AU3510499A - Biologically active substance-secreting hybrid gel - Google Patents

Biologically active substance-secreting hybrid gel Download PDF

Info

Publication number
AU3510499A
AU3510499A AU35104/99A AU3510499A AU3510499A AU 3510499 A AU3510499 A AU 3510499A AU 35104/99 A AU35104/99 A AU 35104/99A AU 3510499 A AU3510499 A AU 3510499A AU 3510499 A AU3510499 A AU 3510499A
Authority
AU
Australia
Prior art keywords
gel
cells
active substance
biologically active
producing cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU35104/99A
Inventor
R Andrew Cuthbertson
Susumu Yoshida
Katsutoshi Yoshizato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU17665/95A external-priority patent/AU1766595A/en
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to AU35104/99A priority Critical patent/AU3510499A/en
Publication of AU3510499A publication Critical patent/AU3510499A/en
Priority to AU10027/02A priority patent/AU779272B2/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

S.
S
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Applicants: RESEARCH DEVELOPMENT CORPORATION OF JAPAN; SUSUMU YOSHIDA AND R ANDREW CUTHBERTSON Invention Title: Biologically Active Substance-Secreting Hybrid Gel The following statement is a full description of this invention, including the best method of performing it known to me/us: BIOLOGICALLY ACTIVE SUBSTANCE-SECRETING HYBRID
GEL
Field of the Invention The present invention relates to biologically active substance-secreting hybrid gel. More particularly, the present invention relates to a new hybrid gel which secrets biolgically active substance, and is useful as external-use prescriptions such as artificial skin used in the treatment of various difficult-to-cure diseases requiring long-term and continuous medication of physiological active substances in order to maintain biological functions.
oo Prior Art Three methods are available to cure diseases which are caused by the loss or decrease in the functions of human Scells for any reason. Namely, the lost or decreased functions are compensated for by 1) drug medication, 2) transplantation of organs, tissues or cells, or 3) gene therapy Insulin dependent diabetes mellitus, for example, are caused by the destruction of the 8 -cells which produce insulin having the function of adjusting the blood sugar level in the negative direction and which occur in the islets of Langerhans of the pancreas. Patients of the insulin dependent diabetes mellitus have a high blood sugar level, and as a result, the concentration of sugar in their urine increases. When the blood sugar level remains high, the functions of various human cells are damaged, causing serious complications.
It is thus necessary to externally dispense insulin and control the blood sugar level in order to cure the insulin dependent diabetes mellitus patients. Insulin dependent diabetics must have insulin dosed several times every day for life. This is a serious physical and mental agony to the patient, and in addition, self-medication always involve risk of life because of possible mis-dispensing.
One of alternative methods to self-medication of insulin is transplantation of the pancreas or the islets of Langerhans Kubota and Y. Idezuki, Nippon Rinsho: in Japanese, 48:1052, 1990). However, this treatment has a number of problems, such as, for example, few donors, difficulty of controlling immunorejection caused by the transplanted pancreas or the tissues, complicated surgical operations for transplantation requiring techniques of a high level, and hazards involved in the operation.
Gene therapy is one of the most exciting medical technique to solve the above problems, and various gene therapeis are clinically tested for treating pacients of serious deseases in the United States and other countries in the 1990s M. Summers, Biotechnology 12:42, 1994). A method of treating diabetes based on the above technique has been *o proposed F. Selden et al, The New England Journal of Medicine, 317(17): 1067, 1987). In this particular method, insulin gene is introduced into culture cells, and the cells are transplanted to the body of the patient in order to assure continuous secretion of insulin produced by the introduced gene. This method has a number of problems such as, for example, difficulty of controlling secretion of insulin from the transplanted insulin producing cells and inability of removing the transplanted cells later from the body. It is generally known that the gene therapy is a promising and advanced medical technique for not only insulin dependent diabetes mellitus and genetic diseases such as serious immune deficiency diseases but also cancer, AIDS, and other hard-to-cure diseases. For this reason, many approaches have been proposed and the gene therapy is actually conducted in practical clinical cases. Most of these gene therapy use retrovirus-derived vectors to introduce genes to the cells utilizing cell infection of the virus.
This technique to use retrovirus-derived vectors has the defect that the effectiveness of gene introduction depends on the affinity of the virus with cells, and there is a possibility that the deactivated virus vectors transform into wild retroviruses. In addition, conventional gene therapy generally have a problem of difficulty of controlling the introduced genes externally.
Summary of the Invention The present invention intends to provide a new art of transplanting cells containing a gene which code biologically active substance into the skin and controlling the exprssion of the gene externally. More specifically, the present invention intends to solve the problems of the prior art by transplanting biologically active substance-producing cells to the skin of a human body as hybrid gel (cellincorporating gel).
In a first aspect of the present invention there is provided a biologically active substance-secreting hybrid gel, which consists of biologically active substance-producing cells and biopolymeric gel.
In the case of said hybrid gel, a preferable embodiment is that the biologically active substance-producing cells are enclosed in or laminated on the biopolymeric gel, or laminated on the biopolymeric gel enclosing the biologically active substance-producing cells.
In a second aspect of the present invention there is provided a biologically active substance-secreting hybrid gel, which consists of biologically active substance-producing cells, animal skin cells and biopolymeric gel.
3 In the case of said hybrid gel, a preferable embodiment is that the animal skin cells are laminated on the biopolymeric gel enclosing the biologically active substanceproducing cells; the biologically active substance-produing cells are lainated on the biopolmeric gel enclosing the animal skin cells; the animal skin cells and the biologically active substance-producing cells are laminated on the biopolymeric gel; or the animal skin cells or the biologically active substance-producing cells are laminated on the S biopolymeric gel enclosing the animal skin cells and the biologically active substance-producing cells.
Furthermore, in the case of the biologically active substance-producing cells being enclosed in the biopolymeric S gel, said cells may be enclosed together with meshy material or porous membrane.
In the present invention, moreover, the biologically active ubstance-producing clls may be skin cells skin fibroblasts or skin eoidermal clls) which contains an expression vector recombnant with a DNA sequence encoding the biologically active substance such as insulin. And, said expresson vector may be plasmid vector pBMG-neo-ins possessing insulin cDNA and neomycin resistance gene, or plasmid vector pRIS-proins-Ifur-IIfur-BlOD which possesses mutant insulin gene expressing stable insulin by the action of furin.
According to the present invention, it may be possible to develop a gene therapy by skin transplantation allowing stable drug medication for a long time; alleviating pains of the patients; and allowing fine adjustment of the dosage and control of gene externally without using retrovirus-derived vectors that tend to invoke the risk of mutation to wild types as in the conventional technique, is provided.
Detailed Description of the Invention The cells of being enclosed in or laminated on the bioolymeric gel of the present invention produce a biologically active substance necessary for or deficient in the body, and the substance is continually secreted into the body. The production of biologically active substance is increased when meshy material or porous membrace, etc. are enclosed in the gel together with the biologically active substance producing cells. Thus the hybrid gel of the present invention can be effectively used as, for example, an externaluse prescription such as artificial skin. The gene expressing biologically active substance is introduced to the cells by, for example, plasmid vector, and thus, unlike conventional gene therapy, no risk of conversion into wild retroviruses owing to the retrovirus-derived vectors is involved.
In addition, the introduced gene can be easily controlled externally because the gene-containing cells are transplanted to the skin.
The following functions are available in concrete: 1) After transplantation, the biologically active subus- 6*9..0 tance is dispensed for a long time stably without the knowing of the patient. This dramatically reduces the physical and mental agony of the patient subject to repeated medication in the conventional treatment.
2) A very simple surgery is used to transplant or remove the hybrid gel of the present invention from the skin. For this reason, the quantity of artificial skin to be transplanted can be adjusted at any time freely while watching the process condition of the treatment. It is thus easy to determine optimum conditions for treatment.
3) The rate of substance secretion from the cells in or on the gel can be controlled by means of inducible promotrs to drive a DNA sequence encoding a biologically active substance and various induction stimuli (hormones, heavy metals, temperature, etc.) applied to the transplanted artificial skin. This allows fine adjustment of the substance secretion rate.
4) The transplanted cells are enclosed in or on the gel and thus are hardly affected by immunorejection of the patient. It is thus possible to decrease the quantity of immunosuppressants generally used in the transplantation of tissues in the conventional technique. The risk of side S effects owing to the use of immunosuppressants is thus greatly reduced. Of course there is no problem of immunorejection if the cells of the patient himself are used in the gene therapy because such is a self-transplantation.
Simple operation without the need of the patient's hospitalization is safe and free from the risk incurred in conventional treatment. Because this is the transplantation to the skin, the condition of transplantation is visible S externally at all times. The transplanted artificial skin can be removed when necessary.
Various biologically active substance-producing cells can be used in the present invention for incorporating expression vector with gene therefor in the cells. For example, insulin-producing cells can be prepared by transfecting plasmid vector pBMG-neo-ins possessing cDNA of insulin and neomycin resistance gene (selection marker) to animal cells using a known method. Another method is to transfect plasmid vector pRIS-proins-Ifur-IIfur-B1OD into animal cells.
This plasmid vector contains mutant insulin gene that convert proinsulin expressed from the gene into insulin by the action of furin and by the substitution of the 10th amino acid in the insulin chain B.
The gel to accommodate the biologically active substanceproducing cells may be prepared from, for example, collagen, 6 fibrin, agalose, etc. by using known methods. For example, the hybrid gel containing cells with insulin genes therein may be prepared and used as artificial skin for curing diabetics in the following manner: Pieces of skin of experimental animal are collected.
Epidermal cells and fibroblasts, two major constituent cells of skin, are separated from skin and cultured.
Expression vector containing insulin gene is transdced into these cells to derive insulin-secreting cell lines.
Hybrid type artificial skin with the insulin-secreting function is constructed from these cell lines using collagen gels, etc.
The insulin-secreting hybrid type artificial skin is transplanted.
To be more specific, the hybrid gel secreting biologically active substance of the present invention can be manufactured in accordance with the method of Asaga et al Asaga et al, Experimental Cell Research, 193: 167, 1991) as follows: Quadruple concentrated medium of cell culture, serum, purified water, and, for example, collagen solution) are mixed in the ratio of 2.5:1:2.5:4 according to the required quantity while cooling the mixture with ice. The aqueous solution of IN sodium hydroxide is drip-mixed in the mixture to adjust to pH 7.4. The mixture is separately injected into hydrophobic plastic laboratory dishes of 35 mm in diameter, 2 ml in each dish. The dishes are immediately transferred to a 37°C thermostat. The collagen solidifies in several minutes to produce gel. Biologically active substance-producing cells are mixed into the above mixture just before collagen solidifies in order to enclose the cells in the gel.
To allow meshy material or porous membrane to coexist in the gel, one needs only to mix these in the above solution together with the biologically active substance-producing cells.
Commercially available culture solutions, serum and collagen can be used in the present invention.
It is effective to give an appropriate strength to the collagen gels to facilitate transplantation of the product to the skin. An appropriate strength can be given to the r gel by, for example, mixing an appropriate number of skinderived fibroblasts according to the method of Bell et al Bell et al, Proceedings of the National Academy of Sciences, 76(3): 1274, 1979). An appropriate strength can be given to the gel as a result of contraction of the gel owing to the fibroblasts. Skin-derived fibroblasts can be obtained, for example, by culturing a small portion of skin collected from the patient according to the primary explant technique Freshrey, Culture of Animal Cells, Alan R.
Liss, Inc., New York, 1987).
"It is also effective to make the gel surface active to ensure good attachment to the skin by overlaying by culture skin-derived epidermal cells on the gel before they are transplanted to the skin.
Skin-derived epidermal cells to be overlaid on the gel may be obtained by culturing epidermal cells obtained from the skin of the patient himself in the same way as described for the fibroblasts using the method of, for example, Green et al Green et al, Proceedings of the National Academy of Sciences 76: 5665, 1979).
It goes without saying that the present invention is effective also when the gel is transplanted subcutaneously without overlaying epidermal cells.
Practically, many forms are available.
Examples Examples are shown below to further describe the present invention in detail. These examples should not be construed as limiting.
Example 1 Hybrid gel (or simply Gel hereafter) of the present invention were prepared to evaluate the method of medication and their application to the treatment of diabetics by conducting in-vitro experiment and in-vivo experiment with model animals of diabetic as described below.
In-vitro Experiment Gel containing proinsulin-producing cells were cultured, S and proinsulins secreted into the culture medium were measured.
1) Materials Three types of skin-derived cell lines were used.
Mouse embryo fibroblasts (NIH3T3) Rat skin fibroblasts containing insulin gene (RSFins) Rat skin epidermal cells containing insulin gene (RSKins) RSFins and RSKins were prepared by transduction of insulin gene I. Bell et al, Nature, 284 ;1980) into fibroblasts (RSF) and epidermal cells (RFK), respectively, which were obtained from the primary culture of rat skin.
Insulin gene was transfected into the fibroblasts and epidermal cells using plasmid vector pBMG-neo-ins which possesses human insulin cDNA Kawakami et al, Diabetes 41: 956, 1992) according to the method of Chen and Okayama (C.
Chen and H. Okayama, Molecular and Cellular Biology 7(8): 2745, 1987). The vector-containing cells were then selectively increased in culture media of G418 of 400 u g/ml j concentration.
These cells had no processing enzymes to insulin and thus secreted proinsulin, precursor of insulin. It should be noted that proinsulin also have the functions of insulin Davis et al., Journal of Clinical Endocrinogy and Metabolism, 75 1282-1288, 1992).
2) Culture medium The culture medium for RSFins consisted of Dulbecco's modified Eagle's medium (Gibco, Grand Island, NY), to which fetal bovine serum (HyClone, Logan, Utah) was added to the ratio of 10% (medium A).
The culture medium for RSKins consisted of a 7:3 mixture of Dulbecco's modified Eagle's medium and MCDB152 medium (Kyokuto, Tokyo), to which hydrocortisone (0.4 u g/ml), S insulin (5 g g/ml), transferrin (5 x g/ml), triiodothyronine (2 nM), cholera toxin (0.1 nM), adenine (100 u M) and fetal bovine serum were added (medium B).
*The cells were enclosed in and/or laminated on the gel.
The resultant hybrid gel were cultured in medium A.
3) Procedures x 105 cells of RSFins each were enclosed in the gel and laminated on another gel to prepare Gels A and B, respectively. Gels C and D were further prepared by placing 5 x 105 cells of RSKins each in and on the gels, respectively.
NIH3T3 cells of the same number were enclosed in Gels C and D to give contractive function. The structure of these Gels is summarized in Table 1. These cells were cultured at 37"C. One day after the preparation, 2 ml culture medium was added to continue culture. Thereafter, the culture medium was replaced with new one every other day. The retrieved culture medium was frozen for storage, melted when necessary, and measured for proinsulin concentration in the culture medium. Proinsulin concentration was measured as a value of immunoreactive insulin (IRI) using the EIA kit (Sanko Junyaku, Tokyo).
Gel Gel A Gel B Gel C Gel D Table 1 Cells in the gel RSFins (N=5X10 5 None RSKins (N=5X10 5 NIH3T3 (N=5X10 5 NIH3T3 (N=5x10 5 Cells on the gel None RSFins (N=5 X10 5 None RSKins (N=5 x a 4) Results The results of this experiment are shown in Table 2.
Both of the cell lines enclosed in and laminated on the gel secreted a stable quantity of proinsulins into the culture medium for 25 culture days. It is thus possible to deliver proinsulins into the body when these Gels are transplanted to the skin.
11 Table 2 Secretion of proinsulins from Gels to culture medium (9 U/ml/day) SDays of culture Gel I II I I S4 days I 8 days 1 14 days I 24 days I I I I i 1 Gel A 252 248 340 1399 I I I I 1 Gel B 239 255 1350 325 I I Gel C 201 1215 1340 363 .I Gel D 210 212 340 1328 In-vivo Experiment 1 Proinsulin producing cell-enclosed hybrid gels were transplanted to model diabetic animals to evaluate the curing effects by measuring blood sugar level.
1) Experiment animals 200 mg/kg streptozotocin (Sigma, St.Louis, Mo) was intraperitoneally administered to the Balb/c nude mice old, male) at three times in four days to induce the diabetic condition. The mice were used for experiments when they were 7 weeks old.
2) Materials Three types of rat skin-derived cell lines were used.
RSF
RSFins RSKins 1; 3) Method for preparing Gels x 105 cells of RSFins were enclosed in collagen gel and RSKins cells of the same number were laminated on the surface of said gel to prerare Gel E. 5 x 105 cells of RSF were enclosed in collagen gel and RSKins cells of the same number were laminated on the surface of said gel to prerare Gel F. The structure of these Gels is summarized in Table 3. These cells were cultured for six days at 37°C and then r used for transplantation. Gels E and F produced proinsulins 484 and 404 U IU/day, respectively.
Table 3 Gel Cells in the Gel Cells on the gel Gel E RSFins (N=5x10 5 RSKins (N=5 10 5 Gel F RSF (N=5x10 5 RSKins (N=5X10 5 3) Procedures The skin of two of the above model diabetic animals was cut away in the area of approximately 25 and 200 mm square, respectively, and Gels E and F, cultured for six days after preparation, were cut and transplanted for the full naked area (cut Gel weight was 24 and 191 mg by wet weight, respectively). After transplantation, about 20 1 blood was collected from the tail of the animals (ID Nos. 3 and 4) every other day to measure the blood sugar level. Two nontransplanted diabetic animals (ID Nos. 1 and 2) were used 13 t to 0 @foe 00*0 0@@ ON 000 0 S
S.
S
S
for control. The blood sugar level was measured using glucose CII test (Wako Pure Chemical Industry, Osaka).
4) Results The results of this experiment are shown in Table 4. The control animals show a continuous rise in the blood sugar level while such a rise in the blood sugar level is suppressed and a tendency of decreasing blood sugar level is indicated in the Gel-transplanted animals.
Table 4 Effect of Gel transplantation to diabetic mouse I Blood sugar level (mg/dl) I I I IBefore I After dosing STZ Idosing STZI I 12 hours 110th day after 15th day I Experiment IID No.lbefore Idosing STZ (1 lafter gel I group I Idosing STZlday before gel Itrans- I I I I Itransplantation) plantationl I I I I I I IControl I 1 I 108 380 I 557 group I I I I I SI 2 1 113 415 I 511 I I I I I IGel trans- I 3 I 90 489 I 437 I Iplanted I I I I Igroup I 4 I 88 I 392 1 331 I I I I I Note: STZ Streptozotocin In-vivo Experiment 2 Proinsulin producing cell-enclosed hybrid gels were transplanted to model diabetic animals to evaluate the _1 t curing effects by measuring blood sugar lebel and body weight of the animals.
1) Experimental animals 200 mg/kg of streptozotocin (Sigma) was intraperitoneally administered to the Bulb/c nude mice (7-weeks old, male) at each two days to induce the diabetic condition. The transplantation of hybrid gel was conducted after two days of the administration of streptozotocin.
C
2) Materials a. e Three types of rat skin-derived cell lines were used.
RSF
RSFins
RSK
3) Method for preparing Gels 106 cells of RSFins were enclosed in collagen gel and a RSK cells of the same number were laminated on the surface of said gel to prepare Gel M. 106 cells of RSK were enclosed in collagen gel and RSFins cells of the same number were laminated on said gel to prepare Gel N. The structure of these Gels is summarized in Table 5. These cells were cultured for 7 days at 37'C and then used for transplantation. Gels M and N produced proinslin 300.8 and IU/hour, respectively.
Table Gel Cells in the gel Cells on the gel Gel H RSFins RSK Gel N RSF RSK oo.
oe..
4) Procedures The skin at right side abdomen of three animals was cut away in the form of a circle of 8-10mm diameter, and Gel M, cultured for 7 days after preparation was transplanted for the naked area. After tranplantation, about 5/ 1 blood was collected from the tail of the animal every other day to measure the blood sugar level. The body weight of the animals were also measured evry other day. Remaining three animals to which Gel N was transplanted in a same manner were used for control. The blood sugar level was measured using Gultest-E (Sanwa Chemical Institute, Nagoya, Japan).
Results The results of this experiment were shown in Table 6.
The Gel N-transplanted animals show a continuous rise in the blood sugar level while such a rise in level is suppressd in the Gel M-transplanted group. The Gel M group showed an inhibitory effect on decrease of body weight as shown in the Gel N group in a course of experiment.
I (I
V
V
V. V V V S. V V V *V* V
V
to diabetic mouse Table 6 Effects of Gel transpaintaion Body Weight upper: g) and Blood Sugar Level lower: mg/dl) Days before/afterI transplantation -3 -1 3 5 7 9 11 13 15 17 19 24.7 23.3 18.2 17.9 14..8 17.9 17.7 17.0 15.9 15.7 15.7 92 251 258 315 3914 >500 >500 >500 >500 3814 >500 Gel N-Group 21.0 20.2 16.9 17.2 14.3 17.0 16.6 16.6 15.8 16.8 16.9 (control) 116 224 193 337 320 453 340 >500 >500 14914 423 22.1 20.41 15.4 14.8 12.8 14.6 13.5 13.5 13.2 12.1 NT 97 268 222 2714 >500 >500 330 >500 >500 >500 NT Ave. of B.N. 22.6 21.3 16.8 16.6 14.0 16.5 15.9 15.7 15.0 14.9 16.3 Ave. of B.S.L 102 248 2214 309 >1405 >14814 >390 >500 >500 >459 >462 22.2 20.8 17.14 17.5 17.1 17.5 18.1 18.2 18.8 17.6 18.4 140 217 109 290 471 >500 389 372 >500 388 >500 Gel M-Group 22.3 21.8 17.7 17.1 18.5 18.4 19.3 19.9 20.6 20.6 20.6 97 206 172 295 415 4142 345 403 >500 1413 1401 20.7 20.2 18.6 18.5 16.8 16.5 17.5 18.1 18.6 19.0 18.4 127 296 137 197 335 423 314 369 443 >500 443 Ave. of B.N. 21.7 20.9 17.9 17.7 17.5 17.5 18.3 18.7 19.3 19.1 19.1 Ave. of B.S.L 121 240 139 261 407 >455 349 381 >1481 >14314 >1448 Note) TN indicates non-testable cases because of the death of subject.
Example 2 Another form of hybrid gel of the present invention was prepared and the effects were evaluated using in-vitro experiment and in-vivo experiment on diabetic-model animals as described below.
In-vitro Experiment 1 This experment was performed by culturing the hybrid gel containing insulin-producing cells, to which mutant insulin gene encoding proinsulin susceptible to furin was introduced, and measured levels of IRI secreted into the culture *5* medium.
1) Materials Two types of skin-derived cell lines were used.
S Rat skin fibroblasts with mutant insulin gene being convertible with furin (RSFinsfur).
RSK
RSFinsfur were prepared by introducing mutant insulin gene J. Groskreutz et al, The Journal of Biological Chemistry, 269 6241, 1994), capable of processing by furin (insulins occur when the proinsulin chains -are cleaved at two portions), to the fibroblasts (RSF) obtained from rat skin by primary culture. The gene was transducted into RSF using plasmid expressiom vectors pRIS-proins-Ifur-IIfur-B1OD which contained the above-mentioned mutant insulin gene, according to the same method described in Example 1. The vector-transducted cells were then selectively increased in culture medium containing G418 of 600 A g/ml concentration.
Thirty-two clones were isolated from these cells and the clone of the highest IRI value were selected. This clone (RSFinsfur) secreted 24.5 U IU/hour IRI per 106 cells in the culture medium.
These cells simultaneously expressed processing enzyme,
S
furin for conversion of insulin, and thus proinsulin, pre- S cursor of insulin, was converted into insulin depending on the furin activity of the cells.
The RSFinsfur cells were immunohistologically studied ft using anti-furin monoclonal antibody (Genentech, South San Francisco,CA) and anti-insulin rabbit serum (Austral Biological, San Ramon, CA). The results are shown in Table 7. It 9C*.
was confirmed immunohistologically that these cells produce insulins and furin.
Table 7 Type of Antibody Result of staining Anti-furin monoclonal antibody Positive Anti-insulin rabbit serum Positive 2) Culture medium Culture media A and B used in Example 1 were used for RSFinsfur and RSK, respectively. Culture medium.A was used after the cells were enclosed in and lanimated on the gel.
3) Procedures Gel G was prepared by enclosing 3 x 10 6 cells of RSFinsfur in the gel which was then laminated RSK cells of the same number. The structure of Gel G is summarized in Table 8. Gel G was cultured at 37°C in a 6 ml culture medium.
The culture medium was replaced with new one every other day. The Gel on the 8th day of culture was rinsed with culture medium three times, and the culture medium was replaced with new one. The Gel was further cultured for 8 hours. The IRI value of the culture medium was measured with the insulin EIA.
*r Table 8 Gel Cells in the gel Cells on the gel Gel G RSFinsfur (N=3X10') RSK (N=3X10') 4) Results The results of this experiment confirmed that Gel G secreted 25.2 9 IU IRI in eight hours. The Gel G secretes stable insulin for many hours, and thus, insulin can be delivered into the body when the Gel is transplanted to the skin.
In-vitro Experiment 2 This experiment was performed to examine a method to increase secretion of insulin from the hybrid gel containing insulin-producing cells, to which mutant insulin gene encoding proinsulin susceptible to furin was introduced.
1) Materials The same cells as used in the above in-vitro experiment were used.
2) Culture medium The same culture media as used in the above in-vitro experiment were used in the same manner.
3) Procedures Gel H was prepared by enclosing 10 6 cells of RSFinsfur in the gel, which was then laminated with RSK cells of the same number. Gels I and J were prepared by introducing polyglycolic acid (PGA) meshes (Davis Geck, Manati, PR) cut to a circular form of 15 cm and 25 cm in diameter, respectively, into the gels simultaneously with the enclosure of RSFinsfur cells of the same number. The gel was then laminated with RSK. The structure of these Gels is shown in Table 9.
il i Table 9 Gel Cells in the gel Material in the gel Cells on the gel Gel H RSFinsfur None RSK Gel I RSFinsfur PGA mesh 15mm in dia. RSK Gel J RSFinsfur PGA mesh 25mm in dia. RSK These Gels were cultured at 37°C in a 2 ml culture medium, respectively. Culture medium was replaced with new one every or every other day. The Gels were rinsed three times on the 8th day of culture with a culture medium, and the culture medium was replaced with new one. The Gels were further cultured for 8 hours in the new medium. A small quantity (50 L 1) of culture medium was sampled during the period to measure the IRI value in the culture medium with insulin EIA.
4) Results The results of this experiment are shown in Table The Gels I and J containing both meshes and cells and further laminated with RSK cells secreted a significantly greater quantity of insulin than Gel H which contained only cells in and on the gel. It is thus confirmed that the presence of mesh in the gel is effective for increasing the secretion of insulin from the cells.
Sec:
F
I-
I-
I-
Table retion of insulin from Gels to culture medium S Cumulative IRI value (uIU/gel) I 1 hour 2 hours 4 hours 8 hours I I I I I Gel H 0.8 I 2.4 I 4.1 I II i I I 1.6 I 3.3 3.5 I 6.7 I I I I I I 1.6 I 2.5 I 3.5 5.0 I I I I I I I 0.8 I 0.8 4.1 I 4.1 I I I I I Gel I I 8.4 I 8.4 I 21.9 I 37.1 I I I t I 1 Gel J I 9.3 I 15.4 I 30.3 I 47.6 I 1I f a a. a *ee.
a
I
In-vivo Experiment Insulin producing cell-enclosed gel was transplanted to model diabetic animals to evaluate effects of the hybrid gel transplantation by measuring the weight and blood sugar level of the animals.
1) Experiment animals 200 mg/kg of streptozotocin was intraperitoneally administered to the Balb/c nude mice (7-week old, male) at twice in two days to induce the high blood sugar condition. The experiment was started after confirming that the mice showed a high blood sugar levels.
2) Materials Three types of rat skin-derived cell lines were used.
RSF
RSFinsfur
RSK
3) Method for preparing Gels (artificial skin) RSFinsfur cells of 3 x 10 6 were enclosed in collagen gel and RSK cells of the same number were laminated on the surface of said gel to prepare Gel K. 3 x 10 6 cells of RSF were enclosed in collagen gel and RSK cells of the same number were laminated on the surface of said gel to prepare Gel L. The structure of these Gels is summarized in Table i Table 11 S. *r S
S
Gel Cells in the gel Cells on the gel Gel K RSFinsfur (N=3X10 6 RSK (N=3X10') Gel L RSF (N=3x10') RSK (N=3x10') 4) Procedures The skin at the back of the model diabetic animals was cut away in the form of a circle of approximately 11 mm in diameter, and Gel K, cultured for 8 days after preparation and contracted to approximately 10 mm in diameter, was transplanted to the naked area on the animals. Gel L with cells not transduced with gene was transplanted in the same manner for control. After transplantation, the weight of the animals was measured and approximately 5 1 blood was sampled from the tail every other day to measure blood sugar level using Gultest-E.
Results The results of this experiment are shown in Table 12.
The control animals (Gel L transplanted group) show a decrease in the weight and increase in the blood sugar level while three was a tendency that increase in the weight and decrease in the blood sugar level were observed for Gel K (containing mutant insulin gene-transduced cells) transplanted group. This confirms improvements in the diabetic symptoms.
a. .fl.
a Table 12 transplantatin to diabetic mouse Effects of Gel SI I I I I IDays after I 0 I 2 1 4 I 6 1 7 1 8 I transplantation I I I I I I Treated group 1 19.6 1 18.2 I 18.4 I 19.7 I 19.6 I 19.6 S(Gel K group) 1 181 1 119 I 126 I 230 1 335 1 288 I I I I I I I Control I 19.8 17.5 I 18.0 118.0 1 18.1 I 17.8 Sgroup I 152 I 104 I 112 1 236 I 231 I 278 I (Gel L group) I II I I I I 21.4 18.0 I 18.2 I 17.9 I 17.6 I 18.3 I I I 263 I 119 I 229 I 428 I 426 I 500 I |I I I |I I I I I IDays after I 9 I 10 I 11 I 12 I 13 I I transplantation I I I I I I I I I I Treated group 1 20.1 I 20.1 I 21.0 I 22.0 I 22.2 I I (Gel K group) 1 362 1 238 I 312 I 333 1 380 I I I I i I I Control I 18.4 1 19.0 I 19.1 I 19.5 I 19.6 I Sgroup 1 316 I 326 1 286 1 334 I 468 I (Gel L group) I I I I I I 17.4 I 17.4 I 18.0 I 18.3 I 18.3 I I I 405 I 393 I 352 I 397 I 641 I Note) Body weight: upper Blood insulin level: lower

Claims (18)

1. Biologically active substance-secreting hybrid gel, which consists of biologically active substance-producing cells and biopolymeric gel.
2. The hybrid gel of claim 1, wherein the biologically active substance-producing cells are enclosed in the biopo- lymeric gel.
3. The hybrid gel of claim 1, wherein biologically active substance-producing cells are laminated on the biopolymeric gel.
4. The hybrid gel of claim 1, wherein the biologically U active substance-producing cells are laminated on the biopo- lymeric gel enclosing the bioloically active substance- producing cells.
5. Biologically active substance-secreting gel, which consists of biologically active substance-producing cells, animal skin cells and biopolymeric gel.
6. The hybrid gel of claim 5, wherein the animal skin cells are laminated on the biopolymeric gel enclosing the biologically active substance-producing cells.
7. The hybrid gel of claim 5, wherein the biologically active substance-producing cells are laminated on the biopo- lymeric gel enclosing the animal skin cells.
8. The hybrid gel of claim 5, wherein the biologically active substance-producing cells and the animal skin cells are enclosed in the biopolymeric gel. 26
9. The hybrid gel of claim 5, wherein the animal skin cells or the biologically active substance-producing cells are laminated on the biopolymeric gel enclosing the animal skin cells and the biologically active substance-producing cells.
The hybrid gel of claim 2, 4, 6, 8 or 9, wherein the biologically active substance-producing cells are enclosed in the biopolymeric gel together with meshy material or porous membrane.
11. The hybrid gel of any one of claims 5 through 9, wher- ein the enclosed animal skin cells are skin fibroblasts and the laminated animal skin cells are skin epidermal cells. S
12 The hybrid gel of any one of claims 1 through wherein the biologically active substance-producing cells are cells which contains an expression vector recombnant with a DNA sequence encoding a biologically active sub- stance.
13. The hybrid gel of claim 12, wherein the iologically active substance-producing cells are skin fibroblasts or skin epidermal cells which contains an expression vector recombinant with a DNA sequence encoding insulin.
14. The hybrid gel of claim 13, wherein the expression vector is plasmid vector pBMG-neo-ins.
The hybrid gel of claim 13, wherein the expression vector is plasmid vector pRIS-proins-Ifur-IIfur-BlOD.
16. An external-use prescription whose main component is 2_7 the hybrid gel or any one of claim 1 through
17. A biologically active substance-secreting hybrid gel comprising biologically active substance-producing cells and biopolymeric gel substantially as herein described with reference to Example 1 or 2.
18. An external-use prescription including a biologically active substance-secreting hybrid gel comprising biologically active substance-producing cells and biopolymeric gel substantially as herein described with reference to Example 1 or 2. a. Dated this 17th day of June 1999 RESEARCH DEVELOPMENT CORPORATION OF JAPAN; SUSUMU YOSHIDA and R ANDREW CUTHBERTSON By their Patent Attorney GRIFFITH HACK
AU35104/99A 1994-04-25 1999-06-17 Biologically active substance-secreting hybrid gel Abandoned AU3510499A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU35104/99A AU3510499A (en) 1994-04-25 1999-06-17 Biologically active substance-secreting hybrid gel
AU10027/02A AU779272B2 (en) 1994-04-25 2002-01-03 Biologically active substance-secreting hybrid gel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8697994 1994-04-25
JP6-86979 1994-04-25
JP28848794 1994-11-22
JP6-288487 1994-11-22
AU17665/95A AU1766595A (en) 1994-04-25 1995-04-26 Biologically active substance-secreting hybrid gel
AU35104/99A AU3510499A (en) 1994-04-25 1999-06-17 Biologically active substance-secreting hybrid gel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU17665/95A Division AU1766595A (en) 1994-04-25 1995-04-26 Biologically active substance-secreting hybrid gel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU10027/02A Division AU779272B2 (en) 1994-04-25 2002-01-03 Biologically active substance-secreting hybrid gel

Publications (1)

Publication Number Publication Date
AU3510499A true AU3510499A (en) 1999-08-19

Family

ID=27422612

Family Applications (1)

Application Number Title Priority Date Filing Date
AU35104/99A Abandoned AU3510499A (en) 1994-04-25 1999-06-17 Biologically active substance-secreting hybrid gel

Country Status (1)

Country Link
AU (1) AU3510499A (en)

Similar Documents

Publication Publication Date Title
EP0679402B1 (en) Biologically active substance-secreting hybrid gel
ES2276392T3 (en) IN VITRO GROWTH OF FUNCTIONAL ISLANDS OF LANGERHANS AND IN VIVO USES OF THE SAME.
US20120142760A1 (en) Compositions and methods for regulated protein expression in gut
JP2014159455A (en) Compositions comprising human embryonic stem cells and their derivatives, methods of use, and methods of preparation
EP3479831A1 (en) Composition comprising thrombin-treated stem cell-derived exosome for treating skin wound
Yamaoka Regeneration therapy of pancreatic β cells: towards a cure for diabetes?
JP3091113B2 (en) Hybrid gel secreting bioactive substances
DE69636260T2 (en) Implant with immunologically isolated connective tissue cells and its use
AU779272B2 (en) Biologically active substance-secreting hybrid gel
US20030032144A1 (en) Nucleic acid constructs useful for glucose regulated production of human insulin in somatic cell lines
AU3510499A (en) Biologically active substance-secreting hybrid gel
US8372641B2 (en) Marrow stem cell and pancreatic β cell fusion cell useful for the treatment of diabetes
KR101815080B1 (en) Pharmaceutical composition for treating diabetes comprising islet and artificial extracellular matrix of elastin like polypeptide
US7919080B2 (en) Immortalized hepatocyte cell line secreting modified insulin with glucose sensitivity
Noda et al. Development of alternative gene transfer techniques for ex vivo and in vivo gene therapy in a canine model
CN114642668B (en) New pharmaceutical application of latanoprost
CN117379362A (en) Angiopoietin-like protein 3 loaded hydrogel and preparation method and application thereof
Yoshida et al. Proinsulin-secreting hybrid skin that can be used to treat diabetic animals
Facey Diabetes: a gene therapy approach using genetically modified skin cells
CN1472325A (en) Cardiac atrium peptide gene transfecting cell microcapsule
Scaggiante et al. Repeated Implantations of human amniotic epithelial cells as a curative therapy of Niemann-Pick disease
CA2330172A1 (en) Prosthetic implant and methods of use for therapeutic gene expression
MXPA96004845A (en) In vitro growth of islotes of functional langerhans and in vivo use of mis

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted