said fusion protein for use in treating diseases.

[002] As citocinas são proteínas pequenas secretadas ou ligadas à membrana que desempenham um papel essencial na comunicação intercelular. A citocina que se liga ao seu complexo de receptores cognatos aciona uma miríade de eventos de sinalização intracelular que possibilitam que a célula detecte e resposta ao seu meio de acordo com as necessidades dá célula, do tecido e do órgão do qual faz parte. Eles são caracteristicamente pleiotrópicos, o que significa que provocam uma ampla gama de respostas, dependendo da natureza e do estado de desenvolvimento da célula alvo. Além disso, alguns deles são altamente redundantes, já que diversas citocinas têm atividades sobrepostas, o que permite que compensem funcionalmente a perda mútua. As atividades da citocina podem ser autócrinas, parácrinas ou endócrinas, gerando uma ligeira delimitação entre a citocina de termo designado, o hormônio de peptídeo e o fator de crescimento.[002] Cytokines are small secreted or membrane-bound proteins that play an essential role in intercellular communication. The cytokine that binds to its cognate receptor complex triggers a myriad of intracellular signaling events that enable the cell to detect and respond to its environment according to the needs of the cell, tissue, and organ of which it is a part. They are characteristically pleiotropic, meaning that they elicit a wide range of responses, depending on the nature and developmental state of the target cell. Furthermore, some of them are highly redundant, as several cytokines have overlapping activities, which allows them to functionally compensate for mutual loss. Cytokine activities can be autocrine, paracrine, or endocrine, generating a slight boundary between term-designated cytokine, peptide hormone, and growth factor.

[003] Seis classes estruturais diferentes de citocinas são conhecidas: as citocinas de pacote a-helicoidais, que compreendem a maior parte das interleucinas, fatores de estímulo de colônia e hormônios como o hormônio do crescimento e a leptina ( (Nicola e Hilton, 1998), a família do fator de necrose tumoral trimérico (TNF) (Idriss e Naismith, 2000), os factores de crescimento de nó de cisteína (Sun e Davies, 1995), o grupo de aumento β- trifólio que inclui a família da interleucina-1 (Murzin et al., 1992), a família da interleucina 17 (IL-17) ( Gaffen, 2011) e as quimiocinas (Nomiyama et al., 2013).[003] Six different structural classes of cytokines are known: the a-helical bundle cytokines, which comprise most of the interleukins, colony-stimulating factors, and hormones such as growth hormone and leptin ((Nicola and Hilton, 1998 ), the trimeric tumor necrosis factor (TNF) family (Idriss and Naismith, 2000), the cysteine knot growth factors (Sun and Davies, 1995), the β-trefolium enhancement group which includes the interleukin family -1 (Murzin et al., 1992), the interleukin 17 (IL-17) family (Gaffen, 2011) and chemokines (Nomiyama et al., 2013).

[004] Descobriram-se aplicações clínicas importantes para diversas citocinas. Exemplos incluem a eritropoietina (EPO), fator de estímulo de colônia granulócita (G-CSF), interferons α2 e -β e hormônio de crescimento. Por outro lado, muitas vezes como consequência de sua natureza pró- inflamatória, ao se antagonizarem as citocinas selecionadas também foram descobertas aplicações médicas específicas. Os principais exemplos aqui são as estratégias para bloquear a atividade de TNFα para combater as doenças autoimunes, como a artrite reumatoide. Devido a esses sucessos, estratégias para otimizar as atividades de citocinas em âmbito clínico tem sido exploradas. Estas incluem uma meia-vida otimizada, imunogenicidade reduzida, administração direcionada a tipos específicos de células e fusões genéticas de duas citocinas, as chamadas fusocinas.[004] Important clinical applications have been discovered for several cytokines. Examples include erythropoietin (EPO), granulocyte colony stimulating factor (G-CSF), α2 and -β interferons, and growth hormone. On the other hand, often as a consequence of its pro-inflammatory nature, by antagonizing selected cytokines, specific medical applications have also been discovered. Prime examples here are strategies to block TNFα activity to combat autoimmune diseases such as rheumatoid arthritis. Due to these successes, strategies to optimize cytokine activities in the clinical setting have been explored. These include an optimized half-life, reduced immunogenicity, targeted delivery to specific cell types and genetic fusions of two cytokines, so-called Fusokines.

[005] Fusocinas são combinações artificiais de duas citocinas diferentes, as quais são geneticamente ligadas utilizando uma sequência de ligantes. O primeiro exemplo de fusocina é plXY321 ou pixicina, que é uma proteína de fusão de fator de estímulo de colônia granulócito- macrófago (GMCSF) e IL-3 (Donahue et al., 1988) que apresentou efeitos imunológicos e hematopoiéticos superiores em comparação a ou somente a citocina. Este efeito pode ser explicado pelo aumento da ligação aos seus respectivos complexos receptores. É de se observar que ambos os receptores compartilham a subunidade βo de sinalização, impedindo os efeitos sinergísticos no nível de transdução de sinal. Em um teste clínico de fase III, plXY321 não apresentou propriedades superiores em comparação a GM-CSF isoladamente (O'Shaughnessy et al., 1996). Fusocinas à base de GM-CSF com citocinas da família IL-2 também foram exploradas. Estas citocinas todas sinalizam através de complexos receptores que compreendem a subunidade yc. Exemplos dessas fusocinas com GM-CSF incluem IL-2 (Stagg et al., 2004), IL-15 (Rafei et al., 2007) e IL-21 (Williams et al., 2010a), também conhecidas como GIFT2, -15 e -21. Efeitos sinérgicos poderia ser esperados, tanto em nível de sinalização (ou seja, efeitos sinérgicos em uma célula-alvo) quanto em nível celular (ou seja, efeitos sinérgicos entre diferentes tipos de células alvo). Por exemplo, GIFT2 induziu uma ativação mais potente das células NK em comparação à combinação das citocinas não-fundidas (Penafuerte et al., 2009) e GI FT15 induziu uma população de células B imunossupressora potente imprevista (Rafei et al., 2009a) . Da mesma forma, GI FT21 exerceu efeitos pró- inflamatórios inesperados sobre as células monocíticas (Williams et al, 2010b,). Outro exemplo de um fusocina que combina citocinas α-helicoidais é IL-2/IL-12 (Gillies et al, 2002; Jahn et al, 2012).[005] Fusokines are artificial combinations of two different cytokines, which are genetically linked using a sequence of linkers. The first example of Fusocin is p1XY321 or pixicin, which is a fusion protein of granulocyte-macrophage colony stimulating factor (GMCSF) and IL-3 (Donahue et al., 1988) that showed superior immunological and hematopoietic effects compared to or just the cytokine. This effect can be explained by increased binding to their respective receptor complexes. It is noteworthy that both receptors share the βo signaling subunit, preventing synergistic effects on the level of signal transduction. In a phase III clinical trial, plXY321 did not show superior properties compared to GM-CSF alone (O'Shaughnessy et al., 1996). GM-CSF-based fusokines with IL-2 family cytokines have also been explored. These cytokines all signal through receptor complexes comprising the yc subunit. Examples of such GM-CSF-enabled fosfocins include IL-2 (Stagg et al., 2004), IL-15 (Rafei et al., 2007) and IL-21 (Williams et al., 2010a), also known as GIFT2, - 15 and -21. Synergistic effects could be expected, both at the signaling level (ie synergistic effects on a target cell) and at the cellular level (ie synergistic effects between different types of target cells). For example, GIFT2 induced more potent NK cell activation compared to the unfused cytokine combination (Penafuerte et al., 2009) and GI FT15 induced an unexpected potent immunosuppressive B cell population (Rafei et al., 2009a). Likewise, GI FT21 exerted unexpected pro-inflammatory effects on monocytic cells (Williams et al, 2010b,). Another example of a Fusocin that combines α-helical cytokines is IL-2/IL-12 (Gillies et al, 2002; Jahn et al, 2012).

[006] Outra classe de fusocinmas combina citocinas de diferentes famílias estruturais. Exemplos incluem a fusão de IL-1 8 (um membro da família de citocinas IL-1) e IL-2 (Acres et al., 2005) e a fusão entre IL-18 e EGF (fator de crescimento epidérmico). Visto que a superexpressão do EGFR é seguidamente observada em certos tipos de células tumorais, esta fusocina possibilita direcionar a atividade de IL-18 às células tumorais EGFR+ (Lu et al., 2008). As fusões entre quimiocinas e citocinas de pacote a-helicoidais também foram exploradas de modo mais detalhado. As quimiocinas frequentemente atual utilizando gradientes de concentração para estimular a migração de células imunológicas para regiões de infecção e inflamação. Muitos receptores de quimiocina apresentam um padrão de expressão restrito que permite o direcionamento a células (imunológicas) selecionadas. Além disso, sinalização por meio de receptores de quimiocina acoplada à proteína G, serpentina é fundamentalmente diferente das vias ativadas pelos complexos de receptores de citocinas de pacote a-helicoidal e podem-se esperar mecanismos de diafonia sinérgica positiva e negativa. É importante notas que as versões truncadas N-terminalmente das quimiocinas podem reter suas propriedades de ligação ao receptor mas apresentar comportamento antagonístico. Um exemplo é um fusocina entre GM-CSF e CCL2 truncado N-terminalmente sem os 5 primeiros aminoácidos N-terminais, também conhecidos como GMME1 (Rafei et al., 2009b). Essa fusocina induziu a apoptose de células CCR2+ inflamatórias e os camundongos tratados com GMME1 apresentaram índices reduzidos da doença autoimune induzida experimentalmente, incluindo EAE e CIA para esclerose múltipla (Rafei et al., 2009b) e artrite reumatoide (Rafel et al., 2009c), respectivamente. Da mesma forma, essa fusocina induziu a apoptose de células tumorais CCR2+ (Rafei et al., 201 1).[006] Another class of Fusokines combines cytokines from different structural families. Examples include the fusion of IL-18 (a member of the IL-1 cytokine family) and IL-2 (Acres et al., 2005) and the fusion between IL-18 and EGF (epidermal growth factor). Since EGFR overexpression is often observed in certain types of tumor cells, this Fusocin makes it possible to target IL-18 activity to EGFR+ tumor cells (Lu et al., 2008). Fusions between chemokines and a-helical bundle cytokines were also explored in more detail. Chemokines often current using concentration gradients to stimulate immune cell migration to regions of infection and inflammation. Many chemokine receptors have a restricted expression pattern that allows targeting to selected (immune) cells. Furthermore, signaling through serpentine G protein-coupled chemokine receptors is fundamentally different from the pathways activated by a-helical bundled cytokine receptor complexes and synergistic positive and negative crosstalk mechanisms can be expected. It is important to note that N-terminally truncated versions of chemokines can retain their receptor binding properties but display antagonistic behavior. An example is an N-terminally truncated Fusocin between GM-CSF and CCL2 lacking the first 5 N-terminal amino acids, also known as GMME1 (Rafei et al., 2009b). This Fusocin induced apoptosis of inflammatory CCR2+ cells, and mice treated with GMME1 had reduced rates of experimentally induced autoimmune disease, including EAE and CIA for multiple sclerosis (Rafei et al., 2009b) and rheumatoid arthritis (Rafel et al., 2009c) , respectively. Likewise, this Fusocin induced apoptosis of CCR2+ tumor cells (Rafei et al., 2011).

[007] No entanto, as fusões entre uma citocina de tipo selvagem e uma citocina mutante com afinidade fortemente reduzida quanto ao seu complexo receptor cognato não foram exploradas anteriormente. A vantagem desta abordagem é que a possível toxicidade sistêmica da citocina de tipo selvagem é eliminada. Surpreendentemente, descobriu-se que essas fusocinas permitem o direcionamento específico da célula das atividades da citocina, a partir das quais essa citocina mutante pode recuperar sua atividade sobre as células direcionadas, sem o efeito negativo das citocinas de tipo selvagem. A aplicabilidade geral do princípio foi demonstrada utilizando três fusocinas, cada uma composta de duas citocinas de duas classes de citocinas estruturalmente diferentes, conforme exemplificado abaixo. XCL1 / IFNα2-mutante[007] However, fusions between a wild-type cytokine and a mutant cytokine with strongly reduced affinity for its cognate receptor complex have not been previously explored. The advantage of this approach is that the possible systemic toxicity of the wild-type cytokine is eliminated. Surprisingly, these Fusokines have been found to allow for cell-specific targeting of cytokine activities, from which this mutant cytokine can regain its activity on targeted cells, without the negative effect of wild-type cytokines. The general applicability of the principle was demonstrated using three Fusokines, each composed of two cytokines from two structurally different cytokine classes, as exemplified below. XCL1 / IFNα2-mutant

[008] XCL1 é uma quimiocina de 93 aminoácidos secretada pelas células T CD8+, células T CD4+ de células polarizadas Th1 e células NK. Ela interage com XCR1, um receptor de quimiocina expressado exclusivamente por células dendríticas. Em camundongos, XCR1 é expresso na grande maioria das células dentríticas CD1 1 c+ CD8α+ esplênicas, enquanto que apenas um subconjunto inferior de células dendríticas de CD8α- expressa esse receptor (Dorner et al. 2009). XCR1 é um marcador seletivo conservado de células de mamíferos (incluindo células de humanos) homólogas às células dendríticas CD8α + de camundongos (Crozat et al. 2010). Curiosamente, demonstrou-se que a ação do interferon de tipo I (IFNα/β) nesse subconjunto de células dendríticas é crítico quanto ao reconhecimento imunológico inato de um tumor em desenolvimento em camundongos (Fuertes et al. 2011).[008] XCL1 is a 93 amino acid chemokine secreted by CD8+ T cells, Th1 polarized CD4+ T cells, and NK cells. It interacts with XCR1, a chemokine receptor expressed exclusively by dendritic cells. In mice, XCR1 is expressed on the vast majority of splenic CD1 1 c+ CD8α+ dendritic cells, whereas only a minor subset of CD8α- dendritic cells express this receptor (Dorner et al. 2009). XCR1 is a selective conserved marker of mammalian cells (including human cells) homologous to mouse CD8α + dendritic cells (Crozat et al. 2010). Interestingly, the action of type I interferon (IFNα/β) on this subset of dendritic cells has been shown to be critical for innate immunological recognition of a developing tumor in mice (Fuertes et al. 2011).

[009] A terapia sistêmica de IFNα tem uma toxicidade considerável, incluindo efeitos colaterais como fadiga, febre, calafrios, depressão, disfunção da tireoide, doenças da retina, perda de cabelo, pele seca, erupção cutânea, comichão e supressão da medula óssea. Assim, seria altamente vantajoso direcionar a atividade de IFN somente na direção da população celular que deve ser tratada com IFN. Para aplicação em terapias antitumorais, o direcionamento da população de células dendríticas que expressam XCR1 é altamente desejável, visto que tais células são especializadas na apresentação cruzada de antígenos (Bachem et al. 2012). Vários dados experimentais sugerem que a população de células dendríticas que expressam XCR1 representa a principal população celular que deve reagir com o IFN de tipo I no microambiente tumoral a fim de iniciar as respostas imunológicas que, em última análise, permitirão a destruição e a imunização do tumor (Gajewski et al. 2012).[009] Systemic IFNα therapy has considerable toxicity, including side effects such as fatigue, fever, chills, depression, thyroid dysfunction, retinal disease, hair loss, dry skin, rash, itching, and bone marrow suppression. Thus, it would be highly advantageous to direct the IFN activity only in the direction of the cell population that is to be treated with IFN. For application in antitumor therapies, targeting the population of dendritic cells that express XCR1 is highly desirable, since such cells are specialized in cross-presentation of antigens (Bachem et al. 2012). Several experimental data suggest that the population of dendritic cells expressing XCR1 represents the main cell population that must react with type I IFN in the tumor microenvironment in order to initiate the immune responses that will ultimately allow the destruction and immunization of the tumor. tumor (Gajewski et al. 2012).

[0010] O mutante IFNα2-Q124R humano tem uma alta afinidade quanto à cadeia IFNAR1 de murinos e uma baixa afinidade quanto à cadeia IFNAR2 de murinos (Weber et al., 1987). Ele apresenta uma atividade muito baixa sobre as células de murinos e, assim, representa um protótipo de um subtipo de IFN de tipo I apropriado para direcionar a atividade de IFN em células de camundongos selecionadas (PCT/EP2013/050787). CCL20/ IL1β[0010] The human IFNα2-Q124R mutant has a high affinity for the murine IFNAR1 chain and a low affinity for the murine IFNAR2 chain (Weber et al., 1987). It has very low activity on murine cells and thus represents a prototype of a type I IFN subtype suitable for targeting IFN activity in selected mouse cells (PCT/EP2013/050787). CCL20/ IL1β

[0011] A quimiocina CC CCL20, também conhecida como quimiocina regulada por ativação e quimiciona do fígado (LARC), proteína 3α inflamatória de macrófagos (MIP-3α) ou Exodus-1 é uma proteína 96 AA que é expressa predominantemente no fígado e no tecido linfoide (Hieshima et al., 1997). Após a secreção, CCL20 exerce a sua atividade por ligação ao receptor de quimiocina CC 6 (CCR6), que pertence à família do receptor acoplado à proteína G (GPCR) 1 (Baba et al., 1997). A expressão de CCR6 é relatada em diferentes subconjuntos de leucócitos, mas é melhor documentada quanto à população de células Th17 (Singh et al., 2008). A função normal de Th17 é indispensável para a imunidade protetora contra uma série de agentes patógenos, incluindo Mycobacterium tuberculosis (Khader et al., 2007), Klebsiella pneumoniae (Ye et al., 2001) e Bordetella pertussis (Higgins et al., 2006).[0011] CC chemokine CCL20, also known as activation-regulated chemokine and liver chemokine (LARC), macrophage inflammatory protein 3α (MIP-3α) or Exodus-1 is a 96 AA protein that is expressed predominantly in the liver and lymphoid tissue (Hieshima et al., 1997). Upon secretion, CCL20 exerts its activity by binding to the CC chemokine receptor 6 (CCR6), which belongs to the G protein-coupled receptor (GPCR) family 1 (Baba et al., 1997). CCR6 expression is reported on different subsets of leukocytes, but is best documented for the Th17 cell population (Singh et al., 2008). Normal Th17 function is indispensable for protective immunity against a number of pathogens, including Mycobacterium tuberculosis (Khader et al., 2007), Klebsiella pneumoniae (Ye et al., 2001), and Bordetella pertussis (Higgins et al., 2006). ).

[0012] Efeitos potenciadores de IL-1 β sobre a expansão e diferenciação dos diferentes subconjuntos de células T, em particular de células Th17 (Sutton et al., 2006; Acosta-Rodriguez et al., 2007; Dunne et al., 2010; Shaw et al., 2012), foram firmemente estabelecidos. Entre os subconjuntos de células T, as células Th17 expressam os níveis mais elevados de IL-1R e IL-1 desempenha um papel importante no acionamento de Th17. A atividade controlada de IL-1 agonístico poderia ter, portanto, aplicações em diferentes processos fisiológicos/patológicos, onde efeitos imunoestimulatórios seriam desejáveis. Uma das principais preocupações relacionadas ao uso de IL-1 em terapias imunoestimulantes é, todavia, quanto à sua forte toxicidade quando administrado sistematicamente. Assim, quando a ação IL-1 pode ser confinada a uma população celualr selecionada, a questão da toxicidade pode ser resolvida, o que abre perspectivas terapêuticas, por exemplo, para o uso na forma de um adjuvante de células T para potencializar a resposta a vacinas fracas (Ben-Sasson et al., 2011). Para direcionar especificamente mutantes de IL- 1 à população de células Th17, são usadas variantes de IL-1 que consiste em IL-1 mutantes fundidos a uma porção de direcionamento de CCL20. Visto que a ativação ficará confinada apenas às células de expressão de CCR6 (isto é, células Th17), nenhuma grande toxicidade sistêmica é esperada. TNFα/leptina mutante[0012] Potentiating effects of IL-1 β on the expansion and differentiation of different subsets of T cells, in particular Th17 cells (Sutton et al., 2006; Acosta-Rodriguez et al., 2007; Dunne et al., 2010 ; Shaw et al., 2012), have been firmly established. Among T cell subsets, Th17 cells express the highest levels of IL-1R, and IL-1 plays an important role in triggering Th17. The controlled activity of agonistic IL-1 could therefore have applications in different physiological/pathological processes, where immunostimulatory effects would be desirable. One of the main concerns related to the use of IL-1 in immunostimulatory therapies is, however, its strong toxicity when administered systemically. Thus, when IL-1 action can be confined to a selected cell population, the issue of toxicity can be resolved, which opens up therapeutic perspectives, for example, for use in the form of a T-cell adjuvant to potentiate the response to weak vaccines (Ben-Sasson et al., 2011). To specifically target IL-1 mutants to the Th17 cell population, IL-1 variants consisting of mutant IL-1 fused to a targeting portion of CCL20 are used. Since activation will be confined to CCR6-expressing cells only (ie, Th17 cells), no major systemic toxicity is expected. mutant TNFα/leptin

[0013] TNFα é uma citocina com uma ampla gama de atividades biológicas, incluindo citotoxicidade, regulação de células imunológicas e mediação de respostas inflamatórias. Ela é uma proteína transmembranas homotrimérica de tipo II, de ligação não-covalente, de auto-montagem de 233 aminoácidos. TNFα é ativa na forma de proteína solúvel, bem como ligada à membrana, liberada a partir da membrana celular após a clivagem proteolítica de 76 aminoácidos aminoterminais (pré-sequência) por uma enzina de conversão de TNFα (TACE, também denominada ADAM17). Ela sinaliza através de 2 receptores distintos, TNF-R1 (p55) e TNF-R2 (p75), ambos glicoproteínas transmembranares com um motivo rico em cisteína no domínio extracelular de ligação ao ligante. Apesar da homologia extracelular, eles têm domínios intracelulares distintos e, portanto, sinalizam diferentes atividades de TNF (Hehlgans e Pfeffer, 2005). Geramos uma variante de cadeia única (scTNF) que é composta por três monômeros de TNF acoplados através de ligantes GGGGS, conforme descrito anteriormente por Boschert et al., 2010.[0013] TNFα is a cytokine with a wide range of biological activities, including cytotoxicity, regulation of immune cells and mediation of inflammatory responses. It is a type II, non-covalently-binding, self-assembling homotrimeric transmembrane protein of 233 amino acids. TNFα is active as a soluble as well as membrane-bound protein, released from the cell membrane following proteolytic cleavage of 76 aminoterminal amino acids (presequence) by a TNFα converting enzyme (TACE, also called ADAM17). It signals through 2 distinct receptors, TNF-R1 (p55) and TNF-R2 (p75), both transmembrane glycoproteins with a cysteine-rich motif in the extracellular ligand-binding domain. Despite extracellular homology, they have distinct intracellular domains and therefore signal different TNF activities (Hehlgans and Pfeffer, 2005). We generated a single-chain variant (scTNF) that is composed of three TNF monomers coupled through GGGGS linkers, as previously described by Boschert et al., 2010.

[0014] A leptina é uma citocina adipocítica 16kDa envolvida em uma variedade de processos biológicos, incluindo imunidade, reprodução, crescimento linear, homeostase de glicose, metabolismo ósseo e oxidação de gordura, mas é mais conhecido por seu efeito drástico enquanto sinal de saciedade (Halaas et al., 1995). Devido ao seu efeito sobre as células imunológicas, a leptina também está envolvida em diversas doença autoimunes (likuni et al., 2008). O direcionamento seletivo da atividade da leptina pode ser benéfico tanto para distúrbios metabólicos quanto imunológicos ou relacionados a inflamação.[0014] Leptin is a 16kDa adipocytic cytokine involved in a variety of biological processes including immunity, reproduction, linear growth, glucose homeostasis, bone metabolism and fat oxidation, but is best known for its dramatic effect as a satiety signal ( Halaas et al., 1995). Due to its effect on immune cells, leptin is also involved in several autoimmune diseases (likuni et al., 2008). Selective targeting of leptin activity may be beneficial for both metabolic, immune or inflammation-related disorders.

[0015] Um primeiro aspecto da invenção é uma proteína de fusão, compreendendo pelo menos duas citocinas, das quais pelo menos uma citocina é uma citocina modificada que apresenta uma atividade de ligação fortemente reduzida em relação ao seu receptor ou em relação a pelo menos um de seus receptores, se a ligação em diferentes receptores for uma possibilidade. Uma afinidade de ligação reduzida, tal como se utiliza aqui, significa que a afinidade é inferior a 50%, de preferência menos do que 40%, mais preferencialmente menos do que 30%, mais preferencialmente mais do que 25%, mais preferencialmente menos do que 20%, mais preferencialmente menos de 15%, mais preferencialmente menos do que 10%, mais preferencialmente menos do que 5%, mais preferencialmente menos do que 1% de citocina do tipo selvagem. "Citocina de tipo selvagem", conforme usado aqui, denota a citocina tal como ocorre na natureza, no organismo hospedeiro. A modificação da citocina, resultando em uma redução na afinidade de ligação, pode ser uma modificação que diminui a atividade da citocina de tipo selvagem normal ou pode ser uma modificação que aumenta a afinidade de uma citocina homóloga não-endógena (como, mas sem se limitar à,citocina de camundongos, que se liga a um receptor de citocina de humanos). As modificações podem ser qualquer modificação que reduza ou aumente a atividade, conhecida por aqueles versados na técnica, incluindo, sem se limitar a, modificações químicas e/ou enzimáticas, como glicosilação e peguilação, fusão a outras proteínas e mutações. De um modo preferido, a citocina com afinidade de ligação reduzida ao receptor é uma citocina mutante. A mutação pode ser qualquer mutação conhecida por aqueles versados na técnica, incluindo deleções, inserções, truncações ou mutações pontuais. De preferência, a referida mutação é uma mutação pontual ou uma combinação de mutações pontuais. A afinidade pode ser medida com qualquer método conhecido por aqueles versados na técnica. Como um exemplo não limitativo, a afinidade do ligante em relação ao receptor pode ser medida por análise de plot Scatchard e por ajuste computadorizado de dados de ligação (por exemplo, de Scatchard, 1949) ou por espectroscopia de interferência reflectométrica sob fluxo através de condições, como descrito por Brecht et al. (1993).[0015] A first aspect of the invention is a fusion protein, comprising at least two cytokines, of which at least one cytokine is a modified cytokine that has a strongly reduced binding activity towards its receptor or towards at least one of their receptors, if binding to different receptors is a possibility. A reduced binding affinity, as used herein, means that the affinity is less than 50%, preferably less than 40%, more preferably less than 30%, more preferably more than 25%, most preferably less than than 20%, more preferably less than 15%, more preferably less than 10%, more preferably less than 5%, most preferably less than 1% wild-type cytokine. "Wild-type cytokine", as used herein, denotes the cytokine as it occurs in nature in the host organism. The cytokine modification, resulting in a reduction in binding affinity, may be a modification that decreases normal wild-type cytokine activity, or it may be a modification that increases the affinity of a non-endogenous homologous cytokine (as, but without limited to the mouse cytokine, which binds to a human cytokine receptor). Modifications can be any modification that reduces or increases activity known to those skilled in the art, including, but not limited to, chemical and/or enzymatic modifications, such as glycosylation and pegylation, fusion to other proteins, and mutations. Preferably, the cytokine with reduced binding affinity to the receptor is a mutant cytokine. The mutation can be any mutation known to those skilled in the art, including deletions, insertions, truncations or point mutations. Preferably, said mutation is a point mutation or a combination of point mutations. Affinity can be measured with any method known to those skilled in the art. As a non-limiting example, ligand-to-receptor affinity can be measured by Scatchard plot analysis and by computer fit of binding data (e.g., from Scatchard, 1949) or by reflectometric interference spectroscopy under flow through conditions. , as described by Brecht et al. (1993).

[0016] Alternativamente, a atividade de ligação reduzida pode ser medida na forma de uma redução da atividade biológica do ligante mutante em comparação ao ligante de tipo selvagem. Em uma modalidade preferida, tal atividade biológica é medida em vitro, utilizando um ensaio repórter. Esses ensaios repórteres dependem do sistema receptor de citocina utilizando e são conhecidos por aqueles versados na técnica. Como exemplo não-limitativo, um ensaio repórter de IFN-Y é descrito por Bono et al. (1989) juntamente com a análise de Scatchard. Preferencialmente, a atividade biológica do mutante é inferior a 50%, de preferência menos do que 40%, mais preferencialmente menos do que 30%, mais preferencialmente mais do que 25%, mais preferencialmente menos do que 20%, mais preferencialmente menos de 15%, mais preferencialmente menos do que 10%, mais preferencialmente menos do que 5%, mais preferencialmente menos do que 1% de citocina do tipo selvagem.[0016] Alternatively, reduced binding activity can be measured in the form of a reduction in the biological activity of the mutant ligand compared to the wild-type ligand. In a preferred embodiment, such biological activity is measured in vitro using a reporter assay. Such reporter assays depend on the cytokine receptor system being used and are known to those skilled in the art. As a non-limiting example, an IFN-Y reporter assay is described by Bono et al. (1989) along with Scatchard's analysis. Preferably, the biological activity of the mutant is less than 50%, more preferably less than 40%, more preferably less than 30%, most preferably more than 25%, most preferably less than 20%, most preferably less than 15 %, more preferably less than 10%, more preferably less than 5%, most preferably less than 1% wild-type cytokine.

[0017] A citocina modificada é fundido a outra citocina, modificado ou não. De um modo preferido, ambas as citocinas são fundidas utilizando uma sequência ligante, preferivelmente um ligante de GGS, compreendendo uma ou mais repetições de GGS. A citocina modificada pode ser colocada na parte do terminal amino da molécula ou na parte carboxiterminal; a proteína de fusão pode compreender ainda outros domínios, como, sem se limitar a, uma sequência de marcação, uma sequência de sinal, outra citocina ou um anticorpo.[0017] The modified cytokine is fused to another cytokine, modified or not. Preferably, both cytokines are fused using a linker sequence, preferably a GGS linker, comprising one or more GGS repeats. The modified cytokine can be placed in the amino-terminal part of the molecule or in the carboxy-terminal part; the fusion protein can further comprise other domains, such as, but not limited to, a tag sequence, a signal sequence, another cytokine, or an antibody.

[0018] Uma citocina, conforme usada aqui, pode ser qualquer citocina conhecida por aqueles versados na técnica, incluindo, sem se limitar a, citocinas da família de citocinas do grupo helicoidal, a família do fator de necrose tumoral trimérica (TNF) (Idriss e Naismith, 2000), os fatores de crescimento de nó de cisteína (Sun e Davies, 1995), o grupo de dobragem e-trifólia que inclui a família de interleucina-1 (Murzin et al., 1992), a família da interleucina 17 (IL-17) (Gaffen, 201 1), e as quimiocinas (Nomiyama et al., 2013). No caso de um membro da família do TNF trimérico, de preferência, utiliza-se uma versão de cadeia simples. Essas citocinas de cadeia simples são conhecidas por aqueles versados na técnica e são descritas por, entre outros, Krippner-Heidenrich et al. (2008)[0018] A cytokine, as used herein, can be any cytokine known to those skilled in the art, including, but not limited to, cytokines of the helical group cytokine family, the trimeric tumor necrosis factor (TNF) family (Idriss and Naismith, 2000), the cysteine knot growth factors (Sun and Davies, 1995), the e-trefolia folding group which includes the interleukin-1 family (Murzin et al., 1992), the interleukin family 17 (IL-17) (Gaffen, 2011), and chemokines (Nomiyama et al., 2013). In the case of a member of the trimeric TNF family, preferably a single chain version is used. Such single-chain cytokines are known to those skilled in the art and are described by, among others, Krippner-Heidenrich et al. (2008)

[0019] Em uma modalidade preferida, tal proteína de fusão é uma fusão entre um mutante IFNα2 e XCL1, preferencialmente um mutante Q124R. Em uma outra modalidade preferida, tal fusão é uma fusão entre CCL20 e um mutante IL1β. Preferencialmente, o referido mutante IL1β é um mutante Q148G. Em outra modalidade preferida, ainda, tal fusão é uma fusão entre um mutante de leptina e TNFα. Preferencialmente, a referida leptina é um mutante selecionado a partir do grupo que consiste em L86S e L86N.[0019] In a preferred embodiment, such a fusion protein is a fusion between an IFNα2 mutant and XCL1, preferably a Q124R mutant. In another preferred embodiment, such a fusion is a fusion between CCL20 and an IL1β mutant. Preferably, said IL1β mutant is a Q148G mutant. In yet another preferred embodiment, such a fusion is a fusion between a leptin mutant and TNFα. Preferably, said leptin is a mutant selected from the group consisting of L86S and L86N.

[0020] Outro aspecto da invenção é uma proteína de fusão, de acordo com a invenção, para uso como medicamento. Em uma modalidade preferida, é uma proteína de fusão de acordo com a invenção para uso no αtratamento de câncer. Em outra modalidade preferida, é uma proteína de fusão, de acordo com a invenção, para uso na modulação da resposta imunológica.[0020] Another aspect of the invention is a fusion protein according to the invention for use as a medicine. In a preferred embodiment, it is a fusion protein according to the invention for use in the α-treatment of cancer. In another preferred embodiment, it is a fusion protein according to the invention for use in modulating the immune response.

BREVE DESCRIÇÃO DAS FIGURASBRIEF DESCRIPTION OF THE FIGURES

[0021] Figura 1: Representação esquemática dos elementos estruturais da proteína de fusão XCL1/IFNα2-Q124R.[0021] Figure 1: Schematic representation of the structural elements of the XCL1/IFNα2-Q124R fusion protein.

[0022] Figura 2: Atividade seletiva da proteína de fusão XCL1/IFNα2- Q124R sobre as células que expressam XCR1.[0022] Figure 2: Selective activity of the XCL1/IFNα2-Q124R fusion protein on cells expressing XCR1.

[0023] A fosforilação de STAT1 Y701 é medida em resposta à proteína de fusão IFNα/β ou XCL1/IFNα2-Q124R em diferentes subconjuntos de esplenócitos de camundongo, caracterizados pela expressão de CD11 c e CD8a. Primeira coluna: subconjunto CD11 c- CD8a+; segunda coluna: subconjunto CD1 1 c- CD8a-; terceira coluna: subconjunto CD1 1 cmeio CD8-; quarta coluna: subconjunto CD1 1 celevado CD8α+ ; quinta coluna: subconjunto CD11celevado CD8a-.[0023] The phosphorylation of STAT1 Y701 is measured in response to the fusion protein IFNα/β or XCL1/IFNα2-Q124R in different subsets of mouse splenocytes, characterized by the expression of CD11 c and CD8a. First column: CD11 c-CD8a+ subset; second column: subset CD1 1 c-CD8a-; third column: CD1 subset 1cm CD8- medium; fourth column: celevado CD1 1 subset CD8α+ ; fifth column: subset CD11elevated CD8a-.

[0024] Figura 3: Representação esquemática dos elementos estruturais de IL-1β-mutante / proteínas de fusão CCL20.[0024] Figure 3: Schematic representation of the structural elements of IL-1β-mutant / CCL20 fusion proteins.

[0025] Figura 4: Atividade seletiva das proteínas de fusão CCL20/ IL- 1β-mutante sobre as células que expressam CCR6. (A) a indução da atividade de NF K B por 5 mutantes IL- 1β diferentes e de tipo selvagem fundidos a CCL20. (B) dependência de concentração da indução da atividade de N FKB por proteínas de fusão CCL20/mutantes de IL-1β Q148G e de tipo selvagem, em células falsamente transfectadas ou células transfectadas com CCR6.[0025] Figure 4: Selective activity of CCL20/IL-1β-mutant fusion proteins on cells expressing CCR6. (A) Induction of NF K B activity by 5 different wild-type IL-1β mutants fused to CCL20. (B) concentration dependence of induction of N FKB activity by CCL20/mutant IL-1β Q148G and wild-type fusion proteins in mock-transfected cells or CCR6-transfected cells.

[0026] (C) indução da atividade de N FKB por proteínas de fusão CCL20/mutantes IL-1β Q148G e de tipo selvagem (12,5 ng/ml), em células falsamente transfectadas ou células transfectadas com CCR6 em comparação com indução por veículo.[0026] (C) Induction of N FKB activity by CCL20/mutant IL-1β Q148G and wild-type fusion proteins (12.5 ng/ml) in mock-transfected cells or CCR6-transfected cells compared to induction by vehicle.

[0027] Figura 5: Representação esquemática dos elementos estruturais das proteínas de fusão de scTNFα/mutantes de leptina.[0027] Figure 5: Schematic representation of the structural elements of scTNFα/leptin mutant fusion proteins.

[0028] Figura 6: Atividade seletiva das proteínas de fusão mutantes de scTNFα/leptina sobre as células que expressam receptor de leptina.[0028] Figure 6: Selective activity of mutant scTNFα/leptin fusion proteins on cells expressing leptin receptor.

[0029] O crescimento dependente de leptina induzido por concentrações indicadas de WT direcionado por scTNF ou leptina mutante é medido pelo ensaio de XTT em células Ba/F3-mLR (painel A) ou células Ba/F3-mLR-TNFR1ΔCyt (painel B).[0029] Leptin-dependent growth induced by indicated concentrations of scTNF-targeted WT or mutant leptin is measured by the XTT assay in Ba/F3-mLR cells (panel A) or Ba/F3-mLR-TNFR1ΔCyt cells (panel B) .

[0030] Figura 7: Direcionamento in vivo da atividade de IFN sobre células do baço de camundongo que expressam XCR1.[0030] Figure 7: In vivo targeting of IFN activity on mouse spleen cells expressing XCR1.

[0031] Injetou-se nos camundongos C57BI/6 iv com a quantidade indicada de XCL1-IFNa2-Q124R ou 1 000 000 unidades de PBS ou IFNα/β de murino natural. Após 45 minutos, as células do baço foram analisadas por FACS quanto à expressão de CD11c- e CD8α- (primeiro painel) e quanto a P-STAT1 (outros painéis) na seguinte população de células: CD11c- CD8α- (linha 1), CD11c- CD8α+ (linha 2), CD11c+ CD8α+ (Iinha 3), CD11c+ CD8α- (linha 4).C57BI/6 mice were injected iv with the indicated amount of XCL1-IFNa2-Q124R or 1,000,000 units of PBS or natural murine IFNα/β. After 45 minutes, spleen cells were analyzed by FACS for expression of CD11c- and CD8α- (first panel) and P-STAT1 (other panels) on the following cell population: CD11c- CD8α- (lane 1), CD11c- CD8α+ (line 2), CD11c+ CD8α+ (line 3), CD11c+ CD8α- (line 4).

EXEMPLOSEXAMPLES

[0032] Materiais e métodos para os exemplos[0032] Materials and methods for the examples

[0033] Clonagem e produção dos fusocinas[0033] Cloning and production of Fusocins

[0034] Clonagem da proteína de fusão XCL1/IFNα2-Q124R.[0034] Cloning of the XCL1/IFNα2-Q124R fusion protein.

[0035] O quadro de leitura aberta XCL1 foi sintetizado por PCR a partir do plasmídeo MR200473 de codificação de XCL1 (Origen Inc.), utilizando o sistema PCR de expansão de alta fidelidade (Roche Diagnostics) e os seguintes iniciadores: Progressivo: 5'GGGGGGGAATTCATGAGACTTCTCCTCCTGAC3' Reverso: 5' GGGGGGTCCGGAGGCCCAGTCAGGGTTATCGCTG3' O produto de PCR foi digerido por EcoRI e BspEI e substituído pelo fragmento EcoRI-BspEI que codifica o nanocorpo no vetor pMET7 SlgK-HA-1R59B-His-PAS-ybbr-IFNA2-Q124R (PCT/EP2013/050787). Produção da proteína de fusão XCL1/IFNα2-Q124R.[0035] The XCL1 open reading frame was synthesized by PCR from the XCL1 encoding plasmid MR200473 (Origen Inc.), using the high-fidelity expansion PCR system (Roche Diagnostics) and the following primers: Progressive: 5' GGGGGGGAATTCATGAGACTTCTCCTCCTGAC3' Reverse: 5' GGGGGGTCCGGAGGCCCAGTCAGGGTTATCGCTG3' The PCR product was digested by EcoRI and BspEI and replaced by the EcoRI-BspEI fragment encoding the nanobody in the vector pMET7 SlgK-HA-1R59B-His-PAS-ybbr-IFNA2-Q124R (PCT/ EP2013/050787). Production of XCL1/IFNα2-Q124R fusion protein.

[0036] As células Hek 293T foram transfectadas com o construto de fusão de proteína utilizando o método padrão de lipofectamina (Invitrogen). 48 horas após a transfecção, os meios de cultivo foram coletados e armazenados a -20 ° C. A actividade de IFN foi analisada em linhas de células HL116 de humanos e LL171 de murinos, conforme descrito (Uze et al. J. Mol. Biol. 1994) usando a preparação GFP-IFNα2-Q124R de nanocorpo purificado (descrito em PCT/EP2013/050787) como um padrão. Clonagem das proteínas de fusão IL-1 β/CCL20.[0036] Hek 293T cells were transfected with the protein fusion construct using the standard lipofectamine method (Invitrogen). 48 hours after transfection, culture media were collected and stored at -20 °C. IFN activity was analyzed in human HL116 and murine LL171 cell lines as described (Uze et al. J. Mol. Biol. 1994) using the purified nanobody GFP-IFNα2-Q124R preparation (described in PCT/EP2013/050787) as a standard. Cloning of IL-1 β/CCL20 fusion proteins.

[0037] Uma sequência otimizada por códon que codifica a proteína de fusão CCL20/IL-1β de humano adulto foi gerada através de síntese de genes (Invitrogen Gene Art). Em resumo, sintetizou-se uma sequência em que a proteína IL-1β de humano adulto, precedida pelo peptídeo líder SigK, e equipada com um HA N-terminal, fundiu-se em seu término C à sequência ligante 13xGGS, seguida pela sequência para CCL20 de humano adulto com uma marcação HIS C-terminal (Fig. 3).[0037] A codon-optimized sequence encoding the adult human CCL20/IL-1β fusion protein was generated through gene synthesis (Invitrogen Gene Art). In summary, a sequence was synthesized in which the adult human IL-1β protein, preceded by the leader peptide SigK, and equipped with an N-terminal HA, was fused at its C terminus to the linker sequence 13xGGS, followed by the sequence for Adult human CCL20 with a C-terminal HIS tag (Fig. 3).

[0038] Mutantes IL-1β dos quais se esperava uma afinidade de ligação reduzida para IL-1R foram selecionados com base na literatura e análise das estruturas de cristal publicadas de IL-1β humano complexado com o seu receptor. Foram criadas mutações na porção IL-1β através de mutagênese direcionada ao local (QuickChange, Stratagene) utilizando os iniciadores de mutagênese conforme indicados na tabela:

Figure img0001
Produção do mutante IL-1 β: Proteínas de fusão CCL20.[0038] IL-1β mutants expected to have reduced binding affinity for IL-1R were selected based on literature and analysis of published crystal structures of human IL-1β complexed with its receptor. Mutations were created in the IL-1β portion through site-directed mutagenesis (QuickChange, Stratagene) using the mutagenesis primers as indicated in the table:
Figure img0001
Production of IL-1 β mutant: CCL20 fusion proteins.

[0039] Proteínas de fusão de IL-1β-CCL20 foram produzidas em células HEK293T. Para produção em pequena escala, células HEK293T foram semeadas em placas de 6 poços a 400000 células/poço em DMEM suplementado com FCS a 10%. Após 24 horas, os meios de cultivo foram substituídos por meios com soro reduzido (DMEM/5% de FCS) e as células foram transfectadas utilizando PEL linear. Em resumo, a mistura de transfecção de PEI foi preparada combinando-se 1 μg do vetor de expressão com 5 μg de PEI em 160 μl de DMEM, incubada por 10 minutos à temperatura ambiente e adicionada gota a gota aos poços. Após 24 horas, as células transfectadas foram lavadas com DMEM e divididas em camas com 1,5 ml de OptiMem/poço para a produção de proteínas. Os meios condicionados foram recuperados após 48 horas, filtrados através de filtros de 0,45 μ e armazenado a -20 ° C. O conteúdo de I L-1 β nos meios condicionados foi determinado por ELISA, de acordo com as instruções do fabricante (R&D Systems). Clonagem das proteínas de fusão de scTNF/leptina.[0039] IL-1β-CCL20 fusion proteins were produced in HEK293T cells. For small-scale production, HEK293T cells were seeded in 6-well plates at 400,000 cells/well in DMEM supplemented with 10% FCS. After 24 hours, the culture media was replaced with serum-reduced media (DMEM/5% FCS) and the cells were transfected using linear PEL. Briefly, the PEI transfection mix was prepared by combining 1 µg of the expression vector with 5 µg of PEI in 160 µl of DMEM, incubated for 10 minutes at room temperature and added dropwise to the wells. After 24 hours, the transfected cells were washed with DMEM and bedded with 1.5 ml OptiMem/well for protein production. Conditioned media were retrieved after 48 hours, filtered through 0.45 µm filters and stored at -20 °C. The I L-1 β content in the conditioned media was determined by ELISA, according to the manufacturer's instructions ( R&D Systems). Cloning of scTNF/leptin fusion proteins.

[0040] As sequências de codificação de leptina de tipo selvagem (WT), L86S e L86N foram sintetizadas por PCR a partir de plasmídeos pMet7 expressando leptina de tipo selvagem, leptina L86S ou leptina L86N, respectivamente, usando os seguintes iniciadores:[0040] The wild-type leptin (WT), L86S and L86N coding sequences were synthesized by PCR from pMet7 plasmids expressing wild-type leptin, L86S leptin or L86N leptin, respectively, using the following primers:

[0041] progressivo 5'- GCAGATCTGTCGACATCCAGAAAGTCCAGGATGACACC-3', reverso 5'-CG ATG CG G CCG CACATTCAGG G CTAACATCCAACTGT-3' .[0041] forward 5'- GCAGATCTGTCGACATCCAGAAAGTCCAGGATGACACC-3', reverse 5'-CG ATG CG G CCG CACATTCAGG G CTAACATCCAACTGT-3' .

[0042] Isso introduz um local Bglll e Notl nos términos amino e carbóxi, respectivamente, da sequência de codificação de leptina. O produto de PCR foi digerido com Bglll e Notl e clonado em pMET7-SlgK- HA-scTNF WT-6xGGS-FLAG (WT scTNF foi gerado pela síntese de genes, GeneArt) aberto com Bglll e Notl, que residem entre o 6xGGS e FLAG. Isso gerou pMET7-SlgK-HA-scTNF WT-6xGGS-mLeptin-FLAG, pMET7-SlgK- HA-scTNF WT-6xGGS-mLeptina L86S-FLAG e pMET7-SlgK-HA-scTNF WT-6xGGS-mLeptina L86N-FLAG. Produção das proteínas de fusão de scTNF/leptina.[0042] This introduces a Bglll and Notl site at the amino and carboxy terminus, respectively, of the leptin coding sequence. The PCR product was digested with Bglll and Notl and cloned into pMET7-SlgK-HA-scTNF WT-6xGGS-FLAG (WT scTNF was generated by gene synthesis, GeneArt) opened with Bglll and Notl, which reside between the 6xGGS and FLAG . This generated pMET7-SlgK-HA-scTNF WT-6xGGS-mLeptin-FLAG, pMET7-SlgK-HA-scTNF WT-6xGGS-mLeptin L86S-FLAG, and pMET7-SlgK-HA-scTNF WT-6xGGS-mLeptin L86N-FLAG. Production of scTNF/leptin fusion proteins.

[0043] Células HekT foram transfectadas com os construtos de fusão de proteína utilizando o método padrão de precipitação com fosfato de cálcio. 48 horas após a transfecção os meios de cultivo foram coletados e armazenados a -20°C. A concentração foi determinada com uma ELISA comercial hTNFα (DY210, sistemas R&D). Linhas de células[0043] HekT cells were transfected with the protein fusion constructs using the standard calcium phosphate precipitation method. 48 hours after transfection, culture media were collected and stored at -20°C. Concentration was determined with a commercial hTNFα ELISA (DY210, R&D systems). cell lines

[0044] A linha de células Hek 293T, HL1 16 e LL171 foi cultivada em DMEM suplementado com 10% de FCS.[0044] The cell line Hek 293T, HL1 16 and LL171 was grown in DMEM supplemented with 10% FCS.

[0045] As células Ba/F3-ml_R e Ba/F3-MLR-TNFR1 ΔCyt foram mantidas em RPMI suplementado com 10% de FCS desativado por calor e 100ng/ml de leptina. Ensaios[0045] Ba/F3-ml_R and Ba/F3-MLR-TNFR1 ΔCyt cells were maintained in RPMI supplemented with 10% heat-inactivated FCS and 100ng/ml leptin. Essay

[0046] Ensaio de fosfo STAT1.[0046] Phospho STAT1 Assay.

[0047] Suspensões de uma célula simples foram preparadas a partir de baços isolados dos camundongos C57BI/6. Os eritrócitos foram esgotados usando tampão de lise de glóbulos vermelhos (Lonza). Os esplenócitos foram tratados durante 30 minutos com IFNα/β de camundongo ou com a proteína de fusão XCL1-IFNα2-Q124R em RPMI de 5% de soro fetal de vitelo a 37° C e então marcados o anti-STAT1 (pY701) de camundongo PE Phosflow BD juntamente com CD1 1c anti- camundongo marcado com Alexa Fluor 488 (eBioscience #53-01 14-80) e CD8a anti-camundongo marcado com APC (BD Bioscience #553035) ou CD 1 1 c anti-camundongo e CD8αanti-camundongo marcado Alexa 488, de acordo com as instruções da BD Biosciences. Os dados de FACS foram adquiridos utilizando um BD FACS Canto e analisados usando um software Diva (BD Biosciences). Ensaio de genes NF-KB repórteres[0047] Single cell suspensions were prepared from spleens isolated from C57BI/6 mice. Erythrocytes were depleted using red blood cell lysis buffer (Lonza). Splenocytes were treated for 30 minutes with mouse IFNα/β or XCL1-IFNα2-Q124R fusion protein in RPMI of 5% fetal calf serum at 37°C and then labeled with mouse anti-STAT1 (pY701) PE Phosflow BD together with Alexa Fluor 488 labeled anti-mouse CD1 1c (eBioscience #53-01 14-80) and APC-labelled anti-mouse CD8a (BD Bioscience #553035) or anti-mouse CD 1 1 c and anti-mouse CD8α Alexa 488 tagged mice, according to BD Biosciences instructions. FACS data were acquired using a BD FACS Canto and analyzed using Diva software (BD Biosciences). NF-KB reporter gene assay

[0048] Para avaliar a ativação de IL-1R, utilizamos células I L-1 β HEK-Blue ™ que expressam de forma estável o IL-1R (Invivogen) e as transfectamos transitoriamente com um gene repórter de luciferase NF-KB. Resumidamente, as células IL-1β HEK-Blue™ foram semeadas em meio de cultivo (DMEIW com 10% de FCS) em placas de 96 poços (10000 células/poço) e transfectadas no dia seguinte usando o método de precipitação com fosfato de cálcio, com as quantidades indicadas de plasmídeos de expressão e 5 ng/poço do plasmídeo do gene repórter 3KB- LUC (Vanden Berghe et al., 1998). 24 horas após a transfecção, o meio de cultivo foi substituído por meio de privação (DMEM) e 48 horas após a transfecção as células foram induzidas durante 6 horas com proteínas de fusão IL1 -CCL20. Após a indução, as células foram lisadas e a atividade da luciferase nos lisados foi determinada utilizando o Sistema de Ensaio de Luciferase de Vagalume Promega em um luminômetro LB960 centra Berthold. Ensaio de proliferação de células.[0048] To assess IL-1R activation, we used IL-1 β HEK-Blue™ cells stably expressing IL-1R (Invivogen) and transiently transfected them with an NF-KB luciferase reporter gene. Briefly, IL-1β HEK-Blue™ cells were seeded in culture medium (DMEIW with 10% FCS) in 96-well plates (10,000 cells/well) and transfected the next day using the calcium phosphate precipitation method , with the indicated amounts of expression plasmids and 5 ng/well of the 3KB-LUC reporter gene plasmid (Vanden Berghe et al., 1998). 24 hours after transfection, the culture medium was replaced with starvation medium (DMEM) and 48 hours after transfection cells were induced for 6 hours with IL1 -CCL20 fusion proteins. After induction, cells were lysed and luciferase activity in the lysates was determined using the Promega Firefly Luciferase Assay System on a Berthold LB960 Centra Luminometer. Cell proliferation assay.

[0049] A linha de células Ba/F3-mLR foi gerado por eletroporação de células Ba/F3 com o vetor pMet7-MLR. As células de expressão estável foram selecionadas pelo seu crescimento em leptina em vez de IL-3. De fato, o crescimento de células Ba/F3 depende de IL-3, mas quando eles expressam, mLR, eles também proliferam com leptina. Para obter a linha de células Ba/F3-MLR-TNFR1ΔCyt, as células Ba/F3-mLR foram co- transfectadas com pMet7-HA-hTNFR1ΔCyt e plRESpuro2 (Clontech) seguida pela seleção de puromicina e pela separação por FACS de células que expressam hTNFRIΔCyt.[0049] The Ba/F3-mLR cell line was generated by electroporation of Ba/F3 cells with the pMet7-MLR vector. Stable expressing cells were selected for their growth on leptin rather than IL-3. Indeed, the growth of Ba/F3 cells depends on IL-3, but when they express, mLR, they also proliferate with leptin. To obtain the Ba/F3-MLR-TNFR1ΔCyt cell line, Ba/F3-mLR cells were co-transfected with pMet7-HA-hTNFR1ΔCyt and plRESpuro2 (Clontech) followed by puromycin selection and FACS sorting of cells expressing hTNFRIΔCyt.

[0050] Para avaliar a proliferação celular, as células Ba/F3-mLR e Ba/F3-MLR-TNFR1ΔCyt foram lavadas, semeadas em RPMI/10% de iFCS em placas de 96 poços (10,000 células/poço) e estimuladas com as quantidades indicadas de proteínas de leptina ou de fusão. Quatro dias mais tarde, 50ul de XTT (XTT Kit de Proliferação de Células II, Roche, 11 465 015 001) foi adicionado e incubado por 4 h antes da medição da absorvência a 450 nm. Exemplo 1: A atividade de IFN da proteína de fusão XCL1/IFNα2- Q124R é restaurada em células que expressam XCR1.[0050] To assess cell proliferation, Ba/F3-mLR and Ba/F3-MLR-TNFR1ΔCyt cells were washed, seeded in RPMI/10% iFCS in 96-well plates (10,000 cells/well) and stimulated with the indicated amounts of leptin or fusion proteins. Four days later, 50ul of XTT (XTT Cell Proliferation Kit II, Roche, 11 465 015 001) was added and incubated for 4 h before measuring the absorbance at 450 nm. Example 1: The IFN activity of the XCL1/IFNα2-Q124R fusion protein is restored in cells expressing XCR1.

[0051] Os esplenócitos de camundongo foram tratados durante 30 minutos com 1 nM XCL1 -IFNα2-Q124R ou com 10000 unidades/ml de IFNα/β de camundongo. As células foram então fixadas, permeabilizadas e coradas com um anticorpo anti-fosfo STAT1 (PE), anti CD1 1 c (Alexa Fluor 488) e anti CD8α (APC) e analisadas por FACS. A Figura 2 mostra que o IFN α/β de camundongo induziu a fosforilação de STAT1 em todos os subconjuntos de esplenócitos analisados. Em contraste, a proteína de fusão XCL1-IFN α 2-Q124R induziu uma resposta de IFN apenas na maioria das células pertencentes ao subconjunto CD1 1 c+ CD8α+ e em uma minoria de células pertencentes ao subconjunto CD1 1 c+ CD8 α -. A distribuição dos subconjuntos de esplenócitos que respondem à proteína de fusão XCL1-IFN α 2-Q124R corresponde perfeitamente à distribuição esperada de XCR1, o receptor XCL1 (Dorner et al. 2009). Exemplo 2: A atividade de IL1β é restaurada nas células que expressam CCR6[0051] Mouse splenocytes were treated for 30 minutes with 1 nM XCL1 -IFNα2-Q124R or with 10000 units/ml mouse IFNα/β. The cells were then fixed, permeabilized and stained with an anti-phospho STAT1 antibody (PE), anti CD11c (Alexa Fluor 488) and anti CD8α (APC) and analyzed by FACS. Figure 2 shows that mouse IFN α/β induced STAT1 phosphorylation in all splenocyte subsets analyzed. In contrast, the XCL1-IFN α 2-Q124R fusion protein induced an IFN response only in most cells belonging to the CD1 1 c+ CD8α+ subset and in a minority of cells belonging to the CD1 1 c+ CD8 α - subset. The distribution of splenocyte subsets that respond to the XCL1-IFN α 2-Q124R fusion protein perfectly matches the expected distribution of XCR1, the XCL1 receptor (Dorner et al. 2009). Example 2: IL1β activity is restored in cells expressing CCR6

[0052] As células IL-1β HEK-Blue™, que expressam de forma estável o IL-1 R, foram transfectadas de maneira transitória com um plasmídeo de gene repórter NF-KB (5 ng/poço) e um vetor vazio ou plasmídeo de expressão de hCCR6 (10 ng/poço). As células falsamente transfectadas e transfectadas com CCR6 foram em seguida tratadas por 6 horas com proteínas de fusão IL1β-CCL20 mutantes ou de tipo selvagem (25 ng/ml), após o que as células foram lisadas e a atividade do gene repórter NF-kB foi determinada. Como é evidente a partir da Fig. 4A, as células que expressam CCR6 responderam com o aumento da atividade do gene repórter NF-KB para todas as proteínas de fusão IL1 β -CCL20 investigadas em comparação com as células transfectadas por simulação. Para avaliar o efeito do mutante IL-1β-Q148G, para o qual o efeito de direcionamento foi mais aparente, em mais detalhes, as células IL-1β HEK-Blue™ que expressam CCR6 ou transfectadas falsamente foram tratadas durante 6 horas com doses crescentes da proteína de fusão IL-1βQ148G-CCL20 ou WT IL-1β. A Fig. 4B demonstra que a superexpressão de CCR6 aumentou a atividade da fusão WT IL-1β -CCL20, mas teve um efeito potenciador mais intenso para a fusão IL-1βQ148G-CCL20. O efeito de direcionamento foi mais proeminente quando se aplicou IL1- β -CCL20 às células a 12,5 ng/ml (Fig. 4C). Exemplo 3: A atividade de leptina é restaurada nas células que expressam TNFR.[0052] HEK-Blue™ IL-1β cells, which stably express IL-1R, were transiently transfected with an NF-KB reporter gene plasmid (5 ng/well) and an empty vector or plasmid of hCCR6 expression (10 ng/well). Mock-transfected and CCR6-transfected cells were then treated for 6 hours with mutant or wild-type IL1β-CCL20 fusion proteins (25 ng/ml), after which the cells were lysed and NF-kB reporter gene activity was detected. was determined. As is evident from Fig. 4A, cells expressing CCR6 responded with increased NF-KB reporter gene activity for all IL1 β -CCL20 fusion proteins investigated compared to mock-transfected cells. To evaluate the effect of the IL-1β-Q148G mutant, for which the targeting effect was more apparent, in more detail, IL-1β HEK-Blue™ cells expressing CCR6 or mock-transfected were treated for 6 hours with increasing doses of the IL-1βQ148G-CCL20 fusion protein or WT IL-1β. Fig. 4B demonstrates that CCR6 overexpression increased the activity of the WT IL-1β -CCL20 fusion, but had a stronger potentiating effect for the IL-1βQ148G-CCL20 fusion. The targeting effect was most prominent when IL1-β-CCL20 was applied to cells at 12.5 ng/ml (Fig. 4C). Example 3: Leptin activity is restored in cells expressing TNFR.

[0053] A proliferação de células Ba/F3-MLR e células Ba/F3-MLR- TNFR1ΔCyt após 4 dias de estimulação com as quantidades indicadas de leptina ou as proteínas de fusão de leptina-scTNF foi avaliada. Como se mostra na figura 6A, ambas as linhas de células não proliferam no meio suplementado apenas com soro inativado por calor. Além disso, a capacidade da leptina de induzir a proliferação de Ba/F3 é reduzida quando acoplada a scTNF. A mutação de L86 na leptina WT em uma serina (L86S) ou uma asparagina (L86N) resulta em uma redução moderada ou intensa da afinidade em relação ao receptor de leptina de camundongo, respectivamente. Essa redução da afinidade se traduz em uma indução 3 contra 10 vezes menos potente da proliferação das células Ba/F3-mLR para leptina L86S contra L86N, respectivamente. A transfecção adicional de células Ba/F3-ml_R com o TNF-R1 humano sem o seu domínio intracelular (hTNFRIΔCyt) introduz um receptor não-funcional, o qual pode agir como um marcador extracelular ligado à membrana. Claramente, a resposta proliferativa a partir da estimulação com os mutantes de leptina L86N e L86S acoplados a scTNF é completamente restaurada nas células Ba/F3- mLR que expressam o hTNFRIΔCyt (Figura 6B). Exemplo 4: direcionamento in vivo de uma população de células que expressa XCR1[0053] The proliferation of Ba/F3-MLR cells and Ba/F3-MLR-TNFR1ΔCyt cells after 4 days of stimulation with the indicated amounts of leptin or the leptin-scTNF fusion proteins was evaluated. As shown in Figure 6A, both cell lines do not proliferate in medium supplemented with heat-inactivated serum alone. Furthermore, the ability of leptin to induce Ba/F3 proliferation is reduced when coupled to scTNF. Mutation of L86 in WT leptin to a serine (L86S) or an asparagine (L86N) results in a moderate or severe reduction in affinity towards the mouse leptin receptor, respectively. This reduction in affinity translates into a 3 versus 10 fold less potent induction of Ba/F3-mLR cell proliferation for leptin L86S versus L86N, respectively. Further transfection of Ba/F3-ml_R cells with human TNF-R1 lacking its intracellular domain (hTNFRIΔCyt) introduces a non-functional receptor, which may act as a membrane-bound extracellular marker. Clearly, the proliferative response from stimulation with the leptin mutants L86N and L86S coupled to scTNF is completely restored in Ba/F3-mlR cells expressing the hTNFRIΔCyt (Figure 6B). Example 4: In vivo targeting of a cell population expressing XCR1

[0054] De acordo com Bachem et al. (Frontiers in Immunology 3, 1 - 12. 2012), as células que expressam XCR1 representam a maior parte da população de células do baço CD1 1 c+ CD8α+ e uma parte menor da população de células do baço CD11 c+ CD8 α -. Injetou-se nos camundongos C57BI/6 iv com a quantidade indicada de XCL1-IFNα2- Q124R ou 1 000 000 unidades de PBS ou IFNα/β de murino natural. Após 45 minutos, as células do baço foram analisadas por FACS quanto a P- STAT1 na população de células a seguir: CD11c-CD8α -, CD11 c- CD8 α +, CD11 c+ CD8 α +, CD11 c+ CD8α -. Os resultados são mostrados na Figura 7. A partir desses resultados, fica evidente que a construção de fusão pode direcionar e induzir uma resposta de uma fração pequena da população (cerca de 0,1% das células totais), enquanto que as células sensíveis a IFN que não expressam o marcador não são afetadas. Inclusive, o IFN de tipo selvagem também afeta as células CD11c+ CD8α -, enquanto que essas células não são afetadas pela construção de fusão, claramente provando a ação específica da fusão.[0054] According to Bachem et al. (Frontiers in Immunology 3, 1 - 12. 2012), cells expressing XCR1 represent the majority of the CD1 1 c+ CD8α+ spleen cell population and a minor part of the CD11 c+ CD8 α - spleen cell population. C57BI/6 mice were injected iv with the indicated amount of XCL1-IFNα2-Q124R or 1,000,000 units of PBS or natural murine IFNα/β. After 45 minutes, spleen cells were analyzed by FACS for P-STAT1 in the following cell population: CD11c-CD8α -, CD11c-CD8 α +, CD11 c+ CD8 α +, CD11 c+ CD8α -. The results are shown in Figure 7. From these results, it is evident that the fusion construct can target and induce a response from a small fraction of the population (about 0.1% of the total cells), whereas the sensitive cells IFN that do not express the marker are not affected. In fact, wild-type IFN also affects CD11c+ CD8α - cells, whereas these cells are not affected by the fusion construct, clearly proving the specific action of the fusion.

[0055] REFERÊNCIAS Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A and Sallusto F. (2007) Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 8, 942-9. - Acres B, Gantzer M, Remy C, Futin N, Accart N, Chaloin O, Hoebeke J, Balloul JM and Paul S. (2005). Fusokine interleukin- 2/interleukin-18, a novel potent innate and adaptive immune stimulator with decreased toxicity. Cancer Res. 65, 9536-46. Baba M, Imai T, Nishimura M, Kakizaki M, Takagi S, Hieshima K, Nomiyama H and Yoshie O. (1997). Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem. 272,14893-8. Bachem A, Hartung E, Guttler S, Mora A, Zhou X, Hegemann A, Plantinga M, Mazzini E, Stoitzner P, Gurka S, Henn V, Mages HW and Kroczek RA. (2012). Expression of XCR1 Characterizes the Batf3- Dependent Lineage of Dendritic Cells Capable of Antigen CrossPresentation. Front Immunol. 3, 214. doi: 10.3389. - Ben-Sasson SZ, Caucheteux S, Crank M, Hu-Li J and Paul WE. (2011 ). IL-1 acts on T cells to enhance the magnitude of in vivo immune responses. Cytokine, 56, 122-5. - Bono MR, Benech P, Coullin P, Alcaide-Loridan C, Grisard MC, Join H, Fischer DG and Fellous M. (1989). Characterization of human IFN- gamma response using somatic cell hybrids of hematopietic and nonhematopoietic origin. Somat. Cell Mol. Genet. 15, 513-23. - Brecht A., Gauglitz G., Polster J. (1993). Interferometric immunoassay in a FIA-system - A sensitive and rapid approach in label-free immunosensing. , Biosens Bioelectron 8 : 387- 392. - Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I and Dalod M. (2010). The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J. Exp. Med. 207, 1283-1292. Donahue RE, Seehra J, Metzger M, Lefebvre D, Rock B, Carbone S, Nathan DG, Garnick M, Sehgal PK, Laston D, et al. (1988). Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241 , 1820-1823 - Domer BG, Dorner MB, Zhou X, Opitz C, Mora A, GGttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, Jack RS, Henn V and Kroczek RA. (2009). Selective expression of the chemokine receptor XCR1 on crosspresenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31 , 823-833. Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE, Iwakura Y, Tschopp J, Sebo P and Mills KH. (2010) Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol. 185, 171 1 -9. - Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM and Gajewski TF (201 1 ). Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cellsJ. Exp. Med. 208, 2005-2016. Gaffen SL. (201 1 ). Recent advances in the IL-17 cytokine family. Curr Opin Immunol. 23, 613-9. Gajewski TF, Fuertes MB and Woo SR (2012). Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunol Immunother. 61 , 1343-7. - Gillies SD, Lan Y, Brunkhorst B, Wong WK, Li Y, Lo KM. (2002). Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol Immunother 51 , 449-460 - Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK and Friedman JM. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269, 543-6. Hehlgans, T and Pfeffer, K (2005). The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 115, 1-20. - Hieshima K, Imai T, Opdenakker G, Van Damme J, Kusuda J, Tei H, Sakaki Y, Takatsuki K, Miura R, Yoshie O and Nomiyama H. (1997). Molecular cloning of a novel human CC chemokine liver and activation- regulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2. J Biol Chem. 272, 5846-53. - Higgins SC, Jarnicki AG, Lavelle EC and Mills KH. (2006). TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol. 177, 7980-9. Idriss HT & Naismith JH (2000). TNF alpha and the TNF receptor superfamily: structure- function relationship(s). Microscopy research and technique 50, 184-95. - likuni N, Lam QL, Lu L, Matarese G, La Cava A. (2008). Leptin and Inflammation. Curr Immunol Rev. 4, 70-79. - Jahn T, Zuther M, Friedrichs B, Heuser C, Guhlke S, Abken H, Hombach AA (2012). An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack. PLoS One 7:e44482. - Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD and Cooper AM. (2007). IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 8, 369-77. Krippner-Heidenreich A, Grunwald I, Zimmermann G, Kühnle M, Gerspach J, Sterns T, Shnyder SD, Gill JH, Mannel DN, Pfizenmaier K and Scheurich P. (2008). Single-chain TNF, a TNF derivative with enhanced stability and antitumoral activity. J Immunol. 180, 8176-83. - Lu J, Peng Y, Zheng ZJ, Pan JH, Zhang Y, Bai Y (2008). EGF-IL-18 fusion protein as a potential anti-tumor reagent by induction of immune response and apoptosis in cancer cells. Cancer Lett 260, 187-197. - Murzin AG, Lesk AM & Chothia C (1992). β-Trefoil fold: Patterns of structure and sequence in the Kunitz inhibitors interleukins-T β and 1α and fibroblast growth factors. Journal of Molecular Biology 223, 531-543. Nicola NA & Hilton DJ (1998). General classes and functions of four- helix bundle cytokines. Advances in protein chemistry 52, 1-65. - Nomiyama H, Osada N and Yoshie O. (2013). Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Genes Cells. 18,1 -16. O'Shaughnessy JA, Tolcher A, Riseberg D, Venzon D, Zujewski J, Noone M, Gossard M, Danforth D, Jacobson J, Chang V, Goldspiel B, Keegan P, Giusti R and Cowan KH. (1996). Prospective, randomized trial of 5-fluorouracil, leucovorin, doxorubicin, and cyclophosphamide chemotherapy in combination with the interleukin-3/granulocyte- macrophage colony-stimulating factor (GM-CSF) fusion protein (PIXY321 ) versus GM-CSF in patients with advanced breast cancer. Blood 87, 2205-221 1 - Penafuerte C, Bautista-Lopez N, Boulassel MR, Routy JP and Galipeau J (2009). The human ortholog of granulocyte macrophage colony-stimulating factor and interleukin-2 fusion protein induces potent ex vivo natural killer cell activation and maturation. Cancer Res 69, 9020-9028 - Rafei M, Wu JH, Annabi B, Lejeune L, Frangois M and Galipeau J (2007). A GMCSF and IL-15 fusokine leads to paradoxical immunosuppression in vivo via asymmetrical JAK /STAT signaling through the IL-15 receptor complex. Blood 109, 2234-2242 - Rafei M, Hsieh J, Zehntner S, Li M, Forner K, Birman E, Boivin MN, Young YK, Perreault C and Galipeau J. (2009a). A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat Med 15, 1038-1045 - Rafei M, Campeau PM, Wu JH, Birman E, Forner K, Boivin MN and Galipeau J. (2009b) Selective inhibition of CCR2 expressing lymphomyeloid cells in experimental autoimmune encephalomyelitis by a GM-CSF-MCP1 fusokine. J Immunol. 182, 2620-7. Rafei M, Berchiche YA, Birman E, Boivin MN, Young YK, Wu JH, Heveker N, and Galipeau J. (2009c) An engineered GM-CSF-CCL2 fusokine is a potent inhibitor of CCR2-driven inflammation as demonstrated in a murine model of inflammatory arthritis. J Immunol. 183, 1759-66. Rafei M, Deng J, Boivin MN, Williams P, Matulis SM, Yuan S, Birman E, Forner K, Yuan L, Castellino C, Boise LH, MacDonald TJ and Galipeau J. (201 1 ) A MCP1 fusokine with CCR2-specific tumoricidal activity. Mol Cancer. 10:121. doi: 10.1 186/1476-4598-10-121. Shaw MH, Kamada N, Kim YG and Nunez G. (2012) Microbiota- induced IL-I β, but not IL-6, is critical for the development of steady-state TH 17 cells in the intestine. J Exp Med. 209, 251-8. Singh SP, Zhang HH, Foley JF, Hedrick MN and Farber JM. (2008) Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J Immunol. 180, 214-21. Scatchard G. (1949). Ann New York Acad Sci 51 , 660-72. Stagg J, Wu JH, Bouganim N and Galipeau J. (2004). Granulocyte-macrophage colony-stimulating factor and interleukin-2 fusion cDNA for cancer gene immunotherapy. Cancer Res 64, 8795-8799 Sun PD & Davies DR. (1995). The cystine-knot growth-factor superfamily. Annual review of biophysics and biomolecular structure 24, 269-91. Sutton C, Brereton C, Keogh B, Mills KH and Lavelle EC. (2006). A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 203, 1685-91. Weber H, Valenzuela D, Lujber G, Gubler M and Weissmann C. (1987). Single amino acid changes that render human IFN-alpha 2 biologically active on mouse cells. EMBO J. 6, 591-8. Williams P, Bouchentouf M, Rafei M, Romieu-Mourez R, Hsieh J, Boivin MN, Yuan S, Forner KA, Birman E and Galipeau J. (2010a). A dendritic cell population generated by a fusion of GM-CSF and IL-21 induces tumor-antigen-specific immunity. J Immunol. 185, 7358-66. Williams P, Rafei M, Bouchentouf M, Raven J, Yuan S, Cuerquis J, Forner KA, Birman E and Galipeau J. (2010b). A fusion of GMCSF and IL- 21 initiates hypersignaling through the IL-21 Ralpha chain with immune activating and tumoricidal effects in vivo. Mol Ther 18, 1293-1301. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ and Kolls JK. (2001 ). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 194, 519-27. 1/1[0055] REFERENCES Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A and Sallusto F. (2007) Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 8, 942-9. - Acres B, Gantzer M, Remy C, Futin N, Accart N, Chaloin O, Hoebeke J, Balloul JM and Paul S. (2005). Fusokine interleukin- 2/interleukin-18, a novel potent innate and adaptive immune stimulator with decreased toxicity. Cancer Res. 65, 9536-46. Baba M, Imai T, Nishimura M, Kakizaki M, Takagi S, Hieshima K, Nomiyama H and Yoshie O. (1997). Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem. 272,14893-8. Bachem A, Hartung E, Guttler S, Mora A, Zhou X, Hegemann A, Plantinga M, Mazzini E, Stoitzner P, Gurka S, Henn V, Mages HW and Kroczek RA. (2012). Expression of XCR1 Characterizes the Batf3- Dependent Lineage of Dendritic Cells Capable of Antigen CrossPresentation. Front Immunol. 3, 214. doi: 10.3389. - Ben-Sasson SZ, Caucheteux S, Crank M, Hu-Li J and Paul WE. (2011). IL-1 acts on T cells to enhance the magnitude of in vivo immune responses. Cytokine, 56, 122-5. - Bono MR, Benech P, Coullin P, Alcaide-Loridan C, Grisard MC, Join H, Fischer DG and Fellous M. (1989). Characterization of human IFN-gamma response using somatic cell hybrids of hematopietic and nonhematopoietic origin. Somat. Cell Mol. Genet. 15, 513-23. - Brecht A., Gauglitz G., Polster J. (1993). Interferometric immunoassay in a FIA-system - A sensitive and rapid approach in label-free immunosensing. , Biosens Bioelectron 8 : 387-392. - Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I and Dalod M. (2010). The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp. Med. 207, 1283-1292. Donahue RE, Seehra J, Metzger M, Lefebvre D, Rock B, Carbone S, Nathan DG, Garnick M, Sehgal PK, Laston D, et al. (1988). Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241, 1820-1823 - Domer BG, Dorner MB, Zhou X, Opitz C, Mora A, GGttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, Jack RS, Henn V and Kroczek RA. (2009). Selective expression of the XCR1 receptor chemokine on crosspresenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823-833. Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE, Iwakura Y, Tschopp J, Sebo P and Mills KH. (2010) Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol. 185, 171 1-9. - Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM and Gajewski TF (2011). Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cellsJ. Exp. Med. 208, 2005-2016. Gaffen SL. (2011). Recent advances in the IL-17 cytokine family. Curr Opin Immunol. 23, 613-9. Gajewski TF, Fuertes MB and Woo SR (2012). Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunol Immunother. 61, 1343-7. - Gillies SD, Lan Y, Brunkhorst B, Wong WK, Li Y, Lo KM. (2002). Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol Immunother 51 , 449-460 - Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK and Friedman JM. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269, 543-6. Hehlgans, T and Pfeffer, K (2005). The intriguing biology of the tumor necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 115, 1-20. - Hieshima K, Imai T, Opdenakker G, Van Damme J, Kusuda J, Tei H, Sakaki Y, Takatsuki K, Miura R, Yoshie O and Nomiyama H. (1997). Molecular cloning of a novel human CC chemokine liver and activation-regulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2. J Biol Chem. 272, 5846-53. - Higgins SC, Jarnicki AG, Lavelle EC and Mills KH. (2006). TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol. 177, 7980-9. Idriss HT & Naismith JH (2000). TNF alpha and the TNF receptor superfamily: structure- function relationship(s). Microscopy research and technique 50, 184-95. - likuni N, Lam QL, Lu L, Matarese G, La Cava A. (2008). Leptin and Inflammation. Curr Immunol Rev. 4, 70-79. - Jahn T, Zuther M, Friedrichs B, Heuser C, Guhlke S, Abken H, Hombach AA (2012). An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack. PLoS One 7:e44482. - Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD and Cooper AM. (2007). IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 8, 369-77. Krippner-Heidenreich A, Grunwald I, Zimmermann G, Kühnle M, Gerspach J, Sterns T, Shnyder SD, Gill JH, Mannel DN, Pfizenmaier K and Scheurich P. (2008). Single-chain TNF, a TNF derivative with enhanced stability and antitumor activity. J Immunol. 180, 8176-83. - Lu J, Peng Y, Zheng ZJ, Pan JH, Zhang Y, Bai Y (2008). EGF-IL-18 fusion protein as a potential anti-tumor reagent by induction of immune response and apoptosis in cancer cells. Cancer Lett 260, 187-197. - Murzin AG, Lesk AM & Chothia C (1992). β-Trefoil fold: Patterns of structure and sequence in the Kunitz inhibitors interleukins-T β and 1α and fibroblast growth factors. Journal of Molecular Biology 223, 531-543. Nicola NA & Hilton DJ (1998). General classes and functions of four-helix bundle cytokines. Advances in protein chemistry 52, 1-65. - Nomiyama H, Osada N and Yoshie O. (2013). Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Gene Cells. 18.1 -16. O'Shaughnessy JA, Tolcher A, Riseberg D, Venzon D, Zujewski J, Noone M, Gossard M, Danforth D, Jacobson J, Chang V, Goldspiel B, Keegan P, Giusti R and Cowan KH. (1996). Prospective, randomized trial of 5-fluorouracil, leucovorin, doxorubicin, and cyclophosphamide chemotherapy in combination with the interleukin-3/granulocyte-macrophage colony-stimulating factor (GM-CSF) fusion protein (PIXY321 ) versus GM-CSF in patients with advanced breast cancer. Blood 87, 2205-221 1 - Penafuerte C, Bautista-Lopez N, Boulassel MR, Routy JP and Galipeau J (2009). The human ortholog of granulocyte macrophage colony-stimulating factor and interleukin-2 fusion protein induces potent ex vivo natural killer cell activation and maturation. Cancer Res 69, 9020-9028 - Rafei M, Wu JH, Annabi B, Lejeune L, Frangois M and Galipeau J (2007). GMCSF and IL-15 Fusokine leads to paradoxical immunosuppression in vivo via asymmetrical JAK /STAT signaling through the IL-15 receptor complex. Blood 109, 2234-2242 - Rafei M, Hsieh J, Zehntner S, Li M, Forner K, Birman E, Boivin MN, Young YK, Perreault C and Galipeau J. (2009a). A granulocyte-macrophage colony-stimulating factor and interleukin-15 Fusokine induces a regulatory B cell population with immune suppressive properties. Nat Med 15, 1038-1045 - Rafei M, Campeau PM, Wu JH, Birman E, Forner K, Boivin MN and Galipeau J. (2009b) Selective inhibition of CCR2 expressing lymphomyeloid cells in experimental autoimmune encephalomyelitis by a GM-CSF-MCP1 Fusokine. J Immunol. 182, 2620-7. Rafei M, Berchiche YA, Birman E, Boivin MN, Young YK, Wu JH, Heveker N, and Galipeau J. (2009c) An engineered GM-CSF-CCL2 Fusokine is a potent inhibitor of CCR2-driven inflammation as demonstrated in a murine model of inflammatory arthritis. J Immunol. 183, 1759-66. Rafei M, Deng J, Boivin MN, Williams P, Matulis SM, Yuan S, Birman E, Forner K, Yuan L, Castellino C, Boise LH, MacDonald TJ and Galipeau J. (201 1 ) A MCP1 Fusokine with CCR2-specific tumoricidal activity. Mole Cancer. 10:121. doi: 10.1 186/1476-4598-10-121. Shaw MH, Kamada N, Kim YG and Nunez G. (2012) Microbiota- induced IL-I β, but not IL-6, is critical for the development of steady-state TH 17 cells in the intestine. J Exp Med. 209, 251-8. Singh SP, Zhang HH, Foley JF, Hedrick MN and Farber JM. (2008) Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J Immunol. 180, 214-21. Scatchard G. (1949). Ann New York Acad Sci 51, 660-72. Stagg J, Wu JH, Bouganim N and Galipeau J. (2004). Granulocyte-macrophage colony-stimulating factor and interleukin-2 fusion cDNA for cancer gene immunotherapy. Cancer Res 64, 8795-8799 Sun PD & Davies DR. (1995). The cystine-knot growth-factor superfamily. Annual review of biophysics and biomolecular structure 24, 269-91. Sutton C, Brereton C, Keogh B, Mills KH and Lavelle EC. (2006). A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 203, 1685-91. Weber H, Valenzuela D, Lujber G, Gubler M and Weissmann C. (1987). Single amino acid changes that render human IFN-alpha 2 biologically active on mouse cells. EMBO J. 6, 591-8. Williams P, Bouchentouf M, Rafei M, Romieu-Mourez R, Hsieh J, Boivin MN, Yuan S, Forner KA, Birman E and Galipeau J. (2010a). A dendritic cell population generated by a fusion of GM-CSF and IL-21 induces tumor-antigen-specific immunity. J Immunol. 185, 7358-66. Williams P, Rafei M, Bouchentouf M, Raven J, Yuan S, Cuerquis J, Forner KA, Birman E and Galipeau J. (2010b). A fusion of GMCSF and IL-21 initiates hypersignaling through the IL-21 Ralpha chain with immune activating and tumoricidal effects in vivo. Mol Ther 18, 1293-1301. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ and Kolls JK. (2001). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 194, 519-27. 1/1

Claims (6)

1. Proteína de fusão, caracterizada pelo fato de compreender pelo menos duas citocinas, em que as citocinas são XCL1 e IFNα2 or CCL20 e ILβ, e em que pelo menos uma citocina compreende uma mutação que reduz fortemente a atividade de ligação ao seu receptor, e pelo menos uma citocina é uma citocina de tipo selvagem que provê o direcionamento específico da célula que restaura atividade da citocina mutante sobre as células direcionadas.1. A fusion protein, characterized in that it comprises at least two cytokines, wherein the cytokines are XCL1 and IFNα2 or CCL20 and ILβ, and wherein at least one cytokine comprises a mutation that strongly reduces its receptor binding activity, and at least one cytokine is a wild-type cytokine that provides cell-specific targeting that restores mutant cytokine activity on targeted cells. 2. Proteína de fusão, de acordo com a reivindicação 1, caracterizada pelo fato de que compreende ainda um ligante GGS.2. Fusion protein, according to claim 1, characterized in that it further comprises a GGS linker. 3. Proteína de fusão, de acordo com a reivindicação 1 ou 2, caracterizada pelo fato de que a IFNα2 compreende a mutação.3. Fusion protein, according to claim 1 or 2, characterized by the fact that IFNα2 comprises the mutation. 4. Proteína de fusão, de acordo com a reivindicação 3, caracterizada pelo fato de que a mutação é Q124R.4. Fusion protein, according to claim 3, characterized by the fact that the mutation is Q124R. 5. Proteína de fusão, de acordo com qualquer uma das reivindicações anteriores, caracterizada pelo fato de que XCL1 é do tipo selvagem.5. Fusion protein according to any one of the preceding claims, characterized in that XCL1 is wild-type. 6. Proteína de fusão, de acordo com qualquer uma das reivindicações anteriores, caracterizada pelo fato de que é para o uso como um medicamento.6. Fusion protein according to any one of the preceding claims, characterized in that it is for use as a medicine.
BR112016001036-1A 2013-07-18 2014-07-03 FUSOCINS EVOLVING CYTOKINES WITH STRONGLY REDUCED RECEPTOR BINDING AFFINITIES BR112016001036B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13306034.3 2013-07-18
EP13306034 2013-07-18
PCT/EP2014/064227 WO2015007536A2 (en) 2013-07-18 2014-07-03 Fusokines involving cytokines with strongly reduced receptor binding affinities

Publications (2)

Publication Number Publication Date
BR112016001036A2 BR112016001036A2 (en) 2017-10-24
BR112016001036B1 true BR112016001036B1 (en) 2023-02-23

Family

ID=48906191

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112016001036-1A BR112016001036B1 (en) 2013-07-18 2014-07-03 FUSOCINS EVOLVING CYTOKINES WITH STRONGLY REDUCED RECEPTOR BINDING AFFINITIES

Country Status (15)

Country Link
US (3) US10640542B2 (en)
EP (2) EP3299466B1 (en)
JP (2) JP6580037B2 (en)
KR (1) KR102322510B1 (en)
CN (2) CN105705641B (en)
AU (2) AU2014292371B2 (en)
BR (1) BR112016001036B1 (en)
CA (1) CA2917937C (en)
DK (1) DK3299466T3 (en)
ES (2) ES2757501T3 (en)
HK (1) HK1252831A1 (en)
IL (1) IL243451B (en)
MX (1) MX2016000611A (en)
SG (2) SG10201808738WA (en)
WO (1) WO2015007536A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077382A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
CN117024599A (en) 2016-02-05 2023-11-10 奥里尼斯生物科学私人有限公司 Bispecific signaling agents and uses thereof
US11661455B2 (en) 2016-02-05 2023-05-30 Orionis Biosciences BV Chimeric protein comprising an interferon alpha 2mutant and a PD-L1 binding moiety
EP3426278B1 (en) 2016-03-07 2024-01-03 Vib Vzw Cd20 binding single domain antibodies
CA3023881A1 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Therapeutic targeting of non-cellular structures
JP7105200B2 (en) 2016-05-13 2022-07-22 オリオニス バイオサイエンシズ ビーブイ Targeted mutant interferon-beta and its uses
US11084859B2 (en) 2016-10-24 2021-08-10 Orionis Biosciences BV Targeted mutant interferon-gamma and uses thereof
EP3576765A4 (en) 2017-02-06 2020-12-02 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
KR102642385B1 (en) 2017-02-06 2024-03-04 오리오니스 바이오사이언시스 엔브이 Targeted chimeric proteins and uses thereof
EP3580230A1 (en) 2017-02-07 2019-12-18 VIB vzw Immune-cell targeted bispecific chimeric proteins and uses thereof
JP7347899B2 (en) 2017-08-09 2023-09-20 オリオンズ バイオサイエンス インコーポレイテッド CD8 binding substance
JP7423511B2 (en) 2017-08-09 2024-01-29 オリオンズ バイオサイエンス インコーポレイテッド PD-1 and PD-L1 binding substances
AU2019215440A1 (en) 2018-02-05 2020-08-27 Orionis Biosciences, Inc. Fibroblast binding agents and use thereof
EP3946410A4 (en) 2019-03-28 2023-06-28 Orionis Biosciences, Inc. Therapeutic interferon alpha 1 proteins
CA3215344A1 (en) * 2021-04-30 2022-11-03 Kalivir Immunotherapeutics, Inc. Oncolytic viruses for modified mhc expression

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69007975T2 (en) 1989-08-22 1994-07-21 Immunex Corp FUSION PROTEIN CONSISTING OF GM-CSF AND IL-3.
US6277969B1 (en) 1991-03-18 2001-08-21 New York University Anti-TNF antibodies and peptides of human tumor necrosis factor
US5914254A (en) 1993-08-02 1999-06-22 Celtrix Pharmaceuticals, Inc. Expression of fusion polypeptides transported out of the cytoplasm without leader sequences
CA2380331C (en) * 1999-08-09 2012-11-20 Lexigen Pharmaceuticals Corp. Multiple cytokine-antibody complexes
AU2002236517A1 (en) * 2000-11-29 2002-06-11 University Of Southern California Targetet retoviral vectors for cancer immunotherapy
CN1168740C (en) * 2001-04-04 2004-09-29 上海美恩生物技术有限公司 Cell factor gene modified antigen presentation cell/tumor cell conjugate, its preparatino and use
EP1454138B1 (en) * 2001-12-04 2012-01-18 Merck Patent GmbH Immunocytokines with modulated selectivity
DE602004031341D1 (en) * 2003-07-21 2011-03-24 Transgene Sa MULTIFUNCTIONAL CYTOKINE
EP1598364A1 (en) * 2004-05-21 2005-11-23 AGIRx Limited Chimerical soluble hyper IL-11 receptor and use thereof
EP1812038A1 (en) 2004-11-18 2007-08-01 VIB vzw Fibronectin iii domain as leptin receptor antagonists
WO2006115800A2 (en) 2005-04-15 2006-11-02 The Regents Of The University Of California Enhanced wound healing utilizing an anti-her2 antibody coupled to a tnf alpha
WO2008014612A1 (en) 2006-08-02 2008-02-07 Mcgill University Fusion proteins and methods for modulation of immune response
WO2008124086A2 (en) * 2007-04-05 2008-10-16 President And Fellows Of Harvard College Chimeric activators: quantitatively designed protein therapeutics and uses thereof
WO2009003145A1 (en) 2007-06-26 2008-12-31 University Of Miami Antibody-endostatin fusion protein and its variants
MX2010003099A (en) 2007-09-21 2010-05-17 Univ California Targeted interferon demonstrates potent apoptotic and anti-tumor activities.
US8334101B2 (en) 2008-09-26 2012-12-18 University Of Massachusetts Intracellular DNA receptor
CN102245623A (en) 2008-12-08 2011-11-16 康普里斯有限公司 Single-chain antiparallel coiled coil proteins
JP5764127B2 (en) 2009-08-17 2015-08-12 ロシュ グリクアート アーゲー Targeted immunoconjugate
EP2475397A1 (en) 2009-09-10 2012-07-18 Cytos Biotechnology AG Use of interleukin-1 beta mutein conjugates in the treatment of diabetes
CN105031618A (en) * 2009-11-02 2015-11-11 加利福尼亚大学董事会 Vault complexes for cytokine delivery
CN102917709B (en) * 2009-12-23 2018-04-24 格兰达利斯有限公司 Furin, which strikes, to be subtracted and GM-CSF enhancings(FANG)Cancer vaccine
CN102958531A (en) * 2010-04-22 2013-03-06 耶路撒冷希伯来大学伊森姆研究发展公司 High affinity leptins and leptin antagonists
CN102372780A (en) * 2010-08-23 2012-03-14 上海市计划生育科学研究所 Preparation method and application of anti-human chorionic gonadotropin (hCG) antibody-interleukin 2 (IL2) fusion protein
WO2012170072A1 (en) 2011-06-06 2012-12-13 Immungene, Inc. Engineered antibody-tnfsf member ligand fusion molecules
EP3559049A4 (en) 2011-10-28 2019-12-04 Teva Pharmaceuticals Australia Pty Ltd Polypeptide constructs and uses thereof
KR102050119B1 (en) 2012-01-20 2019-11-28 브이아이비 브이지더블유 Targeted mutant alpha-helical bundle cytokines
JP6195855B2 (en) 2012-03-03 2017-09-13 イミュンジーン,インコーポレーテッド Engineered antibody-interferon mutant fusion molecules
KR102639037B1 (en) * 2014-10-29 2024-02-20 테바 파마슈티컬즈 오스트레일리아 피티와이 엘티디 INTERFERON α2b VARIANTS

Also Published As

Publication number Publication date
CA2917937C (en) 2022-11-01
JP6853317B2 (en) 2021-03-31
AU2018203868B2 (en) 2019-12-05
SG11201600163VA (en) 2016-02-26
AU2014292371A1 (en) 2016-02-04
IL243451B (en) 2019-10-31
MX2016000611A (en) 2016-09-29
ES2757501T3 (en) 2020-04-29
CN105705641B (en) 2021-07-13
DK3299466T3 (en) 2019-11-18
EP3299466B1 (en) 2019-09-11
CA2917937A1 (en) 2015-01-22
CN110835376A (en) 2020-02-25
AU2014292371B2 (en) 2018-03-29
WO2015007536A2 (en) 2015-01-22
CN110835376B (en) 2023-08-04
US20230054612A1 (en) 2023-02-23
EP3299466A1 (en) 2018-03-28
US20180155404A1 (en) 2018-06-07
EP3022305B1 (en) 2017-11-01
JP6580037B2 (en) 2019-09-25
IL243451A0 (en) 2016-03-31
AU2018203868A1 (en) 2018-06-21
SG10201808738WA (en) 2018-11-29
US11358997B2 (en) 2022-06-14
BR112016001036A2 (en) 2017-10-24
EP3022305A2 (en) 2016-05-25
JP2020002155A (en) 2020-01-09
CN105705641A (en) 2016-06-22
US10640542B2 (en) 2020-05-05
ES2657060T3 (en) 2018-03-01
US20190010199A1 (en) 2019-01-10
JP2016525516A (en) 2016-08-25
WO2015007536A3 (en) 2015-03-19
KR20160108291A (en) 2016-09-19
HK1252831A1 (en) 2019-06-06
KR102322510B1 (en) 2021-11-08

Similar Documents

Publication Publication Date Title
US20230054612A1 (en) Fusokines involving cytokines with strongly reduced receptor binding affinities
RU2711979C2 (en) Interleukin 15 protein complex and use thereof
Budagian et al. IL-15/IL-15 receptor biology: a guided tour through an expanding universe
ES2842677T3 (en) Ligands modified by circular permutation as agonists and antagonists
Han et al. IL-15: IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization
JP6723982B2 (en) Interleukin-2/interleukin-2 receptor alpha fusion protein and methods of use
Bach et al. The IFNγ receptor: a paradigm for cytokine receptor signaling
KR101559330B1 (en) Polypeptides derived from IL-2 having agonist activity, for the therapy of cancer and chronic infections
CN110437339A (en) It is a kind of using interleukin 15 as the fusion protein type prodrug of active constituent
ES2251610T3 (en) MUTANTS OF INTERLEUQUINA-18, ITS PRODUCTION AND ITS USE.
PT1076704E (en) Il-2 selective agonists and antagonists
JP2008528039A (en) Homogeneous preparation of IL-31
JP4024366B2 (en) Polypeptide
ES2298106T3 (en) FUSION PROTEINS THAT INCLUDE TWO SOLUBLE GP130 MOLECULES.
JP2022533636A (en) IL-2 mutant proteins that proliferate immune cells
US20210008167A1 (en) T cell receptor fusions and conjugates and methods of use thereof
WO2019067789A1 (en) Method for treating complications related to acute or chronic hyperglycemia
JP3689111B2 (en) Interleukin 15

Legal Events

Date Code Title Description
B07D Technical examination (opinion) related to article 229 of industrial property law [chapter 7.4 patent gazette]
B25D Requested change of name of applicant approved

Owner name: VIB VZW (BE) ; UNIVERSITEIT GENT (BE) ; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (FR) ; CENTRE HOSPITALIER REGIONAL UNIVERSITAIRE DE MONTPELLIER (FR) ; UNIVERSITE MONTPELLIER (FR)

Owner name: VIB VZW (BE) ; UNIVERSITEIT GENT (BE) ; CENTRE NAT

B07E Notification of approval relating to section 229 industrial property law [chapter 7.5 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B07A Application suspended after technical examination (opinion) [chapter 7.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 03/07/2014, OBSERVADAS AS CONDICOES LEGAIS