AU6038399A - Novel bag proteins and nucleic acid molecules encoding them - Google Patents

Novel bag proteins and nucleic acid molecules encoding them Download PDF

Info

Publication number
AU6038399A
AU6038399A AU60383/99A AU6038399A AU6038399A AU 6038399 A AU6038399 A AU 6038399A AU 60383/99 A AU60383/99 A AU 60383/99A AU 6038399 A AU6038399 A AU 6038399A AU 6038399 A AU6038399 A AU 6038399A
Authority
AU
Australia
Prior art keywords
seq
bag
group
amino acid
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU60383/99A
Other versions
AU774355B2 (en
Inventor
John C Reed
Shinichi Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanford Burnham Prebys Medical Discovery Institute
Original Assignee
Sanford Burnham Prebys Medical Discovery Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanford Burnham Prebys Medical Discovery Institute filed Critical Sanford Burnham Prebys Medical Discovery Institute
Publication of AU6038399A publication Critical patent/AU6038399A/en
Application granted granted Critical
Publication of AU774355B2 publication Critical patent/AU774355B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

WO 00/14106 PCTIUS99/21053 NOVEL BAG PROTEINS AND NUCLEIC ACID MOLECULES ENCODING THEM STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY-SPONSORED RESEARCH AND DEVELOPMENT 5 This invention was made with government support under grant number CA-67329 awarded by the National Institutes of Health. The United States Government has certain rights in this invention. BACKGROUND OF THE INVENTION 10 FIELD OF THE INVENTION This invention relates generally to the fields of molecular biology and molecular medicine and more specifically to a novel family of proteins that can regulate protein folding. The functions of these proteins 15 are potentially diverse, including promoting tumor cell growth and metastasis. BACKGROUND INFORMATION The Hsc70/Hsp7O-family of molecular chaperones participate in protein folding reactions, controlling 20 protein bioactivity, degradation, complex assembly/disassembly, and translocation across membranes. These proteins interact with hydrophobic regions within target proteins via a carboxyl (C)-terminal peptide binding domain, with substrate binding and release being controlled 25 by the N-terminal ATP-binding domain of Hsc70/Hsp70. Hsc70/Hsp7O-assisted folding reactions are accomplished by repeated cycles of peptide binding, refolding, and release, WO 00/14106 PCTIUS99/21053 2 which are coupled to ATP hydrolysis by the ATP-binding domain (ATPase) of Hsc70/Hsp7O and by subsequent nucleotide exchange. The chaperone activity of mammalian Hsc70/Hsp70 is regulated by partner proteins that either modulate the 5 peptide binding cycle or that target the actions of these chaperones to specific proteins and subcellular compartments. DnaJ-family proteins (Hdj-1/Hsp40; Hdj-2; Hdj-3) stimulate the ATPase activity of Hsc70/Hsp7O, resulting in the ADP-bound state which binds tightly to 10 peptide substrates. The Hip protein collaborates with Hsc70/Hsp7O and DnaJ homologues in stimulating ATP hydrolysis, and thus also stabilize Hsc70/Hsp70 complexes with substrate polypeptides, whereas the Hop protein may provide co-chaperone functions through interactions with 15 the C-terminal peptide binding domain. The Bcl-2 associated athanogene-1 (bag-1) is named from the Greek word athanos, which refers to anti-cell death. BAG-1 was previously referred to as Bcl-2-associated protein-1 (BAP-1) in U.S. Patent No. 20 5,539,094 issued July 23, 1996, which is incorporated herein by reference. In this earlier patent, BAG-1 is described as a portion of the human BAG-1 protein, absent the N-terminal amino acids 1 to 85. In addition, a human protein essentially identical to human BAG-1 was described 25 by Zeiner and Gehring, (Proc. Natl. Acad. Sci., USA 92:11465-11469 (1995)). Subsequent to the issuance of U.S. Patent 5,539,094 the N-terminal amino acid sequence from 1 to 85 of human BAG-1 was reported. BAG-1 and its longer isoforms BAG-lM (Rap46) and 30 BAG-iL are recently described Hsc70/Hsp7O-regulating proteins. BAG-1 competes with Hip for binding to the Hsc70/Hsp7O ATPase domain and promotes substrate release. BAG-1 also reportedly stimulates Hsc70-mediated ATP WO 00/14106 PCTIUS99/21053 3 hydrolysis by accelerating ADP/ATP exchange, analogous to the prokaryotic GrpE nucleotide exchange protein of the bacterial Hsc70 homologue, DnaK. Gene transfection studies indicate that BAG-1 proteins can influence a wide variety 5 of cellular phenotypes through their interactions with Hsc70/Hsp7O, including increasing resistance to apoptosis, promoting cell proliferation, enhancing tumor cell migration and metastasis, and altering transcriptional activity of steroid hormone receptors. 10 Despite the notable progress in the art, there remains an unmet need for the further identification and isolation of additional homologous BAG protein species, and the nucleic acid molecules and/or nucleotide sequences that encode them. Such species would provide additional 15 means by which the identity and composition of the BAG domain, that is, the portion of the protein that is influencing or modulating protein folding, could be identified. In addition, such species would be useful for identifying agents that modulate apoptosis as candidates 20 for therapeutic agents, in particular, anticancer agents. The present invention satisfies these need, as well as providing substantial related advantages. SUMMARY OF THE INVENTION The present invention provides a family of BAG-1 25 related proteins from humans [BAG-1L (SEQ ID NO:2), BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO: 4), BAG-3 (SEQ ID NO:6) and (SEQ ID NO:20), BAG-4 (SEQ ID NO:8) and (SEQ ID NO:22) and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24)] , the invertebrate C.elegans [BAG-1 (SEQ ID 30 NO:12), BAG-2 (SEQ ID NO:14)] and the fission yeast S.pombe [BAG-lA (SEQ ID NO:16), BAG-lB (SEQ ID NO:18)] and the nucleic acid molecules that encode them.
WO 00/14106 PCT/US99/21053 4 Another aspect of the present invention provides an amino acid sequence present in the family of BAG-1 related proteins, that modulates Hsc70/Hsp7O chaperone activity, that is, the BAG domain. 5 Another aspect of the present invention provides novel polypeptide and nucleic acid compositions and methods useful in modulating Hsc70/Hsp7O chaperone activity. Another aspect of the present invention is directed to methods for detecting agents that modulate the 10 binding of the BAG family of proteins, such as BAG-1 (beginning at residue 116 of SEQ ID NO:2), and related proteins with the Hsc70/Hsp7O Family of proteins or with other proteins that may interact with the BAG-Family proteins. 15 Still another aspect of the present invention is directed to methods for detecting agents that induce the dissociation of a bound complex formed by the association of BAG-Family proteins with Hsc70/Hsp7O Family molecule chaperones or other proteins. 20 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the full length cDNA sequence for human BAG-1 (SEQ ID NO:1) protein with the corresponding amino acid sequence (SEQ ID NO:2). Within the full length sequence are included the overlapping sub-sequences of 25 BAG-1 (beginning at nucleotide 391), BAG-1M [beginning at nucleotide 260 of (SEQ ID NO:2)], and BAG-1L [beginning at nucleotide 46 of (SEQ ID NO:2)].
WO 00/14106 PCTIUS99/21053 5 Figures 2A and 2B combined shows the full length cDNA sequence (SEQ ID NO:3) aligned with the corresponding amino acid residues for human BAG-2 protein (SEQ ID NO:4). Figure 3 shows a cDNA sequence (SEQ ID NO:5) 5 aligned with the corresponding amino acid residues for human BAG-3 protein (SEQ ID NO:6). Figure 4 shows the a cDNA sequence (SEQ ID NO:7) aligned with the corresponding amino acid residues for human BAG-4 protein (SEQ ID NO:8). 10 Figure 5 shows a cDNA sequence (SEQ ID NO:9) aligned with the corresponding amino acid residues for human BAG-5 protein (SEQ ID NO:10). Figure 6A shows the full length cDNA sequence for C. elegans BAG-1 protein (SEQ ID NO:1l). 15 Figure 6B shows the 210 amino acid sequence for C. elegans BAG-1 protein (SEQ ID NO:12). Figure 7A shows the full length cDNA sequence for C. elegans BAG-2 protein (SEQ ID NO:13). Figure 7B shows the 458 amino acid sequence for 20 C. elegans BAG-2 protein (SEQ ID NO:14). Figure 8A shows the full length cDNA sequence for S. pombe BAG-lA protein (SEQ ID NO:15). Figure 8B shows the 195 amino acid sequence for S. pombe BAG-1A protein (SEQ ID NO:16).
WO 00/14106 PCT/US99/21053 6 Figure 9A shows the full length cDNA sequence for S. pombe BAG-lB protein (SEQ ID NO:17). Figure 9B shows the 206 amino acid sequence for S. pombe BAG-lB protein (SEQ ID NO:18). 5 Figure 10 shows the topologies of the BAG-family proteins; human BAG proteins, BAG-1 (SEQ ID NO:2), BAG-2 (SEQ ID NO:4), BAG-3 (SEQ ID NO:6), BAG-4 (SEQ ID NO:8), BAG-5 (SEQ ID NO:10); S.pombe BAG-lA (SEQ ID NO:16)and BAG-lB (SEQ ID NO:18); and C. elegans BAG-1 (SEQ ID 10 NO:12)and BAG-2 (SEQ ID NO:14) . (A) The relative positions of the BAG domains are shown in black, ubiquitin like regions are represented in gray, WW domain are represented in strips. Nucleoplasmin-like nuclear localization sequence are also shown. (B) The amino acid 15 sequences of the BAG domain for human BAG-1 (SEQ ID NO:2), BAG-2 (SEQ ID NO:4), BAG-3 (SEQ ID NO:6), BAG-4 (SEQ ID NO:8), BAG-5 (SEQ ID NO:10), S.pombe BAG-lA (SEQ ID NO:16)and BAG-lB (SEQ ID NO:18), and C. elegans BAG-1 (SEQ ID NO:12)and BAG-2 (SEQ ID NO:14) are aligned demonstrating 20 their homology. Black and gray shading represent identical and similar amino acids, respectively. Figure 11 shows assays demonstrating the interaction of BAG-family proteins with Hsc70/ATPase. (A) Two-hybrid assays using yeast expressing the indicated 25 fusion proteins. Blue color indicates a positive interaction, resulting in activation of the lacZ reporter gene. (B) In vitro protein assays using GST-fusion proteins and "S-labeled in vitro translated proteins. (C) Co-immunoprecipitation assays using anti-Flag or IgG1 30 control antibodies and lysates from 293T cells expressing Flag-tagged BAG-1 (beginning at residue 116 of SEQ ID WO 00/14106 PCT/US99/21053 7 NO:2), BAG-2 (SEQ ID NO:4), BAG-3 (SEQ ID NO:6), Daxx, or Apaf-1. Figure 12 shows surface plasmon resonance analysis of BAG-family protein interactions with 5 Hsc70/ATPase. (A) SDS-PAGE analysis of purified recombinant proteins. (B) Representative SPR results of biosensor chips containing immobilized BAG proteins with and without maximally bound Hsc70/ATPase. Figure 13 shows representative SPR results for 10 biosensor chips containing immobilized BAG-1 (beginning at residue 116 at SEQ ID NO:2), BAG-1(AC), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) proteins. Hsc70/ATPase was flowed over the chips (arrow/left) until maximal binding was reached (response units), then flow was continued without 15 Hsc70/ATPase (arrow/right). For BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6), Hsc70 was injected at 0.0175, 0.035, 0.07, 0.14, and 0.28 pM. Figure 14 shows BAG-family protein modulation of Hsc70 chaperone activity. (A) Protein refolding assay of 20 chemically-denatured luciferase by Hsc70 plus DnaJ in the absence or presence of BAG and BAG-mutant proteins. (B) Concentration-dependent inhibition of Hsc70-mediated protein refolding by BAG-family proteins [BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), BAG-3 25 (SEQ ID NO:6)] but not by BAG-mutant (BAG-1 (AC). (C) Hsc70/Hsp4O-mediated refolding of heat-denatured luciferase was assayed in the presence of (black bars) or absence of (striped bars) of 1.8 pM Hip, with (lanes 3-10) or without (lanes 1,2) various BAG-family proteins (1.8pM) as 30 indicated (mean ±SE; n=3). A control (CNTL) is shown (lane 1) in which Hsc70 was replaced with an equivalent amount of
BSA.
WO 00/14106 PCT/US99/21053 8 Figure 15A shows an expanded cDNA sequence for human BAG-3 protein (SEQ ID NO:19). Figure 15B shows the corresponding amino acid residues for the human BAG-3 protein (SEQ ID NO:20) of 5 Figure 15A. Figure 15C shows the expanded cDNA sequence (SEQ ID NO:19) aligned with the corresponding amino acid residues for human BAG-3 protein of Figure 15A (SEQ ID NO:20). 10 Figure 16A shows an expanded cDNA sequence for human BAG-4 protein (SEQ ID NO:21). Figure 16B shows the corresponding amino acid residues for the human BAG-4 protein of Figure 16A (SEQ ID NO:22). 15 Figure 16C shows the expanded cDNA sequence (SEQ ID NO:21) aligned with the corresponding amino acid residues for human BAG-4 protein of Figure 16A (SEQ ID NO:22). Figure 17A shows an expanded cDNA sequence for 20 human BAG-5 protein (SEQ ID NO:23). Figure 17B shows the corresponding amino acid residues for the human BAG-5 protein of Figure 17A (SEQ ID NO:24). Figure 17C shows the expanded cDNA sequence (SEQ 25 ID NO:23) aligned with the corresponding amino acid residues for human BAG-5 protein of Figure 17A (SEQ ID NO:24).
WO 00/14106 PCT/US99/21053 9 Figure 18 shows the topologies of the BAG-family proteins; human BAG proteins, BAG-1 (SEQ ID NO:2), BAG-2 (SEQ ID NO:4), expanded BAG-3 (SEQ ID NO:20), expanded BAG-4 (SEQ ID NO:22), expanded BAG-5 (SEQ ID NO:24); 5 S.pombe BAG-1A (SEQ ID NO:16)and BAG-1B (SEQ ID NO:18); and C. elegans BAG-1 (SEQ ID NO:12)and BAG-2 (SEQ ID NO:14). The relative positions of the BAG domains are shown in black, ubiquitin-like regions are represented in gray, WW domain are represented in strips. Nucleoplasmin-like 10 nuclear localization sequence are also shown. Definitions The term "apoptosis", as used herein, refers to the process of programmed cell death, although not all programmed cell deaths occur through apoptosis, as used 15 herein, "apoptosis" and "programmed cell death" are used interchangeably. The term "tumor cell proliferation", as used herein refers to the ability of tumor cells to grow and thus expand a tumor mass. 20 The term "cell migration", as used herein refers to the role cell motility plays in the invasion and potentially metastasis by tumor cells. The term "metastasis", as used herein refers to the spread of a disease process from one part of the body 25 to another, as in the appearance of neoplasms in parts of the body remote from the site of the primary tumor; results in dissemination of tumor cells by the lymphatics or blood vessels or by direct extension through serious cavitites or subarachnoid or other spaces.
WO 00/14106 PCT/US99/21053 10 The term "steroid hormone receptor function", as used herein refers to physiological, cellular and molecular functioning of receptors sites that bind with steroid hormones. 5 The term "substantially purified", as used herein, refers to nucleic acid or amino acid sequence that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with 10 which they are naturally associated. "Nucleic acid molecule" as used herein refers to an oligonucleotide, nucleotide, or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single or double stranded, 15 and represent the sense or antisense strand. "Hybridization", as used herein, refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing. The terms "complementary" or "complementarity", 20 as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing. For example, the sequence "A-G-T binds to the complementary sequence "T-C-A". The term "homology", as used herein, refers to a 25 degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence is one that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid and is referred to using the functional term 30 "substantially homologous." The inhibition of WO 00/14106 PCT/US99/21053 11 hybridization of the completely complementary sequence to the target sequence may be examined using a hybridzation assay (Southern or northern blot, solution hybridization and the like) under conditions of low stringency. A 5 substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence or probe to the target sequence under conditions of low stringency. The term "antisense", as used herein, refers to 10 nucleotide sequences which are commplementary to a specific DNA or RNA sequence. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. Antisense molecules may be produced by any method, including synthesis by ligating the gene(s) of 15 interest in a reverse orientation to a viral promoter which permits the synthesis of a complementary strand. Once introduced into a cell, this transcribed strand combines with natural sequences produced by the cell to form duplexes. These duplexes then block either the further 20 transcription or translation. In this manner, mutant phenotypes may be generated. The designation "negative" is sometimes used in reference to the antisense, and "positive" is sometimes used in reference to the sense strand. 25 "Amino acid sequence" as used herein refers to an oligopeptide, peptide, polypeptide, or protein sequence, and fragments or portions thereof, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited herein this term excludes an amino 30 acid sequence of a naturally occurring protein. "Amino acid sequence", "polypeptide" or "protein" are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.
WO 00/14106 PCT/US99/21053 12 The term "functional fragments" or "fragments", as used herein, with regard to a protein refers to portions of that protein that are capable of exhibiting or carrying out the activity exhibited by the protein as a whole. The 5 portions may range in size from three amino acid residues to the entire amino acid sequence minus one amino acid. For example, a protein "comprising at least a functional fragment of the amino acid sequence of SEQ ID NO:1", encompasses the full-length of the protein of SEQ ID NO:1 10 and portions thereof. A "derivative" of a BAG protein, as used herein, refers to an amino acid sequence that is alterd by one or more amino acids. The derivative may have "conservative" changes, wherein a substituted amino acid has similar 15 structural or chemical properties, e.g., substitution of an apolar amino acid with another apolar amino acid (such as replacement of leucine with isoleucine). The derivative may also have "nonconservative" changes, wherein a substituted amino acid has different but sufficiently 20 similar structural or chemical properties that permits such a substitution without adversely effecting the desired biological activity, e.g., replacement of an amino acid with an uncharged polar R group with an amino acid with an apolar R group (such as replacement of glycine with 25 tryptophan), or alternatively replacement of an amino acid with a charged R group with an amino acid with an uncharged Polar R group (such as replacement of lysine with asparagine).
WO 00/14106 PCT/US99/21053 13 Amino Acids - Apolar R Groups Amino Acid Radical Abbreviations 3-Letter 11-Letter alanine methyl ala A valine 2-propyl aal V 5 leucine 2-methylpropyl leu L isoleucine 2-butyl ile I proline propyl* - cyclized pro P phenylalanine benzyl phe F trytophan 3-indolylmethl tyr w 10 methionine methylthioethyl met M Amino Acids - Uncharged Polar R Groups Amino Acid Radical Abbreviations 3-Letter 11-Letter glycine H gly G serine hydroxymethyl ser S 15 threonine 1-hydroxyethyl thr T cysteine thiolmethyl cys C tyrosine 4-hydroxyphenylmethyl tyr Y asparagine aminocarbonylmethyl asn N glutamine aminocarbonylethyl gln Q 20 Amino Acids - Charged R Groups Amino Acid Radical Abbreviations 3-Letter J1-Letter aspartic acid carboxymethyl asp D glutamic acid carboxyethyl glu E lysine 4-aminobutyl lys K 25 arginine 3-guanylpropyl arg R histidine 4-imidazoylmethyl his H WO 00/14106 PCT/US99/21053 14 Similar minor modifications may also include amino acids deletions or insertions or both. Guidance in determining which amino acid residues may be modified as indicated above without abolishing the desired biological 5 functionality may be determined using computer programs well known in the art, for example, DNASTAR software. In addition, the derivative may also result from chemical modifications to the encoded polypeptide, including but not limited to the following, replacement of hydrogen by an 10 alkyl, acyl, or amino group; esterification of a carboxyl group with a suitable alkyl or aryl moiety; alkylation of a hydroxyl group to form an ether derivative. Further a derivative may also result from the substitution of a L configuration amino acid with its corresponding D 15 configuration counterpart. The term "mimetic", as used herein, refers to a molecule, the structure of which is developed from knowledge of the structure of a protein/polypeptide or portions thereof (such as BAG-1) and, as such, is able to 20 effect some or all of the actions of BAG-1 protein. "Peptide nucleic acid", as used herein, refers to a molecule which comprises an oligomer to which an amino acid residue, such as lysine, and an amino group have been added. These small molecules, also designated anti-gene 25 agents, stop transcript elongation by binding to their complementary strand of nucleic acid (Nielsen, P.E. et al., Anticancer Drug Des. 8:53-63 (1993)). DETAILED DESCRIPTION OF THE INVENTION The present invention provides a family of BAG-1 30 related proteins from humans [BAG-lL (SEQ ID NO:2), BAG-lS beginning at residue 116 of SEQ ID NO:2, BAG-2 (SEQ ID WO 00/14106 PCT/US99/21053 15 NO:4), BAG-3 (SEQ ID NO:6) and (SEQ ID NO:20), BAG-4 (SEQ ID NO: 8) and (SEQ ID NO:22) and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24)], the invertebrate C.elegans [BAG-1 (SEQ ID NO:12), BAG-2 (SEQ ID NO:14)] and the fission yeast S.pombe 5 [BAG-lA (SEQ ID NO:16), BAG-lB (SEQ ID NO:18)], specifically the full length amino acid sequences comprising human BAG-iL (SEQ ID NO:2), BAG-1 (beginning at residue 116 of SEQ ID NO:2), and BAG-2 (SEQ ID NO:4) C. elegans BAG-1 (SEQ ID NO:12), and BAG-2 (SEQ ID NO:14), and 10 S.pombe BAG-iA (SEQ ID NO:16) and BAG-lB (SEQ ID NO:18); and partial sequences comprising human BAG-3 (SEQ ID NO: 6) and (SEQ ID NO:20), BAG-4 (SEQ ID NO:8) and (SEQ ID NO:22), and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24) and functional fragments thereof. In particular, the invention provides 15 the amino acid sequences comprising human BAG-2 (SEQ ID NO:4), BAG-3 (SEQ ID NO:6) and (SEQ ID NO:20), BAG-4 (SEQ ID NO:8) and (SEQ ID NO:22), and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24) proteins. Another aspect of the present invention provides 20 the nucleic molecule and nucleotide sequences that encode the family of BAG-1 related proteins from humans [BAG-1 (SEQ ID NO:1), BAG-2 (SEQ ID NO:3), BAG-3 (SEQ ID NO:5) and (SEQ ID NO:19), BAG-4 (SEQ ID NO:7) and (SEQ ID NO:21) and BAG-5 (SEQ ID NO:9) and (SEQ ID NO:23)], the invertebrate 25 C.elegans [BAG-1 (SEQ ID NO:11), BAG-2(SEQ ID NO:13)] and the fission yeast S.pombe [BAG-iA (SEQ ID NO:15), BAG-lB (SEQ ID NO:17)]. BAG-iL (SEQ ID NO:2) is a multifunctional protein that blocks apoptosis, promotes tumor cell metastasis, and 30 contributes to factor-independent and p53-resistant cell growth. BAG-lL (SEQ ID NO:2) interacts with several types of proteins, including Bcl-2, some tyrosine kinase growth WO 00/14106 PCT/US99/21053 16 factor receptors, steroid hormone receptors, and the p53 induced cell cycle regulator Siah-1A. BAG-1 is a regulator of Hsc70/Hsp70 family molecular chaperones. A carboxyl-terminal domain in this 5 protein binds tightly to the ATPase domains of Hsc70 and Hsp70 (KD = 1 nM) (Zeiner, M., Gebauer, M., and Gehring, U., EMBO J. 16: 5483-5490, (1997)) . BAG-1 modulates the activity of these molecular chaperones, acting as an apparent functional antagonist of the Hsp70/Hsc70 10 associated protein Hip (3-5) (Hbhfeld, J. and Jentsch, S., EMBO J. 16: 6209-6216, (1997); Takayama, S., Bimston, D. N., Matsuzawa, S., Freeman, B. C., Aime-Sempe, C., Xie, Z., Morimoto, R. J., and Reed, J. C., EMBO J. 16: 4887-96, (1997); Zeiner, M., Gebauer, M., and Gehring, U., EMBO J. 15 16: 5483-5490, (1997)). In general, protein refolding is accomplished by Hsp70/Hsc70 through repeated cycles of target peptide binding and release, coupled to ATP hydrolysis (Ellis, R., Curr Biol. 7: R531-R533, (1997)). BAG-1 appears to promote substrate release, whereas Hip 20 stabilizes Hsp70/Hsc70 complex formation with target peptides (Hbhfeld, J., Minami, Y., and Hartl, F.-U., Cell. 83: 589-598, (1995)). Since each substrate interaction with Hsc70/Hsp70 is unique in terms of the optimal length of time the protein target should remain complexed with 25 Hsc70/Hsp70 for achieving new conformations, the net effect of BAG-1 can be either enhancement or inhibition of the refolding reaction. The 70kd heat shock family proteins (Hsp70/Hsc7O) are essential to a variety of cellular processes and have 30 been implicated in cancer, yet it is unclear how these proteins are regulated in vivo. A variety of co-chaperones have been identified which may target Hsp70/Hsc70 to different subcellular compartments or promote their WO 00/14106 PCT/US99/21053 17 interactions with specific protein or protein complexes. BAG-1 appears to represent a novel Hsp70/Hsc7O regulator which differs functionally from all other mammalian co chaperones identified to date, such as members of the 5 DnaJ-, Hip-, Hop-, and cyclophilin-families of proteins. Another aspect of the present invention provides the amino acid sequence of a binding domain of about 40 to 55 amino acids that bind the a Hsc70/Hsp70 ATPase domain. The BAG domain is situated near the C-terminus, and the 10 ubiquitin-like domains are situated near the N-terminus. The BAG family of proteins of the present invention contain a common conserved C-terminal domain (the ",BAG" domain) that facilitates binding to the ATPase domain of Hsp70/Hsc7O. The carboxyl-terminal domain of BAG-1 15 binds to the ATPase domain of Hsc70/Hsp7O and regulates its chaperone function by acting as a ADP-ATP exchange factor. Other domains of BAG-1 mediate interactions with proteins such as Bcl-2 and retinoic acid receptors (RARs) , allowing BAG-1 to target Hsc70/Hsp7O to other proteins, presumably 20 modulating their function by changing their conformations. Human BAG-1 was previously shown to inhibit Hsc70/Hsp70 dependent refolding of denatured protein substrates in vitro (S. Takayama, et al., EMBO J 16, 4887 96 (1997); M. Zeiner, M. Gebauer, U. Gehring, EMBO J. 16, 25 5483-5490 (1997) ; and J. H6hfeld, S. Jentsch, EMBO J. 16, 6209-6216 (1997) ) . In Example III, Part A the effects of recombinant human BAG-1, BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) were compared using in vitro protein refolding assays similar to those employed previously for assessing 30 BAG-1. The study showed that addition of equimolar amounts of each of the recombinant proteins to Hsc70 resulted in significant inhibition of luciferase refolding, with BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) showing somewhat WO 00/14106 PCTIUS99/21053 18 greater inhibitor activity than BAG-1 (Figure 4A). In a separate luciferase folding study BAG-1, BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) once again displayed inhibition of luciferase refolding, however in this study 5 varying amounts of BAG-1, BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) were added relative to Hsc70 which resulting in concentration-dependent inhibition of Hsc70 chaperone activity, i.e., luciferase folding (Example III Part A). Additional follow on studies using the same experimental 10 protocols as the previous studies, as taught in Example IIA, have shown that BAG-4 (SEQ ID NO:22) also undergoes association with Hsc70/ATPase. Yet another aspect of the present invention provides a nucleotide sequence having at least about 15 15 nucleotides and, generally, about 25 nucleotides, preferably about 35 nucleotides, more preferably about 45 nucleotides, and most preferably about 55 nucleotides that can hybridize or is complementary under relatively stringent conditions to a portion of the nucleic acid 20 sequences shown in Figures 1-9 and Figures 15-17, in particular the BAG domain as shown in in Figure 1B, e.g., nucleotides 552-593 of human BAG-3, or nucleotides 167-221 of human BAG-4. Yet another aspect of the present invention 25 provides a compound of the formula, RN_ 1 X1 R2 X2 R3 X3 R4 X4 R5 X5 R6 X6 R7 X7 X8 R9 X9 R10 X10 R11 X11 RC R1XRXRXRXR5XR6X6RX7XRSX9R XR X -Rc wherein, RN is a group of 1 to 552 independently selected amino acids; 30 R 1 is a group of 3 independently selected amino acids; WO 00/14106 PCT/US99/21053 19 X is an amino acid with a charged or uncharged R group, such as aspartic acid, glutamic acid, asparagine, or glutamine; R2 is a group of 7 independently selected amino 5 acids; X2 is an amino acid with a charged R group, such as glutamic acid;
R
3 is a group of 5 independently selected amino acids; 10 X 3 is an amino acid with an apolar R group, such as leucine, methionine, or isoleucine;
R
4 is a group of 3 independently selected amino acids; X4 is an amino acid with charged R group, such as 15 aspartic acid or glutamine acid;
R
5 is a single independently selected amino acid;
X
5 is an amino acid with apolar or uncharged R group, such as leucine, valine, methionine, alanine or threonine; 20 R 6 is a group of 15 independently selected amino acids;
X
6 is an amino acid with a charged or uncharged R group, such as arginine, lysine, glutamine or aspartic acid; 25 R 7 is a group of 2 independently selected amino acids;
X
7 is an amino acid with a charged R group, such as arginine; X8 is an amino acid with a charged R group, such 30 as arginine or lysine;
R
9 is a group of 2 independently selected amino acids;
X
9 is an amino acid with an apolar R group, such as valine; 35 R 10 is a group of 3 independently selected amino acids; WO 00/14106 PCT/US99/21053 20
X
10 is an amino acid with an uncharged R group, such as glutamine; R" is a group of 2 independently selected amino acids; 5 X" is an amino acid with an apolar R group, such as leucine; and Rc is a group of 1 to 100 independently selected amino acids. A nucleotide sequence of at least about 15 10 nucleotides and, generally, about 25 nucleotides, preferably about 35 nucleotides, more preferably about 45 nucleotides, and most preferably about 55 nucleotides can be useful, for example, as a primer for the polymerase chain reaction (PCR) or other similar reaction mediated by 15 a polymerase such as a DNA or RNA polymerase (see PCR Protocols: A guide to methods and applications, ed. Innis et al. (Academic Press, Inc., 1990), which is incorporated herein by reference; see, for example, pages 40-41) . In addition, such a nucleotide sequence of the invention can 20 be useful as a probe in a hybridization reaction such as Southern or northern blot analysis or in a binding assay such as a gel shift assay. A nucleotide sequence of the invention can be particularly useful as an antisense molecule, which can be 25 DNA or RNA and can be targeted to all or a portion of the 5'-untranslated region or of the 5'-translated region of a bag-1 nucleic acid sequence in a cell. For example, an antisense molecule can be directed to at least a portion of the sequence shown as the BAG domain in Figure 1A, e.g., 30 nucleotides 272-319 of human BAG-1L (SEQ ID NO:1), or nucleotides 79-147 of human BAG-5 (SEQ ID NO:9). Since the 5'-region of a nucleic acid contains elements involved in the control of expression of an encoded protein, an antisense molecule directed to the 5'-region of a nucleic WO 00/14106 PCT/US99/21053 21 acid molecule can affect the levels of protein expressed in a cell. A nucleotide sequence of the invention also can be useful as a probe to identify a genetic defect due a 5 mutation of a gene encoding a BAG protein in a cell. Such a genetic defect can lead to aberrant expression of a BAG protein in the cell or to expression of an aberrant BAG protein, which does not properly associate with a Bcl-2 related protein or Hsc70/Hsp7O protein in the cell. As a 10 result, a genetic defect in a gene encoding, for example, human BAG-1 can result in a pathology characterized by increased or decreased levels in protein folding. Further a nucleotide compound or composition as taught in the present invention can be synthesized using 15 routine methods or can be purchased from a commercial source. In addition, a population of such nucleotide sequences can be prepared by restriction endonuclease or mild DNAse digestion of a nucleic acid molecule that contains nucleotides as shown in the nucleotide sequences 20 shown in Figures 1-9 and Figures 15-17 that encodes the amino acids sequences also shown in Figures 1-9 and Figures 15-17. Methods for preparing and using such nucleotide sequences, for example, as hybridization probes to screen a library for homologous nucleic acid molecules 25 are well known in the art (see, for example, Sambrook et al., Molecular Cloning: A laboratory manual (Cold Spring Harbor Laboratory Press 1989); Ausubel et al., Current Protocols in Molecular Biology (Green Publ., NY 1989), each of which is incorporated herein by reference). 30 A particular nucleotide sequence can be designed based, for example, on a comparison of the nucleic acid molecules encoding any one of the BAG family proteins, as shown in Figures 1-9 and Figures 15-17, with another in the family. Such a comparison allows, for example, the WO 00/14106 PCT/US99/21053 22 preparation of a nucleotide sequence that will hybridize to a conserved region present in both nucleic acid molecules, thus providing a means to identify homologous nucleic acid molecules present in other cell types or other organisms. 5 In addition, such a comparison allows the preparation of a nucleotide sequence that will hybridize to a unique region of any of the BAG family nucleotide sequences, such as those corresponding to the BAG domain, thus allowing identification of other proteins sharing this motif. In 10 this regard, it is recognized that, while the human BAG-3 proteins shown as Figures 3 and 20, and human BAG-5 proteins shown as Figures 5 and 24, are only partial sequences, a variant human BAG-3 or BAG-5 produced, for example, by alternative splicing can exist and can be 15 identified using an appropriately designed nucleotide sequence of the invention as a probe. Such useful probes readily can be identified by inspection of the sequences shown in the disclosed Figures by a comparison of the encoding nucleotide sequences. 20 If desired, a nucleotide sequence of the invention can incorporate a detectable moiety such as a radiolabel, a fluorochrome, a ferromagnetic substance, a luminescent tag or a detectable binding agent such as biotin. These and other detectable moieties and methods of 25 incorporating such moieties into a nucleotide sequence are well known in the art and are commercially available. A population of labelled nucleotide sequences can be prepared, for example, by nick translation of a nucleic acid molecule of the invention (Sambrook et al., supra, 30 1989; Ausubel et al., supra, 1989). One skilled in the art would know that a method involving hybridization of a nucleotide sequence of the invention can require that hybridization be performed under relatively stringent conditions such that nonspecific 35 background hybridization is minimized. Such hybridization WO 00/14106 PCT/US99/21053 23 conditions can be determined empirically or can be estimated based, for example, on the relative GC content of a sequence and the number of mismatches, if known, between the probe and the target sequence (see, for example, 5 Sambrook et al., supra, 1989). The invention further provides antibodies specific for human BAG family protein. As used herein, the term "antibody" includes polyclonal and monoclonal antibodies, as well as polypeptide fragments of antibodies 10 that retain a specific binding activity for human BAG-1 of at least about 1 x 10 5 M-1. One skilled in the art would know that anti-BAG-1 antibody fragments such as Fab, F(ab') 2 and Fv fragments can retain specific binding activity for human BAG-1 (beginning at residue 116 of SEQ ID NO:2) and, 15 thus, are included within the definition of an antibody. In addition, the term "antibody" as used herein includes naturally occurring antibodies as well as non-naturally occurring antibodies and fragments that retain binding activity such as chimeric antibodies or humanized 20 antibodies. Such non-naturally occurring antibodies can be constructed using solid phase peptide synthesis, can be produced recombinantly or can be obtained, for example, by screening combinatorial libraries consisting of variable heavy chains and variable light chains as described by Huse 25 et al., Science 246:1275-1281 (1989), which is incorporated herein by reference. One skilled in the art would know that purified BAG family protein, which can be prepared from natural sources or synthesized chemically or produced 30 recombinantly, or portions of a BAG family protein, including a portion of human BAG family protein such as a synthetic peptide as described above, can be used as an immunogen. Such peptides useful for raising an antibody include, for example, peptide portions of the N-terminal 85 35 amino acids or the BAG domain of any of the human BAG WO 00/14106 PCTUS99/21053 24 proteins (see Figure 1B). A particularly advantageous use of such a protein is for the immunostaining, wherein the methods provides a process to contrast the immunostaining of BAG-family proteins in carcinoma cells with adjacent 5 non-neoplastic prostatic epithelial and basal cells which are generally present in the same tissue sections. These results would be correlated with a Gleason grade to determine whether any of the BAG-family proteins tend to be expressed at higher or lower levels in histologically 10 advanced tumors. From this process a determination can be made as to degree at which the disease is progressing in a given patient, i.e., a prognosis can be made. Non-immunogenic fragments or synthetic peptides of BAG proteins can be made immunogenic by coupling the 15 hapten to a carrier molecule such bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH), as described in Example IV, below. In addition, various other carrier molecules and methods for coupling a hapten to a carrier molecule are well known in the art and described, for 20 example, by Harlow and Lane, Antibodies: A laboratory manual (Cold Spring Harbor Laboratory Press, 1988), which is incorporated herein by reference. EXAMPLES The following examples are given to enable those 25 skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.
WO 00/14106 PCT/US99/21053 25 EXAMPLE I Isolation and Characterization of BAG-family cDNA Sequences This example describes methods for isolating and 5 characterizing of BAG-family cDNA sequences from human, nematode and yeast. A. Cloning of human BAG cDNA sequences Yeast two-hybrid library screening of a human Jurkat cell cDNA library was performed as described by 10 Takayama et al., EMBO J., 16:4887-96 (1997); Matsuzawa et al., EMBO J., 17:2736-2747 (1998), which are incorporated herein by reference) using EGY48 strain yeast transformed with pGilda-Hsc70/ATPase (67-377 amino acids) and the lacZ reporter plasmid pSH18-34. Of the resulting ~5 x 106 15 transformants, 112 Leu colonies were obtained after 1 week incubation at 30 0 C. Assay of S-galactosidase (-gal) activity of these colonies resulted in 96 clones. Mating tests were then performed using RFY206 yeast strain transformed with pGilda, pGilda mBAG-1 (1-219), or pGilda 20 Hsc70/ATPase. Of these, 66 displayed specific interactions with Hsc70/ATPase. The pJG4-5 cDNAs were recovered using KC8 E. coli strain which is auxotrophic for tryptophan (Trp). DNA sequencing revealed 3 partially overlapping human BAG-1, 4 identical and one overlapping cDNAs encoding 25 BAG-2, and 2 partially overlapping BAG-3 clones. Using the above described yeast two-hybrid screen with the ATPase domain of Hsc70 as "bait", several human cDNAs were cloned which encode portions of BAG-1 or of two other BAG-1-like proteins which are termed BAG-2 (SEQ ID 30 NO:4) and BAG-3 (SEQ ID NO:6). The longest of the cDNAs for BAG-2 (SEQ ID NO:3) and BAG-3 (SEQ ID NO:5) contained open reading frames (ORFs) of 207 and 162 amino acids, respectively, followed by stop codons. All BAG-1 (SEQ ID WO 00/14106 PCTIUS99/21053 26 NO:1) , BAG-2 (SEQ ID NO:3) and BAG-3 (SEQ ID NO:5) cDNAs obtained by two-hybrid library screening with Hsc70/ATPase contained a conserved domain of about 40-50 amino acids which are termed the "BAG" domain and are shown in Figure 5 10. These results demonstrate that a family of BAG-1 related proteins all contain a conserved ~45 amino acid region near their C-terminus that binds Hsc70/Hsp70. B. Identification of additional BAG-family proteins A search of the translated Genbank database using 10 the bBLAST and FASTA search programs also identified human ESTs that provided sequences for further investigation of BAG-family proteins. The putative BAG-4 (SEQ ID NO:8) and BAG-5 (SEQ ID NO:10) proteins contain BAG-domains that share the greatest sequence similarity with the BAG-domain 15 of BAG-3 (SEQ ID NO:6). These were designated BAG-4 (Accession number AA693697, N74588) and BAG-5 (Accession number AA456862, N34101) . BAG-4 has 62% identity and ~81% similarity to BAG-3, and BAG-5 has 51% identity and ~75% similarity to BAG-3. 20 Additional BAG-family orthologues or homologues were also identified using computer-based searches and resulted in BAG-family homologue in the nematode C. elegans and the fission yeast S. pombe. The C. elegans genome encodes two apparent BAG-family proteins, which are most 25 similar in their overall sequences to the human BAG-1 (Afo39713, gi:2773211) (SEQ ID NO:12) and BAG-2 (SEQ ID NO:14) (Afo68719, gi:3168927) . The S. pombe contains two BAG-family proteins that share the greatest overall sequence similarity with human BAG-1 (Alo23S54,gi/3133105 30 and Alo23634, gi/3150250) . The human and C. elegans BAG-1 proteins as well as S. pombe BAG-1A all have ubiquitin-like domains near their N-termini (see Figure 10A) of unknown function.
WO 00/14106 PCT/US99/21053 27 The overall predicted amino acid sequences of the C. elegans BAG-1 (SEQ ID NO:12) and S. pombe BAG-1A (SEQ ID NO:16) proteins are ~18% identical (~61% similar) and ~17% identical (~64% similar), respectively, to human BAG-1, 5 implying origin from a common ancestral gene. The C. elegans BAG-1 protein (SEQ ID NO:12), however, contains a 5 to 7 amino acid insert in its BAG-domain as compared to the human, murine, and yeast BAG-1 homologues (see Figure 10B), and is more similar to BAG-2 (SEQ ID NO:4) in regard 10 to its BAG-domain. C. elegans and human BAG-2 also may be derived from a common ancestor as the C-terminal 225 amino acid region which encompasses both the BAG domain and upstream region of both C. elegans and human BAG-2 share ~34% amino acid sequence identity and ~70% similarity. The 15 human BAG-2 protein (SEQ ID NO:4), however, contains a 9 amino acid insert in its BAG-domain compared to it C.elegans counterpart (see Figure 10B) . Evolutionary-tree prediction algorithms suggest that human and C. elegans BAG-2 represent a distinct branch of the BAG-family that is 20 more evolutionarily distant from the other BAG-family proteins. None of the predicted BAG-family proteins contain recognizable regions analogous to those found in other Hsc70 regulatory proteins, such as the J-domains and G/F-domains of DnaJ family proteins and the 25 Tetratricopeptide Repeat (TR) domains of Hip/Hop family proteins. C. Yeast two-hybrid assay of BAG binding to Hsc70/ATPase The longest of the cDNAs obtained for the BAG-2 and BAG-3 proteins were expressed with N-terminal 30 transactivation (TA) domains in yeast and tested by yeast two-hybrid assay for interactions with fusion proteins consisting of Hsp70/ATPase or a variety of unrelated proteins (Fas, Siah, Fadd) containing N-terminal LexA DNA binding domains. TA-BAG-2 and TA-BAG-3 demonstrated WO 00/14106 PCT/US99/21053 28 positive interactions with LexA-Hsc70/ATPase, resulting in transactivation of a lacZ reporter gene that was under the control of LexA operators (Figure 11A) . No interactions with LexA-Fas (cytosolic domain), LexA-Siah, LexA-Fadd, or 5 LexA were detected (see Figure 11A) demonstrating that the BAG-2 and BAG-3 proteins interact specifically with Hsc70/ATPase. Specific two-hybrid interactions between Hsc70/ATPase and either BAG-2 or BAG-3 were also observed when BAG-2 and BAG-3 were expressed as LexA DNA-binding 10 domain fusion proteins and Hsc7O/ATPase was fused with a TA domain (see Figure 11A; right panel). These results demonstrate that similarly to BAG-1, BAG-2 and BAG-3 specifically interact with Hsc70/ATPase. In order to determine whether the BAG proteins 15 are capable of forming heterodimers, coexpression of BAG-2 and BAG-3 in the yeast two-hybrid assay was also performed. Coexpression of BAG-2 and BAG-3 failed to show interaction with BAG-1 or a deletion mutant of BAG-1 (AC) which is missing part of its C-terminal domain required for 20 Hsp70/Hsc7O binding suggest that these proteins do not form heterdimers. D. Isolation and characterization of the complete open reading frame sequences of BAG-2 and BAG-3 In order to deduce the complete ORFs of BAG-2 and 25 BAG-3, a AX-phage cDNA library was screened as follows, using hybridization probes derived from the two-hybrid screening. A human jurkat T-cell A-ZapII library cDNA library (Stratagene) was screened by hybridization using 3 2 P-labeled purified insert DNA from the longest of the 30 human BAG-2 (clone #11) and human BAG-3 (clone #28) cDNA clones. From about one million clones screened, 38 BAG-2 and 23 BAG-3 clones were identified, cloned, and their cDNA inserts recovered as pSKII plasmids using a helper phage method (Stratagene). DNA sequencing of X-phage derived WO 00/14106 PCT/US99/21053 29 human BAG-2 cDNA clones revealed an ORF encoding a predicted 211 amino acid protein, preceded by an in-frame stop codon. The longest human BAG-3 A-phage cDNA clone contains a continuous ORF of 682 amino acids followed by a 5 stop codon, but without an identifiable start codon (see Figure 10A). Although BAG-1L (SEQ ID NO:2), BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEQ ID NO:6) all contain a homologous BAG domain 10 near their C-terminus, the N-terminal regions of these proteins are dissimilar. Using a combination of search tools (Prosite Search: PP search, using the Prosite pattern database, BCM Search Launcher, Baylor College of Medicine, and Blocks Search), it was determined that the BAG-2 N 15 terminal region contains potential kinase phosphorylation sites but otherwise shares no apparent similarity with other proteins or known functional domains. In contrast, the predicted N-terminal region BAG-3 contains a WW domain as shown in Figure 10A. WW 20 domains have been identified in a wide variety of signaling proteins, including a Yes kinase adaptor protein (YAP), the Na~-channel regulator Nedd4, formin-binding proteins, dystrophin, and the peptidyl prolyl cis-trans-isomerase Pin-1. These roughly 40 amino acid domains mediate protein 25 interactions and bind the preferred peptide ligand sequence xPPxY (Sudol., TIBS, 21: 161-163, 1996, which is incorporated herein by reference).
WO 00/14106 PCT/US99/21053 30 EXAMPLE II In vitro Association of BAG proteins and Hsc70/ATPase This example demonstrates that BAG-2 (SEQ ID 5 NO:4) and BAG-3 (SEQ ID NO:6) bind Hsc70/ATPase in various in vitro assays. A. Solution binding assay of BAG-2 and BAG-3 to Hsc70 /ATPase Association of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ 10 ID NO:6) with Hsc70/ATPase was determine by an in vitro protein binding assay where Hsc70/ATPase or BAG-family proteins were expressed in bacteria as Glutathione S Transferase (GST) fusion proteins. Purified cDNA sequences encoding residues 5 to 211 of human BAG-2 (clone #11) and 15 the C-terminal 135 amino acids of human BAG-3 (clone #28) (see Figure 10A) were subcloned into the EcoRI/Xho I sites of pGEX4T-1 prokaryotic expression plasmid (Pharmacia; Piscataway, NJ). These plasmids as well as pGEX4T-1-BAG-1, pGEX-4T-1-BAG-1 (AC), and pGEX-4T-1-XL which have been 20 described previously (Takayama et al. , supra (1997) ; Xie et al., Biochemistry, 37:6410-6418, (1998), which are incorporated herein by reference), were expressed in XL-1 blue strain E. Coli (Stratagene, Inc., La Jolla, CA). Briefly, a single colony was inoculated into 1L of LB media 25 containing 50 pg/ml ampicillin and grown at 37 0 C overnight. The culture was then diluted by half with fresh LB/ampicillin and cooled to room temperature for 1 hr, before inducing with 0.4mM IPTG for 6 h at 25 0 C. Cells were recovered and incubated with 0.5 mg/ml 30 lysozyme in 50 mM Tris (pH 8.0), 150 mM NaCl, 1% Tween-20, 0.1% 2-mercaptoethanol, 5 mM EDTA, 1 mM PMSF and a mixture WO 00/14106 PCTIUS99/21053 31 of other protease inhibitors obtained from Boehringer Mannheim (1697498) at room temperature for 0.5 h, followed by sonication. Cellular debris were pelleted by centrifugation at 27,500g for 10 min and the resulting 5 supernatants were incubated with 30 ml of glutathionine Sepharose (Pharmacia) at 4'C overnight. The resin was then washed with 20 mM Tris (pH 8.0), 150 mM NaCl, 0.1% Tween 20, and 0.1% 2-mercaptoethanol until the OD 280nm reached <0.01. For removal of GST, the resin with immobilized GST 10 fusion protein was incubated with 1OU of thrombin (Boehringer, Inc.) at 4 0 C in 20 mM Tris (pH 8.0), 150 mM NaCl, 0.1% Tween-20, 0.1% 2-Mercaptoethanol, and 2.5 mM CaCl2 overnight. Released proteins were then purified on Mono Q (HR10/10, Pharmacia) by FPLC using a linear gradient 15 of 0.5M NaCl at pH 8.0 and dialyzed into chaperone assay buffer. The ability of BAG-2 (SEQ ID NO:4) or BAG-3 (SEQ ID NO:6) to bind Hsc70/ATPase in solution was then examined. GST control or GST-BAG proteins were immobilized 20 on glutathione-Sepharose and tested for binding to 35S labeled in vitro translated (IVT) proteins. Immunoprecipitation and in vitro GST-protein binding assays were performed as described by Takayama et al., supra (1997), using pCI-Neo flag or pcDNA3-HA into which human 25 Bag-2 (clone #11) or human BAG-3 (clone #28) had been subcloned for in vitro translation of 35S-L-methionine labeled proteins or expression in 293T cells. As shown in Figure 11B, 3 5S-Hsc70/ATPase bound in vitro to GST-BAG-1, GST-BAG-2, and GST-BAG-3 but not to GST-BAG-1(AC) or 30 several other control proteins. BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEQ ID NO:6) also exhibited little or no binding to themselves or to each other, demonstrating that these proteins do not strongly homo- or hetero-dimerize or 35 oligomerize. It should be noted, however, that BAG-2 (SEQ WO 00/14106 PCT/US99/21053 32 ID NO:4) displayed weak interactions with itself in binding assays and produced a positive result in yeast two-hybrid experiments, demonstrating that it can have the ability to self-associate. 5 B. Binding of BAG proteins to Hsc70 in vivo The ability of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) proteins to interact in cells with Hsc70 was tested by expressing these proteins with N-terminal Flag epitope tags in 293T human epithelial cells using co 10 immunoprecipitation assays as described previously (Takayama et al., supra (1997)). cDNAs encoding the A phage cloned regions of BAG-2 and BAG-3 were subcloned in frame into pcDNA3-Flag. Anti-Flag immune complexes prepared from 293T cells after transfection with plasmids 15 encoding Flag-BAG-1, Flag-BAG-2, or Flag-BAG-3 were analyzed by SDS-PAGE/immunoblot assay. As shown in Figure 10C, antiserum specific to Hsc70 detected the presence of BAG proteins associated with Hsc70, whereas control immune complexes prepared with IgG1 as well as anti-Flag immune 20 complexes prepared from cells transfected with Flag-tagged control proteins, Daxx and Apaf -1, did not contain Hsc70 associated protein. These results further demonstrate that BAG-family proteins specifically bind to Hsc70. C. BIAcore assay of BAG protein binding to the ATPase 25 domain of Hsc70 BAG-1 (beginning at residue 116 of SEQ ID NO:2) is known to bind tightly to the ATPase domain of Hsc70 (Stuart et al., J. Biol. Chem., In Press (1998)) . BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) proteins were 30 therefore, examined for their ability to bind to Hsc70/ATPase. The affinity and binding kinetics of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) to Hsc70/ATPase was also compared to that of BAG-1 (beginning at residue 116 of WO 00/14106 PCT/US99/21053 33 SEQ ID NO:2) for Hsc70/ATPase, using a surface plasmon resonance technique (BIAcore) which has been described previously (Stuart et al., supra, (1998) which is incorporated herein by reference). 5 BAG-family proteins were produced in bacteria and purified to near homogeneity as shown in Figure 12A and described above in Example I. The purified BAG-1 (beginning at residue 116 of SEQ ID NO:2), -2 (SEQ ID NO:4), and -3 (SEQ ID NO:6) proteins were then immobilized 10 on biosensor chips and tested for their interactions with Hsc70 in the soluble phase. Kinetic measurements were performed using a BIAcore-II instrument with CM5 sensor chip and Amine Coupling Kit (Pharmacia Biosensor AB, Sweden). Briefly, for immobilization of proteins, the 15 sensor chip was equilibrated with HK buffer (10 mM Hepes (pH 7.4), 150 mM KCL) at 5pl/min, then activated by injecting 17 pl of 0.2M N-ethyl-N'-(3-diethylaminopropyl) carbodiimide and 0.05M N-hydroxysuccinimide (NHS/EDC) followed by 35 pl of the protein of interest, in 10 mM 20 acetate, pH 3.5-4.5. Excess NHS-ester on the surface was deactivated with 17 pl 1M ethanolamine-HCL (pH8.5). After immobilization, 5pl of regeneration buffer (50 mM phosphate (pH 6.8) and 4M GuHCl) was injected. For binding assays, Hsp70 (Sigma, H8778) was dissolved in HK buffer, and 25 injected at 10 yl/min across the prepared surface at various concentrations. The surface was regenerated after each injection with 5 pl of regeneration buffer. The rate constants Kass and Kdis, were generated with BIAevaluation softward 3.01 (Pharmacia Biosensor AB) . Addition of Hsc70 30 to chips containing BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4) or BAG-3 (SEQ ID NO:6) resulted in concentration-dependent binding, as reflected by an increase in the Response Units (RU) measured at the chip surface (shown in Figure 3B) . In contrast, Hsc70 35 failed to display interactions in BIAcore assays with a variety of control proteins as well as a mutant of BAG-1 WO 00/14106 PCT/US99/21053 34 lacking a C-terminal portion of the BAG domain which is required for Hsc70-binding (Figure 3B). Furthermore, flowing of various control proteins such as GST, BSA and Bcl-XL over the BAG-1 (beginning at residue 116 of SEQ ID 5 NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) chips resulted in negligible interaction. These results further demonstrate the specificity with which BAG-family proteins interact with and bind to Hsc70. The rates of Hsc70 binding to BAG-1 (beginning at 10 residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEQ ID NO:6) proteins were similar, following pseudo first-order kinetics with estimated association rate constants (Ka) of 2.1, 2.1 and 2.4 x 105 M- sec-1, respectively. After allowing binding of Hsc70 to 15 immobilized BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) to reach plateau levels, the chaperone was removed from the flow solution and the dissociation rate was monitored. BAG-1 (beginning at residue 116 at SEQ ID NO:2) and BAG-2 (SEQ ID 20 NO:4) exhibited similar dissociation rates, with relatively slow loss of Hsc70 from the chip surface, resulting in estimated dissociation rate constants (K.) of 3.0 and 5.0 x 10~ sec- , respectively (see Figure 3B) . In contrast, Hsc70 dissociated more rapidly from biosensor chips containing 25 BAG-3 (see Figure 3B) , yielding an estimated Kd of 1.7 x 10 sec-. From the kinetic data, the apparent affinities (K, = Kd/Ka) were calculated for binding of Hsc70 to BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEQ ID NO:6) and were estimated to equal 30 about KD= 1.4nM, KD=2.4nM, and KD=7.4nM, respectively. These results demonstrate that the interactions of BAG-family proteins with Hsc70 occur with apparent affinities sufficient for physiological relevance.
WO 00/14106 PCT/US99/21053 35 EXAMPLE III BAG-family proteins inhibit Hsp70/Hsc70-dependent protein folding This example demonstrates that BAG-2 (SEQ ID 5 NO:4) and BAG-3 (SEQ ID NO:6) proteins inhibit Hsp70/Hsc70 dependent refolding of denatured proteins similarly to a BAG-1 (beginning at residue 116 of SEQ ID NO:2) protein. The effects of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) protein on Hsp70/Hsc7O-dependent protein refolding 10 was determined using in vitro protein refolding assays similar to those described previously by Takayama et al., supra, 1998: Terada et al., J Cell Biol., 139:1089-1095, 1997, which are incorporated herein by reference. Briefly, luciferase (20pM) was denatured in 25 mM Hepes-KOH, pH 7.2, 15 50 mM potassium acetate, 5 mM DTT, 6M guanidine hydrochloride at ~25'C for 1 h. Denatured luciferase was diluted 1:40 into 25 mM Hepes-KOH, pH 7.2, 50 mM potassium acetate, 5 mM DTT. Hsc70 (1.8 pM), DnaJ (StressGen, Inc.) (0.9pM), and various purified recombinant proteins as 20 indicated were added to refolding buffer (30 mM Hepes-KOH, pH 7.6, 120 mM potassium acetate, 3mM magnesium acetate, 2 mM DTT, 2.5 mM ATP) with 0.2 volume of diluted denatured luciferase to a final concentration of 0.1 pM. Luciferase activity was measured after 1.5 hr incubation at 35 0 C. 25 The combination of Hsc70 and DnaJ resulted in ATP-dependent refolding of chemically denatured firefly luciferase, with function of over half the denatured enzyme restored in a 90 minute reaction, as monitored by a chemiluminescence assay. In contrast, neither Hsc70 nor 30 DnaJ alone were able to induce substantial refolding of denatured luciferase. Furthermore, little spontaneous WO 00/14106 PCT/US99/21053 36 restoration of luciferase activity was observed with control proteins, BSA, GST or Bcl-XL (see Figure 4A). Addition of recombinant purified BAG-1 (beginning 5 at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) to the above assays in amounts equimolar to Hsc70 (1.8 pM) resulted in striking inhibition of luciferase refolding. BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) displayed somewhat greater inhibitory 10 activity than BAG-1 (beginning at residue 116 of SEQ ID NO:2) as shown in Figure 4A. In contrast, the BAG-1 (AC) protein, which fails to bind Hsc70 as well as several other control proteins, had no effect on luciferase refolding. In an additional refolding assay, described 15 previously by Minami et al., J Biol. Chem. 271:19617-24, 1996), purified Hsc70 and human DnaJ homolog Hdj-1 (Hsp 40) were used with additional cofactors provided in reticulocyte lysates (5% v:v) to produce a system capable of refolding denatured luciferase. Briefly, additional 20 cofactors included, recombinant Luciferase (Promega: QuantiLum TM), that had been heat denatured at 42 0 C for 10 min, 1.8 jiM Hsc70 (Sigma; purified from bovine brain), 0.9 pM Hsp40, and various recombinant purified proteins. Luciferase activity was measured (Promega luciferase assay 25 kit) using a luminometer (EG&G Berthold, MicroLumat luminometer, Model #LB96P). All results were normalized relative to non-denatured luciferase that had been subjected to the same conditions. Control reactions lacking ATP, Hsc70, or Hsp40 resulted in negligible 30 luciferase refolding. Various amounts of purified BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6), relative to amounts of Hsc70 were used in the above-described protein refolding assay. Addition of 35 BAG-family proteins resulted in a concentration-dependent WO 00/14106 PCT/US99/21053 37 inhibition of Hsc70 chaperone activity. Furthermore, the BAG-2 (SEQ ID NO:4)and BAG-3 (SEQ ID NO:6) inhibition of Hsc70 chaperone activity was demonstrated to be as potent as that observed for BAG-1 (beginning at residue 116 of SEQ 5 ID NO:2). In contrast, the BAG-1 (AC) mutant as well as other control proteins did not suppress Hsc70-mediated refolding of denatured luciferase. These results indicate that BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) can inhibit Hsc70/Hsp70 dependent protein refolding activity to 10 the same extent as BAG-1 (beginning at residue 116 of SEQ ID NO:2). B. BAG competes with Hip for binding to Hsc70. It is known that BAG-1 competes with Hip for binding to Hsc70, with these proteins exerting opposite 15 effects on Hsc70-mediated protein refolding (Hohfeld, J., and Jentsch, S., Embo J., 16:6209-6216, 1997, which is incorporated herein by reference). In order to determine whether BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) also compete with Hip for binding to Hsc70, refolding assays 20 were performed as described above in the presence of Hip protein. Hip was purified as His 6 -protein. The fusion protein was induced from pET28-Hip (V. Prapapanich et al., Mol Cell Biol., 18:944-952, 1998, which is incorporated 25 herein by reference) with 0.1 mM IPTG at 25'C for 6h in BL21 cells. Cells from 1L of culture were resuspended into 50 ml of 50 mM Phosphate buffer (pH 6.8), 150 mM NaCl, and 1% (v/v) Tween-20 and then incubated with 0.5 mg/ml lysozyme at 25'C for 0.5h, followed by sonication. After 30 centrifugation at 27,500g for 10 min, the resulting supernatant was mixed with 15 ml nickel resin (Qiagen, Inc.) at 4 0 C for 3 h with 25 mM imidazol. The resin was then washed with 50 mM phosphate buffer (pH 6.8), 25 mM imidazol, 150 mM NaCl and 0.1% Tween-20 until the OD280nm WO 00/14106 PCT/US99/21053 38 reached a value of <0.01. His 6 -Hip protein was eluted with 250 mM imidazol in washing buffer (Qiagene, Inc.) and purified on Mono Q (HR10/10 Pharmacia) by FPLC using a linear gradient of 0.5M NaCl at pH 8.0, followed by 5 dialysis in chaperone assay buffer. In the refolding assay reactions, addition of purified Hip at equimolar concentrations relative to BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) (1.8 sM) completely negated 10 the inhibitory effects of the BAG-family proteins on refolding of denatured luciferase (see Figure 4C). These results demonstrate that the suppression of Hsc70 chaperone activity by BAG-family proteins is reversible, and that Hip antagonizes the effects of not only BAG-1 (beginning at 15 residue 116 of SEQ ID NO:2), but also of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6). In summary, these results demonstrate that BAG family proteins all contain a conserved BAG domain near their C-terminus that binds Hsc70/Hsp7O, and that human 20 BAG-family proteins can bind with high affinity to the ATPase domain of Hsc70 and inhibit its chaperone activity through a Hip-repressable mechanism. EXAMPLE IV EXPANDED NUCLEIC ACID AND AMINO ACID SEQUENCES 25 FOR HUMAN BAG-3. BAG-4 AND BAG-5 Following the procedures disclosed herein, the nucleic acid and amino acids sequences to human BAG-3, BAG-4 and BAG-5 were further expanded. The expanded sequences for BAG-3, BAG-4 and BAG-5 are shown in 30 Figures 15, 16 and 17, respectively, with their respective sequence identification numbers, "SEQ ID NO"s.

Claims (34)

1. A compound of the formula, RN_ 1X R 2 X2 R3 X3 R4 4 5 X5 R6 6 R7 X7 X8 9 X9 R10 X10R 11 X11 RC wherein, 5 RN is a group of about 1 to 552 independently selected amino acids; R 1 is a group of 3 independently selected amino acids; X 1 is an amino acid with a charged or uncharged 10 R group; R2 is a group of 7 independently selected amino acids; X2 is an amino acid with a charged R group; R 3 is a group of 5 independently selected amino 15 acids; X 3 is an amino acid with an apolar R group; R 4 is a group of 3 independently selected amino acids; X 4 is an amino acid with charged R group; 20 R 5 is a single independently selected amino acid; X 5 is an amino acid with apolar or uncharged R group; R 6 is a group of 15 independently selected amino acids; 25 X 6 is an amino acid with a charged or uncharged R group; R 7 is a group of 2 independently selected amino acids; X7 is an amino acid with a charged R group; 30 X is an amino acid with a charged R group; R 9 is a group of 2 independently selected amino acids; X 9 is an amino acid with an apolar R group; WO 00/14106 PCT/US99/21053 40 R 10 is a group of 3 independently selected amino acids; X 10 is an amino acid with an uncharged R group; R" is a group of 2 independently selected amino 5 acids; X" is an amino acid with an apolar R group; and Rc is a group of about 1 to 100 independently selected amino acids.
2. A substantially purified nucleic acid 10 molecule having a nucleotide sequence corresponding to or complementary to at least 20 nucleotides from a nucleotide sequence selected from the group consisting of (SEQ ID NO:1), (SEQ ID NO:3), (SEQ ID NO:5), (SEQ ID NO:7), (SEQ ID NO:9), (SEQ ID NO:19), (SEQ ID NO:21) and (SEQ ID NO:23). 15
3. The nucleic acid of claim 2 having a nucleotide sequence corresponding to or complementary to a nucleotide sequence that encodes a functionally active BAG family protein selected from the group consisting of (SEQ ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), (SEQ 20 ID NO:10), (SEQ ID NO:20), (SEQ ID NO:22) and (SEQ ID NO:24).
4. The nucleic acid of claim 3 selected from the group consisting of (SEQ ID NO:1), (SEQ ID NO:3), (SEQ ID NO:5), (SEQ ID NO:7), (SEQ ID NO:9), (SEQ ID NO:19), 25 (SEQ ID NO:21) and (SEQ ID NO:23).
5. The nucleic acid of claim 3 complementary to a nucleotide sequence that encodes a functionally active BAG protein selected from the group consisting of (SEQ ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), (SEQ ID 30 NO:10), (SEQ ID NO:20), (SEQ ID NO:22) and (SEQ ID NO:24).
6. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:3). WO 00/14106 PCTIUS99/21053 41
7. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:5).
8. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:7). 5
9. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:9).
10. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:19). 10
11. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:21).
12. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:23).
13. A substantially purified BAG family protein 15 encoded by the nucleic acid molecule of claim 1.
14. A substantially purified BAG family protein comprising of the amino acid sequence selected from the group consisting of (SEQ ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), (SEQ ID NO:10), (SEQ ID NO:20), (SEQ 20 ID NO:22) and (SEQ ID NO:24) or a fragment, a derivative or a mimetic thereof.
15. A substantially purified protein corresponding to the amino acid sequence of 157 to 204 of (SEQ ID NO:2). 25
16. A substantially purified protein corresponding to the amino acid sequence of 272 to 319 of (SEQ ID NO:2). WO 00/14106 PCT/US99/21053 42
17. A substantially purified protein corresponding to the amino acid sequence of 164 to 211 of (SEQ ID NO:4).
18. A substantially purified protein 5 corresponding to the amino acid sequence of 418 to 510 of (SEQ ID NO:20).
19. A substantially purified protein corresponding to the amino acid sequence of 378 to 457 of (SEQ ID NO:22). 10
20. A substantially purified protein corresponding to the amino acid sequence of 6 to 97 of (SEQ ID NO:24).
21. A substantially purified protein corresponding to the amino acid sequence of 180 to 257 of 15 (SEQ ID NO:24).
22. A substantially purified protein corresponding to the amino acid sequence of 272 to 349 of (SEQ ID NO:24).
23. A substantially purified protein 20 corresponding to the amino acid sequence of 362 to 444 of (SEQ ID NO:24).
24. A pharmaceutical composition comprising a nucleic acid molecule of claim 1 useful for modulating tumor cell proliferation, cell migration and metastasis, 25 and steroid hormone receptor function.
25. A method of modulating tumor cell proliferation, cell migration and metastasis, and steroid hormone receptor function by administering a nucleic acid molecule of claim 1. WO 00/14106 PCT/US99/21053 43
26. A pharmaceutical composition comprising a substantially purified BAG family protein comprising of the amino acid sequence selected from the group consisting of (SEQ ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), 5 (SEQ ID NO:10), (SEQ ID NO:20), (SEQ ID NO:22) and (SEQ ID NO:24), or a fragment, a derivative or a mimetic thereof, useful for modulating tumor cell proliferation, cell migration and metastasis, and steroid hormone receptor function. 10
27. A method of modulating tumor cell proliferation by administering a pharmaceutical composition of claim 26.
28. A method of modulating cell migration and metastasis by administering a pharmaceutical composition of 15 claim 26.
29. A method of modulating steroid hormone receptor function by administering a pharmaceutical composition of claim 26.
30. A substantially purified antibody that 20 specifically binds to a BAG family protein of claim 14.
31. The antibody of claim 30, wherein said antibody is a monoclonal antibody. WO 00/14106 PCT/US99/21053 44
32. A method for detecting the presence of a BAG family protein in a sample, comprising the steps of: a. obtaining the sample; b. adding to said an antibody of claim 11 5 under suitable conditions for the binding of said antibody with the BAG family protein; and c. detecting said bound BAG family protein. 10
33. A method for detecting the presence of a first nucleic acid molecule that encodes a BAG family protein in a sample, comprising the steps of: a. obtaining the sample; b. adding to said sample a second nucleic 15 acid molecule capable of hybridizing with said first nucleic acid molecule under suitable conditions for the binding of said second nucleic acid molecule with said first nucleic acid 20 molecule; and C. detecting said hybridized first and second nucleic acid molecules.
34. A method of determining the risk of metastatic spread of cancer or prognosis of cancer patients 25 by determining the level of expression of a BAG-family protein.
AU60383/99A 1998-09-09 1999-09-09 Novel bag proteins and nucleic acid molecules encoding them Ceased AU774355B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15048998A 1998-09-09 1998-09-09
US09/150489 1998-09-09
PCT/US1999/021053 WO2000014106A1 (en) 1998-09-09 1999-09-09 Novel bag proteins and nucleic acid molecules encoding them

Publications (2)

Publication Number Publication Date
AU6038399A true AU6038399A (en) 2000-03-27
AU774355B2 AU774355B2 (en) 2004-06-24

Family

ID=22534770

Family Applications (1)

Application Number Title Priority Date Filing Date
AU60383/99A Ceased AU774355B2 (en) 1998-09-09 1999-09-09 Novel bag proteins and nucleic acid molecules encoding them

Country Status (5)

Country Link
EP (1) EP1109824A4 (en)
JP (1) JP2002524068A (en)
AU (1) AU774355B2 (en)
CA (1) CA2342027A1 (en)
WO (1) WO2000014106A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951544B1 (en) 1999-07-09 2011-05-31 Sanford-Burnham Medical Research Institute Method for determining the prognosis of cancer patients by measuring levels of bag expression
EP1323733A1 (en) * 2001-12-28 2003-07-02 Arturo Leone BAG3 nucleotide and protein sequences to be used in research, diagnostics and therapy for cell death-involving diseases
US20030175958A1 (en) * 2002-03-15 2003-09-18 Reed John C. Methods for using bag expression as a cell differentiation agent and marker
US7943740B2 (en) 2003-12-05 2011-05-17 Multimmune Gmbh Compositions and methods for the treatment and diagnosis of neoplastic and infectious diseases
ITMI20130403A1 (en) * 2013-03-18 2014-09-19 Biouniversa Srl ANTI-BAG3 ANTIBODIES FOR THERAPEUTIC USE
KR102241558B1 (en) * 2019-02-12 2021-04-20 주식회사 메드팩토 An antibody or antigen-binding fragment thereof specifically binding to BAG2 polypeptide or fragment thereof
KR102172541B1 (en) * 2019-02-12 2020-11-02 주식회사 메드팩토 A Composition comprising antibody specifically binding to BAG2 for the diagnosis of cancer and method using the same
CN109913478A (en) * 2019-04-09 2019-06-21 贵州大学 A kind of sorghum E3 ubiquitin ligase SbBAG4 gene and its recombinant vector and expression

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539094A (en) * 1993-11-12 1996-07-23 La Jolla Cancer Research Foundation DNA encoding Bcl-2-associated proteins
US5652223A (en) * 1994-03-14 1997-07-29 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services DNA encoding CAI resistance proteins and uses thereof

Also Published As

Publication number Publication date
EP1109824A4 (en) 2002-06-05
WO2000014106A9 (en) 2000-06-22
AU774355B2 (en) 2004-06-24
JP2002524068A (en) 2002-08-06
WO2000014106A1 (en) 2000-03-16
EP1109824A1 (en) 2001-06-27
CA2342027A1 (en) 2000-03-16

Similar Documents

Publication Publication Date Title
US7982023B2 (en) Bag proteins and nucleic acid molecules encoding them
US5582995A (en) Methods of screening for compounds which inhibit the direct binding of Ras to Raf
US7745393B2 (en) Minimalist bZIP proteins and uses thereof
JP2001517439A (en) 53BP2 complex
AU6038399A (en) Novel bag proteins and nucleic acid molecules encoding them
US6475775B1 (en) PARG, a GTPase activating protein which interacts with PTPL1
AU2003296421A1 (en) Human pellino polypeptides
US20090087445A1 (en) Method for the Redox Potential-Dependent Detection of Target Molecules by Interacting Polypeptides
JP2002518008A (en) Angiostatin binding protein
US6307035B1 (en) BRCA1 associated polynucleotide (BAP-1) and uses therefor
CA2525255A1 (en) Minimalist bzip proteins and uses thereof
AU2002228077B2 (en) Histidine phosphatase interacting protein with 240KD
US7432348B2 (en) 180 kD protein that interacts with protein histidine phosphatase 1
US20040072163A1 (en) Nucleotide sequences and protein(s) encoded by such nucleotides for modulation of apoptosis
JPH10155491A (en) New protein and dna coding for the same
US20050070002A1 (en) Histidine phosphatase interacting protein with 120kd
AU2002228077A1 (en) Histidine phosphatase interacting protein with 240KD
AU2002252983A1 (en) Histidine phosphatase interacting protein of 120KD

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)