AU2019210504B2 - Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof - Google Patents

Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof Download PDF

Info

Publication number
AU2019210504B2
AU2019210504B2 AU2019210504A AU2019210504A AU2019210504B2 AU 2019210504 B2 AU2019210504 B2 AU 2019210504B2 AU 2019210504 A AU2019210504 A AU 2019210504A AU 2019210504 A AU2019210504 A AU 2019210504A AU 2019210504 B2 AU2019210504 B2 AU 2019210504B2
Authority
AU
Australia
Prior art keywords
seq
antigen binding
antibody
klotho
fgfr4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
AU2019210504A
Other versions
AU2019210504A1 (en
Inventor
Taruna Arora
Ian Foltz
Shaw-Fen Sylvia Hu
Chadwick Terence King
Yang Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Inc
Original Assignee
Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010328444A external-priority patent/AU2010328444B2/en
Application filed by Amgen Inc filed Critical Amgen Inc
Priority to AU2019210504A priority Critical patent/AU2019210504B2/en
Publication of AU2019210504A1 publication Critical patent/AU2019210504A1/en
Application granted granted Critical
Publication of AU2019210504B2 publication Critical patent/AU2019210504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present disclosure provides compositions and methods relating to or derived from antigen binding proteins activate FGF21-mediated signaling. In embodiments, the antigen binding proteins specifically bind to (i) P -Klotho; (ii) FGFRIc, FGFR2c, 5 FGFR3c or FGFR4; or (iii) a complex comprising P-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In some embodiments the antigen binding proteins induce FGF21-like signaling. In some embodiments, the antigen binding proteins are fully human, humanized, or chimeric antibodies, binding fragments and derivatives of such antibodies, and polypeptides that specifically bind to (i) P -Klotho; (ii) FGFRIc, 10 FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising P-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. Other embodiments provide nucleic acids encoding such antigen binding proteins, and fragments and derivatives thereof, and polypeptides, cells comprising such polynucleotides, methods of making such antigen binding proteins, and fragments and derivatives thereof, and polypeptides, and methods 15 of using such antigen binding proteins, fragments and derivatives thereof, and polypeptides, including methods of treating or diagnosing subjects suffering from type 2 diabetes, obesity, NASH, metabolic syndrome and related disorders or conditions.

Description

HUMAN ANTIGEN BINDING PROTEINS THAT BIND p-KLOTHO, FGF RECEPTORS AND COMPLEXES THEREOF
The present application is a divisional application of Australian Application No. 2017200115, which is incorporated in its entirety herein by reference.
This application claims the benefit of U.S. Provisional Application No. 61/267,321 filed December 7, 2009 and U.S. Provisional Application No. 61/381,846 filed September 10, 2010, which are incorporated by reference herein.
SEQUENCE LISTING The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on November 24, 2010, is named A-1519-WO-PCT.txt and is 645,894 bytes in size. FIELD OF THE INVENTION
The present disclosure relates to nucleic acid molecules encoding antigen binding proteins that bind to (i) p-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising p-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4. The present disclosure also provides antigen binding proteins that bind to (i) p Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising p Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4, including antigen binding proteins that induce FGF21-like signaling, as well as pharmaceutical compositions comprising antigen binding proteins that bind to (i) p-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising p-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4, including antigen binding proteins that induce FGF21 like signaling, and methods for treating metabolic disorders using such nucleic acids, polypeptides, or pharmaceutical compositions. Diagnostic methods using the antigen binding proteins are also provided.
BACKGROUND Fibroblast Growth Factor 21 (FGF21) is a secreted polypeptide that belongs to a subfamily of Fibroblast Growth Factors (FGFs) that includes FGF19, FGF21, and FGF23 (Itoh et al., (2004) Trend Genet. 20:563-69). FGF21 is an atypical FGF in that it is heparin independent and functions as a hormone in the regulation of glucose, lipid, and energy metabolism. It is highly expressed in liver and pancreas and is the only member of the FGF family to be primarily expressed in liver. Transgenic mice overexpressing FGF2l exhibit metabolic phenotypes of slow growth rate, low plasma glucose and triglyceride levels, and an absence of age-associated type2 diabetes, islet hyperplasia, and obesity. Pharmacological administration of recombinant FGF21 protein in rodent and primate models results in normalized levels of plasma glucose, reduced triglyceride and cholesterol levels, and improved glucose tolerance and insulin sensitivity. In addition, FGF21 reduces body weight and body fat by increasing energy expenditure, physical activity, and metabolic rate. Experimental research provides support for the pharmacological administration of FGF2 for the treatment of type 2 diabetes, obesity, dyslipidemia, and other metabolic conditions or disorders in humans. FGF2I is a liver derived endocrine hormone that stimulates glucose uptake in adipocytes and lipid homeostasis through the activation of its receptor. Interestingly, in addition to the canonical FGF receptor, the FGF21 receptor also comprises the membrane associated -Klotho as an essential cofactor. Activation of the FGF21 receptor leads to multiple effects on a variety of metabolic parameters. In mammals, FGFs mediate their action via a set of four FGF receptors. FGFRI - 4, that in turn are expressed in multiple spliced variants, e.g., FGFRIc, FGFR2c, FGFR3c and FGFR4. Each FGF receptor contains an intracellular tyrosine kinase domain that is activated upon ligand binding, leading to downstream signaling pathways involving MAPKs (ErkI/2), RAFI, AKT and STATs. (Kharitonenkov et al., (2008) BioDrugs2:37-44). Several reports suggested that the "c"-reporter splice variants of FGFRI-3 exhibit specific affinity to -Klotho and could act as endogenous receptor for FGF21 (Kurosu et al., (2007) J. Biol. Chem. 282:26687-26695): Ogawa et al., (2007) Proc. Nalt. Acad. Sci. USA 104:7432-7437); Kharitonenkov et al., (2008)J. Cell PhysioL 215:1-7). In the liver, which abundantly expresses both -Klotho and FGFR4, FGF21 does not induce phosphorylation of MAPK albeit the strong binding of FGF21 to the -Klotho FGFR4 complex. In 3T3-Li cells and white adipose tissue, FGFR1 is by far the most abundant receptor, and it is therefore most likely that FGF21's main functional receptors in this tissue are the P-Klotho/FGFR c complexes.
The present disclosure provides a human (or humanized) antigen binding protein, such as a monoclonal antibody, that induces FGF21-like signaling, e.g., an agonistic antibody that mimics the function of FGF21. Such an antibody is a molecule with FGF21-like activity and selectivity but with added therapeutically desirable characteristics typical for an antibody such as protein stability, lack of immunogenicity, ease of production and long half-life in vivo. It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field. Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".
SUMMARY In one aspect, the present disclosure provides an isolated antibody or antibody fragment thereof that mimics FGF21-mediated signaling comprising: a heavy chain variable region CDR1 comprising the sequence set forth in SEQ ID NO: 129; a heavy chain variable region '0 CDR2 comprising the sequence set forth in SEQ ID NO: 142; a heavy chain variable region CDR3 comprising the sequence set forth in SEQ ID NO: 156; a light chain variable region CDR1 comprising the sequence set forth in SEQ ID NO: 163; a light chain variable region CDR2 comprising the sequence set forth in SEQ ID NO: 173; and a light chain variable region CDR3 comprising the sequence set forth in SEQ ID NO: 194. In another aspect, the present disclosure provides an isolated antibody or antibody fragment thereof that mimics FGF21-mediated signaling comprising a heavy chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 82 and a light chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 63. In another aspect, the present disclosure provides a pharmaceutical composition comprising one or more antibodies or antibody fragments thereof of the invention in admixture with a pharmaceutically acceptable carrier.
In another aspect, the present disclosure provides a pharmaceutical composition comprising an antibody or antibody fragment thereof of the invention in admixture with a pharmaceutically acceptable carrier. In another aspect, the present disclosure provides an isolated nucleic acid comprising a polynucleotide sequence encoding an antibody or antibody fragment thereof of the invention. In another aspect, the present disclosure provides an expression vector comprising a nucleic acid of the invention. In another aspect, the present disclosure provides an isolated cell comprising a nucleic acid of the invention. In another aspect, the present disclosure provides an isolated cell comprising an expression vector of the invention. In another aspect, the present disclosure provides a method of producing an antibody or antibody fragment thereof that specifically binds to (i) p-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4, comprising incubating a cell of the invention under conditions that allow it to express the antibody. In another aspect, the present disclosure provides an antibody or antibody fragment thereof when produced by a method of the invention. In another aspect, the present disclosure provides a method of preventing or treating a O condition in a subject in need of such treatment comprising administering an antibody or antibody fragment thereof of the invention, or a therapeutically effective amount of a composition of the invention to the subject, wherein the condition is type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease or metabolic syndrome. In another aspect, the present disclosure provides use of an antibody or antibody fragment thereof of the invention in the manufacture of a medicament for preventing or treating a condition, wherein the condition is treatable by lowering blood glucose, insulin or serum lipid levels. An isolated antigen binding protein that induces FGF21-mediated signaling is provided. Also provided is an isolated antigen binding protein that specifically binds to at least one of: (i) P-Klotho; (ii) FGFRl c, FGFR2c, FGFR3c or FGFR4; and (iii) a complex comprising
p-Klotho and one of FGFRlc, FGFR2c, FGFR3c and FGFR4 wherein the antigen binding protein induces FGF21-mediated signaling.
3a
In one embodiment, the provided antigen binding proteins comprise an amino acid sequence selected from the group consisting of: (a) a light chain CDR3 comprising a sequence selected from the group consisting of: (i) a light chain CDR3 sequence that differs by no more than a total of three amino acid additions, substitutions, and/or deletions from a CDR3 sequence selected from the group consisting of the light chain CDR3 sequences of L1-L18, SEQ ID NOs: 180-194; (ii) QVWDXiX2SDHVV (SEQ ID NO: 276); (iii) QQX3GX4X5X6X7T (SEQ ID NO: 283); (iv) LQHNSYPLT (SEQ ID NO: 267); (v) MQSLQTPFT (SEQ ID NO: 268); (vi) QQYNNWPPT (SEQ ID NO: 269); (vii) MQSIQLPRT (SEQ ID NO: 270); (viii) QQANDFPIT (SEQ ID NO: 271); (ix) MQALQTPCS (SEQ ID NO: 272); (b) a heavy chain CDR3 sequence comprising a sequence selected from the group consisting of: (i) a heavy chain CDR3 sequence that differs by no more than a total of four amino acid additions, substitutions, and/or deletions from a CDR3 sequence selected from the group consisting of the heavy chain CDR3 sequences ofH1-H18, SEQ ID NOs:145-157; (ii) X34XiX7Xi8GX19YYYX2GMDV (SEQ ID NO: 322); (iii) SLIVVX21VY X22LDX23 (SEQ ID NO: 326); (iv) IVVVPAAIQSYYYYYGMGV (SEQ ID NO: 311); (v) DPDGDYYYYGMDV (SEQ ID NO: 312); (vi) TYSSGWYVWDYYGMDV (SEQ ID NO: 313); (vii) DRVLSYYAMAV (SEQ ID NO: 314); (viii) VRIAGDYY YYYGMDV (SEQ ID NO: 315); (ix) ENIVVIPAAIFAGWFDP (SEQ ID NO: 316); and (x) DRAAAGLHYYYGMDV (SEQ ID NO: 317); or (c) the light chain CDR3 sequence of (a) and the heavy chain CDR3 sequence of '0 (b); wherein, Xi is G, S or N; X2 is N, S or T;X 3 is C, Y or
3b
S; X4 is G or S; X5 is A or ; X( is P or F; X- is L or absent: X-4 isI, V or S; X1 6 is L or V; X7 is L, T or V; X is isL, V, G or T; X is A, G or absent; Xo is Y, C or D: X2 1 is I or M: X22 is A or V: and X2 3 is H or Y; and wherein the antigen binding protein specifically binds (i)§-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising j-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In another embodiment the provided antigen binding proteins comprise either: (a) a light chain CDR I sequence selected from the group consisting of: (i) a light chain CDR I that differs by no more than three amino acids additions, substitutions, and/or deletions from a CDR] sequence of Li-LI8, SEQ ID NOs:158-170 (ii) RASQ X XIXX 1 XIXI 4 LA (SEQ ID NO: 304); (iii) GGNNIGSX 15 SVH (SEQ ID NO:307); (iv) RSSQSLLX2X3 ONGXlX2X3 3 LD (SEQ ID NO: 310); (v) RASQSVNSNLA (SEQ ID NO: 295); (vi) RASQDIRYDLG (SEQ ID NO: 296); (vii) RASQGISIWLA (SEQ ID NO: 297); and (viii) KSSQSLLQSDGKTYLY (SEQ ID NO: 298); (b) a light chain CDR2 sequence selected from the group consisting of: (i) a light chain CDR2 that differs by no more than two amino acid additions, substitutions, and/or deletions from a CDR2 sequence of Li-LI8, SEQ ID NOs:171-179; (ii) LCSX2RAS (SEQ ID NO: 290); (iii) GXSSX 2sRAT (SEQ ID NO: 294); (iv) AASSLQS (SEQ ID NO: 284); (v) GVSTRAT (SEQ ID NO: 285); (vi) DDSDRPS (SEQ ID NO: 286); (vii) EVSNRFS (SEQ ID NO: 287); (c) a heavy chain CDR] sequence selected from the group consisting of: (i) a heavy chain CDR] that differs by no more than two amino acid additions, substitutions, and/or deletions from a CDR] sequence of HI-H18, SEQ ID NOs:l21-131; and (ii) NARMGVX39 (SEQ ID NO: 352); (iii) XtYGIH (SEQ ID NO: 355); (iv) DLSMH (SEQ ID NO: 345); (v) DAWMS (SEQ ID NO: 346); (vi) TYAMS (SEQ ID NO: 347); (vii) SYFWS (SEQ ID NO: 348); (viii) SYYWS (SEQ ID NO: 13 1); (ix) SGGYNWS (SEQ ID NO: 349); (d) a heavy chain CDR2 selected from the group consisting of: (i) a heavy sequence that differs by no more than three amino acid additions, substitutions, and /or deletions from a CDR2 sequence of Hi-H18, SEQ ID NOs:132-144; (ii) HIFSNDEKSYSTSLKX 24 (SEQ ID NO: 333); (iii) X 25 ISGSGVSTX 2 yYADSVKG (SEQ ID NO: 338); (iv) VIWYDGSX35KYYXcmDSVKG (SEQ ID NO: 341); (v) X1 7 YX.SGSTX.jYNPSLKS (SEQ ID NO: 344); (vi) GFDPEDGETIYAQKFQG (SEQ ID NO: 327); (vii) RIKSKTDGGTTDYAAPVKG (SEQ ID NO: 328); (viii) RIYTSGSTNYNPSLKS (SEQ ID NO: 329); (ix) RIKSKDGGTTDYAAPVKG (SEQ ID NO: 330); (x) RIKSKX 4 2DGGTTDYAAPVKG (SEQ ID NO: 483); wherein Xg is N or
S;Xio is VorFX1 is D or S:X 12 is GorS;X- is S,N or T; X14isS or Y;X1 is E or Q;X 9 is Y or H; X3 is Y or S; X, is F or Y; X32 is T or N; X; is Y or F; X7 is N or D; Xs is A or T: Xs is S or F; X, is S or N; X1 is S or N; X2 5 is G or A; X 26 is H, Y or N X35 is D or I; X36 is A or G; X37 is N or R; X 3 is Y or T; X4 is Y or N: X4 is T or absent; (e)the light chain CDR Iof (a) and the light chain CDR 2 of (b); (f) the light chain CDR I of (a) and the heavy chain CDR I of (c); (g) the light chain CDR1 of (a) and the heavy chain CDR2 of (d); (h) the light chain CDR] (b) and the heavy chain CDR1 of(c); (i) the heavy chain CDR1 of(c)and the heavy chain CDR2 of(d); (j) the light chain CDR2 of(b) and the heavy chain CDR2 of (d); (k) the light chain CDR I of(a), the light chain CDR2 of(b), and the heavy chain CDR I of(c); (1) the light chain CDR2 of D (b), the heavy CDRI of (c). and the heavy chain CDR2 of (d); (m) the light chain CDRI of (a), the heavy chain CDR] of (c), and the heavy chain CDR2 of (d); or (n) the light chain CDR1 of (a), the light chain CDR2 of(b), the heavy chain CDR2 of(c), and the heavy chain CDR2 of (d), wherein said antigen binding protein specifically binds (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In yet another embodiment the provided antigen binding proteins comprise either: (a) a light chain variable domain comprising; (i) a light chain CDR1 sequence selected from SEQ ID NOs:158-170; (ii) a light chain CDR2 sequence selected from SEQ ID NOs:171-179; (iii) a light chain CDR3 sequence selected from SEQ ID NOs:180-194; and (b) a heavy chain variable ) domain comprising: (i) a heavy chain CDR I sequence selected from S EQ ID NOs:121-13 1; (ii) a heavychain CDR2 sequence selected from SEQ ID NOs:132-144; and (iii) a heavy chain CDR3 sequence selected from SEQ ID NOs:145-157; or (c) the light chain variable domain of (a) and the heavy chain variable domain of (b), wherein the antigen binding proteinspecifically binds (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising D-Klotho and one of FGFR Ic, FGFR2c, FGFR3c, and FGFR4. In a further embodiment the provided antigen binding proteins comprise either: (a) a light chain variable domain sequenceselected from the group consisting of: (i) amino acids having a sequence at least 80% identical to a light chain variable domain sequence selected from VLI V18, SEQ ID NOs:48-65; (ii) a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to a polynucleotide sequence encoding the light chain variable domain sequence of V 1i-VJ8, SEQ ID NOs:48-65; (b) a heavy chain variable domain sequence selected from the group consisting of: (i) a sequence of amino acids that is at least 80% identical to a heavy chain variable domain sequence of Vl-VIl8 of SEQ ID NOs:66-84; (ii) a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to a polynucleotide sequence encoding the heavy chain variable domain sequence of V I-Vi18, SEQ ID NOs:66-84; or (c) the light chain variable domain of (a) and the heavy chain variable domain of (b); wherein the antigen binding protein specifically binds (i) -Klotho: (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In particular embodiments the provided antigen binding proteins comprise either: (a) a light chain variable domain sequence selected from the group consisting of: ViJ-V18 of SEQ ID NOs:48-65; (b) a heavy chain variable domain sequence selected from the group consisting of: VIl-Vl 1 8 of SEQ ID NOs:66-84; or (c) the light chain variable domain of (a) and the heavy chain variable domain of (b), wherein the antigen binding protein specifically binds (i) D-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In other particular embodiments, the provided antigen binding proteins the light chain variable domain and a heavy chain variable domain are selected from the group of combinations consisting of: V 1 ill, Vij2V 1 2, V3V 1 3, V1 3V114, V1 4V 1 5, V5V 16, V6V,1 7, V7V[8, V8V8, V9V9, V1.9Vil0, V1.l0VIIll, Vi.Illlull, VL12VI1l2, Vi.,3Vu1l3, Vj.14Vul14, Vjl5VulI5, VI-l6Vul6, VLI7V 1 17, and VII8V 1 18, wherein the antigen binding protein specifically binds (i) -Klotho;
D (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In still further embodiments the provided antigen binding proteins further comprise: (a) the light chain constant sequence of SEQ ID NO: 10; (b) the light chain constant sequence of SEQ ID NO:II; (c) the heavy chain constant sequence of SEQ ID NO: 9: or (d) the light chain constant sequence of SEQ ID NO: 10 or SEQ ID NO:11 and the heavy chain constant sequence of SEQ ID NO: 9. The provided antigen binding proteins can take many forms and can be, for example, a human antibody, a humanized antibody, chimeric antibody, a monoclonal antibody, a polyclonal antibody, a recombinant antibody, an antigen-binding antibody fragment, a single chain antibody, a diabody, a triabody, a tetrabody, a Fab fragment, an F(fab') 2 fragment, a domain antibody, an IgD antibody, an IgE antibody, an IgM antibody, anl IgGI antibody, an IgG2 antibody, an IgG3 antibody, an IgG4 antibody, or an lgG4 antibody having at least one mutation in the hinge region. In another embodiment, the provided antigen binding proteins when bound to (i) Klotho; (ii) FGFRIc. FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFR I c, FGFR2c, FGFR3c, and FGFR4: (a) bind to (i) p-Klotho; (ii) FGFRIc, FGFR2c FGFR3c or FGFR4; or (iii) a complex comprising1-Kotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, with substantially the same Kd as a reference antibody; (b) induce FGF21 like signaling of 10 % or greater than the signaling induced by a wild-type FGF21 standard comprising the mature form of SEQ ID NO:2 as measured in an ELK-luciferase reporter assay; (c) exhibit an EC50 of I0nM or less of FGF21-like signaling in an assay selected from the group consisting of: (i) a FGFRIc/p-Klotho-mediated in vitro recombinant cell-based assay; and (ii) an in vitro human adipocyte functional assay; (d) exhibit an EC50 of less than 10nM of agonistic activity on FGFRIc in the presence of -Klotho in an invitro recombinant FGFRIc receptor mediated reporter assay; and (e) exhibit an EC50 of greater than IpM of agonistic activity on FGFRIc in the absence of -Klotho in an in vitro recombinant FGFRc receptor mediated reporter assay; or (f) competes for binding with a reference antibody to (i) -Kotho; (ii) FGFRic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising §-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, wherein the reference antibody comprises a combination of light chain and heavy chain variable domain sequences selected from the group o consisting of VV,V2VI2, VL3V3, V3VI4, V 4V5, V5VI6, V6VII7, VL7VI8,
VL8VI8, 1 1 ]I. VI-2V12, V 1 I3V 1113, V14V11 14, V 1 9V 119, V1 9V11 10, V 1 I0V 1 1 11, VlIV Vr5V 11 15, ViI6VI6, V1]7V 1 1 7, and V_1l8V 1 18. In otherembodiments the provided antigen binding proteins can when bound to (i) D-Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4: (a) lower blood glucose in an animal model; (b) lower scrum lipid levels in an animal model; (c) lower insulin levels in an animal model; or (d) two or more of (a) and (b) and (c). In specific embodiments the provided antigen binding proteins comprise: (a) a heavy chain comprising one of SEQ ID NOs:31, 32, 390-401, 404-405; (b) a light chain comprising one of SEQ ID NO:13, 14, 385-389, 402-403; or (c) a combination comprising a heavy chain of (a) and a light chain of (b).
Also provided are antigen binding proteins that are capable of binding wild type human f-Klotho (SEQ ID NO:7) but which doesn't bind to a chimeric form of -Klotho wherein the chimeric form of P-Klotho comprises a humanf-Klotho framework wherein urine D-Klotho sequences replace the wild type human residues at at least one of(a) positions 1-80; (b) positions 303-522; (c) positions 852-1044; and (d) combinations thereof. In another aspect, the present disclosure provides antigen binding proteins that are capable of binding wild type human $-Klotho (SEQ ID NO:7) at at least one of (a) positions I 80; (b) positions 303-522; (c) positions 852-1044; and (d) combinations thereof. In still another aspect, the present disclosure provides antigen binding proteins that are capable of competing with an antigen binding protein of claims 8 or 13 for binding to human wild type j-Klotho residues at at least one of (a) positions 1-80; (b) positions 303-522; (c) positions 852-1044: and (d) combinations thereof. Also provided is a pharmaceutical composition comprising one or more antigen binding proteins provided herein, in admixture with a pharmaceutically acceptable carrier thereof. In a further aspect, also provided are isolated nucleic acid molecules that encode the antigen binding proteins disclosed herein, in some instances, the isolated nucleic acid molecules are operably-linked to a control sequence. In embodiments, such nucleic acids comprise a
polynucleotide sequence encoding the light chain variable domain, the heavy chain variable domain, or both, of an antigen binding protein provided herein. In particular embodiments the nucleic acids comprise (a) V I-V18 (SEQ ID NOs:48-65); (b) V 11 -Vj18 (SEQ ID NOs:66-84); or (c) one or more sequences of (a) and one or more sequences of (b). In another aspect, also provided are expression vectors and host cells transformed or transfected with the expression vectors that comprise the aforementioned isolated nucleic acid molecules that encode the antigen binding proteins disclosed herein. In another aspect, also provided are methods of preparing antigen binding proteins that specifically or selectively bind (i) D-Klotho; (ii) FGFR Ic, FGFR 2 c, FGFR3e or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 and comprises the step of preparing the antigen binding protein from a host cell that secretes the antigen binding protein. Other embodiments provide a method of preventing or treating a condition in a subject in need of such treatment comprising administering a therapeutically effective amount of a pharmaceutical composition provided herein to a subject, wherein the condition is treatable by lowering blood glucose, insulin or serum lipid levels. In embodiments, the condition is type 2 diabetes, obesity, dyslipidemia, NASH. cardiovascular disease or metabolic syndrome. These and other aspects are described in greater detail herein. Each of the aspects provided can encompass various embodiments provided herein. It is therefore anticipated that each of the embodiments involving one element or combinations of elements can be included in each aspect described, and all such combinations of the above aspects and embodiments are expressly considered. Other features, objects, and advantages of the disclosed antigen binding proteins and associated methods and compositions are apparent in the detailed description that follows.
BRIEF DESCRIPTION OF THE DRAWINGS Figure IA-lB is an alignment showing the sequence homology between human FGFRIc (GenBank Accession No P1362; SEQ ID NO: 356) and murine FGFRc (GenBank Accession No NP_034336; SEQ ID NO: 357); various features are highlighted, including the signal peptide, transmembrane sequence, heparin binding region, and a consensus sequence (SEQ ID NO: 358) is provided. Figure 2a-2c is an alignment showing the sequence homology between human B-Klotho (GenBank Accession No NP_783864; SEQ ID NO: 359) and murine -Klotho (GenBank D Accession No NP_112457; SEQ ID NO: 360); various features are highlighted, including the transmembrane sequence and two glycosyl hydrolase domains, and a consensus sequence (SEQ ID NO: 361) is provided. Figure 3 is a flow cytometry profile of cells stained with FGF2-Alexa 647 that were used as an immunogen to generate antigen binding proteins; the figure shows the expression level of an FGF2IR (a complex comprising FGFR I c and $-Klotho) and binding to FGF21. Figure 4 is a sequence (SEQ ID NO: 362) showing an Fe fusion protein that was used as an immunogen to generate antigen binding proteins; the immunogen comprises the extracellular domain (ECD) of human FGFRc fused to an IgGl Fc via a Gly linker (SEQ ID NO: 379); the FGFRIc component is in capitals, the linker is italic and underlined and the Fe is in lower case letters.
Figure 5 is a sequence (SEQ ID NO: 363) showing an Fc fusion protein that was used as an immunogen to generate antigen binding proteins; the immunogen comprises the extracellular domain (ECD) of human -Kotho fused to an IgGI Fe via a Glys linker (SEQ ID NO: 379): the -Klotho component is in capitals, the linker is italic and underlined and the Fe is in lower case letters. Figure 6 is a SDS PAGE gel showing the level of purity achieved from preparations of a soluble FGF21 receptor complex comprising FGFRIc ECD-Fc and -Klotho ECD-Fe, which was employed as an immunogen to generate antigen binding proteins. Figure 7 is a series of plots generated from an ELK-luciferase reporterassay as described herein performed on recombinant CHO clone 2E10, demonstrating the ability of some of the antigen binding proteins to induce FGF21-like signaling in recombinant CHO cells expressing a FGF2I receptor complex comprising FGFR l cand -Klotho. Figure 8 is a series of plots generated from an ERK/2 phosphorylation assay as described herein, demonstrating the ability of some of the antigen binding proteins to induce FGF21-like signaling in rat L6 cells. The X-axis is the concentrations of the antigen binding proteins and the Y-axis is the percentage of phosphorylated ERKJ/2 of total ERK/2. Figure 9 is a series of plots generated from an ERK/2 phosphorylation assay as described herein, demonstrating that antigen binding protein-mediated FGF21-like signaling in L6 cells is FGFR Ic/$-Klotho specific. Figure 10 is a series of plots generated from an ERK phosphorylation assay as described herein, demonstrating that some antigen binding proteins are able to induce FGF21-like signaling in human adipocyte cells. Figure I 1a is a series of binding sensorgrams (response units vs time) demonstrating that some of the antigen binding proteins that induce FGF21-mediated signaling bind to human P !5 Klotho at two different but partially overlapping binding sitesrepresentedby24H1I(GroupA) and 17D8 (Group B), while antigen binding proteins that do not induce FGF21-mediated signaling (2G 10, 1A2) do not bind to these sites. Figure I lb is a series of binding sensorgrams (response units vs time) demonstrating a third binding site onl human p-Klotho that was identified for Group C antigen binding proteins O represented by 39F7.
Figure 12 is a series of binding sensorgrams (response units vs time) demonstrating that some of the antigen binding proteins (12E4, 24H411, 17C3, 18BI1) thatinduce FGF21-mediated signaling interfere with -Klotho binding to FGF21, while other antigen binding proteins (21H2, 17D8l18G1) do not. Figure 13 is an alignment of the variable regions of some of the antigen binding proteins that were generated; the framework and CDR regions are identified. Figure 13 discloses SEQ ID NOS: 364, 59, 365, 60, 366, 61, 367, 62, 368, 57, 369, 55, 51-52, 56, 56, 53-54, 63-65, 370, 58, 371,50, 50,49,48,372,78, 373, 66-69,79, 374,76, 81, 375,70,73,73,71-72, 376, 83,82, 84, 377, 80, 378, 75 and 74, respectively, in order of appearance. Figure 14 is a diagram graphically depicting the study design for a 68 days study performed in obese cynomolgus monkeys. Figure 15 is a plot depicting the effects of vehicle and 1617 on AM meal food intake of the obese cynomolgus monkeys studied. Figure 16 is two plots depicting the effects of vehicle and 16H7 on fruit intake and PM food intake of the obese cnomolgus monkeys studied. Figure 17 is a plot depicting the effects of vehicle and 16H7 on body weight of the obese cynoolgus monkeys studied. Figure 18 is a plot showing the effects of vehicle and 16H7 on body mass index (BMI) of the obese cynomolgus monkeys studied. Figure 19 is a plot showing the effects of vehicle on abdominal circumference (AC) of the obese cynonogus monkeys studied. Figure 20 is a plot showing the effects of vehicle and 16H7 on skin fold thickness (SFT) of the obesecvnomolgus monkeys studied. Figure 21 is a plot showing the effects of vehicle and 16H7 on glucose levels during glucose tolerance tests of the obese cynomolgus monkeys studied. Figure 22 is a plot showing the effects of vehicle and 16117 on plasma insulin levels during glucose tolerance tests of the obese cynomolgus monkeys studied. Figure 23 is a plot showing the effects of vehicle and 16H7 on fasting plasma glucose levels of the obese cvnoJo/gus monkeys studied. Figure 24 is a plot showing the effects of vehicle and 16H7 on fasting plasma insulin levels of the obese cynomolgus monkeys studied.
I1
Figure 25 is a plot showing the effects of vehicle and 16H7 on fed plasma glucose levels of the obese cnomolgus monkeys studied. Figure 26 is a plot showing the effects of vehicle and 16H7 on fed plasma insulin levels of the obese cynomolgus monkeys studied. Figure 27 is a plot showing the effects of vehicle and 16H7 on fasting plasma triglyceride levels of the obese cnomolgus monkeys studied. Figure 28 is a plot showing the effects of vehicle and 16H7 on fed plasma triglyceride levels of the obese cynomolgus monkeys studied. Figure 29 is a schematic depicting human-mouse D-Klotho chimeras that were constructed and used to studying the binding of antigen binding proteins. Figure 30 is a schematic depicting the human-mouse -Klotho chimeras that were constructed and also includes qualitative binding data for FGF21, 16H7, 37D3 and 39F7. Figure 31A-C is a series of plots depicting binding data for eight of the 16H7 and 22H5 variants that were constructed, as well as for 221-15 and 16H7. Figures 32A-C is a series of plots depicting the results of ELISA assays that were used to demonstrate that several of the 22H5 and 16H7 variants have binding ability. Figure 33 is a bar graph comparing off-rates for several 22115 and 17H7 variants that were generated. Figure 34 is two plots that depict binding curves for 39F1I when titrated with FGF21 and for FGF21 when titrated with 39F11; the plots demonstrate an additive effect. Figure 35 is two plots that depict binding curves for 16117 when titrated with 39F11and 39F I I when it is titrated with 16H7; the plots demonstrate an additive effect.
DETAILED DESCRIPTION The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.
Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present application are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook er al, Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001), Ausubel et at, Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow and Lane Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990), which are incorporated herein by reference. Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art oras described herein. The terminology used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients. It should be understood that the instant disclosure is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such can vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present disclosure. Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term "about." The term "about" when used in connection with percentages can mean 5%, e.g., 1%, 2%, 3%, or 4%.
1. DEFINITIONS As used herein, the terms "a" and "an" mean "one or more" unless specifically stated otherwise. An "antigen binding protein" is a protein comprising a portion that binds to an antigen or target and, optionally, a scaffold or framework portion that allows the antigen binding portion to adopt a conformation that promotes binding of the antigen binding protein to the antigen. Examples of antigen binding proteins include a human antibody, a humanized antibody; a chimeric antibody; a recombinant antibody; a single chain antibody: a diabody; a triabody; a tetrabody; a Fab fragment; a F(ab') 2 fragment; anl IgD antibody an IgE antibody; an gM antibody; an IgGi antibody; anl IgG2 antibody; an IgG3 antibody; or an IgG4 antibody, and fragments thereof. The antigen binding protein can comprise, for example, an alternative protein scaffold or artificial scaffold with grafted CDRs or CDR derivatives. Such scaffolds include, but are not limited to, antibody-derived scaffolds comprising mutations introduced to, for example, stabilize the three-dimensional structure of the antigen binding protein as well as wholly synthetic scaffolds comprising, for example, a biocompatible polymer. See, e.g., Korndorfer et al., 2003, Proteins: Structure, Function, and Bioinfbrnatis, 53(1):121-129 (2003); Roque et al., Biotechno/. Prog. 20:639-654 (2004). In addition, peptide antibody mimetics ("PAMs") can be used, as well as scaffolds based on antibody mimetics utilizing fibronectin components as a scaffold. An antigen binding protein can have, for example, the structure of a naturally occurring immunoglobulin. An "immunoglobulin" is a tetrameric molecule. In a naturally occurring immunoglobulin, each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kDa) and one "heavy" chain (about 50-70 kDa). The amino terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa and lambda light chains. Heavy chains are classified as mu. delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, lgD, IgG, IgA, and IgE, respectively. Within light and heavy chains, the variable and constant regions arejoined by a "J" region of :5 about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 more amino acids. See generally, Fundamental Immunology Ch. 7 (Paul, W., ed., 2 ded. Raven Press, N.Y. (1989)) (incorporated by reference in its entirety for all purposes). The variable regions of each light/heavy chain pair form the antibody binding site such that an intact immunoglobulin has two binding sites. Naturally occurring immunoglobulin chains exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. From N-terminus to C-terminus, both light and heavy chains comprise the domains FRI, CDRI, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain can be done in accordance with the definitions of Kabat et at in Sequences of Proteins of Immunological Interest, 5 Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 199 1. As desired, the CDRs can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, 1987,.1. Mol.Bio. 196:901-917: Chothia et al.. 1989, Nature342:878-883 or Honegger & Pluckthun, 2001,. Mo, Bio/ 309:657-670). In the context of the instant disclosure an antigen binding protein is said to "specifically bind" or "selectively bind" its target antigen when the dissociation constant (K) is < SM. The antibody specifically binds antigen with "high affinity" when the Ko is <5x 10- M, and with "very high affinity" when the Kf is <5x 10~ 1M. In one embodiment. the antibodies will bind to FGFR I c, -Klotho, both FGFRlc and -Klotho or a complex comprising FGFR I e and -Klotho, including human FGFRIc, human -Klotho or both human FGFR Icand human -Klotho, with a K 1 of between about 10- M and 1012 M, and in yet another embodiment the antibodies will bind with a Ki) 5x 10 An "antibody" refers to an intact immunoglobulin or to an antigen binding portion thereof that competes with the intact antibody for specific binding, unless otherwise specified. Antigen binding portions can be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies, Antigen binding portions include, inter a/ia, Fab, Fab, F(ab')2, Fv, domain antibodies (dAbs), fragments including complementarity determining regions (CDRs), single-chain antibodies (scFv), chimeric antibodies, diabodies, triabodies, tetrabodies, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide. !5 A Fab fragment is a monovalent fragment having the V, V11, C and C11 domains; a F(ab')2 fragment is a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment has the V1 and C11 domains; an Fv fragment has the V, and Vi domains of a single arm of an antibody; and a dAb fragment has a V domain, a VT domain, or an antigen-binding fragment of a V1 1 or V 1 domain (US Pat. Nos. 6,846,634, 6,696,245, US App. Pub. Nos. 05/0202512, 04/0202995, 04/0038291, 04/0009507, 03/0039958, Ward et al., Nature 341:544-546 (1989)).
A single-chain antibody (scFv) is an antibody in which a V. and a V1 1 region are joined via a linker (e.g., a synthetic sequence of amino acid residues) to form a continuous protein chain wherein the linker is long enough to allow the protein chain to fold back on itself and form a monovalent antigen binding site (see, e.g., Bird et al., Science 242:423-26 (1988) and Huston et al., 1988, Proc. Natl. 4cad Sci. USA 85:5879-83 (1988)). Diabodies are bivalent antibodies comprising two polypeptide chains, wherein each polypeptide chain comprises Vn and V. domains joined by a linker that is too short to allow for pairing between two domains on the same chain, thus allowing each domain to pair with a complementary domain on another polypeptide chain (see, e.g., Holliger et al., 1993, Proc. Nat/ Acad. Sci. USA 90:6444-48 (1993), and Poljak et al., Structure 2:1121-23 (1994)). If the two polypeptide chains of a diabody are identical, then a diabody resulting from their pairing will have two identical antigen binding sites, Polypeptide chains having different sequences can be used to make a diabody with two different antigen binding sites. Similarly, tribodies and tetrabodies are antibodies comprising three and four polypeptide chains, respectively, and forming three and four antigen binding sites, respectively, which can be the same or different. Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991 As desired, the CDRs can also be redefined according an ) alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, 1987, .1. ol. BioL 196:901-917; Chothia et al, 1989, Nature 342:878-883 or Honegger & Pluckthun, 2001,J. Mol Biol. 309:657-670. One or more CDRs can be incorporated into a molecule either covalently or noncovalently to make it an antigen binding protein. An antigen binding protein can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently. The CDRs permit the antigen binding protein to specifically bind to a particular antigen of interest. An antigen binding protein can have one or more binding sites. If there is more than one binding site, the binding sites can be identical to one another or can be different. For example, a naturally occurring human imMunoglobulin typically has two identical binding sites, while a "bispecific" or "bifunctional" antibody has two different binding sites.
The term "human antibody" includes all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (a fully human antibody). These antibodies can be prepared in a variety of ways, examples of which are described below, including through the immunization with an antigen of interest of a mouse that is genetically modified to express antibodies derived from human heavy and/or light chain encoding genes, such as a mouse derived from a Xcnomouse, UltiMab. or Velocimmunc(R) system. Phage-based approaches can also be employed. A humanized antibody has a sequence that differs from the sequence of an antibody derived from a non-human species by one or more amino acid substitutions, deletions, and/or additions, such that the humanized antibody is less likely to induce an immune response, and/or induces a less severe immune response, as compared to the non-human species antibody, when it is administered to a human subject. In one embodiment, certain amino acids in the framework and constant domains of the heavy and/or light chains of the non-human species antibody are mutated to produce the humanized antibody. In another embodiment, the constant domain(s) from a human antibody are fused to the variable domain(s) of a non-human species. In another embodiment, one or more amino acid residues in one or more CDR sequences of anon-human antibody are changed to reduce the likely immunogenicity of the non-human antibody when it is administered to a human subject, wherein the changed amino acid residues either are not critical for immunospecific binding of the antibody to its antigen, or the changes to the amino acid sequence that are made are conservative changes, such that the binding of the humanized antibody to the antigen is not significantly worse than the binding of thenon-human antibody to the antigen. Examples of how to make humanized antibodies can be found in U.S. Pat. Nos. 6,054,297, 5,886,152 and 5,877,293. The term "chimeric antibody" refers to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies. in one embodiment, one or more of the CDRs are derived from a human antibody that binds (i) Klotho; (ii) FGFR I c, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In another embodiment, all of the CDRs are derived from a human antibody that binds (i) -Klotho: (ii) FGFRlc FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and
FGFR4. In another embodiment, the CDRs from more than one human antibody that binds (i) Klotho; (ii) FGFR ic. FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 are mixed and matched in a chimeric antibody. For instance, a chimeric antibody can comprise a CDR] from the light chain of a first human antibody that binds (i) -Klotho; (ii) FGFRIc, FGFRc, FGFR3c or FGFR4; or (iii) a complex comprising B-Klotho and one of FGFRIc, FGFR2c. FGFR3c, and FGFR4, a CDR2 and a CDR3 from the light chain of a second human antibody that binds (i) -Kotho;(ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising §-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, and the CDRs from the heavy chain from a third antibody that binds (i) Klotho; (ii) FGFRlc. FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. Further, the framework regions can be derived from one of the same antibodies that bind (i) -Klotho; (ii) FGFRc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, fi-om one or more different antibodies, such as a human antibody, or from a humanized antibody. In one example of a chimeric antibody, a portion of the heavy and/or light chain is identical with, homologous to, or derived from an antibody from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with, homologous to, or derived from an antibody or antibodies from another species or belonging to another antibody class or subclass. Also included are fragments of such antibodies 3 that exhibit the desired biological activity (e.g., the ability to specifically bind (i) -Klotho; (ii) FGFRic, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising D-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4). The tem "light chain" includes a full-length light chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length light chain includes a variable region domain, V., and a constant region domain, C The variable region domain of the light chain is at the amino-terminus of the polypeptide. Light chains include kappa ("K") chains and lambda ('"")chains. The term "heavy chain" includes a full-length heavy chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length heavy chain includes a variable region domain, V1 , and three constant region domains, C 1 1 1, C 11 2, and C11 3.
The V 11 domain is at the amino-terminus of the polypeptide, and the C11 domains are at the carboxyl-terminus, with the C13 being closest to the carboxy-terminus of the polypeptide. Heavy chains can be of any isotype, including IgG (including IgGI, IgG2, IgG3 and IgG4 subtypes), IgA (including IgA I and IgA2 subtypes), IgM and igE. The term "immunologically functional fragment" (or simply "fragment") of an antigen binding protein, e.g., an antibody or immunoglobulin chain (heavy or light chain), as used herein, is an antigen binding protein comprising a portion (regardless of how that portion is obtained or synthesized) of an antibody that lacks at least some of the amino acids present in a full-length chain but which is capable of specifically binding to an antigen. Such fragments are biologically active in that they bind specifically to the target antigen and can compete with other antigen binding proteins, including intact antibodies, for specific binding to a given epitope. In one aspect, such a fragment will retain at least one CDR present in the full-length light or heavy chain, and in some embodiments will comprise a single heavy chain and/or light chain or portion thereof. These biologically active fragments can be produced by recombinant DNA techniques, or can be produced by enzymatic or chemical cleavage of antigen binding proteins, including intact antibodies. Immunologically functional immunoglobulin fragments include, but are not limited to, Fab, Fab', F(ab')2, Fv, domain antibodies and single-chain antibodies, and can be derived from any mammalian source, including but not limited to human, mouse, rat, camelid or rabbit. It is contemplated further that a functional portion of the antigen binding proteins disclosed herein, for example, one or more CDRs, could be covalently bound to a second protein or to a small molecule to create a therapeutic agent directed to a particular target in the body, possessing bifunctional therapeutic properties, or having a prolonged scrum half-ife. An "Fe" region contains two heavy chain fragments comprising the C1 1 2 and C1 1 3 domains of an antibody. The two heavy chain fragments are held together by two or more Z5 disulfide bonds and by hydrophobic interactions of the C 1 1 3 domains.
AnL "Fab' fragment" contains one light chain and a portion of one heavy chain that contains the V1 1 domain and the Cl domain and also the region between the Cl and C1 2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab' fragments to form an F(ab')2 molecule. An "F(ab') 2 fragment" contains two light chains and two heavy chains containing a portion of the constant region between the C1 1 1 and C 12 domains, such that an interchain disulfide bond is formed between the two heavy chains, A F(ab')2 fragment thus is composed of two Fab' fragments that are held together by a disulfide bond between the two heavy chains. The "Fv region" comprises the variable regions from both the heavy and light chains, but lacks the constant regions. A "domain antibody" is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain. In some instances, two or more V1 regions are covalently joined with a peptide linker to create a bivalent domain antibody. The two V11 regions of a bivalent domain antibody can target the same or different antigens. A "hemibody" is an immunologically functional immunoglobulin construct comprising a complete heavy chain, a complete light chain and a second heavy chain Fc region paired with the Fe region of the complete heavy chain. A linker can, but need not, be employed to join the heavy chain Fe region and the second heavy chain Fc region. In particular embodiments a hemibody is a monovalent form of an antigen binding protein disclosed heroin. In other embodiments, pairs of charged residues can be employed to associate one Fe region with the second Fe region. The second heavy chain Fe region can comprise, for example, SEQ ID NO:441 and can be joined to the light chain via a linker (e.g., SEQ ID NO:440) An exemplary hemibody heavy chain comprises the sequence SEQ ID NO:453. A "bivalent antigen binding protein" or "bivalent antibody" comprises two antigen D bindingsites. In some instances, the two binding sites have the same antigen specificities. Bivalent antigen binding proteins and bivalent antibodies can be bispecific, as described herein. A multispecific antigen binding protein" or "multispecific antibody" is one that targets more than one antigen or epitope. A "bispecific," "dual-specific" or "bifunctional" antigen binding protein or antibody is a :5 hybrid antigen binding protein or antibody, respectively, having two different antigen binding sites. Bispecific antigen binding proteins and antibodies are a species of multispecific antigen binding protein or multispecific antibody and can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai and Lachmann, 1990, Clin. Exp. Inmunol 79:315-321; Kostelny et aL, 1992,J. Immunol 148:1547 1553. The two binding sites of a bispecific antigen binding protein or antibody will bind to two different epitopes, which can reside on the same or different protein targets.
The terms "FGF21-like signaling" and "induces FGF2I-like signaling," when applied to an antigen binding protein of the present disclosure, means that the antigen binding protein mimics, or modulates, an in vivo biological effect induced by the binding of () -Klotho: (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 and induces a biological response that otherwise would result from FGF21 binding to (i) -Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising $-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 in vivo. In assessing the binding and specificity of an antigen binding protein, e.g., an antibody or immunologically functional fragment thereof, an antibody or fragment is deemed to induce a biological response when the response is equal to or greater than 5%. and preferably equal to or greater than 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, of the activity of a wild type FGF21 standard comprising the mature form of SEQ ID NO:2 (i.e., the mature form of the human FGF21 sequence) and has the following properties: exhibiting anefficacy level of equal to or more than 5% of an FGF21 standard, with an EC50 of equal to or less thanI 1OnM, e.g., 90 nM, 80 nM, 70nM, 60nM, 50nM, 40nM, 3nM, 20nM or 10 nM in (1) the recombinant FGF21 receptor mediated luciferase reporter cell assay of Example 5; (2) ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 5; and (3) ERK-phosphorylation in human adipocytes as described in Example 7. The "potency" of an antigen binding protein is defined as exhibiting an EC50 of equal to or less than 100nM, e.g., 90nM, 8OnM, 70nM, 60nM, 5nM, 40nM, 30nM, 20nM, 10 nM and preferably less than 1OnM of the antigen binding protein in the following assays: (1) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 5; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 5; and (3) ERK-phosphorylation in human adipocytes as described in Example 7. It is noted that not all of the antigen binding proteins of the present disclosure induce FGF21-mediated signaling, nor is this property desirable in all circumstances. Nevertheless, antigen binding proteins that do not induce FGF21-mediated signaling form aspects of the present disclosure and may be useful as diagnostic reagents or other applications. As used herein, the term "FGF2IR" means a multimeric receptor complex that FGF2I is known or suspected to form in ivo, In various embodiments, FGF2IR comprises (i) an FGFR, e.g. FGFR I c, FGFR2c, FGFR3c or FGFR4, and (ii) -Klotho.
The term "polynucleotide" or nucleicc acid" includes both single-stranded and double stranded nuclcotide polymers. The nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. Said modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2', 3t dideoxyribose, and internucleotide linkage modifications such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate and phosphoroamidate. The term "oligonucleotide" means a polynucleotide comprising 200 or fewer nucleotides. In some embodiments, oligonucleotides are 10 to 60 bases in length. In other embodiments, oligonucleotides are 12, 13, 14, 15, 16. 17, 18, 19, or 20 to 40 nucleotides in length. Oligonucleotides can be single stranded or double stranded, e.g., for use in the construction of a mutant gene. Oligonucleotides can be senseorantisnse oligonucleotides. An oligonucleotide can include a label, including a radiolabel, a fluorescent label, a hapten or an antigenic label, for detection assays. Oligonucleotides can be used, for example, as PCR primers, cloning primers or hybridization probes. An "isolated nucleic acid molecule" means a DNA or RNA of genomic, mRNA, cDNA, orsynthetic origin or some combination thereof which is not associated with all or a portion of a polynucleotide in which the isolated polynucleotide is found in nature, or is linked to a polynucleotideto which it is not linked in nature. For purposes of this disclosure, it is understood that "a nucleic acid molecule comprising" a particular nucleotide sequence does not encompass intact chromosomes. Isolated nucleic acid molecules "comprising" specified nucleic acid sequences can include, in addition to the specified sequences, coding sequences for up to ten or even up to twenty other proteins or portions thereof, or can include operably linked regulatory sequences that control expression of the coding region of the recited nucleic acid sequences, and/or can include vector sequences. Unless specified otherwise, the left-hand end of any single-stranded polynucleotide sequence discussed herein is the 5' end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5' direction. The direction of 5' to 3' addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 5'to the 5' end of the RNA transcript are referred to as "upstrean sequences;" sequence regions on the DNA strand having the same sequence as the RNA transcript that are 3' to the 3' end of the RNA transcript are referred to as "downstream sequences." The term "control sequence" refers to a polynucleotide sequence that can affect the expression and processing of coding sequences to which it is ligated. The nature of such control sequences can depend upon the host organism. In particular embodiments, control sequences for prokaryotes can include a promoter, a ribosomal binding site, and a transcription termination sequence. For example, control sequences for eukaryotes can include promoters comprising one or a plurality of recognition sites for transcription factors, transcription enhancer sequences, and transcription termination sequence. "Control sequences" can include leader sequences and/or fusion partner sequences. The term "vector" means any molecule or entity (e.g., nucleic acid, plasmid, bacteriophage or virus) used to transfer protein coding information into a host cell The term "expression vector" or "expression construct" refers to a vector that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and/or control (in conjunction with the host cell) expression of one or more heterologous coding regions operatively linked thereto. An expression construct can include, but is not limited to, sequences that affect or control transcription, translation, and, if introns are present, affect RNA splicing of a coding region operably linked thereto. As used herein, "operably linked" means that the components to which the term is applied are in a relationship that allows them to carry out their inherent functions under suitable conditions. For example, a control sequence in a vector that is "operably linked" to a protein coding sequence is ligated thereto so that expression of the protein coding sequence is achieved under conditions compatible with the transcriptional activity of the control sequences. The term "host cell" means a cell that has been transformed, or is capable of being transformed, with a nucleic acid sequence and thereby expresses a gene of interest. The term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent cell, so long as the gene of interest is present. The term "transduction" means the transfer of genes from one bacterium to another, usually by bacteriophage. "Transduction" also refers to the acquisition and transfer ofeukaryotic cellular sequences by replication-defective retroviruses.
The term "transfection" means the uptake of foreign or exogenous DNA by a cell, and a cell has been "transfected" when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art and are disclosed herein. See, e.g., Graham ei al., (1973) Virolog 52:456; Sambrook et a., (2001) Molecular Cloning: A Laboratory Manual, supra; Davis et al., (1986) BasicMethods in Molecular Biology, Elsevier; Chu et a/, (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells. The term "transformation" refers to a change in a cell's genetic characteristics, and a cell has been transformed when it has been modified to contain new DNA or RNA. For example, a cell is transformed where it is genetically modified from its native state by introducing new genetic material via transfection, transduction, or other techniques. Following transfection or transduction, the transforming DNA can recombine with that of the cell by physically integrating into a chromosome of the cell, or can be maintained transiently as an episomal element without being replicated, or can replicate independently as a plasmid. A cell is considered to have been "stably transformed" when the transforming DNA is replicated with the division of the cell. The terms "polypeptide" or "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms also apply to amino acid polymers in which one or more amino acid residues is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The terms can also encompass anino acid polymers that have been modified, e.g.by the addition of carbohydrate residues to form glycoproteins. or phosphorylated. Polypeptides and proteins can be produced by a naturally-occurring and non-recombinant cell, or polypeptides and proteins can be produced by a genetically-engineered or recombinant cell. Polypeptides and proteins can comprise molecules having the amino acid sequence of a native protein, or molecules having deletions from, additions to, and/or substitutions of one or more amino acids of the native sequence. The terms polypeptided" and "protein" encompass antigen binding proteins that specifically or selectively
bind (i) f-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, or sequences that have deletions from, additions to, and/or substitutions of one or more amino acids of an antigen binding protein that specifically or selectively binds (i) B-Klotho; (ii) FGFR lc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising P-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4. The term "polypeptide fragment" refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length protein. Such fragments can also contain modified amino acids as compared with the full-length protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments can be at least 5, 6, 8, 10, 14 20, 50, 70, 100, 110, 150, 200, 250, 300, 350. 400, or 450 amino acids long. Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains. In the case of an antigen binding protein that binds to (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c. FGFR3c, and FGFR4, useful fragments include but are not limited to a CDR region, a variable domain of a heavy or light chain, a portion of an antibody chain orjust its variable region including two CDRs. and the like. The term "isolated protein" referred means that a subject protein (1) is free of at least some other proteins with which it would normally be found, (2) is essentially free of other proteins from the same source, e.g., from the same species, (3) is expressed by a cell from a different species, (4) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is associated in nature, (5) is operably associated (by covalent or noncovalent interaction) with a polypeptide with which it is not associated in nature, or (6) does not occur in nature. Typically, an "isolated protein" constitutes at least about 5%, at least about 10%, at least about 25%, or at least about 50% of a given sample. Genomic D DNA, cDNA, mRNA or other RNA, of synthetic origin, or any combination thereof can encode such an isolated protein. Preferably, the isolated protein is substantially free from proteins or polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic, research or other use. A "variant" of a polypeptide (e.g, an antigen binding protein, or an antibody) comprises an amino acid sequence wherein one or more amino acid residues are inserted into, deleted from and/or substituted into the amino acid sequence relative to another polypeptide sequence. Variants include fusion proteins. A "derivative" of a polypeptide is a polypeptide (e.g.an antigen binding protein, or an antibody) that has been chemically modified in some manner distinct from insertion, deletion, or substitution variants, e.g., by conjugation to another chemical moiety.
The term "naturally occurring" as used throughout the specification in connection with biological materials such as polypeptides, nucleic acids, host cells, and the like, refers to materials which are found in nature. "Antigen binding region" means a protein, or a portion of a protein, that specifically binds a specified antigen, e.g., FGFRIc, $-Klotho or both FGFRIc and -Klotho. For example, that portion of an antigen binding protein that contains the amino acid residues that interact with an antigen and confer on the antigen binding protein its specificity and affinity for the antigen is referred to as "antigen binding region." An antigen binding region typically includes one or more "complementary binding regions" ("CDRs"). Certain antigen binding regions also include one or more "framework" regions. A "CDR" is an amino acid sequence that contributes to antigen binding specificity and affinity. "Framework" regions can aid in maintaining the proper conformation of the CDRs to promote binding between the antigen binding region and an antigen. In certain aspects, recombinant antigen binding proteins that bind (i) D-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising J-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4, are provided. In this context, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as described herein. Methods and techniques for the production of recombinant proteins are well known in the art. The term "compete" when used in the context of antigen binding proteins (e.g., neutralizing antigen binding proteins, neutralizing antibodies, agonistic antigen binding proteins, agonistic antibodies and binding proteins that bind to (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4) that compete for the same epitope or binding site on a target means !5 competition between antigen binding proteins as determined by an assay in which the antigen binding protein (e.g., antibody or immunologically functional fragment thereof) under study prevents or inhibits the specific binding of a reference molecule (e.g., a reference ligand, or reference antigen binding protein, such as a reference antibody) to a common antigen (e,g., FGFRIc, FGFR2c, FGFR3c, FGFR4, -Klotho or a fragment thereof). Numerous types of '0 competitive binding assays can be used to determine if a test molecule competes with a reference molecule for binding, Examples of assays that can be employed include solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see, e.g., Stabli ei al., (1983) methods in Enzmology9:242-253) solid phase direct biotin-avidin EIA (seee.g., Kirkland et a/., (1986)J. bmunol. 137:3614 3619) solid phase direct labeled assay, solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, (1988) Antibodies, A Laborato- Manual, Cold Spring Harbor Press): solid phase direct label RIA using 1-125 label (see, e.g., Morel et a, (1988) Molec. mmunol.25:7 15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al., (1990) VirologI _7:546-552); and direct labeled RIA (Moldenhauer ei a/t (1990) Scand. J. Immunol. 32:77-82). Typically, such an assay involves the use of a purified antigen bound to a solid surface or cells bearing either of an unlabelled test antigen binding protein or a labeled reference antigen binding protein. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein. Usually the test antigen binding protein is present in excess. Antigen binding proteins identified by competition assay (competing antigen binding proteins) include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur. Additional details regarding methods for determining competitive binding are provided in the examples herein. Usually, when a competing antigen binding protein is present in excess, it will inhibit specific binding of a reference antigen binding protein to a common antigen byat least 40%,45%,50%,55%,60%,65%,70% or75%. Insome instance, binding is inhibited by at least 80%, 85%, 90%, 95%, or 97% or more. The term "antigen" refers to a molecule or a portion of a molecule capable of being bound by a selective binding agent, such as an antigen binding protein (including, e.g., an antibody or immunological functional fragment thereof), and may also be capable of being used .5 in an animal to produce antibodies capable of binding to that antigen. An antigen can possess one or more epitopes that are capable of interacting with different antigen binding proteins, e.g., antibodies. The term "epitope" means the amino acids of a target molecule that are contacted by an antigen binding protein (for example, an antibody) when the antigen binding protein is bound to the target molecule. The term includes any subset of the complete list of amino acids of the target molecule that arc contacted when an antigen binding protein, such as an antibody, is bound to the target molecule. An epitope can be contiguous or non-contiguous (e.g. (i) in a single chain polypeptide, amino acid residues that are not contiguous to one another in the polypeptide sequence but that within in context of the target molecule are bound by the antigen binding protein, or (ii) in a multimeric receptor comprising two or more individual components, e.g., (i) FGFRIc, FGFR2c, FGFR3c or FGFR4, and (ii) 3-Klotho, amino acid residues that are present on one or more of the individual components, but which are still bound by the antigen binding protein). In certain embodiments, epitopes can be mimetic in that they comprise a three dimensional structure that is similar to an antigenic epitope used to generate the antigen binding protein, yet comprise none or only some of the amino acid residues found in that epitope used to generate the antigen binding protein. Most often, epitopes reside on proteins, but in some instances can reside on other kinds of molecules, such as nucleic acids. Epitope determinants can include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl or sulfonyl groups, and can have specific three dimensional structural characteristics, and/or specific charge characteristics. Generally, antigen binding proteins specific for a particular target molecule will preferentially recognize an epitope on the target molecule in a complex mixture of proteins and/or macromolecules. The term "identity" refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. "Percent identity" means the percent of identical residues between the amino acids or nucleotides in the compared molecules and is calculated based on the size of the smallest of the molecules being compared. For these calculations, gaps in alignments (if any) must be addressed by a particular mathematical model or computer program (i.e., an "algorithm").Methods that can be used to calculate the identity of the aligned nucleic acids or polypeptides include those described in ComputationalMolecular Biologv, (Lesk, A. M., ed.), (1988) New York: Oxford University Press; Bliocomputing Informatics and Genome Projects, (Smith, D. W., ed.), 1993, New York: Academic Press; Computer Analysis of Sequence Data, Part 1, (Griffin, A. M., and Griffin, H. G., eds.). 1994, New Jersey: Humana Press; von einje, G., (1987) Sequence Analysis in Molecular Biology, New York: Academic Press; Sequence Analysis Primer, (Gribskov, M. and Devereux, J., eds.), 1991, New York: M. Stockton Press; and Carillo et a., (1988) S/AMJ. Applied Math.48:1073.
In calculating percent identity, the sequences being compared are aligned in a way that gives the largest match between the sequences. The computer program used to determine
percent identity is the GCG program package, which includes GAP (Devereux et a/, (1984) Nuc/.Acid Res. 1:387; Genetics Computer Group, University of Wisconsin, Madison, WI). The computer algorithm GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined. The sequences are aligned for optimal matching of their respective amino acid or nucleotide (the "matched span", as determined by the algorithm). A gap opening penalty (which is calculated as 3x the average diagonal, wherein the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see, Dayhoff er a/, (1978) Atlas of'Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., (1992) Proc. Nat.Acad. Sc.U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm. Recommended parameters for determining percent identity for polypeptides or nucleotide sequences using the GAP program are the following: Algorithm: Needleman et al., 1970, J Mol, Biol. 48:443-453 D Comparison matrix: BLOSUM 62 from Henikoff et a/., 1992, supra; Gap Penalty: 12 (but with no penalty for end gaps) Gap Length Penalty: 4 Threshold of Similarity: 0 Certain alignment schemes for aligning two amino acid sequences can result in matching of only a short region of the two sequences, and this small aligned region can have very high sequenceidentity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (e.g., the GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide. As used herein, "substantially pure" means that the described species of molecule is the predominant species present, that is, on a molar basis it is more abundant than any other individual species in the same mixture. In certain embodiments, a substantially pure molecule is a composition wherein the object species comprises at least 50% (on a molar basis) of all macromolecular species present. In other embodiments, a substantially pure composition will comprise at least 80%, 85%, 90%, 95%, or 99% of all macromolecular species present in the composition. In other embodiments, the object species is purified to essential homogeneity wherein contaminating species cannot be detected in the composition by conventional detection methods and thus the composition consists of asingle detectable macromolecular species. The terms "treat" and "treating" refer to any indicia of success in the treatment or amelioration of an injury, pathology or condition, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the injury, pathology or condition more tolerable to the patient; slowing in the rate of degeneration or decline; making the final point of degeneration less debilitating; improving a patient's physical or mental well-being. The treatment or amelioration of symptoms can be based on objective or subjective parameters; including the results of a physical examination, neuropsychiatric exams, and/or a psychiatric evaluation. For example, certain methods presented herein can be employed to treat Type 2 diabetes, obesity and/or dyslipidemia, either prophylactically or as an acute treatment, to decrease plasma glucose levels, to decrease circulating triglyceride levels, to decrease circulating cholesterol levels and/or ameliorate a symptom associated with type 2 diabetes, obesity and dyslipidemia. An "effective amount" is generally an amount sufficient to reduce the severity and/or frequency ofsymptoms, eliminate the symptoms and/or underlying cause, prevent the occurrence of symptoms and/or their underlying cause, and/or improve or remediate the damage that results from or is associated with diabetes, obesity and dyslipidemia, In some embodiments, the effective amount is a therapeutically effective amount or a prophylactically effective amount. A .5 "therapeutically effective amount" is an amount sufficient to remedy a disease state (e.g., diabetes, obesity or dyslipidemia) or symptoms, particularly a state or symptoms associated with the disease state, or otherwise prevent, hinder, retard or reverse the progression of the disease state or any other undesirable symptom associated with the disease in any way whatsoever. A "prophylactically effective amount" is an amount of a pharmaceutical composition that, when administered to a subject, will have the intended prophylactic effect, e.g.,preventingordelaying the onset (or reoccurrence) of diabetes, obesity or dyslipidemia, or reducing the likelihood of the onset (or reoccurrence) of diabetes, obesity or dyslipidemia or associated symptoms. The full therapeutic or prophylactic effect does not necessarily occur by administration of one dose, and can occur only after administration of a series of doses. Thus, a therapeutically or prophylactically effective amount can be administered in one or more administrations. "Amino acid" takes its normal meaning in the art. The twenty naturally-occurring amino acids and their abbreviations follow conventional usage. See, Immunology-A Synthesis, 2"d Edition, (E. S. Golub and D. R. Green,eds.), Sinauer Associates: Sunderland, Mass. (1991), incorporated herein by reference for any purpose. Stercoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural or non-naturally occurring amino acids such as -, D disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids can also be suitable components for polypeptides and are included in the phrase "amino acid." Examples of non-naturally amino acids (which can be substituted for any naturally-occurring amino acid found in any sequence disclosed herein, as desired) include: 4-hydroxyproline, y carboxyglutamate. c-N,N,N-trimethyllysine, c-N-acetyllysine, 0-phosphoscrinc, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, a-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention. A non-limiting lists of examples of non-naturally occurring amino acids that can be inserted into an antigen 3 binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include P-amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains. Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit),Na-methylcitrulline (NMeCit), N-methylhomocitrulline (Na-McHoCit), ornithine (Orn), Na-Methylornithine (Na-MeOrn or NMeOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), N-methylarginine (NMcR), Na-methylleucine (Na-McL or NMcL), N-methylhomolysine (NMeHoK), Na methylglutamine (NMcQ), norleucine (Nic), norvaline (Na), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2-carboxylic acid (Oic), 3-(1-naphthyl)alanine (1-Nal), 3-(2 naphthyl)alanine (2-Nal), 1,2,3,4-tetrahydroisoquinoline (Tic), 2-indanylglycine (Igl), para iodophenylalanine (pI-Phe), para-aminophenylalanine (4AmP or 4-Amino-Phe), 4-guanidino phenylalanine (Guf), glycyllysine (abbreviated "K(N-glycyl)" or "K(glycyl)" or "K(gly)"), nitrophenylalanine (nitrophe), aminophenylalanine (aminophe or Amino-Phe), benzylphenylalanine (benzylphe), y-carboxyglutamic acid (y-carboxyglu), hydroxyproline (hydroxypro), p-carboxyl-phenylalanine (Cpa), a-aminoadipic acid (Aad), Na-methyl valine (NMeVal), N-a-methyl leucine (NMeLeu), Na-methylnorleucine (NMcNle), cyclopentylglycine (Cpg), cyclohexylglycine (Chg), acetylarginine (acetylarg), a, p-diaminopropionoic acid (Dpr), a, y-diaminobutyric acid (Dab), diaminopropionic acid (Dap), cyclohcxylalanine (Cha), 4 methyl-phenylalanine (McPhe), P, p-diphenyl-alanine (BiPhA), aminobutyric acid (Abu), 4 phenyl-phenylalanine (or biphenylalanine; 4Bip), a-amino-isobutyric acid (Aib), beta-alanine, beta-aminopropionic acid, piperidinic acid, aminocaprioic acid, aminoheptanoic acid, aminopimelic acid, desmosine, diaminopimelic acid. N-ethylglycine, N-ethylaspargine, hydroxylysine, allo-hydroxylysine, isodesmosine, allo-isoleucine, N-methylglycine, N-methylisoleucine, N-methylvaline. 4-hydroxyproline (Hyp), y-carboxyglutamate, .- N,N,N trimethyllysine, e-N-acetyllysine, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, w-methylarginine, 4-Amino--Phthalic Acid (4APA), and other similar amino acids, and derivatized forms of any of those specifically listed.
IL GENERAL OVERVIEW Antigen-binding proteins that bind (i) D-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, are provided herein. A unique property of the antigen binding proteins disclosed herein is the agonistic nature of these proteins, specifically the ability to mimic the in ivo effect of FGF21 and to induce FGF21-like signaling. More remarkably and specifically, some of the antigen binding proteins disclosed herein induce FGF21-like signaling in several in vitro cell based assay, including the ELK-luciferase reporter assay of Example 5 under the following conditions: (1) the binding to and activity of the FGF21 receptor is -Klotho dependent; (2) the activity is selective to FGFR]c/Klotho complex; (3) the binding to the FGFRlc/Klotho triggers FGF2-likc signaling pathways; and (4) the potency (EC50) is comparable to a wild type FGF21 standard comprising the mature form of SEQ ID NO:2, as measured in the following cell-based assays: (I) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 5; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 5; and (3) ERK-phosphorylation in human adipocytes as described in more details in
Example 7. The disclosed antigen binding proteins, therefore, are expected to exhibit activities in vivo that are consistent with the natural biological function of FGF21. This property makes the disclosed antigen binding proteins viable therapeutics for the treatment of metabolic diseases such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21. In some embodiments of the present disclosure the antigen binding proteins provided can comprise polypeptides into which one or more complementary determining regions (CDRs) can be embedded and/orjoined. In such antigen binding proteins, the CDRs can be embedded into a "framework" region, which orients the CDR(s) such that the proper antigen binding properties of the CDR(s) is achieved. In general, such antigen binding proteins that are provided can facilitate or enhance the interaction between FGFRIc and -Klotho, and can substantially induce FGF2I like signaling. Certain antigen binding proteins described herein are antibodies or are derived from antibodies. In certain embodiments, the polypeptide structure of the antigen binding proteins is based on antibodies, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as "antibody mimetics"), chimeric antibodies, humanized antibodies, human antibodies, antibody fusions (sometimes referred to herein as "antibody conjugates"), hemibodies and fragments thereof. The various structures are further described herein below. The antigen binding proteins provided herein have been demonstrated to bind to (i) Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4 or (iii) a complex comprising P-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, and particularly to (i) human -Klotho; (ii) human FGFRlc, human FGFR2c, human FGFR3c or human FGFR4; or (iii) a complex comprising human -Klotho and one of human FGFRIc, human FGFR2c, human FGFR3c, and human FGFR4. As described and shown in the Examples presented herein, based the Western blot results, commercially-available anti-P-Klotho or anti-FGFR I c antibodies bind to denatured f-Klotho or FGFRIc whereas the antigen binding protein (agonistic antibodies) do not. Conversely, the provided antigen binding proteins recognize the native structure of the FGFRlc and P-Klotho on the cell surface whereas the commercial antibodies do not, based on the FACS results provided. See Example 9. The antigen binding proteins that are provided therefore mimic the natural in vivo biological activity of FGF21. As a consequence, the antigen binding proteins provided herein are capable of activating FGF2-like signaling activity. In particular, the disclosed antigen binding proteins can have one or more of the following activities in vivo: induction of FGF21-like signal transduction pathways, lowering blood glucose levels, lowering circulating lipid levels, improving metabolic parameters and other physiological effects induced in iro by the formation of the ternary complex of FGFRIc, -Klotho and FGF21, for example in conditions such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome. The antigen binding proteins that specifically bind to (i) -Klotho; (ii) FGFR Ic. FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 that are disclosed herein have a variety of utilities. Some of the antigen binding proteins, for instance, are useful in specific binding assays, in the affinity purification of (i) f-Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRle, FGFR2c, FGFR3c, and FGFR4, including the human forms of these disclosed proteins, and in screening assays to identify other agonists of FGF2-like signaling activity. The antigen binding proteins that specifically bind (i) B-Klotho; (ii) FGFRIc, FGFR2c, FGFR3e or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 that are disclosed herein can be used in a variety of treatment applications, D as explained herein. For example, certain antigen binding proteins are useful for treating conditions associated with FGF2-like signaling processes in a patient, such as reducing, alleviating, or treating type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome. Other uses for the antigen binding proteins include, for example, diagnosis of diseases or conditions associated with D-Klotho,. FGFRIc, FGFR2c, FGFR3c, FGFR4 or :5 FGF21, and screening assays to determine the presence or absence of these molecules. Some of the antigen binding proteins described herein can be useful in treating conditions, symptoms and/or the pathology associated with decreased FGF2-like signaling activity. Exemplary conditions include, but are not limited to, diabetes, obesity, NASH and dyslipidemia.
FGF21 The antigen binding proteins disclosed herein induce FGF21-mediated signaling, as defined herein. In vivo, the mature form of FGF21 is the active form of the molecule. The nucleotide sequence encoding full length FGF21 is provided; the nucleotides encoding the signal sequence are underlined. ATO GAC TCG GAC GAG ACC GGG TTC GAG CAC TCA GGA CTG TGG GTT TCT GTG CTG GCTGGT CTTCTG CTG GGA GCCTGC CAG GCACACCCATCCCTGACTCC AGT CCT CTC CTG CAA TTC GGG GGC CAA GTC CGG CAG CGG TAC CTC TAC ACA GAT GAT GCC CAG CAG ACA GAA GCC CAC CTG GAG ATC AGG GAG GAT GGG ACG GTG GGG GGC GCT GCT GAC CAG AGC CCC GAA AGT CTC CTG CAG CTG AAA GCC TTG AAG CCG GGA GTT ATT CAA ATC TTG GGA GTC AAG ACA TCC AGG TTC CGTGGC CAG CGG CCA GAT GGG GCC CTG TAT GGA TCG CTC CACTT GAC CCT GAG GCC TGC AGC TTC CGG GAG CTG CTT CTT GAG GAC GGA TAC AAT GTT TAC CAG TCC GAA GCC CAC GGC CTC CCG CTG CAC CTG CCA GGG AAC AAG TCCCA CAC COG GAC CCT GCA CCC CGA GGA CCA GCT CGC TTC CTG CCA CTA CCAGGCCTGCCCCCCGCACCCCCGGAGCCACCCGGAATCCTGGCCCCCCAG CCC CCC GAT GTG GGC TCC TCG GAC CCT CTG AGC ATG GTG GGA CCT TCC CAG GGC CGA AGC CCC AGC TAC GCT TCC TGA (SEQ ID NO: 1)
The amino acid sequence of full length FGF21 is provided; the amino acids that make ip the signal sequence are underlined: MDSDETGFEHSOLWVSVLAGLLLGACOAHPIPDSSPLLQFGGQ VRQRYLYTDDAQQTEAHLEIREDGTVGGAADQSPESLLQLKA LKP0VIQIL0VKSRFLCQRPD3GALYGSLH-FDPEAGSFRELLLE DGYNVYQSEAHGLPLHLPGNKSPHRDPAPRGPARFLPLPGLPP A P P E P P G I L A P Q P P D V G S S D P L S M V G P S Q G R S P S Y A S (SEQ ID NO: 2)
FGFRc The antigen binding proteins disclosed herein bind to FGFR Ic, in particular human FGFRIc, when associated with -Klotho. The nucleotide sequence encoding human FGFRIc (GenBank Accession Number NM_023110) is provided: ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCC ACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAG CCCTGGGGAGCCCCTGTGGAAGTOGAGTCCTTCCTGGTCCACCCCGGT GACCTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATC AACTGGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCG
CATCACAGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACT CCGGCCTCTATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCA CCTACTTCTCCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGA TGATGATGATGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACA CCAAACCAAACCGTATGCCCGTAGCTCCATATTGGACATCACCAGAAA AGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGAAG TTCAAATGCCCTTCCAGTGGGACACCAAACCCAACACTGCGCTGGTTG AAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAA GGTCCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTC TGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCA TCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGC CCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGT AGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGCAC ATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCC AGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATAC CACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGA GGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTC CCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCC GGCAGTGATGACCTCGCCCCTGTACCTGGAGATCATCATCTATTGCAC D AGGGGCCTTCCTCATCTCCTGCATGGTGGGGTCGGTCATCGTCTACAA GATGAAGAGTGCTACCAAGAAGAGTGACTTCCACAGCCAGATGGCTG TGCACAAGCTGGCCAAGAGCATCCCTCTGCGCAGACAGGTAACAGTG TCTGCTGACTCCAGTGCATCCATGAACTCTGGGGTTCTTCTGGTTCGGC CATCACGGCTCTCCTCCAGTGGGACTCCCATGCTAGCAGGGGTCTCTG AGTATGAGCTTCCCGAAGACCCTCGCTGGGAGCTGCCTCGGGACAGAC TGGTCTTAGGCAAACCCCTGGGAGAGGGCTGCTTTGGGCAGGTGGTGT TGGCAGAGGCTATCGGGCTGGACAAGGACAAACCCAACCGTGTGACC AAAGTGGCTGTGAAGATGTTGAAGTCGGACGCAACAGAGAAAGACTT GTCAGACCTGATCTCAGAAATGGAGATGATGAAGATGATCGGGAAGC ATAAGAATATCATCAACCTGCTGGGGGCCTGCACGCAGGATGGTCCCT TGTATGTCATCGTGGAGTATGCCTCCAAGGGCAACCTGCGGGAGTACC
TGCAGGCCCGGAGGCCCCCAGGGCTGGAATACTGCTACAACCCCAGC CACAACCCAGAGGAGCAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCC TACCAGGTGGCCCGAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATA CACCGAGACCTGGCAGCCAGGAATGTCCTGGTGACAGAGGACAATGT GATGAAGATAGCAGACTTTGGCCTCGCACGGGACATTCACCACATCGA CTACTATAAAAAGACAACCAACGGCCGACTGCCTGTGAAGTGGATGG CACCCGAGGCATTATTTGACCGGATCTACACCCACCAGAGTGATGTGT GGTCTTTCGGGGTGCTCCTGTGGGAGATCTTCACTCTGGGCGGCTCCCC ATA CCCCGGTGTGCCTGTGGAGGAACTTTTCAAGCTGCTGAAGGAGGG TCACCGCATGGACAAGCCCAGTAACTGCACCAACGAGCTGTACATGAT GATGCGGGACTGCTGGCATGCAGTGCCCTCACAGAGACCCACCTTCAA GCAGCTGGTGGAAGACCTGGACCGCATCGTGGCCTTGACCTCCAACCA GGAGTACCTGGACCTGTCCATGCCCCTGGACCAGTACTCCCCCAGCTT TCCCGACACCCGGAGCTCTACGTGCTCCTCAGGGGAGGATTCCGTCTT CTCTCATGAGCCGCTGCCCGAGGAGCCCTGCCTGCCCCGACACCCAGC CCAGCTTGCCAATGGCGGACTCAAACGCCGCTGA (SEQ ID NO:3).
The amino acid sequence of human FGFRIc (GenBank Accession Number NP075598) is provided: MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPG DLLQLRCRLRDDVQSINWLR.DGVQLAESNRTRITGEEVEVQDSVPADSGL YACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNR MPVAPYWTSPEKMEKKLIHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEF KPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDV VERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPH IQWLKHIEVNG SKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSI GLSHHSAWLTVLEALEERPAVMTSPLYLEIIIYCTGAFLISCMVGSVIVYK MKSGTKKSDFHSQMAVHKLAKSIPLRRQVTVSADSSASMNSGVLLVRPS RLSSSGTPMLAGVSEYELPEDPRWELPRDRLVLGKPLGEGCFGQVVLAEA IGLDKDKPNRVTKVAVKMLKSDATEKDLSDLISEMEMMKMIGKHKNIIN LLGACTQDGPLYVIVEYASKGNLREYLQARRPPGLEYCYNPSHNPEEQLS
SKDLVSCAYQVARGMEYLASKKCIHRDLAARNVLVTEDNVMKIADFGL ARDIHHIDYYKKTTNGRLPVKWMAPEALFDRIYTHQSDVWSFGVLLWEI FTLGGSPYPGVPVEELFKLLKEGHRMDKPSNCTNELYMMMRDCWHAVP SQRPTFKQLVEDLDR1VALTSNQEYLDLSMPLDQYSPSFPDTRSSTCSSGE DSVFSHEPLPEEPCLPRHPAQLANGGLKRR (SEQ ID NO: 4).
The antigen binding proteins described herein bind the extracellular portion of FGFRIc. An example of an extracellular region of FGFR I cis: MWSWKC LL FWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDL LQL RCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPADSGLYACVTSSPS GSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETDNTKPNRMPVAPY WTSPEKM EKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHRIGGYKVRYATWSI IMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSPHRPILQAGLPANKTVALG SNVEFMCKVYSDPQPIIIQWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEME VLHLRNVSFEDAGEYTCLAGNSIGLSHHSAWLTVLEALEERPAVMTSPLY (SEQ ID NO: 5).
As described herein, FGFRIc proteins can also include fragments. As used herein, the terms are used interchangeably to mean a receptor, in particular and unless otherwise specified, a o human receptor, that upon association with -Klotho and FGF21 induces FGF21-like signaling activity. The term FGFRic also includes post-translational modifications of the FGFRlc amino acid sequence, for example, possible N-linked glycosylation sites. Thus, the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions,
-Klotho The antigen binding proteins disclosed herein bind to S-Klotho, in particular human P Klotho. The nucleotide sequence encoding human -Klotho (GenBank Accession Number NM_175737) isprovided: ATGAAGCCAGGCTGTGCGGCAGGATCTCCAGGGAATGAATGGATTTTC TTCAGCACTGATGAAATAACCACACGCTATAGGAATACAATGTCCAAC
GGGGGATTGCAAAGATCTGTCATCCTGTCAGCACTTATTCTGCTACGA GCTGTTACTGGATTCTCTGGAGATGGAAGAGCTATATGGTCTAAAAAT CCTAATTTTACTCCGGTAAATGAAAGTCAGCTGTTTCTCTATGACACTT TCCCTAAAAACTTFTTCTGGGGTATTGGGACTGGAGCATTGCAAGTGG AAGGGAGTTGGAAGAAGGATGGAAAAGGACCTTCTATATGGGATCAT TTCATCCACACACACCTTAAAAATGTCAGCAGCACGAATGGTTCCAGT GACAGTTATATTTTTCTGGAAAAAGACTTATCAGCCCTGGATTTTATAG GAGTTTCTTTTTATCAATTTTCAATTTCCTGGCCAAGGCTTTTCCCCGAT GGAATAGTAACAGTTGCCAACGCAAAAGGTCTGCAGTACTACAGTACT CTTCTGGACGCTCTAGTGCTTAGAAACATTGAACCTATAGTTACTTTAT ACCACTGGGATTTGCCTTTGGCACTACAAGAAAAATATGGGGGGTGGA AAAATGATACCATAATAGATATCTTCAATGACTATGCCACATACTGTT TCCAGATGTTTGGGGACCGTGTCAAATATTGGATTACAATTCACAACC CATATCTAGTGGCTTGGCATGGGTATGGGACAGGTATGCATGCCCCTG GAGAGAAGGGAAATTTAGCAGCTGTCTACACTGTGGGACACAACTTG ATCAAGGCTCACTCGAAAGTTTGGCATAACTACAACACACATTTCCGC CCACATCAGAAGGGTTGGTTATCGATCACGTTGGGATCTCATTGGATC GAGCCAAACCGGTCGGAAAACACGATGGATATATTCAAATGTCAACA ATCCATGGTTTCTGTGCTTGGATGGTTTGCCAACCCTATCCATGGGGAT GGCGACTATCCAGAGGGGATGAGAAAGAAGTTGTTCTCCGTTCTACCC ATTTTCTCTGAAGCAGAGAAGCATGAGATGAGAGGCACAGCTGATTTC TTTGCCTTTTCTTTTGGACCCAACAACTTCAAGCCCCTAAACACCATGG CTAAAATGGGACAAAATGTTTCACTTAATTTAAGAGAAGCGCTGAACT GGATTAAACTGGAATACAACAACCCTCGAATCTTGATTGCTGAGAATC GC'TGGTTCACAGACAGTCGTGTGAAAACAGAAGACACCACGGCCATC TACATGATGAAGAATTTCCTCAGCCAGGTGCTTCAAGCAATAAGGTTA GATGAAATACGAGTGTTTGGTTATACTGCCTGGTCTCTCCTGGATGGCT TTGAATGGCAGGATGCTTACACCATCCGCCGAGGATTATTTTATGTGG ATTTTAACAGTAAACAGAAAGAGCGGAAACCTAAGTCTTCAGCACACT ACTACAAACAGATCATACGAGAAAATGGTTTTTCTTTAAAAGAGTCCA CGCCAGATGTGCAGGGCCAGTTTCCCTGTGACTTCTCCTGGGGTGTCA
CTGAATCTGTTCTTAAGCCCGAGTCTGTGGCTTCGTCCCCACAGTTCAG CGATCCTCATCTGTACGTGTGGAACGCCACTGGCAACAGACTGTTGCA CCGAGTGGAAGGGGTGAGGCTGAAAACACGACCCGCTCAATGCACAG ATTTTGTAAACATCAAAAAACAACTTGAGATGTTGGCAAGAATGAAA GTCACCCACTACCGGTTTGCTCTGGATTGGGCCTCGGTCCTTCCCACTG GCAAC('TGTCCGCGGTGAACCGACAGGCCCTGAGGTACTACAGGTGC GTGGTCAGTGAGGGGCTGAAGCTTGGCATCTCCGCGATGGTCACCCTG TATTATCCGACCCACGCCCACCTAGGCCTCCCCGAGCCTCTGTTGCAT GCCGACGGGTGGCTGAACCCATCGACGGCCGAGGCCTTCCAGGCCTA CGCTGGGCTGTGCTTCCAGGAGCTGGGGGACCTGGTGAAGCTCTGGAT CACCATCAACGAGCCTAACCGGCTAAGTGACATCTACAACCGCTCTGG CAACGACACCTACGGGGCGGCGCACAACCTGCTGGTGGCCCACGCCC TGGCCTGGCGCCTCTACGACCGGCAGTTCAGGCCCTCACAGCGCGGGG CCGTGTCGCTGTCGCTGCACGCGGACTGGGCGGAACCCGCCAACCCCT ATGCTGACTCGCACTGGAGGGCGGCCGAGCGCTTCCTGCAGTTCGAGA TCGCCTGGTTCGCCGAGCCGCTCTTCAAGACCGGGGACTACCCCGCGG CCATGAGGGAATACATTGCCTCCAAGCACCGACGGGGGCTTTCCAGCT CGGCCCTGCCGCGCCTCACCGAGGCCGAAAGGAGGCTGCTCAAGGGC ACGGTCGACTTCTGCGCGCTCAACCACTTCACCACTAGGTTCGTGATG D CACGAGCAGCTGGCCGGCAGCCGCTACGACTCGGACAGGGACATCCA GTTTCTGCAGGACATCACCCGCCTGAGCTCCCCCACGCGCCTGGCTGT GATTCCCTGGGGGGTGCGCAAGCTGCTGCGGTGGGTCCGGAGGAACT ACGGCGACATGGACATTTACATCACCGCCAGTGGCATCGACGACCAG GCTCTGGAGGATGACCGGCTCCGGAAGTACTACCTAGGGAAGTACCTT :5 CAGGAGGTGCTGAAAGCATACCTGATTGATAAAGTCAGAATCAAAGG CTATTATGCATTCAAACTGGCTGAAGAGAAATCTAAACCCAGATTTGG ATTCTTCACATCTGATTTTAAAGCTAAATCCTCAATACAATTTTACAAC AAAGTGATCAGCAGCAGGGGCTTCCCTTTTGAGAACAGTAGTTCTAGA TGCAGTCAGACCCAAGAAAATACAGAGTGCACTGTCTGCTTATTCCTT GTGCAGAAGAAACCACTGATATTCCTGGGTTGTTGCTTCTTCTCCACCC TGGTTCTACTCTTATCAATTCCATTTTTCAAAGGCAGAAGAGAAGAA
AGTTTTGGAAAGCAAAAAACTTACAACACATACCATTAAAGAAAGGC AAGAGAGTTGTTAGCTAA (SEQ ID NO:6).
The amino acid sequence of full length human -Klotho (GenBank Accession Number NP_783864) is provided: MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVJLSALILLRAVT GFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSWK KDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQFSI SWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPLALQ EKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGYGT GMHAPGEKGNLAAVYTVGHN LIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKK LF SVLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREA LNWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRL DEIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHY YKQIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPH LYVWNATGNRLLIH RVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHY RFALDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTH AHLGLPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNR LSDIYNRSGNDTYGAAHNLLVAHALAWRLYDRQFRPSQRGAVSLSLHAD WAEPANPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKH RRGLSSSALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSD RDIQFLQDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASG]DDQ ALEDDRLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFF TSDFKAKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPL IFLGCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO: 7).
The antigen binding proteins described herein bind the extracellular portion of P-Klotho. An example of an extracellular region of -Klotho is:
MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVLSALILLRAVTGFSG DGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSWKKDGKGPSI WDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQFSISWPRLFPDGIVTV ANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPLALQEKYGGWKNDTIDIFNDY ATYCFQMFGDRVKYWITIHNPYLVAWHGYGTGMHAPG EKGNLAAVYTVGHNL IKAISKVWIHNYNTHFRPHQKGWLSITLGSHWIEPNRSENTMDIFKCQQSMVSVL GWFANPIHGDGDYPEGMRKKLFSVLPIFSEAEKHEMRGTADFFAFSFGPNNFKPL NTMAKMGQNVSLNLREALNWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYM MKNFLSQVLQAIRLDEIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKE RKPKSSAHYYKQIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQF SDPH LYVWNATGNRLLH RVEGVRLKTRPAQCTDFVNIKKQLEM LARMKVTHY RFALDWASVLPTGN LSAVNRQALRYYRCVVSEGLKLISAMVTLYYPTHAH LG LPEPLLHIADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYNRSG NDTYGAAHNLLVAHA LAWRLYDRQFRPSQRGAVSLSLHADWAEPANPYADSH WRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSALPR.LTEAERR LLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQDITRLSSPTRLAVIPW GVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRLRKYYLGKYLQEVLKAYLI DKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAKSSIQFYNKVISSRGFPFENSSSRCS QTQENTECTVCLFLVQKKP (SEQ ID NO: 8.)
The murine forrm of -Klotho, and fragments and subsequences thereof, can be of use in studying and/or constructing the molecules provided herein. The nucleotide sequence encoding urine -Klotho (GenBank Accession Number NM_031180) is provided:
ATGAAGACAGGCTGTGCAGCAGGGTCTCCGGGGAATGAATGGATTTTCTTCA GCTCTGATGAAAGAAACACACGCTCTAGGAAAACAATGTCCAACAGGGCACT GCAAAGATCTGCCGTGCTGTCTGCGTTTGTTCTGCTGCGAGCTGTTACCGGCT TCTCCGGAGACGGGAAAGCAATATGGGATAAAAAACAGTACGTGAGTCCGG TAAACCCAAGTCAGCTGTTCCTCTATGACACTTTCCCTAAAAACTTTTCCTGG GGCGTTGGGACCGGAGCATTTCAAGTGGAAGGGAGTTGGAAGACAGATGGA AGAGGACCCTCGATCTGGGATCGGTACGTCTACTCACACCTGAGAGGTGTCA ACGGCACAGACAGATCCACTGACAGTTACATCTTTCTGGAAAAAGACTTGTT GGCTCTGGATTTTTTAGGAGTTTCTTTTTATCAGTT'CTCAATCTCCTGGCCACG GTTGTTTCCCAATGGAACAGTAGCAGCAGTGAATGCGCAAGGTCTCCGGTAC TACCGTGCACTTCTGGACTCGCTGGTACTTAGGAATATCGAGCCCATTGTTAC CTTGTACCATTGGGATTTGCCTCTGACGCTCCAGGAAGAATATGGGGGCTGG AAAAATGCAACTATGATAGATCTCTTCAACGACTATGCCACATACTGCTTCCA GACCTTTGGAGACCGTGTCAAATATTGGATTACAATTCACAACCCTTACCTTG TTGCTTGGCATGGGTTTGGCACAGGTATGCATGCACCAGGAGAGAAGGGAAA TTTAACAGCTGTCTACACTGTGGGACACAACCTGATCAAGGCACATTCGAAA GTGTGGCATAACTACGACAAAAACTTCCGCCCTCATCAGAAGGGTTGGCTCT CCATCACCTTGGGGTCCCATTGGATAGAGCCAAACAGAACAGACAACATGGA GGACGTGATCAACTGCCAGCACTCCATGTCCTCTGTGCTTGGATGGTTCGCCA ACCCCATCCACGGGGACGGCGACTACCCTGAGTTCATGAAGACGGGCGCCAT GATCCCCGAGTTCTCTGAGGCAGAGAAGGAOOAGGTGAGGGGCACGGCTGA TTTCTTTGCCTTTTCCTTCGGGCCCAACAACTTCAGGCCCTCAAACACCGTGG TGAAAATGGGACAAAATOTATCACTCAACTTAAGGCAGGTOCTGAACTGGAT TAAACTGOAATACGATGACCCTCAAATCTTGATTTCGGAGAACGGCTGGTTC ACAGATAGCTATATAAAGACAGAGGACACCACGGCCATCTACATGATGAAG AATTTCCTAAACCAGGTTCTTCAAGCAATAAAATTTGATGAAATCCGCGTGTT TGGTTATACGGCCTGGACTCTCCTGGATGGCTTTGAGTGGCAGGATGCCTATA CGACCCGACGAGGGCTGTTTTATGTGGACTTTAACAGTGAGCAGAAAGAGAG GAAACCCAAGTCCTCGGCTCATTACTACAAGCAGATCATACAAGACAACGGC TTCCCTTTGAAAGAGTCCACGCCAGACATGAAGGGTCGGTTCCCCTGTGATTT CTCTTGGGGAGTCACTGAGTCTGTTCTTAAGCCCGAGTTTACGGTCTCCTCCC CGCAGTTTACCGATCCTCACCTGTATGTGTGGAATGTCACTGGCAACAGATTG CTCTACCGAGTGGAAGGGGTAAGGCTGAAAACAAGACCATCCCAGTGCACA GATTATGTGAGCATCAAAAAACGAGTTGAAATGTTGGCAAAAATGAAAGTCA CCCACTACCAGTTTGCTCTGGACTGGACCTCTATCCTTCCCACTGGCAATCTG TCCAAAGTTAACAGACAAGTGTTAAGGTACTATAGGTGTGTGGTGAGCGAAG GACTGAAGCTGGGCGTCTTCCCCATGGTGACOTTGTACCACCCAACCCACTCC CATCTCGGCCTCCCCCTGCCACTTCTGAGCAGTGGGGGGTGGCTAAACATGA ACACAGCCAAGGCCTTCCAGGACTACGCTGAGCTGTGCTTCCGGGAGTTGGG GGACTTGGTGAAGCTCTGGATCACCATCAATGAGCCTAACAGGCTGAGTGAC ATGTACAACCGCACGAGTAATGACACCTACCGTGCAGCCCACAACCTGATGA TCGCCCATGCCCAGGTCTGGCACCTCTATGATAGGCAGTATAGGCCGGTCCA GCATGGGGCTGTGTCGCTGTCCTTACATTGCGACTGGGCAGAACCTGCCAAC CCCTTTGTGGATTCACACTOGAAGGCAGCCGAGCGCTTCCTCCAGTTTGAGAT CGCCTGGTTTOCAGATCCGCTCTTCAAGACTGGCGACTATCCATCGGTTATGA AGGAATACATCGCCTCCAAGAACCAGCGAGGGCTGTCTAGCTCAGTCCTGCC GCGCTTCACCGCGAAGGAGAGCAGGCTGGTGAAGGGTACCGTCGACTTCTAC GCACTGAACCACTTCACTACGAGGTTCGTGATACACAAGCAGCTGAACACCA ACCGCTCAGTTGCAGACAGGGACGTCCAGTTCCTGCAGGACATCACCCGCCT AAGCTCGCCCAGCCGCCTGGCTGTAACACCCTGGGGAGTGCGCAAGCTCCTT
GCGTGGATCCGGAGGAACTACAGAGACAGGGATATCTACATCACAGCCAATG GCATCGATGACCTGGCTCTAGAGGATGATCAGATCCGAAAGTACTACTTGGA GAAGTATGTCCAGGAGGCTCTGAAAGCATATCTCATTGACAAGGTCAAAATC AAAGGCTACTATGCATTCAAACTGACTGAAGAGAAATCTAAGCCTAGATTTG GATTTTTCACCTCTGACTTCAGAGCTAAGTCCTCTGTCCAGTTT TACAGCAAG CTGATCAGCAGCAGTGGCCTCCCCGCTGAGAACAGAAGTCCTGCGTGTGGTC AGCCTGCGGAAGACACAGACTGCACCATTTGCTCATTTCTCGTGGAGAAGAA ACCACTCATCTTCTTCGGTTGCTGCTTCATCTCCACTCTGGCTGTACTGCTATC CATCACCGTTT TTCATCATCAAAAGAGAAGAAAATTCCAGAAAGCAAGGAAC TTACAAAATATACCATTGAAGAAAGGCCACAGCAGAGTTTTCAGCTAA (SEQ ID NO:469)
The amino acid sequence of full length murine -Klotho (GenBank Accession Number NP_112457) is provided: MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRA VTGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQVEG SWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSF YQFSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDL PLTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAW D HGFGTCMHAPGEKGNLTAVYTVGHNLIKAIISKVWHNYDKNFRPHQKG WLSITLGSH WIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEF MKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLN LRQVLNWIKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQ AIKFDEIRVFGYTAWTLLDGFEWQDAYTTR.RGLFYVDFNSEQKERKPKSS AHYYKQ1]QDNGFPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFT DPHLYVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKV THYQFA LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYH PTHSHLGLPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINE PNRLSDMYNRTSNDTYRAAHNLMIAHAQVWH LYDRQYRPVQHGAVSLS LHCDWA EPANPFVDSIHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEY] ASKNQRGLSSSVLPRFTAKESRLVKGTVDFYALNHFTTRFVHKQLNTNR SVADRDVQFLQDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITAN GIDDLALEDDQIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKP RFGFFTSDFRAKSSVQFYSKLISSSGLPAENRSPACGQPAEDTDCTICSFLV
EKKPLIFFGCCFISTLAVLLSITVFHHQKRRKFQKARNLQNIPLKKGHSRVF S (SEQ ID NO:468)
As described herein, -Klotho proteins can also include fragments. As used herein, the terms are used interchangeably to mean a co-receptor, in particular and unless otherwise specified, a human co-receptor, that upon association with FGFR I cand FGF21 induces FGF21 like signaling activity. The term -Klotho also includes post-translational modifications of the -Klotho amino acid sequence, for example, possible N-linked glycosylation sites. Thus, the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions.
Antigen Binding Proteins that Specifically Bind One or More of D-Klotho, FGFRIc. FGFR2c, FGFR3c. FGFR4c A variety of selective binding agents useful for modulating FGF21-like signaling are provided. These agents include, for instance, antigen binding proteins that contain an antigen binding domain (e.g.,single chain antibodies, domain antibodies, hemibodies, immunoadhesions, and polypeptides with an antigen binding region) and specifically bind to FGFRc, -Klotho or both FGFRc and -Klotho, in particular human FGFRIc and human -Klotho. Some of the agents, for example, are useful in mimicking the signaling effect generated in vivo by the association of FGFRlc with -Kotho and with FGF21land can thus be used to enhance or modulate one or more activities associated with FGF21-like signaling. In general, the antigen binding proteins that are provided typically comprise one or more CDRs as described herein (e.g., 1, 2, 3, 4, 5 or 6 CDRs). In some embodiments the antigen binding proteins are naturally expressed by clones, while in other embodiments, the antigen !5 binding protein can comprise (a) a polypeptide framework structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide framework structure. In some of these embodiments a CDR forms a component of a heavy or light chains expressed by the clones described herein: in other embodiments a CDR can be inserted into a framework in which the CDR is not naturally expressed. A polypeptide framework structure can take a variety of W different forms. For example, a polypeptide framework structure can be, or comprise, the framework of a naturally occurring antibody, or fragment or variant thereof, or it can be completely synthetic in nature. Examples of various antigen binding protein structures are further described below. In some embodiments in which the antigen binding protein comprises (a) a polypeptide framework structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide framework structure, the polypeptide framework structure of an antigen binding protein is an antibody or is derived from an antibody, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as "antibody mimetics"), chimeric antibodies, humanized antibodies, antibody fusions (sometimes referred to as "antibody conjugates"), and portions or fragments of each, respectively. In sore instances, the antigen binding protein is an immunological fragment of an antibody (e.g., a Fab, a Fab', a F(ab') 2 , or a scFv). Certain of the antigen binding proteins as provided herein specifically bind to (i) Klotho; (ii) FGFR lc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc. FGFR2c, FGFR3c, and FGFR4, including the human forms of these proteins
. In one embodiment, an antigen binding protein specifically binds to both human FGFRlc comprising the amino acid sequence of SEQ ID NO:5., and human -Klotho comprising the amino acid sequence of SEQ ID NO:8, and in another embodiment an antigen binding protein specifically binds to both human FGFRIc comprising the amino acid sequence of SEQ ID NO:5 and human -Kotho having the amino acid sequence of SEQ ID NO:8 and induces FGF21-like D signaling. Thus, an antigen binding protein can, but need not, induce FGF2I-like signaling.
Antinen Binding Protein Structure Some of the antigen binding proteins that specifically bind (i) P-Klotho; (ii) FGFRic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising B-Klotho and one of FGFRIc, :5 FGFR2c, FGFR3c, and FGFR4, including the human forms of these proteins that are provided herein have a structure typically associated with naturally occurring antibodies. The structural units of these antibodies typically comprise one or more tetramers, each composed of two identical couplets of polypeptide chains, though some species of mammals also produce antibodies having only a single heavy chain. In a typical antibody, each pair or couplet includes one full-length "light" chain (in certain embodiments, about 25 kDa) and one full-length "heavy" chain (in certain embodiments, about 50-70 kDa). Each individual immunoglobulin chain is composed of several immunoglobulinn domains," each consisting of roughly 90 to 110 amino acids and expressing a characteristic folding pattern. These domains are the basic units of which antibody polypeptides are composed. The amino-terminal portion of each chain typically includes a variable domain that is responsible for antigen recognition. The carboxy-terminal portion is more conserved evolutionarily than the other end of the chain and is referred to as the "constant region" or "C region". Human light chains generally are classified as kappa (ic") and lambda ("?") light chains, and each of these contains one variable domain and one constant domain. Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon chains, and these define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. IgG has several subtypes, including, but not limited to, IgG I, IgG2, IgG3, and IgG4. IgM subtypes include IgM, and IgM2. IgA subtypes include IgAl and IgA2. In humans, the IgA and IgD isotypes contain four heavy chains and four light chains; the IgG and IgE isotypes contain two heavy chains and two light chains; and the IgM isotype contains five heavy chains and five light chains. The heavy chain C region typically comprises one or more domains that can be responsible for effector function. The number of heavy chain constant region domains will depend on the isotype. IgG heavy chains, for example, each contain three C region domains known as C1, C 1 12 and C 13. The antibodies that are provided can have any of these isotypes and subtypes. In certain embodiments, an antigen binding protein that specifically binds one or more of (i) B Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 is an antibody of the IgGl, IgG2, or IgG4 subtype. In full-length light and heavy chains, the variable and constant regions are joined by a "T" region of about twelve or more amino acids, with the heavy chain also including a "D" region of about ten more amino acids. See, e.g., Fundamental Immunology, 2nd ed., Ci. 7 (Paul, W., ed.) 1989, New York: Raven Press (hereby incorporated by reference in its entirety for all purposes). The variable regions of each light/heavy chain pair typically form the antigen binding site. One example of an IgG2 heavy constant domain of an exemplary monoclonal antibody that specifically binds (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3C or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 has the amino acid sequence:
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV HTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVD-HKPSNTKVDKTVER KCCVECPPCPAPPVAGPSVFLFPPKPK.DTLMISRTPEVTCVVVDVSHEDPE VQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG FYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 9).
One example of a kappa light constant domain of an exemplary monoclonal antibody that binds (i) 1-Klotho; (ii) FGFR I c, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising$ Klotho and one of FGFR I c, FGFR2c, FGFR3c, and FGFR4 has the amino acid sequence: RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK SFNRGEC (SEQ ID NO: 10).
One example of a lambda light constant domain of an exemplary monoclonal antibody that binds (i) f-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRic, FGFR2c, FGFR3c, and FGFR4 has the amino acid sequence: GQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVK AGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTIHIEGSTVEKT VAPTECS (SEQ ID NO: 11)
Variable regions of immunoglobulin chains generally exhibit thesame overall structure, comprising relatively conserved framework regions (FR) joined by three hypervariable regions, more often called "complementarity determining regions" or CDRs. The CDRs from the two chains of each heavy chain/light chain pair mentioned above typically are aligned by the framework regions to form a structure that binds specifically with a specific epitope on the target protein (e.g., (i) B-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4). From N-terminal to C-terminal, naturally-occurring light and heavy chain variable regions both typically conform with the following order of these elements: FRI, CDR], FR2, CDR2. FR3, CDR3 and FR4. A numbering system has been devised for assigning numbers to amino acids that occupy positions in each of these domains. This numbering system is defined in Kabat Sequences of Proteins of immunological Interest (1987 and 1991, NIH, Bethesda, MD). As desired, the CDRs can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia
& Lesk, 1987,. Mo/. Riol. 196:901-917: Chothia er al., 1989, Nature 342:878-883 or Honegger
& Pluckthun, 2001, .1Mo. Biot. 309:657-670. The various heavy chain and light chain variable regions of antigen binding proteins provided herein are depicted in Table 2. Each of these variable regions can be attached to the above heavy and light chain constant regions to form a complete antibody heavy and light chain, respectively. Further, each of the so-generated heavy and light chain sequences can be combined to form a complete antibody structure. It should be understood that the heavy chain and light chain variable regions provided herein can also be attached to other constant domains having different sequences than the exemplary sequences listed above. Specific examples of some of the full length light and heavy chains of the antibodies that are provided and their corresponding amino acid sequences are summarized in Tables lA and IB. Table IA shows exemplary light chain sequences, and Table IB shows exemplary heavy chain sequences.
Table IA - Exemplary Antibody Light Chain Sequences
SEQ Designa- Contained Amino Acid Sequence ID tion in Clone NO: 12 L1 17C3 SYVLTQPPSVSVAPGQTARITCGGNNIGSQSVHWYQ QKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATL TISRVEAGDEADYYCQVWDSSSDHVVFGGGTKLTV LGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPG AVTVAWKADGSPVKAGVETTKPSKQSNNKYAASS YLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
SEQ Designa- Contained Amino Acid Sequence ID tion in Clone NO: 13 L2 22-H5 SYVLTQPPSVSVAPGQTARITCGGNNIGSQSVHWY QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTAT LTISRVEAGDEADYYCQVWDNTSDHVVFGGGTKL TVLGQPKANPTVTLFPPSSEELQANKATLVCLISDF YPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYA ASSYLSLTPEQWKSIRSYSCQVTHEGSTVEKTVAPT ECS
14 L3 16H7 SYVLTQPPSVSVAPGQTARITCGGNNIGSESVHWYQ 24H 1 QKPGQA PVLVVYDDSDRPSGIPERFSGSNSGNTATL TISRVEAGDEADYYCQVWDGNSDHVVFGGGTKLT VLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYP GAVTVAWKADGSPVKAGVETTKPSKQSNNKYAAS SYLSLTPEQWKSHIRSYSCQVT-HEGSTVEKTVAPTEC S
L4 1801 EIVLTQSPGTLSLSPGERATLSCRASQNFDSSYLAWY QQKPGQAPRLLIYGTSSRATGIPDRFSGIGSGTDFTLT INRLEPEDFAMYYCQQYGGSPLTFGGGTEVEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEK.HKVYACEVTHQGLSSPVTKSFNRGEC
16 L5 17D8 EIVLTQSPGTLSLSPGERATLSCRASQSVSGNYLAWY QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL TISRLEPEDFAVYYCQQYGSAPLTFGGGTKVEKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
17 L6 26H 1 EIVLTQSPGTLSLSPGERATLSCRASQSVSGNYLAW YQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF TLTISRLEPEDFAMYYCQQYGSSPLTFGGGSKVEIK RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY PRE AKVQWKVDNA LQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE C
SEQ Designa- Contained Amino Acid Sequence ID tion in Clone NO: 18 L7 12E4 ElVLTQSPGTLSLSPGERATLSCRASQNFDSNYLAWY QQKPGQAPRLLIYGASSRATGIPDNFSGSGSGTDFTL TISRLEPEDFAMYYCQQYGSSPLTFGGGTKVEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
19 L8 12C11 EIVLTQSPGTLSLSPGERATLSCRASQNFDSSSLAWY QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL TISRLEPEDFAMYYCQQCGSSPLTFGGGTKVEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
L9 211H2 EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWH 21B4 QQKPGQGLRLLIYGASSRATGIPDRFSGSGSGTDFTL TISRLEPEDFAVYYCQQYGSSFTFGGGTRVEIKRTVA APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
21 L10 18B1 1. DIVMTQSPLSLPVTPGEPASISCRSSQSLLYYNGFTYL DWFLQKPGQSPIHLLIYLGSNRASGVPDRFSGSVSGT DFTLKISRVEAEDVGVYYCMQSLQTPFTFGPGTKVD IKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE C
22 Lii 18B11.2 EIVMTQSPATLSVSPGERATLSCRASQSVNSNLAWY QQKPGQAPRLLIYGVSTRATGIPARFSGSGSGTEFTL TIRSLQSEDFAVYYCQQYNNWPPTFGQGTKVEIKRT VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 23 L12 20D4 DIQLTQSPSSLSASIGDRVT1TCRASQDIRYDLGWYQ QKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTEFTLT VSSLQPEDFATYYCLQHNSYPLTFGGGTKVEIERTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
SEQ Designa- Contained Amino Acid Sequence ID tion in Clone NO: 24 L13 46DII DIQMTQSPSSVSASVGDRVTITCRASQGISIWLAWYQ QKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTI SSLQPEDFATYYCQQANDFPITFGQGTRLEIKRTVAA PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA DYEKI-IKVYACEVTIQGLSSPVTKSFNRGEC
Li4 40D2 DFVMTQTPLSLSVTPGQPASISCKSSQSLLQSDGKTY LYWYLQKPGQPPHLLIYEVSNRFSGVPDRFSGSGSG TDFTLKISRVEAEDVGVYYCMQSIQLPRTFGQGTKV EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG EC
26 L15 37D3 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNFL DWYLQKPGQSPQLLIYLGSDRASGVPDRFSGSGSGT EFTLKISRVEAEDVGLYYCMQALQTPCSFGQGTKLE IKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR EAKVQWKVDNALQSGNSQESVTEQDSK.DSTYSLSS TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE C 27 L16 39F7 EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY QQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTL TISRLEPEDFAVYYCQQSGSSPLTFGGGTEVEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
28 L17 39FII EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY QQKPGQAPSLLIYGASSRATGIPDRFSGSGSGTDFTL TISRLEPEDFAVYYCQQSGSSPLTFGGGTKVEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR.EAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
29 LIS 39G5 EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWY QQKPGQAPRLLIYGASFRATGIPDRFSGSGSGTDFTL TISRLEPEDFAVYYCQQSGSSPLTFGGGTKVEIKRTV AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
Table IB - Exemplarv Antibody Heavy Chain Sequences SEQ Designa- Contained Sequence ID NO: tion in Clone 30 HI 17C3 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMG VSWIRQPPGKALEWLAHIFSNDEKSYSTSLKSRLTI SKDTSKSQVVLTMTNMDPVDTATYYCARILLLGA YYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPCS RSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV HTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNV DHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFN WYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVH QDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPRE PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
31 12 22H5 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMG VSWIRQPPGKALEWLAHIFSNDEKSYSTSLKSRLTI SKDTSKSQVVLTMTNMDPVDTATYYCARILLVGA YYYCGMDVWGQGTTVTVSSASTKGPSVFPLAPCS RSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV HTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNV DHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFN WYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVH QDWLNGK.EYKCKVSNKGLPAPIEKTISKTKGQPRE PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
32 113 16H7 QVTLKESGPVLVKPTETLTLTCTVSGFSLNNARMG VSWIRQPPGKALEWLAHIFSNDEKSYSTSLKSRLTI SKDTSKSQVVLIMTNMDPVDTATYYCARSVVTGG YYYDGMDVWGQGTTVTVSSASTKGPSVFPLAPCS RSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV HTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNV DHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFN WYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVH QDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR.E PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
SEQ Designa- Contained Sequence ID NO: tion in Clone 33 H4 24HI1 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMG VSWIRQPPGKALEWLAHIFSNDEKSYSTSLKNRLTI SKDTSKSQVVLIMTNMDPVDTATYYCARSVVTGG YYYDGMDVWGQGTTVTVSSASTKGPSVFPLAPCS RSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV HTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNV DHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFN WYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVH QDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPRE PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
34 H5 18G1 EVQLLESGGGLVQPGGSLRLSCAASRFTFSTYAMS WVRQAPGKGLEWVSGISGSGVSTHYADSVKGRFT ISRDNSKNTLYLQMNSLRAEDTAVYYCAKSLIVVI VYALDHWGQGTLVTVSSASTKGPSVFPLAPCSRST SESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF PAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHK PSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPP KPKDTLMISRTP.EVTCVVVDVSHEDPEVQFNWYV DGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISKTKGQPR.EPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRW QQGNVFSCSVMHEALHNHYTQKSLSLSPGK
35 H6 17D8 EVQLLESGGGLVQPGGYLRLSCAASGFTFSTYAMS WVRQAPGKGLEWVSAISGSGVSTYYADSVKGRFT ISRDNSKNTLYLQMNSLRAEDTAVYYCAKSLIVV MVYVLDYWGQGTLVTVSSASTKGPSVFPLAPCSR STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH TFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVD HKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNW YVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQ DWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEW ESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALI-INHYTQKSLSLSPGK
SEQ Designa- Contained Sequence ID NO: tion in Clone 36 H7 26H11 EVQLLESGCGLVQPGGYLRLSCAASGFTFSTYAMS WVRQAPGKGLEWVSAISGSGVSTNYADSVKGRFT ISRDNSKNTLYLQMNSLRAEDTAVYYCAKSLIVV MVYVLDYWGQGTLVTVSSASTKGPSVFPLAPCSR STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH TFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVD HKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNW YVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQ DWLNGKEYKCKVSNKGLPAPIEKTISKTK.GQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEW ESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
37 148 12E4 EVQLLESGGGLVQPGGSLRLSCAASRFTFSTYAMS 2C1 I WVRQAPGKGLEWVSGISGSGVSTYYADSVKGRFT ISRDNSKNTLYLQMvINSLRAEDTAVYYCAKSLIVVI VYALDYWGQGTLVTVSSASTKGPSVFPLAPCSRST SESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF PAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDIK PSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYV DGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRW QQGNVFSCSVMHEALHNHYTQKSLSLSPGK
38 119 21H2 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWS WIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRVTMS KDTSKNQFSLKLRSVTAADTAVYYCARDPDGDYY YYGMDVWGQGTSVTVSSASTKGPSVFPLAPCSRS TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHT FPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDH KPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLF PPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWY VDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
SEQ Designa- Contained Sequence ID NO: tion in Clone 39 H10 21B4 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYFWS WIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRVTMSI DTSKNQFSLKLSSVTAADTAVYYCARDPDGDYYY YGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTS ESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP AVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKP SNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYV DGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV YTLPPSREEMTK.NQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRW QQGNVFSCSVMHEALHNIYTQKSLSLSPGK
40 H11 18B11.1 EVQLVESGGGLVKPGGSLRLSCAASGFTFSDAWM 18311.2 SWVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVK GRFTISRDDSKNTLYLQMNSLKTEDTAVYFCTSTY SSGWYVWDYYCMDVWGQGTTVTVSSASTKGPSV FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGT QTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAP PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE DPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVV SVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISK TKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK
41 1112 20D4 QVQLVQSGAEVKKPGASVKVSCKVSGYTLTDLSM HWVRQAPGKGLEWMGGFDPEDGETIYAQKFQGRI TMTEDTSTDTAYMELSSLRSEDTAVYYCASIVVVP AAIQSYYYYYGMGVWGQGTTVTVSSASTKGPSVF PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSG ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT YTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPV AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP EVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSV LTVVHQ.DWLNGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSK LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL SPGK
SEQ Designa- Contained Sequence ID NO: tion in Clone 42 H13 46D] I QVTLKEAGPVLVKPTETLTLTCTVSGFSLSNARMG VNWIRQPPGKALEWLAHIFSNDEKSYSTSLKSRLTI SKDTSKSQVVLTMTNMDPVDTATYYCARVRIAGD YYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPC SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCN VDHKPSNTKVDIKTVERKCCVECPPCPAPPVAGPSV FLFPPKPK.DTLMISRTPEVTCVVVDVSHEDPEVQF NWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVV HQDWLNGKEYKCKVSNKGLPAPJEKTISKTKGQP REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K
43 H14 39F Il QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGIH WVRQAPGKGLEWVAVIWYDGSDKYYADSVKGR FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRA AAGLHYYYGMDVWGQGTTVTVSSASTKGPSVFP LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGA LTSGVH TFPAVLQSSGLYSLSSVVTVPSSNFGTQTY TCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVA GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE VQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVL TVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTK GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKL TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGK
SEQ Designa- Contained Sequence ID NO: tion in Clone 44 H15 39F7 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGIH WVRQAPGKGLEWVAVIWYDGSIKYYADSVKGRF TISRDNSKNTLYLQMNSLRAEDTAVYYCARDRAA AGLHYYYGMDVWGQGTTVTVSSASTKGPSVFPL APCSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYT CNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAG PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV QFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLT VVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD JAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLT VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
45 H16 39G5 QVQLVESGGGVVQPGRSLRLSCAVSGFTFSSYGIH WVRQAPGKGLEWVAVIWYDGSDKYYGDSVKG:R FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRA AAGLHYYYGMDVWGQGTTVTVSSASTKGPSVFP LAPCSRSTSESTAALGCLVK.DYFPEPVTVSWNSGA LTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTY TCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVA GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE VQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVL TVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTK GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKL TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGK
46 H17 40D2 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYN WSWIRQHPGKGLEWIGNIYYSGSTYYNPSLKSRVT ISVDTSKNQFSLKLRSVTAADTAVYYCARENIVVIP AAIFAGWFDPWGQGTLVTVSSASTKGPSVFPLAPC SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCN VDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSV FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQF NWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVV HQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQP REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K
SEQ Designa- Contained Sequence ID NO: tion in Clone 47 H18 37D3 EVHLVESGGGLAKPGGSLRLSCAASGFTFRNAWM SWVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVK GRFTISRDDSKNTLYLQMNSLKTEDTAEYYCITDR VLSYYAMAVWGQGTTVTVSSASTKGPSVFPLAPC SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCN VDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSV FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQF NWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVV HQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQP REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K
Again, each of the exemplary heavy chains (H1, H2, H3 etc.) listed in Table lB and 6A, inhfi, can be combined with any of the exemplary light chains shown in Table I A and 6A, infi-a, to form an antibody. Examples of such combinations include HI combined with any of L I through L18; H2 combined with any of L I through L8:; H3 combined with any of L through L18, andso on. In some instances, the antibodies include at least one heavy chain and one light chain from those listed in Tables IA and IB and 6A, infa; particular examples pairings of light chains and heavy chains include L I with HL, L2 with 12, L3 with H3, L4 with H4, L5 with H5, L6 with H6. L7 with H7, L8 with H8, L9 with H9, L10 with H10. L Iwith H 11, Li2 with H12, D L13 with 1113, L14 with H14, LS with H15, L16 with1116, 17 with H17, and L18 with H18. In addition to antigen binding proteins comprising a heavy and a light chain from the same clone, a heavy chain from a first clone can be paired with a light chain from a second clone (e.g., a heavy chain from 46D11 paired with a light chain from 16H7 or a heavy chain from 16117 paired with a light chain from 46Di1). Generally, such pairings can include VL with 90% or greater homology can be paired with the heavy chain of thenaturally occurring clone. In some instances, the antibodies comprise two different heavy chains and two different light chains listed in Tables IA and IB and 6A, infia. In other instances, the antibodies contain two identical light chains and two identical heavy chains. As an example, an antibody orimmunologically functional fragment can include two H1 heavy chains and two Li light chains, or two H2 heavy :0 chains and two L2 light chains, or two H3 heavy chains and two L3 light chains and other similar combinations of pairs of light chains and pairs of heavy chains as listed in Tables 1A and IB and 6A, in#-a. In another aspect of the instant disclosure, "hemibodies" are provided. A hemibody is a monovalent antigen binding protein comprising (i) an intact light chain, and (ii) a heavy chain fused to an Fe region (e.g., an IgG2 Fc region of SEQ ID NO:441), optionally via a linker, The linker can be a (G4S), linker where "x" is a non-zero integer (e.g. (G4S); SEQ ID NO:440). Hemibodies can be constructed using the provided heavy and light chain components. Specific examples of hemibodies are disclosed in Example 14. Other antigen binding proteins that are provided are variants of antibodies formed by combination of the heavy and light chains shown in Tables IA and IB and 6A, inA-a and comprise light and/or heavy chains that each have at least 70%, 75%, 80% 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequences of these chains. In some instances, such antibodies include at least one heavy chain and one light chain, whereas in other instances the variant forms contain two identical light chains and two identical heavy chains.
Variable Domains of Antigen Binding Proteins Also provided are antigen binding proteins that contain an antibody heavy chain variable region selected from the group consisting of Vil, 1V1 2, V3, V 11 6, V7, V8, V9, 4, V5, V Vl 1 0, V 1, Vl2, Vil3, Vl1 4, V 1 115, V16, V 1 117 and V18 as shown in Table 2B and/or an antibody light chain variable region selected from the group consisting of V., 1 V2, V V3, Vt4, V5, V 1 6, V, Vr8, V9, V 1.0, Vill, V2, V-3, VI4, Vl5, V1 .16, V07 and V98 as shown in Table 2A, and immunologically functional fragments, derivatives, muteins and variants of these light chain and heavy chain variable regions.
Table 2A - Exemplarv Antibody Variable Light (V) Chains
Contained Designa- SEQ ID inClone ion JNO. Amino Acid Sequence
17C3 Vel 48 SYVLTQPPSVSVAPGQTARITCGGNNIGSQSVHWY QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTA TLTISRVEAGDEADYYCQVWDSSSDI-IVVFGGGTK LTVL
Contained Designa- SEQ ID Amino Acid Sequence in Clone tion NO. 22H5 VL2 49 SYVLTQPPSVSVAPGQTARITCGGNNIGSQSVHWY QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTA TLTISRVEAGDEADYYCQVWDNTSDHVVFGGGTK LTVL
16H7 V3 50 SYVLTQPPSVSVAPGQTARITCGGNNIGSESVHWY 24H QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTA TLTISRVEAGDEADYYCQVWDGNSDHVVFGGGT KLTVL
18G] V,4 51 EIVLTQSPGTLSLSPGERATLSCRASQNFDSSYLAW YQQKPGQAPRLLIYGTSSRATGIPDRFSGIGSGTDF TLTINRLEPEDFAMYYCQQYGGSPLTFGGGTEVEI K
17D8 V,5 52 EIVLTQSPGTLSLSPGERATLSCRASQSVSGNYLA WYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGT DFTLTISRLEPEDFAVYYCQQYGSAPLTFGGGTKV ElK
26H V6 53 EIVLTQSPGTLSLSPGERATLSCRASQSVSGNYLA WYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGT DFTLTISRLEPEDFAMYYCQQYGSSPLTFGGGSKV EIK
12E4 VI7 54 EIVLTQSPGTLSLSPGERATLSCRASQNFDSNYLA WYQQKPGQAPRLLIYGASSRATGIPDNFSGSGSGT DFTLTISRLEPEDFAMYYCQQYGSSPLTFGGGTKV EIK
12C11 V1,8 55 EIVLTQSPGTLSLSPGERATLSCRASQNFDSSSLAW YQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF TLTISRLEPEDFAMYYCQQCGSSPLTFGGGTKVEIK
21H2 V19 56 EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAW 211B4 HQQKPGQGLRLLIYGASSRATG]PDRFSGSGSGTDF TLTISRLEPEDFAVYYCQQYGSSFTFGGGTRVEIK
Contained Designa- SEQ ID Amino Acid Sequence in Clone tion NO. 18B11.1 V,10 57 DIVMTQSPLSLPVTPGEPASISCRSSQSLLYYNGFT YLDWFLQKPGQSPHLLIYLGSNRASGVPDRFSGSV SGTDFTLKISRVEAEDVGVYYCMQSLQTPFTFGPG TKVDIK
18B11.2 Vjl1 58 EIVMTQSPATLSVSPGERATLSCRASQSVNSNLAW YQQKPGQAPRLLIYGVSTRATGIPARFSGSGSGTEF TLTIRSLQSEDFAVYYCQQYNNWPPTFGQGTKVEI K
20D4 V112 59 DIQLTQSPSSLSASIGDRVTITCRASQDIRYDLGWY QQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTEFT LTVSSLQPEDFATYYCLQHNSYPLTFGGGTKVEIE
46D I VIl3 60 DIQMTQSPSSVSASVGDRVTITCRASQGISIWLAW YQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTD FTLTISSLQPEDFATYYCQQANDFPITFGQGTRLEIK
40D2 VIl4 61 DFVMTQTPLSLSVTPGQPASISCKSSQSLLQSDGKT YLYWYLQKPGQPPHLLIYEVSNRFSGVPDRFSGSG SGTDFTLKISRVEAEDVGVYYCMQSIQLPRTFGQG TKVEIK
37D3 V 1I5 62 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYN FLDWYLQKPGQSPQLLIYLGSDRASGVPDRFSGSG SGTEFTLKISRVEAEDVGLYYCMQALQTPCSFGQG TKLEIK
39F7 V 1 16 63 EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAW YQQKPGQAPRLL1YGASSRATGIPDRFSGSGSGTDF TLTISRLEPEDFAVYYCQQSGSSPLTFGGGTEVEIK
39F1I V017 64 EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAW YQQKPGQAPSLLIYGASSRATGIPDRFSGSGSGTDF TLTISRLEPEDFAVYYCQQSGSSPLTFGGGTKVEK
39G5 V118 65 EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAW YQQKPGQAPRLLIYGASFRATGIPDRFSGSGSGTDF TLTISRLEPEDFAVYYCQQSGSSPLTFGGGTKVE]K
Table 2B - Exemplarv Antibody Variable Heavy (V 1 ) Chains
Contained Designa- SEQ ID Amino Acid Sequence in Clone tion NO. 17C3 V1 1 66 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMG VSWIRQPPGKALEWLAI1FSNDEKSYSTSLKSRLTI SKDTSKSQVVLTMTNMDPVDTATYYCAR.ILLLGA YYYYGMDVWGQGTTVTVSS
22H5 V112 67 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMG VSWIRQPPGKALEWLAHIFSNDEKSYSTSLKSRLTI SKDTSKSQVVLTMTNMDPVDTATYYCARILLVGA YYYCGMDVWGQGTTVTVSS
16H7 V1 3 68 QVTLKESGPVLVKPTETLTLTCTVSGFSLNNARMG VSWIR.QPPGKALEWLAHIFSNDEKSYSTSLKSRLTI SKDTSKSQVVLIMTNMDPVDTATYYCA RSVVTGG YYYDGMDVWGQGTTVTVSS
24H I I V1 4 69 QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMG VSW]RQPPGKALEWLAHIFSNDEKSYSTSLKNRLTI SKDTSKSQVVLIMTNMDPVDTATYYCARSVVTGG YYYDGMDVWGQGTTVTVSS
18G1 V 115 70 EVQLLESGGGLVQPGGSLRLSCAASRFTFSTYAMS WVRQAPGKGLEWVSGISGSGVSTHYADSVKGRFT ISRDNSKNTLYLQMNSLRAEDTAVYYCAKSLIVVI VYALDHWGQGTLVTVSS
17D8 V116 71 EVQLLESGGGLVQPGGYLRLSCAASGFTFSTYAMS WVRQAPGKGLEWVSAISGSGVSTYYADSVKGRFT ISRDNSKNTLYLQMNSLRAEDTAVYYCAKSLIVV MVYVLDYWGQGTLVTVSS
26H 11 V117 72 EVQLLESGGGLVQPGGYLRLSCAASGFTFSTYAMS WVRQAPGKGLEWVSAISGSGVSTNYADSVKGRFT ISRDNSKNTLYLQMNSLRAEDTAVYYCAKSLIVV MVYVLDYWGQGTLVTVSS
Contained Designa- SEQ ID Amino Acid Sequence in Clone tion NO. 12E4 V118 73 EVQLLESGGGLVQPGGSLRLSCAASRFTFSTYAMS 12C11 WVRQAPGKGLEWVSGISGSGVSTYYADSVKGRFT ISR.DNSKNTLYLQMNSLRAEDTAVYYCAKSLIVVI VYALDYWGQGTLVTVSS
21H2 V119 74 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWS WIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRVTMS KDTSKNQFSLKLRSVTAADTAVYYCARDPDGDYY YYGMDVWGQGTSVTVSS
21B4 VH10 75 QVQLQESGPGLVKPSETLSLTCTVSGGSISSYFWS WIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRVTMS IDTSKNQFSLKLSSVTAADTAVYYCARDPDGDYY YYGMDVWGQGTTVTVSS
18B11.1 V1111 76 EVQLVESGGGLVKPGGSLRLSCAASGFTFSDAWM SWVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVK GRFTISRDDSKNTLYLQMNSLKTEDTAVYFCTSTY SSGWYVWDYYGMDVWGQGTTVTVSS
18B11.2 V 1 11 77 EVQLVESGGGLVKPGGSLRLSCAASGFTFSDAWM SWVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVK GRFTISRDDSKNTLYLQMNSLKTEDTAVYFCTSTY SSGWYVWDYYGMDVWGQGTTVTVSS
20D4 V1 112 78 QVQLVQSGAEVKKPGASVKVSCKVSGYTLTDLSM HWVRQAPGKGLEWMGGFDPEDGETIYAQKFQGR ITMTEDTSTDTAYMELSSLRSEDTAVYYCASIVVV PAAIQSYYYYYGMGVWGQGTTVTVSS
46DII V,1 13 79 QVTLKEAGPVLVKPTETLTLTCTVSGFSLSNARMG VNWIRQPPGKALEWLAHIFSNDEKSYSTSLKSRLTI SKDTSKSQVVLTMTNMDPVDTATYYCARVRIAGD YYYYYGMDVWGQGTTVTVSS
40D2 V 114 80 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYN WSWIRQHPGKGLEWIGNIYYSGSTYYNPSLKSRVT ISVDTSKNQFSLKLRSVTAADTAVYYCARENIVVIP AAIFAGWFDPWGQGTLVTVSS
Contained Designa- SEQ ID Amino Acid Sequence in Clone tion NO. 37D3 V 115 81 EVHLVESGGGLAKPGGSLRLSCAASGFTFRNAWM SWVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVK GRFTISRDDSKNTLYLQMNSLKTEDTAEYYCITDR VLSYYAMAVWGQGTTVTVSS
39F7 V,116 82 QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGIH WVRQAPGKGLEWVAVIWYDGSIKYYADSVKGRF TISRDNSKNTLYLQMNSLRAEDTAVYYCARDRAA AGLHYYYGMDVWGQGTTVTVSS
39F11 V17 83 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGIH WVRQAPGKGLEWVAVIWYDGSDKYYADSVKGR FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRA AAGLHYYYGMDVWGQGTTVTVSS
39G5 V1118 84 QVQLVESGGGVVQPORSLRLSCAVSGFTFSSYGIH WVRQAPGKGLEWVAVIWYDGSDKYYGDSVKGR FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRA AAGLHYYYGMDVWGQGTTVTVSS
Table 2C - Coding Sequence for Antibody Variable Lighit (V,,) Chains
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. 17C3 Vl 85 TCCTATGTGCTGACTCAGCCACCCTCGGTCTCAG TGGCCCCAGGTCAGACGGCCAGGATTACCTGTG GGGGAAACAACATTGGAAGTCAGAGTGTGCACT GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTCC TGGTCGTCTATGATGATAGCGACCGGCCCTCAG GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG GAACACGGCCACCCTGACCATCAGCAGGGTCGA AGCCGGGGATGAGGCCGACTATTACTGTCAGGT GTGGGATAGTAGTAGTGATCATGTGGTATTCGG CGGAGGGACCAAGCTGACCGTCCTA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. 22H5 V,2 86 TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG TGGCCCCAGGACAGACGGCCAOOATTACCTGTG GGGGAAACAACATTGGAAGTCAAAGTGTGCACT GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTCC TGGTCGTCTATGATGATAGCGACCGGCCCTCAG GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG GAACACGGCCACCCTGACCATCAGCAGGGTCGA AGCCGGGGATGAGGCCGACTATTACTGTCAGGT GTGGGATAATACTAGTGATCATGTGGTATTCGG CGGGGGGACCAAACTGACCGTCCTA
16H7 V3 87 TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG 241111 TGGCCCCAGGACAGACGGCCAGGATTACCTGTG GGGGAAACAACATTGGAAGTGAAAGTGTOCACT GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC TGGTCGTCTATGATGATAGCGACCGGCCCTCAG GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG GAACACGGCCACCCTGACCATCAGCAGGGTCGA AGCCGGGGATGAGGCCGACTATTACTGTCAGGT GTGGGATGGTAATAGTGATCATGTGGTATTCGG CGGAGGGACCAAGCTGACCGTCCTA
18G1 V1 4 88 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAATTTTGACAGCAGTTACT TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCCGGCTCCTCATCTATGGTACATCCAGCAGGG CCACTGGCATCCCAGACAGGTTCAGTGGCATTG GGTCTGGGACAGACTTCACTCTCACCATCAACA GACTGGAGCCTGAAGATTTTGCAATGTATTACT GTCAGCAGTATGGTGGCTCACCGCTCACTTTCGG CGGAGGGACCGAGGTGGAAATCAAA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. eq n 17D8 V1 5 89 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAGTGTTAGCGGCAACTACT TGGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG GGTCTGGGACAGACTTCACTCTCACCATCAGCA GACTGGAGCCTGAAGATTTTGCAGTGTATTATTG TCAGCAGTATGGTAGCGCACCGCTCACTTTCGG CGGAGGGACCAAGGTGGAAATCAAA
26H1I V16 90 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAGTGTTAGCGGCAACTACT TGGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG CCACTGGCATCCCAGACAGATTCAGTGGCAGTG GGTCTGGGACAGACTTCACTCTCACCATCAGCA GACTGGAGCCTGAAGATTTTGCAATGTATTATTG TCAGCAGTATGGTAGCTCACCGCTCACTTTCGGC GGAGGGTCCAAGGTGGAGATCAAA
12E4 N 17 91 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAATTTCGACAGCAACTACT TAGCCTGGTACCAGCAGAAGCCTGGCCAGGCTC CCCGGCTCCTCATCTATGGTGCATCCAGCAGGG CCACTGGCATCCCAGACAACTTCAGTGGCAGTG GGTCTGGGACAGACTTCACTCTCACCATCAGCA GACTGGAGCCTGAAGATTTTGCAATGTATTACT GTCAGCAGTATGGTAGTTCACCGCTCACTTTCGG CGGAGGGACCAAGGTGGAAATCAAA
Contained Designa- SEQ ID Coding Sequence l Clone tion NO. 1 2 C11 VLs 92 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGGGCCACCCTCTCCT GCAGGGCCAGTCAGAATTTTGACAGCAGCTCCT TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCCGGCTCCTCATCTATGGTGCATCCAGCAGGG CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG GGTCTGGGACAGACTTCACTCTCACCATCAGCA GACTGGAGCCTGAAGATTTTGCAATGTATTACT GTCAGCAGTGTGGTAGCTCACCGCTCACTTTCGG CGGAGGGACCAAGGTGGAAATCAAA
21H2 V1 9 93 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG 21B4 TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAGTGTTAGCAGTACCTACT TAGCCTGGCACCAGCAGAAACCTGGCCAGGGTC TTAGGCTCCTCATCTATGGTGCATCCAGCAGGGC CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG GTCTGGGACAGACTTCACTCTTACCATCAGCAG ACTGGAGCCTGAAGATTTTGCAGTGTATTACTGT CAGCAGTATGGAAGCTCATTCACTTTCGGCGGA GGGACCAGGGTGGAGATCAAA
18B11.1 V110 94 GATATTGTGATGACTCAGTCTCCACTCTCCCTGC CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG CAGGTCTAGTCAGAGCCTCCTGTATTATAATCG ATTCACCTATTTGGATTGGTTCCTGCAGAAGCCA GGGCAGTCTCCACATCTCCTGATCTATTTGGGTT CTAATCGGGCCTCCGGGGTCCCTGACAGGTTCA GTGGCAGTGTTTCAGGCACAGATTTTACACTGA AAATCAGCAGAGTGGAGGCTGAGGATGTTGGGG TTTATTATTGCATGCAGTCTCTGCAAACTCCATT CACTTTCGGCCCTGGGACCAAAGTGGATATCAA A
Contained Designa- SEQ ID in Clone tion NO. CodingSequence 18B11.2 V1 ll 95 GAAATAGTGATGACGCAGTCTCCAGCCACCCTG TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAGTGTTAACAGCAACTTAG CCTGGTACCAGCAGAAACCTGGCCAGGCTCCCA GGCTCCTCATTTATGGTGTATCCACCAGGGCCAC TGGTATCCCAGCCAGGTTCAGTGGCAGTGGGTC TGGGACAGAGTTCACTCTCACCATCCGCAGCCT GCAGTCTGAAGATTTTGCAGTTTATTACTGTCAG CAGTATAATAACTGGCCTCCGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAA
20D4 V 1,12 96 GACATACAGCTGACCCAGTCTCCATCCTCCCTGT CTGCATCTATAGGAGACAGAGTCACCATCACTT GCCGGGCAAGTCAGGACATTAGATATGATTTAG GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA AGCGCCTGATCTATGCTGCATCCAGfTTGCAAA GTGGGGTCCCTTCAAGGTTCAGCGGCAGTGGAT CTGGGACAGAATTCACTCTCACAGTCAGCAGCC TGCAGCCTGAAGATTTTGCAACTTATTACTGTCT ACAGCATAATAGTTACCCTCTCACTTTCGGCGGA GGGACCAAGGTGGAGATCGAA
46D1] Vo1 3 97 GACATCCAGATGACCCAGTCTCCCTCTTCCGTGT CTGCATCTGTAGGAGACAGAGTCACCATCACTT GTCGGGCGAGTCAGGGTATTAGCATCTGGTTAG CCTGGTATCAGCAGAAACCTGGGAAAGCCCCTA AACTCCTGATCTATGCTGCATCCAGTTTGCAAAG TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGCCT GCAGCCTGAAGATTTTGCAACTTACTATTGTCAA CAGGCTAACGATTTCCCGATCACCTTCGGCCAA GGGACACGACTGGAGATTAAA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. 40D2 V 1,14 98 GATTTTGTGATGACCCAGACTCCACTCTCTCTGT CCGTCACCCCTGGACAGCCGGCCTCCATCTCCTG CAAGTCTAGTCAGAGCCTCCTACAGAGTGATGO AAAGACCTATTTGTATTGGTACCTGCAGAAGCC AGGCCAGCCTCCACATCTCCTGATCTATGAAGTT TCCAACCGATTCTCTGGAGTGCCAGATAGGTTC AGTGGCAGCGGGTCAGGGACAGATTTCACACTG AAAATCAGCCGGGTGGAGGCTGAGGATGTTGGG GTTTATTACTGCATGCAAAGTATACAGCTTCCTC GGACGTTCGGCCAAGGGACCAAGGTGGAAATCA AA
37D3 V1,5 99 GATATTGTGATGACTCAGTCTCCACTCTCCCTGC CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG CAGGTCTAGTCAGAGCCTCCTGCATAGTAATGG ATACAACTTTTTGGATTGGTACCTACAGAAGCC AGGGCAGTCTCCACAGCTCCTGATCTATTTGGGT TCTGATCGGGCCTCCGGGGTCCCTGACAGGTTC AGTGGCAGTGGATCAGGCACAGAGTTTACACTG AAAATCAGCAGAGTGGAGGCTGAGGATGTTGGG CTTTATTACTGCATGCAAGCTCTACAAACTCCGT GCAGTTTTGGCCAGGGGACCAAGCTGGAGATCA AA
39F7 V1,16 100 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAGTGTTAGTAGCACCTATT TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG GGTCTGGGACAGACTTCACTCTCACCATCAGCA GACTGGAGCCTGAAGATTTTGCAGTTTATTACTG TCAGCAGTCTGGTAGCTCACCGCTCACTTTCGGC GGAGGGACCGAGGTGGAGATCAAA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. 39FlI V 1 17 101 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAGTGTTAGCAGCACCTACT TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCAGTCTCCTCATCTATGGTGCATCCAGCAGGGC CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG GTCTGGGACAGACTTCACTCTCACCATCAGCAG ACTGGAGCCTGAGGATTTTGCAGTGTATTACTGT CAGCAGTCTGGTAGCTCACCTCTCACTTTCGGCG GAGGGACCAAGGTGGAGATCAAA
30G5 V,18 102 GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT GCAGGGCCAGTCAGAGTGTTAGCAGCACCTACT TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC CCAGGCTCCTCATCTATGGTGCATCCTTCAGGGC CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG GTCTGGGACAGACTTCACTCTCACCATCAGCAG ACTGGAGCCTGAGGATTTTGCAGTGTATTACTGT CAGCAGTCTGGTAGCTCACCTCTCACTTTCGGCG GAGGGACCAAGGTGGAGATCAAA
Table 2D - Coding Sequence for Antibody Variable Heavy (VII) Chains Contained Designa- SEQID Coding Sequence in Clone tion NO. 17C3 Vill 103 CAGGTCACCTTGAAGGAGTCTGGTCCTGTGCTG GTGAAACCCACAGAGACCCTCACGCTGACCTGC ACCGTCTCTGGGTTCTCACTCAGCAATGCTAGAA TCGGTGTGAGCTGGATCCGTCAGCCCCCAGGGA AGGCCCTGGAGTGGCTTGCACACATTTTTTCGAA TGACGAAAAATCCTACAGCACATCTCTGAAGAG CAGGCTCACCATCTCCAAGGACACCTCCAAAAG CCAGGTGGTCCTTACCATGACCAACATGGACCC TGTGGACACAGCCACATATTACTGTGCACGGAT ATTATTACTGGGAGCTTACTACTACTACGGTATG GACGTCTGGGGCCAAGGGACCACGGTCACCGTC TCCTCA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. 22H5 V112 104 CAGCTCACCTTGAAGGAGTCTGGTCCTGTGCTG GTGAAACCCACAGAGACCCTCACGCTGACCTGC ACCGTCTCTGGGTTCTCACTCAGCAATGCTAGAA TGGGTGTGAGCTGGATCCGTCAGCCCCCAGGGA AGGCCCTGGAGTGGCTTGCACACATTTTTTCGAA TGACGAAAAATCCTACAGCACATCTCTGAAGAG CAGGCTCACCATCTCCAAGGACACCTCCAAAAG CCAGGTGGTCCTTACCATGACCAACATGGACCC TGTGGACACAGCCACATATTACTGTGCACGGAT ATTATTAGTGGGAGCTTACTACTACTGCGGTATG GACGTCTGGGGCCAAGGGACCACGGTCACCGTC TCCTCA
16H7 V1 3 105 CAGGTCACCTTGAAGGAGTCTGGTCCTGTCCTG GTGAAACCCACAGAGACCCTCACGCTGACCTGC ACCGTCTCTGGGTTCTCACTCAACAATGCTAGAA TGGGTGTGAGCTGGATCCGTCAGCCCCCAGGGA AGGCCCTGGAGTGGCTTGCACACATTTTTTCGAA TGACGAAAAATCCTACAGCACATCTCTGAAGAG CAGGCTCACCATCTCCAAGGACACCTCCAAAAG CCAGGTGGTCCTAATTATGACCAACATGGACCC TCTGGACACAGCCACATATTACTGTGCACGGTC AGTAGTAACTGGCGGCTACTACTACGACGGTAT GGACGTCTGGGGCCAAGGGACCACGGTCACCGT CTCCTCA
24H1 114 106 CAGGTCACCTTGAAGGAGTCTGGTCCTGTGCTG GTGAAACCCACAGAGACCCTCACGCTGACCTGC ACCGTCTCTGGGTTCTCACTCAGCAATCCTAGAA TGGGTGTGAGCTGGATCCGTCAGCCCCCAGGGA AGGCCCTGGAGTGGCTTGCACACATTTTTTCGAA TGACGAAAAATCCTACAGCACATCTCTGAAGAA CAGGCTCACCATCTCCAAGGACACCTCCAAAAG CCAGGTGGTCCTTATTATGACCAACATGGACCCT GTGGACACAGCCACATATTACTGTGCACGGTCA GTAGTGACTGGCGGCTACTACTACGACGGTATG GACGTCTGGGGCCAAGGGACCACGGTCACCGTC TCCTCA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. 18G1 V,1 5 107 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGGTTG GTACAGCCGGGGGGGTCCCTGAGACTCTCCTGT GCAGCCTCTAGATTCACCTTTAGCACCTATGCCA TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC TGGAGTGGGTCTCAGGTATTAGTGGTAGTGGTG TCAGCACACACTACGCAGACTCCGTGAAGGGCC GGTTCACCATCTCCAGAGACAATTCCAAGAACA CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG AGGACACGGCCGTATATTACTGTGCGAAATCCC TCATTGTAGTAATAGTATATGCCCTTGACCACTG GGGCCAGGGAACCCTGGTCACCGTCTCCTCA
17D8 V16 108 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG GTACAGCCGGGGGGGTACCTGAGACTCTCCTGT GCAGCCTCTGGATTCACGTTTAGTACCTATGCCA TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGAC TGGAGTGGGTCTCAGCTATCAGTGGTAGTGGTG ITAGCACATACTACGCAGACTCCGTGAAGGGCC GGTTCACCATCTCCAGAGACAATTCCAAGAACA CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG AGGACACGGCCGTATATTACTGTGCGAAATCCC TTATTGTAGTAATGGTGTATGTCCTTGACTACTG GGGCCAGGGAACCCTGGTCACCGTCTCCTCA
26H11 V7 109 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG GTACAGCCGGGGGGGTACCTGAGACTCTCCTGT GCAGCCTCTGGATTCACGTTFAGCACCTATGCCA TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGAC TGGAGTGGGTCTCAGCTATTAGTGGCAGTGGTG TGAGCACAAACTACGCAGACTCCGTGAAGGGCC GGTTCACCATCTCCAGAGACAATTCCAAGAACA CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG AGGACACGGCCGTATATTACTGTGCGAAATCCC TTATTGTAGTAATGGTGTATGTCCTTGACTACTG GGGCCAGGGAACCCTGGTCACCGTCTCCTCA
Contained Designa- SEQ ID in~loe in Clone tionl NO NO. Coding Sequence 12E4 Vi8 110 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGGTTG I2C11 GTACAGCCGGGGGGGTCCCTGAGACTCTCCTGT GCAGCCTCTAGATTCACCTTTAGCACCTATGCCA TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC TGGAGTGGGTCTCAGGTATTAGTGGTAGTGGTG TTAGCACATACTACGCAGACTCCGTGAAGGGCC GGTTCACCATCTCCAGAGACAATTCCAAGAACA CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG AGGACACGGCCGTATATTACTGTGCGAAATCCC TTATTGTA.GTAATAGTATATGCCCTTGACTACTG GGGCCAGGGAACCCTGGTCACCGTCTCCTCA
'1IH2 V,1 9 III CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG GTGAAGCCTTCGGAGACCCTGTCCCTCACCTOC ACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT GGAGCTGGATCCGGCAGCCCGCCGGGAAGGGA CTGGAGTGGATTGGGCGTATCTATACCAGTGGG AGCACCAACTACAACCCCTCCCTCAAGAGTCGG GTCACCATGTCAAAAGACACGTCCAAGAACCAG TTCTCCCTGAAGCTGAGGTCTGTGACCGCCGCG GACACGGCCGTGTATTACTGTGCGAGAGATCCG GACGGTGACTACTACTACTACGGTATGGACGTC TGGGGCCAAGGGACCTCGGTCACCGTCTCCTCA
21B4 Vui0 112 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC ACTGTCTCTGGTGGCTCCATCAGTAGTTACTTCT GGAGCTGGATCCGGCAGCCCOCCGGGAAGGGA CTGGAGTGGATTGGGCGTATCTATACCAGTGGG AGCACCAACTACAACCCCTCCCTCAAGAGTCGA GTCACCATGTCAATAGACACGTCCAAGAACCAG TTCTCCCTGAAGCTGAGTTCTGTGACCGCCGCGG ACACGGCCGTGTATTACTGTGCGAGAGATCCGG ACGGTGACTACTACTACTACGGTATGGACGTCT GGGGCCAAGGGACCACGGTCACCGTCTCCTCA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. 18BI1.1 V 1ll I113 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTG 18B11.2 GTAAAGCCTGGGGGGTCCCTTAGACTCTCCTGT GCAGCCTCTGGATTCACTTTCAGTGACGCCTGGA TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC TGGAGTGGGTTGGCCGTATTAAAAGCAAAACTG ATGGTGGGACAACAGACTACGCTGCACCCGTGA AAGGCAGATTCACCATCTCAAGAGATGATTCAA AAAACACTCTGTATCTGCAAATGAACAGCCTGA AAACCGAGGACACAGCCGTGTATTTTTGTACCT CTACGTATAGCAGTGGCTGGTACGTATGGGACT ACTACGGTATGGACGTCTGGGGCCAAGGCACCA CGGTCACCGTCTCCTCA
20D4 Vul2 114 CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTG AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC AAGGTTTCGGGATACACCCTCACTGATTTATCCA TGCACTGGGTGCGACAGGCTCCTGGAAAAGGGC TTGAGTGGATGGGAGGTTTTGATCCTGAAGATG GTGAAACAATCTACGCACAGAAGTTCCAGGGCA GAATCACCATGACCGAGGACACATCTACAGACA CAGCCTACATGGAGCTGAGCAGCCTGAGATCTG AGGACACGGCCGTGTATTACTGTGCAAGTATTG TAGTAGTCCCAGCTGCTATACAGAGTFTA(TACTA CTACTACGGTATGGGCGTCTGGGGCCAAGGGAC CACGGTCACCGTCTCCTCC
46DI1 V1 113 115 CAGGTCACCTTGAAGGAGGCTGGTCCTGTGTTG GTGAAACCCACAGAGACCCTCACGTTGACCTGC ACCGTCTCTGGOTTCTCACTCAGCAATGCTAGAA TGGGTGTGAACTGGATCCGTCAGCCCCCAGGGA AGGCCCTGGAGTGGCTTGCACACATT'TTTCGAA TGACGAAAAATCCTACAGCACATCTCTGAAGAG CAGGCTCACCATCTCCAAGGACACCTCCAAAAG CCAGGTGGTCCTTACCATGACCAACATGGACCC TGTGGACACAGCCACATATTACTGTGCACGGGT TCGTATAGCAGGTGATTACTACTACTACTACGGT ATGGACGTCTGGGGCCAAGGGACCACGGTCACC GTCTCCTCA
Contained Designa- SEQ ID Coding Sequence n Clone tion NO. 40D2 Vul4 116 CAGGTGCACCTGCAGGAGTCGGGCCCAGGACTG GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTA CAACTGGAGCTGGATCCGCCAGCACCCAGGGAA GGGCCTGGAGTGGATTGGGAACATCTATTACAG TGGGAGCACCTACTACAACCCGTCCCTCAAGAG TCGAGTTACCATATCAGTAGACACGTCTAAGAA CCAGTTCTCCCTGAAGCTGAGATCTGTGACTGCC GCGGACACGGCCGTGTATTACTGTGCGAGAGAG AATATTGTAGTAATACCAGCTGCTATATTCGCGG GTTGGTTCGACCCCTGGGGCCAGGGAACCCTGG TCACCGTCTCCTCA
37D3 V1 115 117 GAGGTGCACCTGGTGGAGTCTGGGGGAGGCTTG GCAAAGCCTGGGGGGTCCCTTAGACTCTCCTGT GCAGCCTCTGGATTCACTTTCAGAAACGCCTGG ATGAGCTGGGTCCGCCAGGCTCCAGGAAAGGGG CTGGAATGGGTTGGCCGTATTAAAAGCAAAACT GATGGTGGGACAACAGACTACGCTGCACCCGTG AAAGGCAGATTCACCATCTCGAGAGATGATTCA AAAAACACGCTGTATCTGCAAATGAACAGCCTG AAAACCGAGGACACAGCCGAGTATTACTGTATC ACAGATCGGGTGCTAAGCTACTACGCTATGGCC GTCTGGGGCCAAGGGACCACGGTCACCGTCTCC TCA
39F7 V 1 116 118 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT GCAGCGTCTGGATTCACCTTCAGTAACTATGGC ATTCACTGGGTCCGCCAGGCTCCAGGCAAGGGG CTGGAGTGGGTGGCAGTTATATGGTATGATGGA AGTATTAAATACTATGCAGACTCCGTGAAGGGC CGATTCACCATCTCCAGAGACAATTCCAAGAAC ACGCTGTATCTGCAAATGAACAGCCTGAGAGCC GAGGACACGGCTGTGTATTACTGTGCGAGAGAT AGGGCAGCAGCTGGTCTCCACTACTACTACGGT ATGGACGTCTGGGGCCAAGGGACCACGGTCACC GTCTCCTCA
Contained Designa- SEQ ID Coding Sequence in Clone tion NO. In 39F] I V17 119 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC ATCCACTGGGTCCGCCAGGCTCCAGGCAAGGGG CTGGAATGGGTGGCAGTTATATGGTATGATGGA AGTGATAAATACTATGCAGACTCCGTGAAGGGC CGATTCACCATCTCCAGAGACAATTCCAAGAAC ACGCTGTATCTACAAATGAACAGCCTGAGAGCC GAGGACACGGCTGTGTATTACTGTGCGAGAGAT AGGGCAGCAGCTGGTCTCCACTATTATTACGGT ATGGACGTCTGGGGCCAAGGGACCACGGTCACC GTCTCCTCA
39G5 V1118 120 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT GCAGTGTCTGGATTCACCTTCAGTAGCTATGGCA TCCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC TGGAATGGGTGGCAGTTATATGGTATGATGGAA GTGATAAATACTATGGAGACTCCGTGAAGGGCC GATTCACCATCTCCAGAGACAATTCCAAGAACA CGCTGTATCTACAAATGAACAGCCTGAGAGCCG AGGACACGGCTGTOTATTACTGTGCGAGAGATA GGGCAGCAGCTGGTCTCCACTATTATTACGGTAT GGACGTCTGGGGCCAAGGGACCACGGTCACCGT CTCCTCA
Each of the heavy chain variable regions listed in Table 2B can be combined with any of the light chain variable regions shown in Table 2A to form an antigen binding protein. Examples of such combinations include V 1 combined with any of V 1 1, V 1 2, V1 3, V4, Vi5, VFV6, V7, V 18, V1 9 , V, 1 0, Vj 1 1, Vl2, V 1 3, V1,14, V15, Vt,16, V.17 or V1 18; V 112 combined with any of V1 , V1 2,V3, V,4, V1 5, VL6, V,V8, V9, V.10, V 1 1, V1 2, V,1 3, V 1 4, V-15. VI16, V 1 7 or VI8; V,1 3 combined with any of V1, V1 2, V3, V[4, V5, V6, V7, V8, V9, VI0, Vt 1I, VtI12, Vl 3. Vl4, V 1 5 , V16, V17 or V18; and so on. In some instances, the antigen binding protein includes at least one heavy chain variable region and/or one light chain variable region from those listed in Tables 2A and 2B. In some instances, the antigen binding protein includes at least two different heavy chain variable regions and/or light chain variable regions from those listed in Table 2B. An example of such an antigen binding protein comprises (a) one Vil, and (b) one of V12, V13, V4, V5, V,6, V117, VIT8, V,,9,V10jlOVn 11,Vu12,VH, VH, 4 ,VHs,5 ,VH1 6 ,VHa or VHs. Anotherexamplecomprises (a) one Vn 2 . and (b) one of VI, V3, V,4, V15, V116, V17, V18, V19, V10, Vl1 , V12, VllJ3,V,,4,V,15,Vul,6,V,l7 or VH18. Again another example comprises (a) one V13, and (b) one of Vil, V,2, V114, V5, V6, V7, VS, VA, V1 0, V 1 1, VIul2, V13.1, 4, Vn15 Vt,16, V,17 or V,18, etc. Again another example of such an antigen binding protein comprises (a) one Vt I, and (b) one of V,2, V,3, V,4, V15, V,.6, V17, V8. V9,1 Vt,10, V 11, Vt 12, V,13, V14, V,15, Vi16, V.17, or V18. Again another example of such an antigen binding protein comprises (a) one V 12, and (b) one of V.l, V3, V,4, V,5, V6, V7, V,8, V9, V1,10, V.1 or V1,12. Again another example of such an antigen binding protein comprises (a) one V3, and (b) one of V11, Vt2, V 4, V5, VW6, Vt7, V8,1V9,1V,10, V,1, V112, V,13, V14, V15, V16, V17, or Vt,18, etc. The various combinations of heavy chain variable regions can be combined with any of the various combinations of light chain variable regions. In other embodiments, an antigen binding protein comprises two identical light chain variable regions and/or two identical heavy chain variable regions. As an example, the antigen binding protein can be an antibody or immunologically functional fragment thereof that includes two light chain variable regions and two heavy chain variable regions in combinations of pairs of light chain variable regions and pairs of heavy chain variable regions as listed in Tables 2A and 2B. Some antigen binding proteins that are provided comprise a heavy chain variable domain comprising a sequence of amino acids that differs from the sequence of a heavy chain variable domain selected from Vil, V12, V,3, V14, Vj5, V1.6, V67, V,8, V9, V010, Vil 1, VIl2, Vl13, Vi 14, Vl1 5, V' 16, V,17 and V,18 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid, with the deletions, insertions and/or substitutions resulting in no more than 15 amino acid changes relative to the foregoing variable domain sequences. The heavy chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%, 85% 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the heavy chain variable region of Vil, V12,
7, V[8, V V3, V 114, V 115, V 116, V 11 9, V0, VIIl 1, V 1112, Vil3, V14. V1115, V06, V 117 and VII18. Certain antigen binding proteins comprise a light chain variable domain comprising a sequence of amino acids that differs from the sequence of a light chain variable domain selected from V 1 1, V2, V,3, V4, V5, V[6, V7, V8, VL9, V 1 10 VIl l, VV2, Vj3, VI1 4, V1l5, VL 16, Vl17 and VL18 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid. with the deletions, insertions and/or substitutions resulting in no more than 15 amino acid changes relative to the foregoing variable domain sequences. The light chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%. 85%, 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the light chain variable region of V1 1, V1 2, V1 3, V4, V15, V6, VI7, V8, V9, VI 10, V1, 11, V1,12, Vi.13, Vi 14, V 15, VI 16, Vl-17 or VI-I8. In additional instances, antigen binding proteins comprise the following pairings of light chain and heavy chain variable domains: VI I with V11, V 12 with V 1 2, V 1 2 with V 1 3, V3 with V 114, V4 with V 115, V 15with Vn6, V6 with V7, V7 with V V8,V8 with V1 8.V9 with VA9, VL9 with V 11 10, V 1 10 with Vl11, V1J I with Vil1I, V12 with V1112, V 1 13 with V113, V1 ,14 with V114, VIl5 with V 11 15, V 1]6 with V 11 16, V 1 17 with V 1 17 and V18 with V 1 18. In some instances, the antigen binding proteins in the above pairings can comprise amino acid sequences that have 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with the specified variable domains. Still other antigen binding proteins, e.g.,antibodies or immunologically functional fragments, include variant forms of a variant heavy chain and a variant light chain as just described.
Antigen Binding Protein CDRs In various embodiments, the antigen binding proteins disclosed herein can comprise polypeptides into which one or more CDRs are grafted, inserted and/or joined. An antigen binding protein can have 1, 2, 3, 4, 5 or 6 CDRs. An antigen binding protein thus can have, for example, one heavy chain CDRI ("CDRHI"), and/or one heavy chain CDR2 ("CDRH2"), and/orone heavychain CDR3("CDRH3"),and/orone lightchainCDRI ("CDRLI"), and/orone light chain CDR2'("CDRL2"), and/or one light chain CDR3 ("CDRL3"). Some antigen binding proteins include both a CDRH3 and a CDRL3. Specific heavy and light chain CDRs are identified in Tables 3A and 3B, respectively and in Table 6C. infia. Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et aL, in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. As desired, the CDRs can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk 1987, . Mol. Biol. 196:901-917; Chothia et al., 1989, Nature 342:878-883 or Honegger & Pluckthun, 2001, J lo/. Bio/. 309:657-670). Certain antibodies that are disclosed herein comprise one or more amino acid sequences that are identical or have substantial sequence identity to the amino acid sequences of one or more of the CDRs presented in Table 3A (CDRHs) and Table 3B (CDRLs) and Table 6C, infia.
Table 3A - Exemplary CDRH Sequences
Clone SEQ ID Contained in Designation Sequence NO: Reference 20D4 121 Va12 CDRHI-l DLSMH 17C3 122 Vil CDRH1-2 NARMGVS 22H5 V112 16H7 V1 3 24H11 V14 18311.1 123 V 111 CDRHI-3 DAWMS 18311.2 Vl l I 18Gl 124 V115 CDRHI-4 TYAMS 12C11 Vu8 12E4 V118 17D8 V1 6 26H111 V1 17 21B4 125 Vf 110 CDRHJ-5 SYFWS
46D1 126 Val113 CDRH1-6 NARMGVN 37D3 127 V 1115 CDRHI-7 NAWMS 39F11 128 V1117 CDRHI-8 SYGIH 39G5 V'l8 18
Clone SEQ ID Contained in Designation Sequence NO: Reference 39F7 129 V 1116 CDRH1-9 NYGIH
40D2 130 V114 CDRHI-10 SGGYNWS 21H2 131 V19 CDRHI-I1 SYYWS 20D4 132 Vii12 CDRH2-1 GFDPEDGET1YAQKFQG 17C3 133 Vill CDRH2-2 HIFSNDEKSYSTSLKS 22115 V112 16H7 V3 46DI1 V113 24H11 134 V14 CDRH2-3 HIFSNDEKSYSTSLKN 18111.1 135 VlI CDRH2-4 RIKSKTDGGTTDYAAPVKG 18B11.2 Vil Il 37D3 V 1115 18G 136 V 15 CDRH2-5 GISGSGVSTHYADSVKG 12C11 137 V 118 CDRH2-6 GISGSGVSTYYADSVKG 12E4 V118 17D8 138 V116 CDRH2-7 AISGSGVSTYYADSVKG 26H11 139 V17 CDRH2-.8 AISGSGVSTNYADSVKG 21B4 140 V1110 CDRH2-9 RIYTSGSTNYNPSLKS 21 H2 V 19 39F1 1 141 V 1117 CDRH 2 -10 VIWYDGSDKYYADSVKG 39F7 142 V0l6 CDRH2-1l VIWYDGSIKYYADSVKG 39G5 143 VI8 CDRH2-12 VIWYDGSDKYYGDSVKG 40D2 144 V1 114 CDRH2-13 NIYYSGSTYYNPSLKS 20D4 145 V1,1 2 CDRH3-1 IVVVPAAIQSYYYYYGMGV 17C3 146 Vill CDRH3-2 ILLLGAYYYYGMDV 22H5 147 V 12 CDRH3-3 ILLVGAYYYCGMDV 16H7 148 V 113 CDRH3-4 SVVTGGYYYDGMDV 24H111 V4 18BI1.1 149 Vill 1 CDRH3-5 TYSSGWYVWDYYGMDV 18B11.2 VillI 18G1 150 V15 CDRH3-6 ISLIVVIVYALDH
Clone SEQ ID Contained in Designation Sequence NO: Reference 12C11 151 V118 CDRH3-7 SLIVVIVYALDY 12E4 V118 17D8 152 V6 CDRH3-8 SLIVVMVYVLDY 26H11 V117 21B4 153 V10 CDRH3-9 DPDGDYYYYGMDV 21H2 V,9 46DI 154 VI 13 CDRH3-10 VRIAGDYYYYYGMDV 37D3 155 V1 5 CDRH3-I1 DRVLSYYAMAV 39F1 1 156 V1, 1 7 CDRH3-12 DRAAAGLHYYYGMDV 39F7 V 1 16 39G5 V 1118 40D2 157 V1 ,14 CDRH3-13 ENIVVIPAAIFAGWFDP
Table 3B - Exemplary CDRL Sequences
SEQ ID Contained in Designation Sequence Clone NO: Reference 20D4 158 V.I2 CDRLI-1 RASQDIRYDLG 1813 1.1 159 VL1O CDRL1-2 RSSQSLLYYNGFTYLD 12C11 160 V8 CDRLI-3 RASQNFDSSSLA 18G1 161 VIA CDRL1-4 RASQNFDSSYLA 17D8 162 VM5 CDRL1-5 RASQSVSGNYLA 26H11 V 16 21134 163 V1 ,9 CDRL1-6 RASQSVSSTYLA 21HI2 V-9 39F7 VJL6 39FIl Vei17 39G5 V 1,18 12E4 164 V7 CDRLI-7 RASQNFDSNYLA 18111.2 165 V1lI CDRL1-8 RASQSVNSNLA 16H7 166 Vt3 CDRLI-9 GGNNIGSESVH 24H 11 V3 22H5 167 V1 2 CDRLI-10 GGNNIGSQSVH 17C3 V1l I
SEQ ID Contained in Designation Sequence Clone NO: Reference 46D11 168 V1 13 CDRL1-I 1 RASQGISIWLA 40D2 169 VL4 CDRL1-12 KSSQSLLQSDGKTYLY 37D3 170 V 1 15 CDRL1-13 RSSQSLLHSNGYNFLD 20D4 171 V.12 CDRL2-1 AASSLQS 46DIM V 1,I3 18B11.11 172 V1 10 CDRL2-2 LGSNRAS 12C11 173 V.8 CDRL2-3 GASSRAT 17D8 V5 21B4 V1 9 211H2 V9 26H11 V,6 12E4 V[7 39F7 V.16 39FIl VL17 18G] 174 V1 4 CDRL2-4 GTSSRAT 18B11.2 175 V111 CDRL2-5 GVSTRAT 16H7 176 V1 3 CDRL2-6 DDSDRPS 241H11 V1 3 22H5 Vi2 17C3 V 40D2 177 V1.14 CDRL2-7 EVSNRFS 37D3 178 V 1.15 CDRL2-8 LGSDRAS 39G5_ 179 V118 CDRL2-9 GASFRAT 20D4 180 VI12 CDRL3-1 LQHNSYPLT 18B11.1 181 VL1O CDRL3-2 MQSLQTPFT 12C11 182 VI8 CDRL3-3 QQCGSSPLT 18G1 183 V1 4 CDRL3-4 QQYGGSPLT 17D8 184 Vj5 CDRL3-5 QQYGSAPLT 21B4 185 V1 9 CDRL3-6 QQYGSSFT 21H2 VI-9 26H11 186 V 6 CDRL3-7 QQYGSSPLT 12E4 VL7 18B11.2 187 VIl I CDRL3-8 QQYNNWPPT
SEQ ID Contained in Designation Sequence Clone NO: Reference 16H7 188 V-3 CDRL3-9 QVWDGNSDHVV 24H11 V1.3 22H5 189 V12 CDRL3-10 QVWDNTSDHVV 17C3 190 V,] CDRL3-11 QVWDSSSDHVV 46DI1 191 V1 13 CDRL3-12 QQANDFPIT 40D2 192 V, 1 4 CDRL3-13 MQSIQLPRT 37D3 193 VLI5 CDRL3-14 MQALQTPCS 39F7 194 V-16 CDRL3-15 QQSGSSPLT 39F1I Vt17 39G5 V_18
Table 3C - Coding Sequences for CDRHs
SEQ Contained Desig- Sequence ID in nation Clone NO: Reference 20D4 195 V 112 CDRH GATTTATCCATGCAC 1-l 17C3 196 Vill CDRH AATGCTAGAATGGGTGTGAGC 22H5 V112 1-2 16H7 V 113 24H]1 V11 4 181311.1 197 Vll I CDRH GACGCCTGGATGAGC 18B11.2 Vill] 1-3 1801 198 V 115 CDRH ACCTATGCCATGAGC 12C11 V 118 1-4 12E4 V118 17D8 V 116 26H11 V 117 21B4 199 V1110 CDRH AGTTACTTCTGGAGC 21H2 V 119 1-5 46D1 200 V1113 CDRH AATGCTAGAATGGGTGTGAAC 1-6 37D3 201 V 1115 CDRH AACGCCTGGATGAGC 1-7
SEQ Contained Desig- Sequence ID in nation Clone NO: Reference 39F11 202 V].17 CDRH AGCTATGGCATCCAC 39G5 V1Il8 1-8 39F7 203 V 1,1 6 CDRH AACTATGGCATTCAC 1-9 40D2 204 V1.1 4 CDRN AGTGGTGGTTACAACTGGAGC 1-10 20D4 205 Vill2 CDRH GGTTTTGATCCTGAAGATGGTGAAACAATCT 2-l ACGCACAGAAGTTCCAGGGC 17C3 206 Vill CDRH CACATTTTTTCGAATGACGAAAAA 22H5 V,1 2 2-2 TCCTACAGCACATCTCTGAAGAGC 16H7 V 113 46DI V1 13 24H11 207 V1 4 CDRH CACATTTTTTCGAATGACGAAAAATC 2-3 CTACAGCACATCTCTGAAGAAC 18B11.1 208 Vil]l TCDRH CGTATTAAAAGCAAAACTGAT0GTGGGA 18B] 1.2 Vill1 2-4 CAACAGACTACGCTGCACCCGTGAAAGGC 37D3 V 1115 18G1 209 V1 5 CDRH GGTATTAGTGGTAGTGGTGTCAGCACACA 2-5 CTACGCAGACTCCGTGAAGGGC 12C11 210 V18 CDRH GGTATTAGTGGTAGTGGTGTTAGCACATAC 12E4 V18 2-6 TACGCAGACTCCGTGAAGGGC 17D8 211 V116 CDRH GCTATCAGCTCAGTGGTGTTAGCACATAC 2-7 TACGCAGACTCCGTGAAGGGC 26HI1 212 V17 CDRH GCTATTAGTGGCAGTGGTGTGAGCACAAAC 2-8 TACGCAGACTCCGTGAAGGGC 21B4 213 Vil10 CDRH CGTATCTATACCAGTGGGAGCACCAACTACA 21H2 V 119 2-9 ACCCCTCCCTCAAGAGT 39F1 1 214 V11]7 CDRH GTTATATGGTATGATGGAAGTGATAAATACT 2-10 A TGCAGACTCCGTGAAGGGC 39F7 215 V 1116 CDRH GTTATATGGTATGATGGAAGTATTAAATACT 2-11 A TGCAGACTCCGTGAAGGGC 39G5 216 V1118 CDRH GTTATATGGTATGATGGAAGTGATAAATACT 2-12 A TGGAGACTCCGTGAAGGGC
SEQ Contained Desig- Sequence ID in nation Clone NO: Reference 40D2 217 V1[14 CDRH AACATCTATTACAGTGGGAGCACCTACTACA 2-13 A CCCGTCCCTCAAGAGT 20D4 218 V, 1 2 CDRH ATTGTAGTAGTCCCAGCTGCTATACAGAGTT 3-1 A CTACTACTACTACGGTATGGGCGTC 17C3 219 V11 CDRH ATATTATTACTGGGAGCTTACTACTACTACG 3-2 G TATGGACGTC 221H5 220 V 112 CDRH ATATTATTAGTGGGAGCTTACTACTACTGCG 3-3 G TATGGACGTC 16H7 221 V113 CDRH TCAGTAGTAACTGGCGGCTACTACTACGACG 24HII V114 3-4 GTATGGACGTC I8B11.1 222 Vll 1 CDRH ACGTATAGCAGTGGCTGGTACGTATGGGAC 18B]1.2 V 111 3-5 TACTACGGTATGGACGTC 18G1 223 V115 CDRH TCCCTCATTGTAGTAATAGTATATGCCCTTG 3-6 ACCAC 12C11 224 V118 CDRH TCCCTTATTGTAGTAATAGTATATGCCCT 12E4 V118 3-7 TGACTAC 17D8 225 V116 CDRH TCCCTTATTGTAGTAATGGTGTATGTCCT 26H1 V 117 3-8 TGACTAC 21B4 226 V1110 CDRH GATCCGGACGGTGACTACTACTACTACG 21H2 V119 3-9 GTATGGACGTC 46DI1 227 V1 1l3 CDRH GTTCGTATAGCAGGTGATTACTACTACTA 3-10 CTACGGTATGGACGTC 37D3 228 V1 Il5 CDRH GATCGGGTGCTAAGCTACTACGCTATGG 3-11 CCGTC 39F1I 229 V 1,17 CDRH GATAGGGCAGCAGCTGGTCTCCACTATT 39F7 V11l6 3-12 ATTACGGTATGGACGTC 39G5 V, 118 D2 230 V 1,1 4 CDRH GAGAATATTGTAGTAATACCAGCTGCTAT 3-13 ATTCGCGGGTTGGTTCGACCCC
Table 3D - Coding Sequences for CDRLs
Clone SEQ Contained in Designation Sequence ID Reference NO: 20D4 231 V1 12 CDRL1-1 CGGGCAAGTCAGGACATTAGATATGATT TAGGC 18B11 232 V 1 10 CDRL1-2 AGGTCTAGTCAGAGCCTCCTGTATTATA ATGGATTCACCTATTTGGAT 12C11 233 V8 CDRLI-3 AGGGCCAGTCAGAATTTTGACAGCAGC TCCTTAGCC ISGI 234 V1 4 CDRL]-4 AGGGCCAGTCAGAATTTTGACAGCAGT TACTTAGCC 17D8 235 V15 CDRLI-5 AGGGCCAGTCAGAGTGTTAGCGGCAAC 261111 VL6 TACTTGGCC 21B4 236 Vr9 CDRL1-6 AGGGCCAGTCAGAGTGTGAGCAGTACC 21H2 V 19 TACTTAGCC 39F7 VI16 39F1l V 1 17 39G5 VH8 12E4 237 V 17 CDRL1-7 AGGGCCACTCAGAATTTCGACAGCAAC TACTTAGCC 18B11.2 238 VIl I CDRLi-8 AGGGCCAGTCAGAGTGTTAACAGCAAC TTAGCC 16H7 239 V13 CDRLL-9 GGGGGAAACAACATTGGAAGTGAAAGTG 24H I I V3 TGCAC
22H5 240 V1 2 CDRL1-10 GGGGAAACAACATTGGAAGTCAAAGTG 17C3 Vil TGCAC 46D11 241 V 113 CDRLI-11 CGGGCGAGTCAGGGTATTAGCATCTGGT TAGCC D2 242 V1 l4 CDRL1-12 AAGTCTAGTCAGAGCCTCCTACAGAGTG ATGGAAAGACCTATTTGTAT 37D3 243 V 1 15 CDRLI-13 AGGTCTAGTCAGAGCCTCCTGCATAGTA ATGGATACAACTT]TTGGAT D4 244 V1 ]2 CDRL2-1 GCTGCATCCAGFTGCAAAGT 46DII VL3 18B11. 1245 V, 1 0 CDRL2-2 TTGCGTTCTAATCOGGCCTCC
Clone SEQ Contained in Designation Sequence ID Reference NO: 12C11 246 VE8 CDRL2-3 GGTGCATCCAGCAGGGCCACT 17D8 Vr5 2184 V1 9 21H2 Vt9 26H11 VW6 12E4 V7 39F7 V16 39F1I l V17 18G1 247 V14 CDRL2-4 GGTACATCCAGCAGGGCCACT 18811.2j 248 1 1 VA C'DRL2-5 GGTGTATCCACCAGGGCCACT 16H7 249 V,3 CDRL2-6 GATGATAGCGACCGGCCCTCA 24Hf] V1 3 22H5 V12 17C3 V1,I 40D2 250 VI 14 CDRL2-7 GAAGTTTCCAACCGATTCTCT 37D3 251 V 1 15 CDRL2-8 TTGGGTTCTGATCGGGCCTCC 20D4 252 V,.12 CDRL3-1 CTACAGCATAATAGTTACCCTCTCACT 18B11.1 253 V 1 10 CDRL3-2 ATGCAGTCTCTGCAAACTCCATTCACT 12C11 254 V1 8 CDRL3-3 CAGCAGTGTGGTAGCTCACCGCTCACT 180] 255 V,4 CDRL3-4 CAGCAGTATGGTGGCTCACCGCTCACT 17D8 256 VE5 CDRL3-5 CAGCAGTATGGTAGCGCACCGCTCACT 21B4 257 V 19 CDRL3-6 CAGCAGTATGGAAGTTCATTCACT 21H2 V19 26HI1 258 V1 6 CDRL3-7 CAGCAGTATGGTAGCTCACCGCTCACT 12E4 VO7 1881.2 259 VIlI CDRL3-8 CAGCAGTATAATAACTGGCCTCCGACG 16H7 260 VL3 CDRL3-9 CAGGTGTGGGATGGTAATAGTGATCAT 24HII V3 GTGGTA 22115 261 V12 CDRL3-10 CAGGTGTGGGATAATACTAGTGATCAT GTGGTA 17C3 262 VjL CDRL3-11 CAGOTGTGGGATAGTAGTAGTGATCAT GTGGTA 46DI] 263 VL3 CDRL3-12 CAACAGGCTAACGATTTCCCGATCACC 40D2 264 V 1 14 CDRL3-13 ATGCAAAGTATACAGCTTCCTCGGACG
Clone SEQ Containedin Designation Sequence ID Reference NO: 37D3 265 Vi 1]5 CDRL3-14 ATGCAAGCTCTACAAACTCCGTGCAGT
39F7 266 V,16 CDRL3-15 CAGCAGTCTGGTAGCTCACCTCTCACT 39F1l V17 39G5 VI-l8
The structure and properties of CDRs within a naturally occurring antibody has been described,supra. Briefly, in a traditional antibody, the CDRs are embedded within a framework in the heavy and light chain variable region where they constitute the regions responsible for antigen binding and recognition. A variable region comprises at least three heavy or light chain CDRs, see, supra (Kabat et a. 1991, Sequences ofProteinsofmmnumalogical Interest, Public Health Service N.L.H., Bethesda, MD; see also Chothia and Lesk, 1987, J, Mat Biol 196:90] 917; Chothia et A, 1989, Nature 342: 877-883), within a framework region (designated framework regions 1-4, FRI, FR2, FR3, and FR4, by Kabat eta, 1991 see also Chothia and Lesk, 1987. supra). The CDRs provided herein, however, can not only be used to define the antigen binding domain of a traditional antibody structure, but can be embedded in a variety of other polypeptide structures, as described herein. In one aspect, the CDRs provided are (a) a CDRH selected from the group consisting of (i) a CDRHI selected from thegroup consisting of SEQ ID NO:121-131; (ii) a CDRH2 selected from the group consisting of SEQ ID NO:132-144; (iii) a CDRH3 selected from the group consisting of SEQ ID NO:145-157; and (iv) a CDRH of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than five, four, three, two, or one amino acids; (B) a CDRL selected from the group consisting of (i) a CDRLI selected from the group consisting of SEQ ID NO:158-170; (ii) a CDR L2 selected from the group consisting of SEQ ID NO:171-179; (iii) a CDRL3 selected from the group consisting of SEQ ID NO:180- 94; and (iv) a CDRL of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than 1, 2, 3,4, or 5 amino acids amino acids. In another aspect, an antigen binding protein comprises 1, 2, 3, 4, 5, or 6 variant forms of the CDRs listed in Tables 3A and 3B and Table 6C, in/i-a, each having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a CDR sequence listed in Tables 3A and 3B and Table 6C, ini-a. Some antigen binding proteins comprise 1, 2, 3, 4, 5, or 6 of the CDRs listed in Tables 3A and 3B and Table 6C, inp-a, each differing by no more than 1, 2, 3. 4 or 5 amino acids from the CDRs listed in these tables. In still another aspect. an antigen binding protein includes the following associations of CDRLI. CDRL2 and CDRL3: SEQ ID NOs:167. 176, and 190; SEQ ID NOs:167, 176, and 189, SEQ ID NOs:166, 176, and 188; SEQ ID NOs:166, 176, and 188; SEQ ID NOs:161, 174, and 183: SEQ ID NOs:162, 173, and 184; SEQ ID NOs:162, 173, and 186; SEQ ID NOs:164, 173, and 186: SEQ ID NOs:160, 173, and 182; SEQ ID NOs:163, 173, and 185 SEQ ID NOs:163, 173, and 185; SEQ ID NOs:159, 172, and 181: SEQ ID NOs:165, 175, and 187; SEQ ID NOs:158, 171, and 180; SEQ ID NOs:168, 171, and 191: SEQ ID NOs:169, 177 and 192; SEQ ID NOs:170, 178, and 193; SEQ ID NOs:163, 173, and 194; SEQ ID NOs:163, 173 and 194: and SEQ ID NOs:163, 179, and 194. In an additional aspect, an antigen binding protein includes the following associations of CDRHI, CDRH-2 and CDRH3: SEQ ID NOs:122, 133, and 146; SEQ ID NOs:122, 133, and 147: SEQ ID NOs:122, 133, and 148; SEQ ID NOs:122, 134, and148; SEQ ID NOs:124, 136, and 150: SEQ ID NOs:124, 138, and 152: SEQ ID NOs:124, 139, and 152; SEQ ID NOs:124, 137, and 151: SEQ ID NOs:124, 137, and 151: SEQ ID NOs:131, 140, and 153: SEQ ID NOs:125, 140, and 153; SEQ ID NOs:123, 135, and 149; SEQ ID NOs:123, 135, and 149; SEQ ID NOs:121, 132, and 145: SEQ ID NOs:126, 133, and 154: SEQ IDNOs:130, 144, and 157; SEQ ID NOs:127, 135, and 155: SEQ ID NOs:129, 142, and 156: SEQ ID NOs:128, 141. and 156; and SEQ ID NOs:128, 143, and 156. In another aspect, an antigen binding protein includes the following associations of CDRLI, CDRL2 and CDRL3 with CDRH I, CDRH2 and CDRH3: SEQ ID NOs:167, 176, and 190; SEQ ID NOs:167, 176, and 189, SEQ ID NOs:166, 176, and 188: SEQ ID NOs:166, 176, and 188; SEQ ID NOs:161, 174, and 183; SEQ ID NOs:162, 173, and 184: SEQ ID NOs:16 2 ,
.5 173, and 186: SEQ ID NOs:164, 173, and 186; SEQ ID NOs:160, 173, and 182; SEQ ID NOs:163, 173, and 185; SEQ ID NOs:163, 173, and 185; SEQ ID NOs:159, 172, and 181; SEQ ID NOs:165, 175, and 187; SEQ ID NOs:158, 171, and 180; SEQ ID NOs:168, 171, and 191; SEQ ID NOs:169, 177 and 192; SEQ ID NOs:170, 178, and 193; SEQ ID NOs:163, 173, and 194; SEQ ID NOs:163, 173 and 194; SEQ ID NOs:163, 179, and 194 with SEQ ID NOs:122, 133, and 146; SEQ ID NOs:122, 133, and 147; SEQ ID NOs:122, 133, and 148; SEQ ID NOs:122, 134, and148; SEQ ID NOs:124, 136, and 150; SEQ ID NOs:124, 138, and 152: SEQ
ID NOs:124, 139, and 152; SEQ ID NOs:124. 137. and 151; SEQ ID NOs:124, 137, and 151; SEQ ID NOs:131, 140, and 153; SEQ ID NOs:125, 140, and 153; SEQ ID NOs:123, 135, and 149: SEQ ID NOs:123, 135, and 149: SEQ ID NOs:121, 132, and 145; SEQ ID NOs:126, 133, and 154: SEQ ID NOs:130, 144, and 157: SEQ ID NOs:127, 135. and 155 SEQ ID NOs:129, 142, and 156: SEQ ID NOs:128, 141, and 156: and SEQ ID NOs:128, 143, and 156.
Consensus Sequences In yet another aspect, the CDRs disclosed herein include consensus sequences derived from groups of related monoclonal antibodies. As described herein, a "consensus sequence" refers to amino acid sequences having conserved amino acids common among a number of sequences and variable amino acids that vary within a given amino acid sequences. The CDR consensus sequences provided include CDRs corresponding to each of CDRH, CDRH2, CDRH3, CDRLI, CDRL2 and CDRL3. Consensus sequences were determined using standard analyses of the CDRs corresponding to the Vn and Vi of the disclosed antibodies, some of which specifically bind (i) D-Kotho: (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRI c, FGFR2c, FGFR3c, and FGFR4. The consensus sequences were determined by keeping the CDRs contiguous within the same sequence corresponding to a VI or VI.
Li2ht Chain CDR3 Group I LQHNSYPLT (SEQ ID NO: 267)
Group 2 MQSLQTPFT (SEQ ID NO: 268)
Group 3 QQYNNWPPT (SEQ ID NO: 269)
Group 4 MQSIQLPRT (SEQ ID NO: 270)
Group 5 QQANDFPIT (SEQ ID NO: 271)
Group 6 MQALQTPCS (SEQ ID NO: 272)
Group 7 QVWD G N SDHVV (SEQ ID NO: 273) QVWD N T SDHVV (SEQ ID NO: 274) QVWD S S SDHVV (SEQ ID NO:275) QVWD X, X2 SDHVV (SEQ ID NO: 276) wherein X Iis G, S or N andX 2 is S, T or N.
Group 8 QQ C G S S P L T(SEQIDNO:277) QQ Y G G S P L T(SEQ ID NO:278) QQ Y G S A P L T(SEQIDNO:279) QQ Y G S S F T (SEQ ID NO: 280) QQ Y G S S P L T (SEQ ID NO: 281) QQ S G S S P L T (SEQ ID NO: 282) QQ X3 G X4 X5 X6 X7 T (SEQ ID NO: 283) wherein X 3is C, Y or S,X 4 is S or G, X is S or A,X6 is P or F andX7 is L or absent.
Light Chain CDR2 Group I AASSLQS (SEQ ID NO: 284)
Group 2 GVSTRAT (SEQ ID NO: 285)
Group 3 DDSDRPS (SEQ ID NO: 286)
Group 4 EVSNRFS (SEQ ID NO: 287)
Group 5 L G S N R A S (SEQ ID NO: 288) L G S D R A S (SEQ ID NO: 289) L G S X27 R A S(SEQ ID NO:290) wherein X 2 7 is N or D.
Group 6 G A S S RAT (SEQ ID NO: 291) G T S S RAT (SEQ ID NO: 292) G A S F RAT(SEQIDNO:293) G X, S X2 8 RAT (SEQ ID NO: 294) wherein.Xs is A or T and X 29 is S or F.
Light Chain CDR1 Group I RASQSVNSNLA (SEQ ID NO: 295)
!5 Group 2 RASQDIRYDLG (SEQ ID NO: 296)
Group 3 RASQGISIWLA (SEQ ID NO: 297)
Group 4 KSSQSLLQSDGKTYLY (SEQ ID NO:298)
Group 5 RASQN F D S S S LA(SEQIDNO:299) RASQ N F D S S Y LA (SEQ ID NO: 300) RASQ S V S G N Y LA (SEQ ID NO: 301) RASQ S V S G T Y LA (SEQ ID NO: 302) RASQ N F D S N Y LA (SEQ ID NO: 303) RASQ X Xi X, X12 X 13 X14 LA (SEQ ID NO: 304) wherein X, is A or S, X t is V or F, X, is D or S, X1 is G or S, X is S, N or T, and X14 is S or V.
Group 6 GGNNIGS E SVH (SEQ ID NO: 305) GGNNIGS Q SVH (SEQ ID NO: 306) GGNNIGS X 15 SVH (SEQ ID NO: 307) wherein Xis E or Q.
Group 7 RSSQSLL Y Y NG F T Y LD (SEQ ID NO: 308) RSSQSLL H S NG Y N F LD (SEQ ID NO: 309) RSSQSLL X, X NG X, XN 2 X,, LD (SEQ ID NO: 310) wherein X2, is Y or H, Xyo is Y or S, X, is F or Y, X2 is T or N and X; is Y or F.
HEAVY CDR3 Group 1 IVVVPAAIQSYYYYYGMGV (SEQ ID NO:31 1)
Group 2 DPDGDYYYYGMDV (SEQ ID NO: 312)
Group 3 TYSSGWYVWDYYGMDV (SEQ ID NO: 313)
Group 4 DRVLSYYAMAV (SEQ ID NO: 314)
Group 5 VRIAGDYYYYYGMDV (SEQ ID NO: 315)
Group 6 ENIVVIPAAIFAGWFDP (SEQ ID NO: 316)
Group 7 DRAAAGLHYYYGMDV (SEQ ID NO: 317)
Group 8 D 1 L L L G A YYY Y GMDV (SEQ ID NO: 318) I L L V G A YYY C GMDV (SEQ ID NO: 319) V V T G G YYY D GMDV(SEQIDNO:320) S V V T G G YYY D GMDV (SEQ ID NO: 321) X34 X 16 X17 XIS G X 19 YYY X2 0 GMDV (SEQ ID NO: 322) Wherein X 3 4is I, V or S, X 1 6 is L or V, X 1 7 is L, T or V, Xs is L, V, G or T, X; is A, G or absent and X2, is Y, C or D.
Group 9 SLIVV I VY A LD H (SEQ ID NO: 323) SLIVV I VY A LD Y (SEQ ID NO: 324) SLIVV M VY V LD Y (SEQ ID NO: 325)
SLIVV XN2 1 VY X22 LD Xi (SEQ ID NO: 326) WhereinX 2 1 is I or M, X22is A or V and X 23 is H or Y.
HEAVY CDR2 Group 1 GFDPEDGETIYAQKFQG (SEQ ID NO: 327)
Group 2 RIKSK T DGGTTDYAAPVKG (SEQ ID NO: 328) RIKSK DGGTTDYAAPVKG (SEQ ID NO: 330) RIKSK X2 DGGTTDYAAPVKG (SEQ ID NO:483) wherein X4 is T or absent.
Group 3 HIFSNDEKSYSTSLK S (SEQ ID NO: 33 1) HIFSNDEKSYSTSLK N (SEQ ID NO: 332) H IFSNDEKSYSTSLK X 2 4 (SEQ I D NO: 333) whereinX 24 is S or N.
Group 4 G ISGSGVST H YADSVKG (SEQ ID NO:334) G ISGSGVST Y YADSVKG (SEQ ID NO: 335) A ISGSGVST Y YADSVKG(SEQIDNO:336) A ISGSGVST N YADSVKG (SEQ ID NO: 337) X2 5 ISGSGVST X2 6 YADSVKG (SEQ ID NO: 338) wherein X 25 is G or A andX26 is H, Y or N.
Group 5 VIWYDGS D KYY A DSVKG (SEQ ID NO: 339) VIWYDGS I KYY G DSVKG (SEQ ID NO: 340) VIWYDGS X 35 KYY X36 DSVKG (SEQ ID NO: 341) wherein X 35 is D or I and X 3 6 is A or G.
Group 6 N ly Y SGST Y YNPSLKS (SEQ ID NO: 342) R IY T SGST Y YNPSLKS (SEQ ID NO: 343) R lY T SGST N YNPSLKS (SEQ ID NO: 329) X3 7 TY X. 8 SGST X4 YNPSLKS (SEQ ID NO: 344) wherein X 37 is N or R, X,, is Y or T andX 4 1 is Y or N.
o HEAVY CDR1 Group I DLSMH (SEQ ID NO: 345)
Group 2 DAWMS (SEQ ID NO: 346)
Group 3 TYAMS (SEQ ID NO: 347)
Group 4 SYFWS (SEQ ID NO: 348)
Group 5 SGGYNWS (SEQ ID NO: 349)
Group-6 NARMGV S(SEQIDNO:350) NARMGV N(SEQIDNO:351) NARMGV X 3 9 (SEQ ID NO: 352) wherein X 3 9 is SorN.
Group 7 S YGIH (SEQ ID NO: 353) N YGIH (SEQ ID NO: 354) X40 YGIH (SEQ ID NO: 355) wherein XA is S or N.
In some cases an antigen binding protein comprises at least one heavy chain CDRI, CDR2, or CDR3 having one of the above consensus sequences. In some cases, an antigen binding protein comprises at least one light chain CDR], CDR2, or CDR3 having one of the above consensus sequences. In other cases, the antigen binding protein comprises at least two heavy chain CDRs according to the above consensus sequences, and/or at least two light chain CDRs according to the above consensus sequences. In still other cases, the antigen binding protein comprises at least three heavy chain CDRs according to the above consensus sequences, and/or at least three light chain CDRs according to the above consensus sequences.
Exemplary Antieen Binding Proteins According to one aspect, an isolated antigen binding protein comprising (a) one or more heavy chain complementary determining regions (CDRHs) selected from the group consisting of: (i) a CDRH selected from the group consisting of SEQ ID NO:121-131; (ii) a CDRH2 selected from the group consisting of SEQ ID NO:132-144; (iii) a CDRH3 selected from the group consisting of SEQ ID NO:145-157; and (iv) a CDRH of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than 1, 2, 3, 4, or 5 amino acids; (b) one or more light chain complementary determining regions (CDRLs) selected from the group consisting of: (i) a CDRLL selected from the group consisting of SEQ ID NO:158-170; (ii) a CDRL2 selected from the group consisting of SEQ ID NO:171-179; (iii) a CDRL3 selected from the group consisting of SEQ ID NO:l8O-194; and (iv) a CDRL of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than five, four, three, four, two or one amino acids; or (c) one or more heavy chain CDRHs of (a) and one or more light chain CDRLs of(b). W0 In another embodiment, the CDRHs have at least 70%, 75%, 80%, 85%,90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NO:121-157, and/or the CDRLs have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NO:158-194. In a further embodiment, the VH is selected from the group consisting of SEQ ID NO:121-157, and/or the VL is selected from the group consisting of SEQ ID NO: 158-194. According to one aspect, an isolated antigen binding protein comprising (a) one or more variable heavy chains (VHs) selected from the group consisting of: (i) SEQ ID NO:121-157; and (ii) a VH of (i) that contains one or more amino acidsubstitutions, deletions or insertions of no more than five, four, three, four, two or one amino acids; (b) one or more variable light chains D (VLs) selected from the group consisting of: (i) SEQ ID NO:158-194, and (ii) a VL of (i) that contains one or more amino acid substitutions, deletions or insertions of no more than five, four, three, four, two or one amino acids; or (c) one or more variable heavy chains of (a) and one or more variable light chains of(b). In another embodiment, the variable heavy chain (VH) has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NO:121-157, and/or the variable light chain (VL) has at least 70%, 75%, 80%, 85%, 90%, 95%,96%, 97%. 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NO: 158-194. In one aspect, also provided is an antigen binding protein that specifically binds to an ) epitope comprising one or more amino acid residues from FGFRic, FGRF2c, FGFR3c, and FGFR4, In one aspect, also provided is an antigen binding protein that specifically binds to an epitope comprising one or more amino acid residues from -Klotho. In another aspect, also provided is an isolated antigen binding protein that specifically binds to an epitope comprising one or more amino acid residues from both P-Klotho and one or more amino acid residues from FGFRIc, FGFR2c, FGFR3c, or FGFR4. In yet another embodiment, the isolated antigen binding protein described hereinabove comprises a first amino acid sequence comprising at least one of the CDRH consensus sequences disclosed herein, and a second amino acid sequence comprising at least one of the CDRL consensus sequences disclosed herein.
In one aspect, the first amino acid sequence comprises at least two of the CDR-I consensus sequences, and/or the second amino acid sequence comprises at least two of the CDRL consensus sequences. In certain embodiments. the first and the second amino acid sequence are covalently bonded to each other. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:146, the CDRH2 of SEQ ID NO:133. and the CDR.H Iof SEQ ID NO:122, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:190, the CDRL2 of SEQ ID NO:176, and the CDRL I of SEQ ID NO:167. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:147, the CDRH2 of SEQ ID NO:133, and the CDRH Iof SEQ ID NO:122, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:189, the CDRL2 of SEQ ID NO:176, and the CDRL I of SEQ ID NO:167. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:148, the CDR.H2 of SEQ ID NO:133, and the CDRH Iof SEQ ID NO:122, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:188, the CDRL2 of SEQ ID NO:176, and the CDRL IofSEQ ID NO:166. D In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:148, the CDRE2 of SEQ ID NO:134, and the CDRH1I of SEQ ID NO:122, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:188. the CDRL2 of SEQ ID NO:176, and the CDRL I of SEQ ID NO:166. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:150, the CDRH2 of SEQ ID NO:136, and the CDRHI of SEQ ID NO:124, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:183, the CDRL2 of SEQ ID NO:174, and the CDRL Iof SEQ ID NO:161. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:152, the CDRH2 of SEQ ID NO:138, and the
CDRH1 of SEQ ID NO:124, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:184, the CDRL2 of SEQ ID NO:173, and the CDRL Iof SEQ ID NO:162. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:152, the CDRH2 of SEQ ID NO:139, and the CDRHI of SEQ ID NO:124, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:186, the CDRL2 of SEQ ID NO:173, and the CDRL Iof SEQ ID NO:162. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:151, the CDRH2 of SEQ D NO:137, and the CDRH of SEQ ID NO:124, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:186, the CDRL2 of SEQ ID NO:173, and the CDRL Iof SEQ ID NO:164. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:151, the CDRH2 of SEQ ID NO:137, and the CDRHV of SEQ ID NO:124, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:182, the CDRL2 of SEQ ID NO:173, and the CDRL I of SEQ ID NO:160, In a further embodiment, the first amino acid sequence of the isolated antigen binding D protein comprises the CDRH3 of SEQ ID NO:153, the CDRH2 of SEQ ID NO:140, and the CDRHl of SEQ ID NO:131, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:185, the CDRL2 of SEQ ID NO:173, and the CDRL Iof SEQ ID NO:163. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:153, the CDRH2 of SEQ ID NO:140, and the CDRHI of SEQ ID NO:125, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:185, the CDRL2 of SEQ ID NO:173, and the CDRL I of SEQ ID NO:163. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:149, the CDRH2 of SEQ ID NO:135, and the CDRHI of SEQ ID NO:123, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:181, the CDRL2 of SEQ ID NO:172, and the CDRL Iof SEQ ID NO:159. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:149, the CDRH2 of SEQ ID NO:135, and the CDRHl of SEQ ID NO:123, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:187, the CDRL2 of SEQ ID NO:175, and the CDRL I of SEQ ID NO:165. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:145, the CDRH2 of SEQ ID NO:132, and the CDRH1 of SEQ ID NO:121, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:180, the CDRL2 of SEQ ID NO:171. and the CDRL I of SEQ ID NO:158. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:154, the CDRH2 of SEQ ID NO:133, and the CDRHI of SEQ ID NO:126, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:191, the CDRL2 of SEQ ID NO:171, and the CDRL Iof SEQ ID NO:168. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:157, the CDRH2 of SEQ ID NO:144, and the CDRHI of SEQ ID NO:130, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:192, the CDRL2 of SEQ ID NO:177, and the CDRL1 ofSEQ ID NO:169. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:155, the CDRH2 of SEQ ID NO:135, and the !5 CDRH1 of SEQ ID NO:127, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:193, the CDRL2 of SEQ ID NO:178, and the CDRL I of SEQ ID NO:170. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:156, the CDRH2 of SEQ ID NO:142, and the CDRHI of SEQ ID NO:129, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:194, the CDRL2 of SEQ ID NO:173, and theCDRL I of SEQ ID NO:163. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:156, the CDRH2 of SEQ ID NO:141, and the CDRHI of SEQ ID NO:128, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:194, the CDRL2 of SEQ ID NO:173. and the CDRL1 of SEQ ID NO:163. In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3 of SEQ ID NO:156, the CDRH2 of SEQ ID NO:143, and the CDRHI of SEQ ID NO:128, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3 of SEQ ID NO:194, the CDRL2 of SEQ ID NO:179, and the CDRL I of SEQ ID NO:163. In a further embodiment, the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H 1, H2, H3, H4, H5, H6, H7, H8,1H9, H 10, H 11, H 12, 113, H14, H 15,H16, H 17 or H18, as shown in Table 4A. In again a further embodiment, the antigen binding protein comprises at least two CDRL sequences of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, Li1, L12, L13, L4 L15, L6, L17 or L18, as shown in Table 4B. In still a further embodiment, the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H1, H2, 13, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H 14, H15, H16, H17 or H18 as shown in Table 4A, and at least two CDRLs of light chain sequences L1, L2, L3, L4, LS, L6, L7, L8, L9, L 10, L 11, L12, L 13, L14, L15, L16, Ll7 or L18 as shown in Table 4B. In again another embodiment, the antigen binding protein comprises the CDRH1, CDRH2, and CDRH3 sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18 as shown in Table 4A. In yet another embodiment, the antigen binding protein comprises the CDRL1, CDRL2, and CDRL3 sequences of light chain sequences LI, L2, 3, L4, L5, L6, L7, L8, L9, LIO, LlI1, L12, L13, L14, L15, L16, L17 or L 18 as shown in Table 4B. In yet another embodiment, the antigen binding protein comprises all six CDRs of LI and W H1, or L2 and H2, or L3 and H3, or L3 and H4, or L4 and H5, or L5 and H6, or L6 and H7, or L7 and H8, or L8 and H7, or L9 and H9, or L9 and H10, or L10 and H11, or Li Iand H11, or
L12 and H12, or L13 and H13, or L14 and H14, or LI5 and H15, or L16 and H16. or L17 and H17, or L18 and HI8, as shown in Tables 4A and 4B.
Table 4A - Heav Chain Sequences
- z z z 0 o' a a
a >
17C3 H1 30 Vill 66 122 1 33 146 22H5 H2 31 Vn2 67 122 133 147 16H7 H3 32 V113 68 122 133 148 24HlIl H4 33 V,14 69 122 134 148 18G I H5 34 V115 70 124 136 150 17D8 H6 35 V,,6 71 124 138 152 '26HI H7 36 V117 72 124 139 152 12E 4 H8 37 VO8 73 124 137 151 12C I H7 37 VO8 73 124 137 151 21 H2 H9 38 V,,9 74 131 140 153 211B4 H10 39 V1110 75 125 140 153 18B1 11.1 H 11l 40 Vill l 76 123 135 149 18B1 11.2 Hl 1 40 VII 1l 77 123 1.35 149 20D4 H 12 41 V, 12 78 121 132 145 46D] I H 13 42 V103 79 126 133 154 40D2 H 14 46 V1,14 80 130 144 157 39F7 H 16 44 V1,l6 82 129 142 156 39F11I H 17 43 V,,, 7 83 128 141 156 37D3 H15 47 V1,15 81 127 135 155 39G5 H18l~ 45 V1,18 84 128 143 156
Table 4B - Light Chain Sequences
z
17C3 L1 48 V,- 85 167 176 190 22H 5 L2 49 VI 2 86 167 176 189 16H7 3 50 V,-3 87 166 176 188 24Hl L3I 50 Vi,3 87 166 176 188 18G]l L4 51 V1,4 88 161 174 183 17D8 L5 52 V, S 89 162 173 M8 26H I L6 53 VO6 90 162 173 186 12E4 L7 54 VO7 91 164 173 186 12CI I L8 55 VI-8 92 160 173 182 21H2 L9 56 93 163 a9185 173 21 B4 L9 56 Vo9 93 163 173 185 18B 11. 1 L10 57 Vi, 0 94 159 172 181 18B] 1.2 L11 58 V11 95 165 175 187 204 L12 59 V1,12 96 158 171 180 46DIH L1 3 60 V0l3 97 168 171 191 40D2 L14 61 V0l4 98 169 177 192 39F7 L16 63 V16 100 163 173 194 37D3 L1S 62 VI-15 99 170 178 193 39FI I Ll764V1 0 6 17 19 39G5 L1865V810 16 17 19
In one aspect, the isolated antigen binding proteins that specifically bind (i) P-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRIc. FGFR2c, FGFR3c, and FGFR4provided herein can be a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, a chimeric antibody, a multispecific antibody, or an antibody fragment thereof. In another embodiment, the antibody fragment of the isolated antigen-binding proteins provided herein can be a Fab fragment, a Fab' fragment, an F(ab') 2 fragment, an Fv fragment, a diabody, or a single chain antibody molecule. In a further embodiment, an isolated antigen binding protein that specifically (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising 0-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 provided herein is a human antibody and can be of the IgGI-, IgG2- IgG3- or gG4-type. In another embodiment, an isolated antigen binding protein that specifically binds (i) Klotho; (ii) FGFR I c, FGFR 2 c, FGFR3c or FGFR4: or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 comprises a light or a heavy chain polypeptide as set forth in Tables lA-1B. In someembodiments, an antigen binding protein that specifically binds (i) O-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 comprises a variable light or variable heavy domain such as those listed in Tables 2A-2B. In still other embodiments, an antigen binding
3 protein that specifically binds (i) -Klotho; (ii) FGFRic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 comprises one, two or three CDRHs or one, two or three CDRLs as set forth in Tables 3A-3B, 4A-4B and Table 6C, infio. Such antigen binding proteins, and indeed any of the antigen binding proteins disclosed herein, can be PEGylated with one or more PEG molecules, for examples PEG molecules having a molecular weight selected from the group consisting of 5K, 10K, 20K, 40K, 50K, 60K, 80K, 100K or greater than 100K. In yet another aspect, any antigen binding protein that specifically binds (i) D-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRic, FGFR2c, FGFR3c, and FGFR4 provided herein can be coupled to a labeling group and can compete for binding to the extracellular portion of (i) -Klotho; (ii) FGFRIc, FGFR2c,
FGFR3c or FGFR4; or (iii) a complex comprising p-Klotho and one of FGFRIc, FGFR2c, FGFR3c. and FGFR4 with an antigen binding protein of one of the isolated antigen binding proteins provided herein. In one embodiment, the isolated antigen binding protein provided herein can reduce blood glucose levels, decrease triglyceride and cholesterol levels or improve other glycemic parameters and cardiovascular risk factors when administered to a patient. As will be appreciated, for any antigen binding protein comprising more than one CDR provided in Tables 3A-3B, and 4A-4B, any combination of CDRs independently selected from the depicted sequences may be useful. Thus, antigen binding proteins with one, two, three, four. five or six of independently selected CDRs can be generated. However, as will be appreciated by those in the art, specific embodiments generally utilize combinations of CDRs that are non repetitive, e.g., antigen binding proteins are generally not made with two CDRH2 regions, etc. Some of the antigen binding proteins that specifically bind (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 that are provided herein are discussed in more detail below.
Antigen Binding Proteins and Binding Epitopes and Binding Domains When an antigen binding protein is said to bind an epitope on (i) $-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4, or the extracellular domain of -Kotho, FGFR I c, FGFR2c, FGFR3c or FGFR4, for example, what is meant is that the antigen binding protein specifically binds to a specified portion of (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. In some embodiments, e.g., in certain cases where the antigen binding protein binds only FGFRIc or Klotho, the antigen binding protein can specifically bind to a polypeptide consisting of specified residues (e.g., a specified segment of B-Klotho, FGFRIc, FGFR2c, FGFR3c or FGFR4, such as those residues disclosed in Example 14). In other embodiments. e.g., in certain cases where an antigen binding protein interacts with both f-Klotho and one or more of FGFRlc, FGFR2c, FGFR3c and FGFR4, the antigen binding protein can bind residues, sequences of residues, or regions in both D-Klotho and FGFRIc, FGFR2c, FGFR3c or FGFR4, depending on which receptor the antigen binding protein recognizes. In still other embodiments the antigen binding protein will bind residues, sequence or residues or regions of a complex comprising D-Klotho and one of FGFR Ic, FGFR2c, FGFR3c, and FGFR4, for example FGFR Ic. In any of the foregoing embodiments, such an antigen binding protein does not need to contact every residue of (i)j-Klotho: (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising §-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4, or the extracellular domain of the recited proteins or complexes. Nor does every single amino acid substitution or deletion within (i) D-Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising j-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4. or the extracellular domain of the recited proteins or complexes, necessarily significantly affect binding affinity. Epitope specificity and the binding domain(s) of an antigen binding protein can be determined by a variety of methods. Some methods, for example. can use truncated portions of an antigen. Other methods utilize antigen mutated at one or more specific residues, such as by employing an alanine scanning or arginine scanning-type approach or by the generation and study of chimeric proteins in which various domains, regions or amino acids are swapped between two proteins (e.g. mouse and human forms of one or more of the antigens or target proteins), or by protease protection assays.
Competing Antigen Binding Proteins SIn another aspect, antigen binding proteins are provided that compete with one of the exemplified antibodies or functional fragments for binding to (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c. and FGFR4. Such antigen binding proteins can also bind to thesame epitope as one of the herein exemplified antigen binding proteins, or an overlapping epitope. Antigen binding proteins and fragments that compete with or bind to the same epitope as the exemplified antigen binding proteins are expected to show similar functional properties. The exemplified antigen binding proteins and fragments include those with the heavy and light chains H1-HiS and LI-L18, variable region domains VI- V1]8 and Vnl- VIl8, and CDRs provided herein, including those in Tables 1, 2, 3, and 4. Thus, as a specific example, the antigen binding proteins that are provided include those that compete with an antibody comprising:
(a) 1, 2, 3. 4, 5 or all 6 of the CDRs listed for an antibody listed in Tables 3A and 38, and 4A and 4B and Table 6C, inhfi-a; (b) a V1 and a V1 selected from VI- VI8 and V11 - Vul8 and listed for an antibody listed in Tables2A and 28: or (c) two light chains and two heavy chains as specified for an antibody listed in Tables I A and 12B and Table 6A, in-a. Thus, in one embodiment, the present disclosure provides antigen binding proteins that competes for binding to (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 with a reference antibody, wherein the reference antibody comprises a combination of light chain and heavy chain variable domain sequences selected from the group consisting of LIHI, L2H2, L3H3, L3H4, L4H5, L5H6, L6H7, L7H8, L8H8, L9H9, L9H10, LIOH1, LIIHi1, L12H12, L13H13, L14H14, LI5H15, L6H16, LI7H17 or LIl8H18. In another embodiment, the present disclosure provides human antibodies that compete for binding to (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 with a reference antibody, wherein the reference antibody is 17C3, 22H5, 16H7, 24H11, 18G1, 17D8, 26Hl, 12E4, 12C11, 21H2, 21B4, 18B1L.1, 18B11.2, 20D4, 46D 11, 40D2, 37D3, 39F7, 39F1 or 39G5. In a further embodiment, an isolated human antibody is provided that binds to (i) Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 with substantially the same Kd as a reference antibody: initiates FGF21-like signaling in an in virro ELK-Luciferase assay to the same degree as a reference antibody; lowers blood glucose; lowers serum lipid levels; and/or competes for binding with said reference antibody to (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, wherein the reference antibody is selected from the group consisting of 17C3, 22115, 16H7, 24H11, 18G1, 17D8, 26H11, 12E4, 12C11, 211H2, 21B4, 18B11. 1, 18B11 2, 204, 46D11, 40D2,37D3,39E7,39F1or39G5. The ability to compete with an antibody can be determined using any suitable assay, such as that described in Example 8, in which antigen binding proteins 17C3, 22H5, 16H7,
24H111 18G1, 17D8, 26H11, 12E4, 12C11, 21H2, 21B4, 18B11.1, 18Bl1.2, 20D4, 46D11, 40D2, 37D3, 39F7. 39F1 or 39G5 can be used as the reference antibody.
Monoclonal Antibodies The antigen binding proteins that are provided include monoclonal antibodies that bind to (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFR Ic, FGFR2c, FGFR3c, and FGFR4, and induce FGF21-like signaling to various degrees. Monoclonal antibodies can be produced using any technique known in the art, e.g.by immortalizing spleen cells harvested from the transgenic animal after completion of the immunization schedule. The spleen cells can be immortalized using any technique known in the art, e.g., by fusing them with myloma cells to produce hybridomas. Mylona cells for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas), S Examples of suitable cell lines for use in mouse fusions include Sp-20, P3-X63/Ag8, P3-X63 Ag8.653, NSI/I.Ag 4 1, Sp2lO-Agl4. FO, NSO/U, MPC-1, MPCIl-X45-GTG 1.7 and S194/5XXO Bul; examples of cell lines used in rat fusions include R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210. Other cell lines useful for cell fusions are U-266, GM1500-GRG2, LICR LON-HMy2 and UC729-6. SIn some instances, a hybridoma cell line is produced by immunizing an animal (e.g., a transgenic animal having human immunoglobulin sequences) with a FGFRIc, p-Klotho or FGFRIc and/or -Klotho immunogen (e.g., a soluble complex comprising the extracellular domains of FGFRIc, FGFR2c, FGFR3c or FGFR4 and/or f-Klotho as shown in Examples 2, and 3; membranes on which the extracellular domains of FGFRlc, FGFR2c, FGFR3c or FGFR4 and/or -Klotho are expressed, as shown in Examples I and 3; or whole cells expressing FGFRlc and/or J-Klotho, as shown in Examples I and 3); harvesting spleen cells from the immunized animal; fusing the harvested spleen cells to a myeloma cell line, thereby generating hybridoma cells; establishing hybridoma cell lines from the hybridoma cells, and identifying a hybridoma cell line that produces an antibody that binds to (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c,andFGFR4 (e.g., as described in the Example 4) and can induce FGF21-like signaling
(e.g., as described in Examples 5-7). Such hybridoma cell lines, and the monoclonal antibodies produced by them, form aspects of the present disclosure. Monoclonal antibodies secreted by a hybridoma cell line can be purified using any technique known in the art. Hybridomas or mAbs can be further screened to identify mAbs with particular properties, such as the ability to induce FGF21-like signaling. Examples of such screens are provided herein.
Chimeric and Humanized Antibodies Chimeric and humanized antibodies based upon the foregoing sequences can readily be generated. One example is a chimeric antibody, which is an antibody composed of protein segments from different antibodies that are covalently joined to produce functional immunoglobulin light or heavy chains or immunologically functional portions thereof. Generally, a portion of the heavy chain and/or light chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For methods relating to chimeric antibodies, see, for example, United States Patent No. 4,816,567: and Morrison et at., 1985, Proc. Nat. Acad. Sci. USA 81:6851-6855, which are hereby incorporated by reference. CDR grafting is described, for example, in United States Patent No. 6,180,370, No. 5,693,762, No. 5,693,761, No. 5,585,089, and No. 5,530,10 1. Generally, the goal of making a chimeric antibody is to create a chimera in which the number of amino acids from the intended patient/recipient species is maximized. One example is the "CDR-grafted" antibody, in which the antibody comprises one or more complementarity determining regions (CDRs) from a particular species or belonging to a particular antibody class or subclass, while the remainder of the antibody chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For use in humans, the variable region or selected CDRs from a rodent antibody often are grafted into a human antibody, replacing the naturally-occurring variable regions or CDRs of the human antibody.
Ill
One useful type of chimeric antibody is a "humanized" antibody. Generally, a humanized antibody is produced from a monoclonal antibody raised initially in a non-human animal. Certain amino acid residues in this monoclonal antibody, typically from non-antigen recognizing portions of the antibody, are modified to be homologous to conresponding residues inahumanantibodyof correspondingisotype. Humanization can be performed, for example, using various methods by substituting at least a portion of a rodent variable region for the corresponding regions of a human antibody (see, e.g., United States Patent No. 5,585,089, and No. 5,693,762; Jones et al., 1986, Nature 321:522-525: Ricchmann et a., 1988, Nature 332:323 27; Verhoeyen et al, 1988, Science 239:1534-1536). In one aspect, the CDRs of the light and heavy chain variable regions of the antibodies provided herein (e.g., in Tables 3 and 4) are grafted to framework regions (FRs) from antibodies from the same, or a different, phylogenetic species. For example, the CDRs of the heavy and light chain variable regions V1 , V1 2 , V3, V4, V5, 1V1 6, V11 7, V118, V11 9, VH 10, V 1 1, VI12, 6, V7, V.8, V,9, V 1 l13. Vl 14, VIl15.VI6, V or17 VIl8 and/or V 1 1, V 2,1 V 3,1 V 4,1 V5, V V10, V1 1 1, VI12, VI1 3 , Vr14. V15, VI16, V1 17 or Vj18 can be grafted to consensus human FRs. To create consensus human FRs, FRs from several human heavy chain or light chain amino acid sequences can be aligned to identify a consensus amino acid sequence. In other embodiments, the FRs of a heavy chain or light chain disclosed herein are replaced with the FRs from a different heavy chain or light chain. In one aspect, rare amino acids in the FRs of the heavy and light chains of an antigen binding protein (e.g., an antibody) that specifically binds (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 are not replaced, while the rest of the FR amino acids are replaced. A "rare amino acid" is a specific amino acid that is in a position in which this particular amino acid is not usually found in an FR. Alternatively, the grafted variable regions from the one heavy or light chain can be used with a constant region that is different from the constant region of that particular heavy or light chain as disclosed herein. In other embodiments, the grafted variable regions are part of a single chain Fv antibody. In certain embodiments, constant regions from species other than human can be used along with the human variable region(s) to produce hybrid antibodies.
Fully Human Antibodies Fully human antibodies are also provided by the instant disclosure. Methods are available for making fully human antibodies specific for a given antigen without exposing human beings to the antigen ("fully human antibodies"). One specific means provided for implementing the production of fully human antibodies is the "humanization" of the mouse humoral immune system. Introduction of human immunoglobulin (g) loci into mice in which the endogenous Ig genes have been inactivated is one means of producing fully human monoclonal antibodies (mAbs) in mouse, an animal that can be immunized with any desirable antigen. Usingfully human antibodies can minimize the immunogenic and allergic responses that can sometimes be caused by administering mouse or mouse-derived mAbs to humans as therapeutic agents. Fully human antibodies can be produced by immunizing transgenic animals (typically mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production. Antigens for this purpose typically have six or more contiguous amino acids, and optionally are conjugated to a carrier, such as a hapten. See, e.g., Jakobovits et al. (1993) Proc. Nat/. Acad. Sci. USA 0:2551-2555; Jakobovits et al., (1993) Nature 362:255-258; and Bruggermann et al., (1993) Yearin hMmo. 7:33. In one example of such a method, transgenic animals are produced by incapacitating the endogenous mouse immunoglobulin loci encoding the mouse heavy and light immunoglobulin chains therein, and inserting into the mouse genome large fragments of human genome DNA containing loci that encode human heavy and light chain proteins. Partially modified animals, which have less than the full complement of human immunoglobulin loci, are then cross-bred to obtain an animal having all of the desired immune system modifications. When administered an immunogen, these transgenic animals produce antibodies that are immunospecific for the immunogen but .5 have human rather than murine amino acid sequences, including the variable regions. For further details of such methods, see, e.g., W096/33735 and W094/02602. Additional methods relating to transgenic mice for making human antibodies are described in United States Patent No. 5,545,807; No. 6,713,610; No. 6,673,986; No. 6,162,963; No. 5,545,807; No. 6,300,129; No. 6,255,458; No. 5,877,397; No. 5,874,299 and No. 5,545,806; in PCT publications W091/10741, W090/04036, and in EP 546073B1 and EP 546073AL.
The transgenic mice described above, referred to herein as "HuMab" mice, contain a human immunoglobulin gene minilocus that encodes unrearranged human heavy ([P, mu] and [, gamma]) and [K, kappa] light chain iimunoglobulin sequences, together with targeted mutations that inactivate the endogenous p [mu] and K [kappa] chain loci (Lonberg et al., 1994. Nature 368:856-859). Accordingly, the mice exhibit reduced expression of mouse IgM or [K, kappa] and in response to immunization, and the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG [K, kappa] monoclonal antibodies (Lonberg et al., supra.; Lonberg and Huszar, (1995) Intern. Rev. Imuno/. 1: 65-93: Harding and Lonberg, (1995) Ann.N.Y ad. Sci.764:536-546). The preparation of HuMab mice is described in detail in Taylor et al., (1992) NucleiAcids Research 210:6287-6295; Chen et al., (1993) International Immunology 5:647-656; Tuaillon et al., (1994) J. Inuno/. 152:2912-2920 Lonberg et al., (1994) Nature36:856-859; Lonberg, (1994) Handbook ofExp.Pharmacology11:49-101 Taylor et at., (1994) Internaional nununology 6:579-591; Lonberg and Huszar, (1995) Intern. Re Iununo. 13:65-93; Harding and Lonberg, (1995) Ann. N. YAcadt. Sci. 764:536-546; Fishwild et a/., (1996) NatureBiotechnology1 _4:845 851; the foregoing references are hereby incorporated by reference in their entirety for all purposes. See, further United States Patent No. 5,545,806; No. 5,569.,825; No. 5,625,126: No. 5,633,425: No. 5,789,650; No. 5,877,397; No. 5,661,016; No. 5,814,318; No. 5,874,299; and No. 5,770,429; as well as United States Patent No. 5,545,807; International Publication Nos. WO 93/1227; WO 92/22646: and WO 92/03918, the disclosures of all of which are hereby incorporated by reference in their entirety for all purposes. Technologies utilized for producing human antibodies in these transgenic mice are disclosed also in WO 98/24893, and Mendez et al, (1997) Nature Genetics 15:146-156, which are hereby incorporated by reference. For example, the HCo7 and HCol2 transgenic mice strains can be used to generate antigen binding proteins (e.g., antibodies) that bind to (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 and may induce FGF21-like signaling. Further details regarding the production of human antibodies using transgenic miceare provided in the examples below. Using hybridoma technology, antigen-specific human mAbs with the desired specificity ;0 can be produced and selected from the transgenic mice such as those described above. Such antibodies can be cloned and expressed using a suitable vector and host cell, or the antibodies can be harvested from cultured hybridoma cells. Fully human antibodies can also be derived from phage-display libraries (as disclosed in Hoogenboom e al., (1991) J, Mol Biol. _227:381; and Marks et al., (1991) .1. MIol. iol. 222:581). Phage display techniques mimic immune selection through the display of antibody repertoires on the surface of filamentous bacteriophage, and subsequent selection of phage by their binding to an antigen of choice. One such technique is described in PCT Publication No. WO 99/10494 (hereby incorporated by reference), which describes the isolation of high affinity and functional agonistic antibodies for MPL- and msk-receptors using such an approach.
Bispecific or Bifunctional Antigen Binding Proteins Also provided are bispecific and bifunctional antibodies that include one or more CDRs or one or more variable regions as described above. A bispecific or bifinctional antibody in some instances can be an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including, but not limited to. fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai and Lachmann, 1990, C/in. E.g nmunol. 79:315-321 Kostelny ei a/., 1992, J. Inunot. 148:1547-1553. When an antigen binding protein of the instant disclosure binds (i) both -Klotho and one or more of FGFRIc, FGFR2c, FGFR3c or FGFR4; or (ii) a complex D comprising J-Klotho and one of FGFR I c, FGFR2c, FGFR3c, and FGFR4, the binding may lead to the activation of FGF2I-like activity as measured by the FGF21-like functional and signaling assays described in Examples 5-7; when such an antigen binding protein is an antibody it is referred to as an agonistic antibody.
Z5 Various Other Forms Some of the antigen binding proteins that specifically bind (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising r-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 that are provided in the present disclosure include variant forms of the antigen binding proteins disclosed herein (e.g., those having the sequences listed in Tables 1-4).
In various embodiments, the antigen binding proteins disclosed herein can comprise one ormore non-naturally occurring amino acids. For instance, some of the antigen binding proteins have one or more non-naturally occurring amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in Tables 1-4. Examples of non-naturally amino acids (which can be substituted for any naturally-occurring amino acid found in any sequence disclosed herein, as desired) include: 4-hydroxyprolinc. y-carboxyglutamatc, c-N,NN trimethyllysine, c-N-acetyllysine, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3 methylhistidine, 5-hydroxylysine, c-N-methylarginine, and other similar amino acids and imino acids (e.g.,4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino tenninal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention. A non-limiting lists of examples of non naturally occurring amino acids that can be inserted into an antigen binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include P-amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains. Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit), Na-methylcitrulline (NMeCit), Nu-methylhomocitrulline (Na-McHoCit), ornithine (Orn), Na-Methylornithine (Na-McOrn or NMOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), Na-methylarginine (NMcR). Noa rnethyllcucine (Na-MeL or NMcL), N-methylhomolysine (NMcHoK), Na-methylglutamine (NMeQ), norleucine (NIc), norvaline (Nva), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2-carboxylic acid (Oic), 3-(1-naphthyl)alanine (1-Nal), 3-(2-naphthyl)alanine (2-Nal), 1,2,3,4-tetrahydroisoquinoline (Tic), 2-indanylglycine (Ig), para-iodophenylalanine (pl-Phe), para-aminophenylalanine (4AmP or 4-Amino-Phe), 4-guanidino phenylalanine (Guf), glycyllysine (abbreviated "K(Nc-glycyl)" or "K(glycyl)" or "K(gly)"), nitrophenylalanine .5 (nitrophe), aminophenylalanine (aminophe or Amino-Phe), benzylphenylalanine (benzylphe), 7-carboxyglutamic acid (y-carboxygla), hydroxyproline (hydroxypro), p-carboxyl-phenylalanine (Cpa), a-aminoadipic acid (Aad), Na-methyl valine (NMVal), N--methyl leucine (NMcLeu), Na-methylnorleucine (NMeNe), cyclopentylglycine (Cpg), cyclohexylglycine (Chg), acetylarginine (acetylarg), a.J-diaminopropionoic acid (Dpr), a, y-diaminobutyric acid (Dab), diaminopropionic acid (Dap), cyclohexylalanine (Cha), 4-methyl-phenylalanine (MePhe), p, diphenyl-alanine (BiPhA), aminobutyric acid (Abu), 4-phenyl-phenylalanine (or biphenylalanine 4Bip), a-amino-isobutyric acid (Aib), beta-alanine, beta-aminopropionic acid, piperidinic acid, aminocaprioic acid. aminoheptanoic acid, aminopimelic acid, desmosine, diaminopimelic acid, N-cthylglycinc. N-ethylaspargine. hydroxylysine, allo-hydroxylysine, isodesmosinc, allo-isoleucine, N-methylglycine, N-nethylisoleucine, N-methylvaline, 4 hydroxyproline (Hyp), y-carboxyglutamate. e-N,N,N-trimethyllysine, e-N-acetyllysine, 0 phosphoscrine, N-acetylserine, N-formylmethioninc, 3-methyihistidine, 5-hydroxylysine, ( methylargininc, 4-Amino-O-Phthalic Acid (4APA), and other similar amino acids, and derivatized forms of any of those specifically listed. Additionally, the antigen binding proteins can have one or more conservative amino acid substitutions in one ormre of the heavy or light chains, variable regions or CDRs listed in Tables 1-4. Naturally-occurring amino acids can be divided into classes based on common side chain properties: 1) hydrophobic: norleucinc, Met, Ala, Val, Lcu, lIc; 2) neutral hydrophilic: Cys, Scr, Thr, Asn, Gln; 3) acidic: Asp, GLu: 4) basic: His, Lys, Arg; 5) residues that influence chain orientation: Gly, Pro; and 6) aromatic: Trp, Tyr, Phc, Conservative amino acid substitutions can involve exchange of a member of one of these classes with another member of the same class. Conservative amino acid substitutions can encompass non-naturally occurring amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. See Table 5, ina. These include peptidomimetics and other reversed or inverted forms of amino acid moieties. Non-conservative substitutionscan involve the exchange of a member of one of the above classes for a member from another class. Such substituted residues can be introduced into regions of the antibody that are homologous with human antibodies, or into the non-homologous regions of the molecule. In making such changes, according to certain embodiments, the hydropathic index of amino acids can be considered. The hydropathic profile of a protein is calculated by assigning W each amino acid a numerical value ("hydropathy index") and then repetitively averaging these values along the peptide chain. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2,8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-04); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2): glutamate (-3.5): glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine( 3.9): and arginine (-4.5). The importance of the hydropathic profile in conferring interactive biological function on a protein is understood in the art (see, e.g., Kyte era, 1982,.1. Mol. Biol.157:105-131). It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. Inmaking changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within ±2 is included. In some aspects, those which are within ± are included, and in other aspects, those within ±0.5 are included. It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functional protein or peptide thereby created is intended for use in immunological embodiments, as in the present case. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigen binding or immunogenicity, that is, with a biological property of the protein. The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0): lysine (+3.0); aspartate (+3.0±1): glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5±1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5): leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3): phenylalanine (-2.5) and tryptophan (-3.4). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within ±2 is included, in other embodiments, those which are within I are included, and in still other embodiments, those within ±0.5 are included. In some instances, one can also identify epitopes from primary arnino acid sequences on the basis of hydrophilicity. These regions are also referred to as "epitopic core regions." Exemplary conservative amino acid substitutions are set forth in Table 5.
Table 5 Conservative Amino Acid Substitutions
Original Residue Exemplary Substitutions Ala Scr Arg Lys Asn Gin, His Asp Glu Cys Ser Gln Asn Glu Asp Gly Pro His Asn, Gin lie Leu. Val Leu lie, Val Lys Arg, Gin, Glu Met Leu, lie Phe Met, Leu, Tyr Ser Thr Thr Ser Trp Tyr Tyr Trp, Phe Val lie, Leu
A skilled artisan will be able to determine suitable variants of polypeptides as set forth herein using well-known techniques coupled with the information provided herein. One skilled in the art can identify suitable areas of the molecule that can be changed without destroying activity by targeting regions not believed to be important for activity. The skilled artisan also will be able to identify residues and portions of the molecules that are conserved among similar polypeptides. In further embodiments, even areas that can be important for biological activity or for structure can be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.
Additionally, one skilled in the art can review structure-function studies identifying residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues important for activity or structure in similar proteins. One skilled in the art can opt for chemically similar amino acid substitutions for such predicted important amino acid residues. One skilled in the art can also analyze the 3-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of such information, one skilled in the art can predict the alignment of amino acid residues of an antibody with respect to its three dimensional structure. One skilled in the art can choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues can be involved in important interactions with other molecules. Moreover, one skilled in the art can generate test variants containing a single amino acid substitution at each desired amino acid residue. These variants can then be screened using assays for FGF21-like signaling, (see the Examples provided herein) thus yielding information regarding which amino acids can be changed and which must not be changed. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acid positions where further substitutions should be avoided either alone or in combination with other mutations. A number of scientific publications have been devoted to the prediction of secondary structure. See, Moult, (1996) Curr. Op. in Biotech. 7:422-427; Chou et al., (1974) Biochem. 13:222-245;Chou et a., (1974) Biochemistr 113:211-222; Chou et a., (1978) Adv. Enzimol. Re/at. Areas Mo/. Bio. 47:45-148: Chou et al., (1979) Ann. Rev. Biochem.47:251-276; and Chou et a/., (1979) Biophvs. J..26:367-384. Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins that have a sequence identity of greater than 30%, or similarity greater than 40% can have similar structural topologies. The growth of the protein structural database (PD3) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See, Holm et al., (1999) Nu!. Acid. Res. 27:244-247. It has been suggested (Brenner et a/,, (1997) Curr,Op. Stic. Biol. 7:369-376) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate. Additional methods of predicting secondary structure include "threading" (Jones, (1997) Curr. Opin. Struct. Biol. 7:377-387; Sippl et aL, (1996) Structmure 4:15-19), "profile analysis" (Bowie e al., (1991) Science 253:164-170; Gribskov et al., (1990) Meth. Enzn. 183:146-159 Gribskov et al, (1987) Proc. N.Acac. Sci. 84:4355-4358), and "evolutionary linkage" (See, Holm, (1999) supra; and Brenner, (1997)supra). In some embodiments, amino acid substitutions are made that: (1) reducesusceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter ligand or antigen binding affinities, and/or (4) confer or modify other physicochemical or functional properties on such polypeptides. For example, single or multiple amino acid substitutions (in certain embodiments, conservative amino acid substitutions) can be made in the naturally-occurring sequence. Substitutions can be made in that portion of the antibody that lies outside the domain(s) forming intermolecular contacts). In such embodiments, conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the parent sequence (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the parent or native antigen binding protein). Examples of art-recognized polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed.), 1984, W. H. New York: D Freeman and Company; Introduction to ProteinStricture (Branden and Tooze, eds.), 1991, New York: Garland Publishing; and Thornton et al, (1991) Nature 354:105, which are each incorporated herein by reference. Additional preferred antibody variants include cysteine variants wherein one or more cysteine residues in the parent or native amino acid sequence are deleted from or substituted with another amino acid (e.g., serine). Cysteine variants are useful, inter alia when antibodies must be refolded into a biologically active conformation. Cysteine variants can have fewer cysteine residues than the native antibody, and typically have an even number to minimize interactions resulting from unpaired cysteines. The heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 and may induce FGF21-like signaling. For example, one or more of the CDRs listed in Tables 3 and 4 can be incorporated into a molecule (e.g., a polypeptide) covalently or noncovalently to make an immunoadhesion. An immunoadhesion can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently. The CDR(s) enable the irmtunoadhosion to bind specifically to a particular antigen of interest (e.g., (i) -Klotho; (ii) FGFR]c, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c. FGFR3c, and FGFR4 or an epitope thereon). The heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind (i) -Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 and may induce FGF21-like signaling. For example, one or more of the CDRs listed in Tables 3 and 4 can be incorporated into a molecule (e.g., a polypeptide) that is structurally similar to a "half' antibody comprising the heavy chain, the light chain of an antigen binding protein paired with a Fc fragment so that the antigen binding region is monovalent (like a Fab fragment) but with a dimeric Fc moiety. Mimetics (e.g., "peptide mimetics" or "peptidomimetics") based upon the variable region domains and CDRs that are described herein are also provided. These analogs can be peptides, non-peptides or combinations of peptide and non-peptide regions. Faucherc, 1986, Adv.Drug Res. 15:29; Veber and Freidinger, 1985, TINS p. 392 and Evans et al., 1987, J. Med. Chen. 30:1229, which are incorporated herein by reference for any purpose, Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce a similar therapeutic or prophylactic effect. Such compounds are often developed with the aid of computerized molecular modeling. Generally, peptidomimetics are proteins that are structurally similar to an antibody displaying a desired biological activity, such as here the ability to specifically bind (i)
Q-Klotho; (ii) FGFRle, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRic, FGFR2c, FGFR3c, and FGFR4, but have one or more peptide linkages optionally replaced by a linkage selected from: -CH 2NH-, -CH 2 S-, -CH2 -CH 2 -, -CH-CH-(cis and trans), -COCH 2 -, -CH(OH)CH 2 -, and -CH 2SO-, by methods well known in the al. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) can be used in certain embodiments to generate more stable proteins, In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation can be generated by methods known in the art (Rizo and Gierasch. 1992,Ann. Rev. Biochem.61.:387), incorporated herein by reference). for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide. Derivatives of the antigen binding proteins that specifically bind (i) -Klotho: (ii) FGFRIc, FGFR)c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 that are described herein are also provided. The derivatized antigen binding proteins can comprise any molecule or substance that imparts a desired property to the antibody or fragment, such as increased half-life in a particular use. The derivatized antigen binding protein can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold) bead), or a molecule that binds to another molecule (e.g., biotin or streptavidin)), a therapeutic or diagnostic moiety (e.g., a radioactive., cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antigen binding protein for a particular use (e.g., administration to a subject, such as a human subject, or other in vivo or in vitro uses). Examples of molecules that can be used to derivatize an antigen binding protein include albumin (e.g.,human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antigen binding proteins can be prepared using techniques well known in the art. Certain antigen binding proteins include a PEGylated single chain polypeptide as described herein. In one embodiment, the antigen binding protein is conjugated or otherwise linked to transthyretin (TTR) or a TTR variant. The TTR or TTR variant can be chemically modified with, for example, a chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols and polyvinyl alcohols. Other derivatives include covalent or aggregative conjugates of the antigen binding proteins that specifically bind (i) §-Klotho; (ii) FGFR I c, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 that are disclosed herein with other proteins or polypeptides, such as by expression of recombinant fusion proteins comprising heterologous polypeptides fused to the N-terminus or C-terminus of an antigen binding protein that induces FGF2I-like signaling. For example, the conjugated peptide can be a heterologous signal (or leader) polypeptide, e.g., the yeast alpha-factor leader, or a peptide such as an epitope tag. An antigen binding protein-containing fusion protein of the present disclosure can comprise peptides added to facilitate purification or identification of an antigen binding protein that specifically binds (i) -Klotho; (ii) FGFRic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising P-Klotho and one of FGFRlc, FGFR2c, FGFR3c. and FGFR4 (e.g, a poly-His tag) and that can induce FGF2-like signaling. An antigen binding protein that specifically binds (i) p-Klotho; (ii) FGFRic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising J-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 also can be linked to the FLAG peptide as described in Hopp et a/., 1988, Bio/Technology 6:1204: and United States Patent No. 5,011,912. The FLAG peptide is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody (mAb), enabling rapid assay and facile purification of expressed recombinant protein. Reagents useful for preparing fusion proteins in which the FLAG peptide is fused to a given polypeptide are commercially available (Sigma, St. Louis, MO). Multimers that comprise one or more antigen binding proteins that specifically bind (i) Klotho: (ii) FGFR lc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRle, FGFR2c, FGFR3c, and FGFR4 form another aspect of the present disclosure. Multimers can take the form of covalently-linked or non-covalently-linked dimers, trimers, or higher multimers. Multimers comprising two or more antigen binding proteins that bind (i)j§ Klotho; (ii) FGFRIc, FGFR2c. FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGERIc, FGFR2c, FGFR3c, and FGFR4 and which may induce FGF2I-like signaling are contemplated for use as therapeutics, diagnostics and for other uses as well, with one example of such a multimer being a homodimer. Other exemplary multimers include heterodimers, hornotrimers, heterotrimers, homotetramers, heterotetramers, etc. One embodiment is directed to multimers comprising multiple antigen binding proteins that specifically bind (i) §-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising §-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 joined via covalent or non-covalent interactions between peptide moieties fused to an antigen binding protein that specifically binds (i) f-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Kotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. Such peptides can be peptide linkers (spacers), or peptides that have the property of promoting multimerization. Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote multimerization of antigen binding proteins attached thereto, as described in more detail herein. In particular embodiments, the multimers comprise from two to four antigen binding proteins that bind (i) j-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFR lc, FGFR2c, FGFR3c, and FGFR4. The antigen binding protein moictics of the multimer can be in any of the forms described above, e.g., variants or fragments. Preferably, the nultimers comprise antigen binding proteins that have the ability to specifically bind (i) -Kotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klothoand one of FGFR c, FGFR2c, FGFR3c, and FGFR4. In one embodiment, an oligomer is prepared using polypeptides derived from immunoglobulins. Preparation of fusion proteins comprising certain heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fe domain) has been described, e.g, by Ashkenazi et al., (1991) Proc. Nat/. Acad Sci. USA 88:10535: Byrn et a, (1990) Nature 3_4:677; and Hollenbaugh et at., 1992 "Construction of Immunoglobulin Fusion Proteins", in Current Protocolsininnnology, Suppl. 4. pages 10.19.1-10.19.11. One embodiment comprises a dimer comprising two fusion proteins created by fusing an antigen binding protein that specifically binds (i) -Klotho; (ii) FGFRIc, FGFR-c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 to the Fc region of an antibody. The dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the ?5 gene fusion in host cells transformed with the recombinant expression vector, and allowing the expressed fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer. The term "Fe polypeptide" as used herein includes native and mutcin forms of polypeptides derived from the Fe region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising Fe moieties (and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns. One suitable Fe polypeptide, described in PCT application WO 93/10151 and United States Patent. No. 5,426,048 and No. 5,262,522, is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human IgGI antibody. Another useful Fe polypeptide is the Fe mutein described in United States Patent No. 5,457,035, and in Baum et al., (1994) EA/BO .13:3992-4001. The amino acid sequence of this mutein is identical to that of the native Fe sequence presented in WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala. The mutein exhibits reduced affinity for Fe receptors. In other embodiments, the variable portion of the heavy and/or light chains of a antigen binding protein such as disclosed herein can be substituted for the variable portion of an antibody heavy and/or light chain, Alternatively, the oligorner is a fusion protein comprising multiple antigen binding proteins that specifically bind (i) -Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. with or without peptide linkers (spacer peptides), Among the suitable peptide linkers are those described in United States Patent. No. 4,751,180 and No. 4,935,233. O Another method for preparing oligomeric derivatives comprising that antigen binding proteins that specifically bind (i) 1-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising -Kotho and one of FGFR Ic, FGFR2c, FGFR3c, and FGFR4 involves use of a leucine zipper. Leucine zipper domains are peptides that promote oligomerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA binding proteins (Landschulz el aL., (1988) Science 240:1759), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in PCT application WO 94/10308, and the leucine zipper derived from lung surfactant protein D (SPD) described in Hoppe et a., (1994) FEBS Leters 344:191, hereby incorporated by reference. The use of a modified leucine zipper that allows for stable trimerization of a heterologous protein fused thereto is described in
Fanslow et al., (1994) Semin. hmunol. 6:267-278, In one approach, recombinant fusion proteins comprising an antigen binding protein fragment or derivative that specifically binds (i) 0-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 is fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric antigen binding protein fragments or derivatives that form are recovered from the culture supernatant. In certain embodiments, the antigen binding protein has a K (equilibrium binding affinity) of less than 1 pM, 10 pM, 100 pM, 1 nM, 2 nM, 5 nM. 10 nM, 25 nM or 50 nM. In another aspect the instant disclosure provides an antigen binding protein having a half life of at least one day in vitro or invivo (e.g., when administered to a human subject). In one embodiment, the antigen binding protein has a half-life of at least three days, In another embodiment, the antibody or portion thereof has a half-life of four days or longer. In another embodiment, the antibody or portion thereof has a half-life of eight days or longer. In another embodiment, the antibody or portion thereof has a half-life of ten days or longer. In another embodiment, the antibody or portion thereof has a half-life of eleven days or longer. In another embodiment, the antibody or portion thereof has a half-life of fifteen days or longer. In another embodiment, the antibody or antigen-binding portion thereof is derivatized or modified such that it has a longer half-life as compared to the underivatized or unmodified antibody. In another embodiment, an antigen binding protein that specifically binds (i) -Klotho; (ii) FGFRIc, o FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 contains point mutations to increase serum half life, such as described in WO 00/09560, published Feb. 24, 2000, incorporated by reference.
Glycosylation An antigen binding protein that specifically binds (i) -Klotho; (ii) FGFRC, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Kotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 can have a glycosylation pattern that is different or altered from that found in the native species. As is known in the art, glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.
Glycosylation of polypeptides is typically either N-linked or 0-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri peptide sequences asparagin-X-scrine and asparagine-X-thrconine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tri-peptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine can also be used. Addition of glycosylation sites to the antigen binding protein is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above described tri-peptide sequences (for N-linked glycosylation sites). The alteration can also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for 0-linked glycosylation sites). For ease, the antigen binding protein amino acid sequence can be altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids. Another means of increasing the number of carbohydrate moietics on the antigen binding protein is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation. Depending on the coupling mode used, the sugar(s) can be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or :5 tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 and in Aplin and Wriston, (1981) CRC Crit. Rev.Siochem., pp. 259-306. Removal of carbohydrate moietics present on the starting antigen binding protein can be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al, (1987) Arch. Biochem. Biophys. 259:52 and by Edge eral., (1981)AnaL. Biochem. 118:131. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety ofendo- and exo-glycosidases as described by Thotakura et al., (1987) Meth. Enzymol. 138:350. Glycosylation at potential glycosylation sites can be prevented by the use of the compound tunicamycin as described by Duskin et at., (1982) .J Bio. Chem. 257:3105. Tunicamycin blocks the formation of protein-N glycoside linkages. Hence, aspects of the present disclosure include glycosylation variants of antigen binding proteins that specifically bind (i) D-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising Q-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 wherein the number and/or type of glycosylation site(s) has been altered compared to the amino acid sequences of the parent polypeptide. In certain embodiments, antibody protein variants comprise a greater or a lesser number of N-linked glycosylation sites than the native antibody. An N linked glycosylation site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X can be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate or alter this sequence will prevent addition of an N-linked carbohydrate chain present in the native polypeptide. For example, the glycosylation can be reduced by the deletion of an Asn or by substituting the Asn with a different amino acid. In other embodiments, one or more new N linked sites are created. Antibodies typically have a N-linked glycosylation site in the Fc region.
Labels and Effector Groups In some embodiments, an antigen binding protein that specifically binds (i) P-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising j-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 comprises one or more labels. The term "labeling group" or "label" means any detectable label. Examples of suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., ',",N, S Y, 9 Tc, In, 1251, 1311), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic
groups (e.g., horseradish peroxidase, p-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and can be used as is seen fit, The term effectorr group" means any group coupled to an antigen binding protein that specifically binds one (i) f-Klotho; (ii) FGFR I cFGFR 2 c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 that acts as a cytotoxic agent. Examples for suitable effector groups are radioisotopes or radionuclides (e.g., 3H, 1C, 5 N, 35 , 90Y, 99Tc, "'in, 125m). Other suitable groups include toxins, therapeutic groups, or D chemotherapeutic groups. Examples of suitable groups include calicheamicin, auristatins, geldanamycin and cantansine. In some embodiments, the effector group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. In general, labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which can be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles): c) redox active moicties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, p-galactosidase, luciferase, alkaline phosphatase); c) biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.). In some embodiments, the labeling group is coupled to the antigen binding protein ) via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art. Specific labels include optical dyes, including, but not limited to, chromophores, phosphors and fluorophores, with the latter being specific in many instances. Fluorophores can be either "small molecule" fluores, or proteinaceous fluores. By "fluorescent label" is meant any molecule that can be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, cosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue, Texas Red, IAEDANS, EDANS, BODIPY FL. LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue,
Cascade Yellow and R-phycocrythrin (PE) (Molecular Probes, Eugene, OR), FITC, Rhodamine, and Texas Red (Pierce, Rockford, IL), Cy5, Cy5.5, Cy7 (Amersham Life Science, Pittsburgh. PA). Suitable optical dyes, including fluorophores, are described in MOLECULAR PROES HANDBOOK by Richard P. Haugland, hereby expressly incorporated by reference. Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renil/a, Ptilosarcus, or Aequorea species of GFP (Chalfic er at., (1994) Science 263:802-805), EGFP (Clontech Labs., Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc., Quebec, Canada; Stauber, (1998) Biotechniques24:462-471; Heim e a., (1996) Cur. Biol.6:178-182), enhanced yellow fluorescent protein (EYFP, Clontech Labs., Inc.), luciferase (Ichiki et a/.,(1993) J. IMnol. 150:5408-5417), P galactosidase (Nolan et al., (1988) Proc. Nail. Acd. Sci, U.S.A.85:2603-2607) and Renilla (WO92/15673, W095/07463, W098/14605, W098/26277, W099/49019, United States Patents No. 5292658, No. 5418155, No. 5683888, No. 5741668, No. 5777079, No. 5804387, No. 5874304, No. 5876995, No. 5925558).
Preparing Of Antiaen Binding Proteins Non-human antibodies that are provided can be, for example, derived from any antibody producing animal, such as mouse, rat, rabbit, goat, donkey, or non-human primate (such as monkey (e.g., cynomolgus or rhesus monkey) or ape (e.g., chimpanzee)). Non-human antibodies can be used, for instance, in in viro cell culture andcell-culture based applications, or any other application where an immune response to the antibody does not occur or is insignificant, can be prevented, is not a concern, or is desired. In certain embodiments, the antibodies can be produced by immunizing with full-length 0-Klotho, FGFRlc, FGFR2c, FGFR3c or FGFR4 (Example 1), with the extracellular domain of -Klotho, FGFRIc, FGFR2c. FGFR3c or FGFR4 (Example 2), or two of -Klotho, FGFRIc, FGFR2c, FGFR3c and FGFR4 (Example 1), with whole cells expressing FGFRlc, -Klotho or both FGFRIc and $-Klotho (Example I and 3), with membranes prepared from cells expressing FGFRIc, -Klotho or both FGFRc and Klotho (Example I and 3), with fusion proteins, e.g., Fc fusions comprising FGFRlc, -Kotho or FGFRlc and D-Klotho (or extracellular domains thereof) fused to Fe (Example 2 and 3), and other methods known in the art, e.g., as described in the Examples presented herein. Alternatively, the certain non-human antibodies can be raised by immunizing with amino acids which are segments of one or more of -Klotho, FGFRIc, FGFR2c, FGFR3c or FGFR4 that form part of the epitope to which certain antibodies provided herein bind. The antibodies can be polyclonal, monoclonal, or can be synthesized in host cells by expressing recombinant DNA. Fully human antibodies can be prepared as described above by immunizing transgenic animals containing human immunoglobulin loci or by selecting a phage display library that is expressing a repertoire of human antibodies. The monoclonal antibodies (mAbs) can be produced by a variety of techniques, including conventional monoclonal antibody methodology, e.g. the standard somatic cell hybridization technique of Kohler and Milstein, (1975) Nature 256:495. Alternatively, other techniques for producing monoclonal antibodies can be employed, for example, the viral or oncogenic transformation of B-lymphocytes. One suitable animal system for preparing hybridomas is the murine system, which is a very well established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. For such procedures, B cells from immunized mice are fused with a suitable immortalized fusion partner, such as a murine myeloma cell line. If desired, rats or other mammals besides can be immunized instead of mice and B cells from such animals can be fused with the murine myeloma cell line to form hybridomas. Alternatively, a myeloma cell line from a source other than mouse can be used. Fusion procedures for making hybridomas also are well known. SLAM technology can also be employed in the production of antibodies. D The single chain antibodies that are provided can be formed by linking heavy and light chain variable domain (Fv region) fragments via an amino acid bridge (short peptide linker), resulting in a single polypeptide chain. Such single-chain Fvs (scFvs) can be prepared by fusing DNA encoding a peptide linker between DNAs encoding the two variable domain polypeptides (Vr and Vr). The resulting polypeptides can fold back on themselves to form antigen-binding :5 monomers, or they can form multimers (e.g., dimers, trimers, or tetramers), depending on the length of a flexible linker between the two variable domains (Kortt et a., (1997) Prot. Eng. 10:423; Kortt et al., (2001) Biomol. Eng. 1:95-108). By combining different V1 and Vn comprising polypeptides, one can form multimeric scFs that bind to different epitopes (Kriangkum et al., (2001) Bioniol. Eng. L:31-40). Techniques developed for the production of single chain antibodies include those described in U.S. Pat. No. 4,946,778; Bird, (1988) Science 242:423; Huston et al., (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5879; Ward et a, (1989) Nature
134:544, de Graaf et al., (2002)MethodsMol Biol. 178:379-387. Single chain antibodies derived from antibodies provided herein include, but are not limited to scFvs comprising the variable domain combinations of the heavy and light chain variable regions depicted in Table 2, or combinations of light and heavy chain variable domains which include CDRs depicted in Tables 3 and 4. Antibodies provided herein that are of one subclass can be changed to antibodies from a different subclass using subclass switching methods. Thus, IgG antibodies can be derived from an IgM antibody, for example, and vice versa. Such techniques allow the preparation of new antibodies that possess the antigen binding properties of a given antibody (the parent antibody), but also exhibit biological properties associated with an antibody isotype or subclass different from that of the parent antibody. Recombinant DNA techniques can be employed. Cloned DNA encoding particular antibody polypeptides can be employed in such procedures, e.g. DNA encoding the constant domain of an antibody of the desired isotype. See, e.g. Lantto et at, (2002),Methods Mol. io J78:303-316. Accordingly, the antibodies that are provided include those comprising, for example, the variable domain combinations described, supra, having a desired isotype (for example, IgA, IgG1, IgG2, IgG3, IgG4. IgE, and lgD) as well as Fab or F(ab') 2 fragments thereof. Moreover, if an IgG4 is desired, it can also be desired to introduce a point mutation (CPSCP->CPPCP (SEQ ID NOS 380-381, respectively, in order of appearance)) in the hinge region as described in Bloom et al., (1997) Protein Science 6:407, incorporated by reference herein) to alleviate a tendency to form intra-H chain disulfide bonds that can lead to heterogeneity in the IgG4 antibodies. Moreover, techniques for deriving antibodies having different properties (i.e., varying affinities for the antigen to which they bind) are also known. One such technique, referred to as chain shuffling, involves displaying immunoglobulin variable domain gene repertoires on the surface of filamentous bacteriophage, often referred to as phage display. Chain shuffling has been used to prepare high affinity antibodies to the hapten 2-phenyloxazol-5-one, as described by Marks et a., (1992) RioTechnology 10:779. Conservative modifications can be made to the heavy and light chain variable regions ;0 described in Table 2, or the CDRs described in Tables 3A and 3B. 4A and 4B, and Table 6C, in#-a (and corresponding modifications to the encoding nucleic acids) to produce an antigen binding protein having functional and biochemical characteristics. Methods for achieving such modifications are described above. Antigen binding proteins that specifically bind one or more of (i) -Klotho; (ii) FGFR I c, FGFR2c. FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 can be further modified in various ways. For example, if they are to be used for therapeutic purposes, they can be conjugated with polyethylene glycol (PEGylated) to prolong the serum half-life or to enhance protein delivery. Alternatively, the V region of thesubject antibodies or fragments thereof can be fused with the Fc region of a different antibody molecule. The Fe region used for this purpose can be modified so that it does not bind complement, thus reducing the likelihood of inducing cell lysis in the patient when the fusion protein is used as a therapeutic agent. In addition, the subject antibodies or functional fragments thereof can be conjugated with human serum albumin to enhance the serum half-life of the antibody or fragment thereof. Another useful fusion partner for the antigen binding proteins or fragments thereof is transthyretin (TTR). TTR has the capacity to form a tetramer, thus an antibody-TTR fusion protein can form a multivalent antibody which can increase its binding avidity. Alternatively, substantial modifications in the functional and/or biochemical characteristics of the antigen binding proteins described herein can be achieved by creating substitutions in the amino acid sequence of the heavy and light chains that differ significantly in their effect on maintaining (a) the structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulkiness of the side chain. A"conservative amino acid substitution" can involve a substitution of a native amino acid residue with a nonnative residue that has little or no effect on the polarity or charge of the amino acid residue atthat position. !5 See, Table 5, supra. Furthermore, any native residue in the polypeptide can also be substituted with alanine, as has been previously described for alaninescanning mutagenesis. Amino acid substitutions (whether conservative or non-conservative) of the subject antibodies can be implemented by those skilled in the art by applying routine techniques. Amino acid substitutions can be used to identify important residues of the antibodies provided herein, or to increase or decrease the affinity of these antibodies for one or more of (i) -Klotho; (ii) FGFRc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of
FGFRlc, FGFR2c, FGFR3c, and FGFR4 or for modifying the binding affinity of other antigen binding proteins described herein.
Methods of Expressing Anticn Binding Proteins Expression systems and constructs in the form of plasmids, expression vectors, transcription or expression cassettes that comprise at least one polynucleotide as described above are also provided herein, as well host cells comprising such expression systems or constructs. The antigen binding proteins provided herein can be prepared by any of a number of conventional techniques. For example, antigen binding proteins that specifically bind (i) P Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 can be produced by recombinant expression systems, using any technique known in the art. See, e.g., Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, Kennet et al. (eds.) Plenum Press, New York (1980): and Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1988). Antigen binding proteins can be expressed in hybridoma cell lines (e.g., in particular antibodies can be expressed in hybridornas) or in cell lines other than hybridomas. Expression constructs encoding the antibodies can be used to transform a mammalian, insect or microbial host cell. Transformation can be performed using any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus or bacteriophage and transducing a host cell with the construct by transfection procedures known in the art, as exemplified by United States Patent No. 4,399,216 No. 4,912,040 No. 4,740,461; No. 4,959,455. The optimal transformation procedure used will depend upon which type of host cell is being transformed. Methods for introduction of heterologous polynucleotides into :5 mammalian cells are well known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, mixing nucleic acid with positively-charged lipids, and direct microinjection of the DNA into nuclei. Recombinant expression constructs typically comprise a nucleic acid molecule encoding a polypeptide comprising one or more of the following: one or more CDRs provided herein; a light chain constant region; a light chain variable region; a heavy chain constant region (e.g.,
C11 , C112 and/or C 1 3); and/or another scaffold portion of an antigen binding protein. These nucleic acid sequences are inserted into an appropriate expression vector using standard ligation techniques. In one embodiment, the heavy or light chain constant region is appended to the C terminus of the anti-P-Klotho, -FGFRIc, -FGFR2c, -FGFR3c, -FGFR4, or1-Kiotho and FGFRic-specific heavy or light chain variable region and is ligated into an expression vector. The vector is typically selected to be functional in the particular host cell employed (i.e., the vector is compatible with the host cell machinery, permitting amplification and/or expression of the gene can occur). In some embodiments, vectors are used that employ protein-fragment complementation assays using protein reporters, such as dihydrofolate reductase (see, for example, U.S. Pat. No. 6,270,964. which is hereby incorporated by reference). Suitable expression vectors can be purchased, for example, from Invitrogen Life Technologies or BD Biosciences (formerly "Clontech"). Other useful vectors for cloning and expressing the antibodies and fragments include those described in Bianchi and McGrew, (2003) Biotech. Biotechnol. Bioeng. 84:439-44, which is hereby incorporated by reference. Additional suitable expression vectors are discussed, for example, in Methods Enznol., vol. 185 (D. V. Goeddel, ed.), 1990, New York: Academic Press. Typically, expression vectors used in any of the host cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively referred to as "flanking sequences" in certain embodiments will typically include one or more of the following nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element. Each of these sequences is discussed below. Optionally, the vector can contain a "tag"-encoding sequence, i.e., an oligonucleotide molecule located at the 5' or 3' end of an antigen binding protein coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis (SEQ ID NO: 382)), or another "tag" such as FLAG, HA (hemaglutinin influenza virus), or myc, for which commercially available antibodies exist. This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification or detection of the antigen binding protein from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified antigen binding protein by various means such as using certain peptidases for cleavage. Flanking sequences can be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), synthetic or native. As such, the source of a flanking sequence can be any prokaryotic oreukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be activated by, the host cell machinery. Flanking sequences useful in the vectors can be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein will have been previously identified by mapping and/or by restriction endonuclease digestion and can thus be isolated from the proper tissue source using the appropriate restriction endonucleases. In some cases, the full nucleotide sequence of a flanking sequence can be known. Here, the flanking sequence can be synthesized using the methods described herein for nucleic acid synthesis or cloning. Whether all or only a portion of the flanking sequence is known, it can be obtained using polymerase chain reaction (PCR) and/or by screening a genomic library with a suitable probe such as an oligonucleotide and/or flanking sequence fragment from the same or another species. Where the flanking sequence is not known, a fragment of DNA containing aflanking sequence can be isolated from a larger piece of DNA that can contain, for example, a coding sequence or even anothergene or genes. Isolation can be accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation using agarose gel purification, Qiagenk column chromatography (Chatsworth, CA), or other methods known to the skilled Z5 artisan. The selection of suitable enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art. An origin of replication is typically a part of those prokaryotic expression vectors purchased commercially, and the origin aids in the amplification of the vector in a host cell. If the vector of choice does not contain an origin of replication site, one can be chemically synthesized based on a known sequence, and ligated into the vector. For example, the origin of replication from the plasmid pBR322 (New England Biolabs, Beverly, MA) is suitable for most gram-negative bacteria, and various viral origins (e.g., SV40, polyoma, adenovirus, vesicular stomatitus virus (VSV), or papillomaviruses such as HPV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it also contains the virus early promoter). A transcription termination sequence is typically located 3' to the end of a polypeptide coding region and serves to terminate transcription. Usually, a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly-T sequence. While the sequence is easily cloned from a library or even purchased commercially as pail of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein. A selectable marker gene encodes a protein necessary for the survival and growth of a host cell grown in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline, or kanamycin for prokaryotic host cells; (b) complement auxotrophic deficiencies of the cell; or (C) supply critical nutrients not available from complex or defined media. Specific selectable markers are the kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene. Advantageously, a neomycin resistance gene can also be used for selection in both prokaryotic and eukaryotic host cells. Other selectable genes can be used to amplify the gene that will be expressed. Amplification is the process wherein genes that are required for production of a protein critical for growth or cell survival are reiterated in tandem within the chromosomes ofsuccessive generations of recombinant cells. Examples of suitable selectable markers for mammalian cells include dihydrofolate reductase (DHFR) and promoterless thymidine kinase genes. Mammalian cell transformants are placed under selection pressure wherein only the transformants are uniquely adapted to survive by virtue of the selectable gene present in the vector. Selection pressure is imposed by culturing the transformed cells under conditions in which the concentration of selection agent in the medium is successively increased, thereby leading to the amplification of both the selectable gene and the DNA that encodes another gene, such as an antigen binding protein that binds (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising @-Klotho and one of FGFRc, FGFR2c, FGFR3c, and FGFR4. As a result, increased quantities of a polypeptide such as an antigen binding protein are synthesized from the amplified DNA. A ribosome-binding site is usually necessary for translation initiation of mRNA and is characterized by a Shine-Dalgarno sequence (prokaryotes) or a Kozak sequence eukaryotess). The element is typically located 3' to the promoter and 5' to the coding sequence of the polypeptide to be expressed. In some cases, such as where glycosylation is desired in a eukaryotic host cell expression system, one can manipulate the various pre- or pro-sequences to improve glycosylation or yield. For example, one can alter the peptidase cleavage site of a particular signal peptide, or add prosequences, which also can affect glycosylation. The final protein product can have, in the -1 position (relative to the first amino acid of the mature protein), one or more additional amino acids incident to expression, which may not have been totally removed, For example, the final protein product can have one or two amino acid residues found in the peptidase cleavage site, attached to the amino-terminus. Alternatively, use of some enzyme cleavage sites can result in a slightly truncated form of the desired polypeptide, if the enzyme cuts at such area within the mature polypeptide. Expression and cloning will typically contain a promoter that is recognized by the host organism and operably linked to the molecule encoding an antigen binding protein that specifically binds (i) -Kotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex D comprising f-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4. Promoters are untranscribed sequences located upstream(i.e., 5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control transcription of thestructural gene. Promoters are conventionally grouped into one of two classes: inducible promoters and constitutive promoters. Inducible promoters initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, such as the presence or absence of a nutrient or a change in temperature. Constitutive promoters, on the other hand, uniformly transcribe a gene to which they are operably linked, that is, with little or no control over gene expression. A large number of promoters, recognized by a variety of potential host cells, are well known. A suitable promoter is operably linked to the DNA encoding heavy chain or light chain comprising an antigen binding protein by removing the promoter from the source
DNA by restriction enzyme digestion and inserting the desired promoter sequence into the vector. Suitable promoters for use with yeast hosts are also well known in the art. Yeast enhancers are advantageously used with yeast promoters. Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, those obtained from the genomes of viruses such as polyoma virus. fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus. retroviruses, hepatitis-B virus, and Simian Virus 40 (SV40). Other suitable mammalian promoters include heterologous mammalian promoters, for example, heat-shock promoters and the actin promoter. Additional promoters which can be of interest include, but are not limited to: SV40 early promoter (Benoist and Chambon, (1981) Nature 290:304-310): CMV promoter (Thornsen er a/., (1984) Proc. Nat/. Acad. U.S.A. 81:659-663); the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al, (1980) Cel 22:787-797); herpes thymidine kinase promoter (Wagner et a., (1981) Proc. Nalt Acad. Sci. U.S.A. 78:1444-1445); promoter and regulatory sequences from the metallothionine gene (Prinster et at., (1982) Nature 296:39 42); and prokaryotic promoters such as the beta-lactamase promoter (Villa-Kamaroff et a., (1978) Proc. Nail. Acad. Sci. U.S.A.:753727-3731); or the tac promoter (DeBoer el at., (1983) Proc. Aait/. Acad. Sci. U.S.A. 80:21-25). Also of interest are the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: the elastase I gene control region that is active in pancreatic acinar cells (Swift el at., (1984) Cell 38:639-646;Ornitz er al, (1986) Cold Spring Harbor Snp. Quant. Biol. 50:399-409; MacDonald, (1987) Hepatoogy 2:425-515); the insulin gene control region that is active in pancreatic beta cells (Hanahan, (1985) Natwe 315:115-122); the immunoglobulin gene control region that is active in lymphoid cells (Grosschedl et at., (1984) Cell38:647-658; Adames et a., !5 (1985) Nature 318:533-538; Alexander et al, (1987) Mo/. CeL Biot7 :1436-1444); the mouse mammary tumor virus control region that is active in testicular, breast, lymphoid and mast cells (Leder et al. (1986) Ce/ _45:485-495); the albumin gene control region that is active in liver (Pinkert et al, (1987) Genes and DeveL 1 :268-276); the alpha-feto-protein gene control region that is active in liver (Krumlauf et al., (1985) Mo/. Ce/L Bio 5:1639-1648; Hammer el aL, (1987) Science 253:53-58); the alpha 1-antitrypsin gene control region that is active in liver (Kelsey ei aL., (1987) Genes and Devel 1:161-171); the beta-globin gene control region that is active in mycloid cells (Mogram et A, (1985) Nature 315:338-340; Kollias et al., (1986) Ce// 46:89-94); the myelin basic protein gene control region that is active in oligodendrocyte cells in the brain (Readhead et al., (1987) Cel/ 48:703-712); the myosin light chain-2 gene control region that is active in skeletal muscle (Sani (1985) Nature 314:283-286); and thegonadotropic releasing hormone gene control region that is active in the hypothalamus (Mason et al., (1986) Science 234: 1372-1378). An enhancer sequence can be inserted into the vector to increase transcription of DNA encoding light chain or heavy chain comprising an antigen binding protein that specifically binds (i) B-Klotho: (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising D-Klotho D and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 by higher eukaryotes, e.g., a human antigen binding protein that specifically binds (i) $-Klotho; (ii) FGFRlc, FGFR2c. FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are relatively orientation and position independent, having been found at positions both 5' and 3' to the transcription unit. Several enhancer sequences available from mammalian genes are known (e.g., globin, clastase, albumin, alpha-feto-protein and insulin). Typically, however, an enhancer from a virus is used. The SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers known in the art are exemplary enhancing elements for the activation of ) eukaryotic promoters. While an enhancer can be positioned in the vector either 5' or 3' to a coding sequence, it is typically located at a site 5' from the promoter. A sequence encoding an appropriate native or heterologous signal sequence (leader sequence or signal peptide) can be incorporated into an expression vector, to promote extracellular secretion of the antibody. The choice of signal peptide or leader depends on the type of host cells in which the antibody is to be produced, and a heterologous signal sequence can replace the native signal sequence. Examples of signal peptides that are functional in mammalian host cells include the following: the signal sequence for interleukin-7 (IL-7) described in US Patent No. 4,965,195; the signal sequence for interleukin-2 receptor described in Cosman er a/., (1984) Nature 312768; the interleukin-4 receptor signal peptide described in EP Patent No. 0367 566; the type I interleukin-l receptor signal peptide described in U.S. Patent No. 4,968,607; the type II interleukin-l receptor signal peptide described in EP Patent No. 0 460 846.
The expression vectors that are provided can be constructed from a starting vector such as a commercially available vector. Such vectors can but need not contain all of the desired flanking sequences. Where one or more of the flanking sequences described herein are not already present in the vector, they can be individually obtained and ligated into the vector. Methods used for obtaining each of the flanking sequences are well known to one skilled in the art. After the vector has been constructed and a nucleic acid molecule encoding light chain, a heavy chain, or a light chain and a heavy chain comprising an antigen binding protein that specifically binds (i) D-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 has been inserted into the proper site of the vector, the completed vector can be inserted into a suitable host cellfor amplification and/or polypeptide expression. The transformation of an expression vector for an antigen binding protein into a selected host cell can be accomplished by well known methods including transfection, infection, calcium phosphate co-precipitation, electroporation, microinjection. lipofection, DEAE-dextran mediated transfection, or other known techniques. The method selected will in part be a function of the type of host cell to be used. Thesemethods and other suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook et al, (2001), supra. A host cell, when cultured under appropriate conditions, synthesizes an antigen binding protein that can subsequently be collected from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is not secreted). The selection of an appropriate host cell will depend upon various factors, such as desired expression levels, polypeptide modifications that are desirable or necessary for activity (such as glycosylation or phosphorylation) and ease of folding into a biologically active molecule. Mammalian cell lines available as hosts for expression are well known in the art and include, but are not limited to, immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to Chinese hamster ovary (CHO) cells, HcLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hcp G2), and a number of other cell lines. In certain embodiments, cell lines can be selected through determining which cell lines have high expression levels and constitutively produce antigen binding proteins with desirable binding properties (e.g., the ability to bind (i)
Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising -Klotho and one of FGFR Ic, FGFR2c. FGFR3c, and FGFR4). In another embodiment, a cell line from the B cell lineage that does not make its own antibody but has a capacity to make and secrete a heterologous antibody can be selected. The ability to induce FGF2I-like signaling can also form a selection criterion.
Uses of Antigen Bindina Proteins for Diagnostic and Therapeutic Purposes The antigen binding proteins disclosed herein are useful for detecting (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 in biological samples and identification of cells or tissues that produce one or more of (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FFRIc, FGFR2c, FGFR3c, and FGFR4. For instance, the antigen binding proteins disclosed herein can be used in diagnostic assays,eg, binding assays to detect and/or quantify (i) p-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 expressed in a tissue or cell. Antigen binding proteins that specifically bind to (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Kotho and one of FGFR Ic, FGFR2c, FGFR3c, and FGFR4 can be used in treatment of diseases related to FGF21 like signaling in a patient in need thereof, such as type 2 diabetes, obesity, dyslipidemia, NASH, D cardiovascular disease, and metabolic syndrome. By forming a signaling complex comprising an antigen binding protein, and (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4, the natural in vivo activity of FGF21, which associates with FGFRc, FGFR2c, FGFR3c, FGFR4 and Klotho in rivo to initiate signaling, can be mimicked and/or enchanced, leading to therapeutic effects.
Indications A disease or condition associated with human FGF21 includes any disease or condition whose onset in a patient is caused by, at least in part, the induction of FGF21-like signaling, which is initiated in vivo by the formation of a complex comprising FGFRIc, FGFR2c, FGFR3c or FGFR4 and S-Klotho and FGF21. The severity of the disease or condition can also be decreased by the induction of FGF21-like signaling. Examples of diseases and conditions that can be treated with the antigen binding proteins include type 2 diabetes. obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome. The antigen binding proteins described herein can be used to treat type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome, or can be employed as a prophylactic treatment administered, e.g., daily, weekly, biweekly, monthly, bimonthly, biannually, etc to prevent or reduce the frequency and/or severity of symptoms, e.g., elevated plasma glucose levels, elevated triglycerides and cholesterol levels, thereby providing an improved glycemic and cardiovascular risk factor profile.
Diagnostic Methods The antigen binding proteins described herein can be used for diagnostic purposes to detect, diagnose. or monitor diseases and/or conditions associated with FGFRIc, FGFR2c, FGFR3c, FGFR4, -Klotho, FGF21 or combinations thereof. Also provided are methods for the detection of the presence of (i) -Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRIc. FGFR2c, FGFR3c, and FGFR4 in a sample using classical immunohistological methods known to those of skill in the art (e.g., Tijssen, 1993, Practice and Theory of Enzyne Imnmanoassaiys Vol 15 (Eds R.H. Burdon and P.H. van o Knippenberg, Elsevier, Amsterdam); Zola, (1987) Monoclonal Antibodies: A Manua/ of Techniques, pp. 147-158 (CRC Press, Inc.): Jalkanen et aL, (1985) . Cel/ Biol.101:976-985; Jalkanen et al., (1987). Cell Biol. 105:3087-3096). The detection of (i) -Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising1-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 can be performed in vivo or vivmo. Diagnostic applications provided herein include use of the antigen binding proteins to detect expression of (i) $-Kotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 and/or binding to (i)
D-Klotho;(ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4. Examples of methods useful in the detection of the presence of (i) -Klotho; (ii) FGFRic, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising P-Klotho and one of FGFRIc, FGFR2c, FGFR3c. and FGFR4 include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). For diagnostic applications, the antigen binding protein typically will be labeled with a detectable labeling group. Suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., "H, " C, "N, "S, 'Y, "Tc, m I l 1,) fluorescent groups (e.g., FITC, rhodamine. lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, -galactosidase, Iuciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups. or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments. the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and can be used. In another aspect, an antigen binding protein can be used to identify a cell or cells that express (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRlc. FGFR2c, FGFR3c, and FGFR4. In a specific embodiment, the antigen binding protein is labeled with a labeling group and the binding of the labeled antigen binding protein to (i) s-Klotho: (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) acomplex comprising $-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 is detected. In a D further specific embodiment, the binding of the antigen binding protein to (i) 3-Klotho: (ii) FGFRIc, FGFR2c, FGFR3e or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 detected in vivo. In a furtherspecific embodiment, the antigen binding protein is isolated and measured using techniques known in the art. See, for example, Harlowand Lane, (1988) Antibodies: A Laboratorylmanual, New York: Cold Spring Harbor (ed. 1991 and periodic supplements); John E Coligan, ed., (1993) Current Protocols In hnnunology New York: John Wiley & Sons. Another aspect provides for detecting the presence of a test molecule that competes for binding to (i)l-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 with the antigen binding proteins provided, as disclosed herein. An example of one such assay could involve detecting the amount of free antigen binding protein in a solution containing an amount of one or more of (i) -K.lotho: (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising f-Klotho and one of FGFR Ic, FGFR2c, FGFR3c, and FGFR4 in the presence or absence of the test molecule. An increase in the amount of free antigen binding protein (i.e., the antigen binding protein not bound to (i) -Klotho; (ii) FGFRlc. FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising j-Klotho and one of FGFR1c, FGFR2c, FGFR3c, and FGFR4) would indicate that the test molecule is capable of competing for binding to (i) B-Klotho; (ii) FGFR I c, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising D-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 with the antigen binding protein. In one embodiment, the antigen binding protein is labeled with a labeling group, Alternatively, the test molecule is labeled and the amount of free test molecule is monitored in the presence and absence of an antigen binding protein.
Methods of Treatment: Pharmaceutical Formulations and Routes of Administration Methods of using the antigen binding proteins are also provided. In some methods, an antigen binding protein is provided to a patient. The antigen binding protein induces FGF21-like signaling. Pharmaceutical compositions that comprise a therapeutically effective amount of one or a plurality of the antigen binding proteins and a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative, and/or adjuvant are also provided. In addition, methods of 3 treating a patient by administering such pharmaceutical composition are included. The term "patient" includes human patients. Acceptable formulation materials are nontoxic to recipients at the dosages and concentrations employed. In specific embodiments, pharmaceutical compositions comprising a therapeutically effective amount of human antigen binding proteins that specifically bind (i) Q Klotho; (ii) FGFRIe, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising S-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 are provided. In certain embodiments, acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed. In certain embodiments, the pharmaceutical composition can contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. In such embodiments, suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials: antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chclating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine. polyvinylpyrrolidonc, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin): fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins) proteins (such as serum albumin, gelatin or immunoglobulins); coloring, flavoring and diluting agents; emulsifying agents: hydrophilic polymers (such as polyvinylpyrrolidone);:low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phencthyl alcohol, methylparaben, propylparaben, chlorhexidinc, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as Pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (such as sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients andlor pharmaceutical adjuvants. See, Remington's Pharmaceutical Sciences, 18th Edition, (A.R. Gennaro, ed.), 1990, Mack Publishing Company. In certain embodiments, the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, Remington's Pharmaceutical Sciences, supra. In certain embodiments, such compositions can influence the physical state, stability, rate of in vivo release and rate of in viv clearance of the antigen binding proteins disclosed. In certain embodiments, the primary vehicle or carrier in a pharmaceutical composition can be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier can be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. In specific embodiments, pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, and can further include sorbitol or a suitable substitute. In certain embodiments, compositions comprising antigen binding proteins that specifically bind (i) Q Klotho; (ii) FGFR I c, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising D-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 can be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remineton's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution. Further. in certain embodiments, antigen binding protein that bind (i) 0-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising D-Klotho and one of FGFR]c, FGFR2c, FGFR3c, and FGFR4 can be formulated as a lyophilizate using appropriate excipients such as sucrose. The pharmaceutical compositions can be selected for parenteral delivery. Alternatively, the compositions can be selected for inhalation or for delivery through the digestive tract, such as orally. Preparation ofsuch pharmaceutically acceptable compositions is within the skill of the art. The formulation components are present preferably in concentrations that are acceptable to the site of administration. In certain embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8. When parenteral administration is contemplated, the therapeutic compositions can be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antigen binding protein in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which the antigen binding protein is formulated as a sterile, isotonic solution, properly preserved. In certain embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-crodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that can provide controlled or sustained release of the product which can be delivered via depot injection. In certain embodiments, hyaluronic acid can also be used, which can have the effect of promoting sustained duration in the circulation. In certain embodiments, implantable drug delivery devices can be used to introduce the desired antigen binding protein.
Certain pharmaceutical compositions are formulated for inhalation. In some embodiments, antigen binding proteins that bind to (i)V-Klotho; (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c. and FGFR4 arc formulated as a dry, inhalable powder, In specific embodiments, antigen binding protein inhalation solutions can also be formulated with a propellant for aerosol delivery. In certain embodiments, solutions can be nebulized. Pulmonary administration and formulation methods therefore are further described in International Patent Application No. PCT/US94/001875., which is incorporated by reference and describes pulmonary delivery of chemically modified proteins, Some formulations can be administered orally. Antigen binding proteins that specifically bind (i) $-Klotho; (ii) FGFR Ic, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising j-Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 that are administered in this fashion can be formulated with or without carriers customarily used in the compounding of solid dosage fonrs such as tablets and capsules. In certain embodiments, a capsule can be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of an antigen binding protein. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders can also be employed. Some pharmaceutical compositions comprise an effective quantity of one or a plurality of human antigen binding proteins that specifically bind (i) -Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 in a mixture with non-toxic excipients that are suitable for the manufacture of tablets. By dissolving the tablets in sterile water, or another appropriate vehicle, solutions can be prepared in unit-dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc. Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving antigen binding proteins that specifically bind (i) §-Klotho: (ii) FGFRIc, FGFR2c, FGFR3c or FGFR4: or (iii) a complex comprising -Klotho and one of FGFRIc, FGFR2c, FGFR3c, and FGFR4 in sustained- or controlled-delivery formulations.
Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-crodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See. for example, International Patent Application No. PCT/US93/00829, which is incorporated by reference and describes controlled release of porous polymeric microparticles for delive of pharmaceutical compositions. Sustained-release preparations can include semipermeable polymer matrices in the form of shaped articles. e.g., films, or microcapsules. Sustained release matrices can include polyesters, hydrogels, polylactides (as disclosed in U.S. Patent No. 3,773,919 and European Patent Application Publication No. EP 058481, each of which is incorporated by reference), copolymers of L D glutamic acid and gamma ethyl-L-glutamate (Sidman et a/., 1983, Biopolvmers 2:547-556), poly (2-hydroxyethy-incthacrylate) (Langer etal., 1981, J. Biowed. Mater. Res. 15:167-277 and Langer, 1982, Chem. Tech. 12:98-105), ethylene vinyl acetate (Langer el al, 1981, supra) or poly-D(-)-3-hydroxybutyric acid (European Patent Application Publication No. EP 133,988). Sustained release compositions can also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., 1985, Proc. al.Acad. Sci. U.S.A. 82:3688 3692; European Patent Application Publication Nos. EP 036,676: EP 088,046 and EP 143,949, incorporated by reference. Pharmaceutical compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration ) membranes. When the composition is lyophilized, sterilization using this method can be conducted either prior to or following lyophilization and reconstitution. Compositions for parenteral administration can be stored in lyophilized form or in a solution, Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. In certain embodiments, cells expressing a recombinant antigen binding protein as disclosed herein is encapsulated for delivery (see, Invest. Ophiha/mol Vis Sci (2002) 33292 3298 and Proc. Nat/. Acad. Sciences USA (2006) J03:3896-3901). In certain formulations, an antigen binding protein has a concentration of at least 10 mg/ml, 20 mg/ml, 30 mg/ml, 40 mg/ml, 50 mg/ml, 60 mg/ml, 70 mg/ml, 80 mg/ml, 90 mg/ml, 100 mg/ ml or 150 mg/ml. Some formulations contain a buffer, sucrose and polysorbate. An example of a formulation is one containing 50-100 mg/ml of antigen binding protein, 5-20 mM sodium acetate, 5-10% w/v sucrose, and 0.002 - 0.008% w/v polysorbate. Certain, formulations, for instance, contain 65-75 mg/ml of an antigen binding protein in 9-11 mM sodium acetate buffer. 8-10% w/v sucrose, and 0.005-0.006% v/v polysorbate. The pH of certain such formulations is in the range of 4.5-6. Other formulations have a pH of 5.0-5,5 (e.g., pH of 5.0, 5.2 or 5.4). Once the pharmaceutical composition has been formulated, it can be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or yophilized powder. Such formulations can be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration. Kits for producing a single-dose administration unit are also provided. Certain kits contain a first container having a dried protein and a second container having an aqueous formulation, In certain embodiments, kits containing single and multi chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are provided. The therapeutically effective amount of an antigen binding protein-containing pharmaceutical composition to be employed will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will vary depending, in part, upon the molecule delivered, the indication for which the antigen binding protein is being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient. In certain embodiments, the clinician can titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. Atypical dosage can range from about I pg/kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage can range from 10 pg/kg up to about 30 mg/kg, optionally from 0.1 mg/kg up to about 30 mg/kg, alternatively from 0.3 mg/kg up to about 20 mg/kg. In some applications, the dosage is from 0.5 mg/kg to 20 !5 mg/kg. In some instances, an antigen binding protein is dosed at 0.3 mg/kg, 0.5mg/kg, 1 mg/kg, 3 mg/kg, 10 mg/kg, or 20 mg/kg. The dosage schedule in some treatment regimes is at a dose of 0.3 mg/kg qW, 0.5mg/kg qW, I mg/kg qW, 3 mg/kg qW, 10 mg/kg qW, or 20 mg/kg qW. Dosing frequency will depend upon the pharmacokinetic parameters of the particular antigen binding protein in the formulation used. Typically, a clinician administers the composition until a dosage is reached that achieves the desired effect. The composition can therefore be administered as a single dose, or as two or more doses (which can but need not contain the same amount of the desired molecule) over time. or as a continuous infusion via an implantation device or catheter. Appropriate dosages can be ascertained through use of appropriate dose-response data. In certain embodiments, the antigen binding proteins can be administered to patients throughout an extended time period. Chronic administration of an antigen binding protein minimizes the adverse immune or allergic response commonly associated with antigen binding proteins that are not fully human, for example an antibody raised against a human antigen in a non-human animal, for example, a non-fully human antibody or non-human antibody produced in a non-human species. The route of administration of the pharmaceutical composition is in accord with known methods, e.g., orally, through injection by intravenous, intraperitoneal, intracerebral (intra parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes; by sustained release systems or by implantation devices. In certain embodiments, the compositions can be administered by bolus injection or continuously by infusion, or by implantation device. The composition also can be administered locally via implantation of a membrane, sponge or another appropriate material onto which the desired molecule has been absorbed or encapsulated. In certain embodiments, where an implantation device is used, the device can be implanted into any suitable tissue or organ, and delivery of the desired molecule can be via diffusion, timed-release bolus, or continuous administration. It also can be desirable to use antigen binding protein pharmaceutical compositions ex vivo. In such instances, cells, tissues or organs that have been removed from the patient are exposed to antigen binding protein pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient. In particular, antigen binding proteins that specifically bind (i) -Klotho; (ii) FGFRlc, !5 FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising $-Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4 can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the polypeptide. In certain embodiments, such cells can be animal or human cells, and can be autologous, heterologous, or xenogencic. In certain embodiments, the cells can be immortalized. In other embodiments, in order to decrease the chance of an immunological response, the cells can be encapsulated to avoid infiltration of surrounding tissues. In further embodiments, the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.
Combination Therapies In another aspect, the present disclosure provides a method of treating a subject for diabetes with a therapeutic antigen binding protein of the present disclosure, such as the fully human therapeutic antibodies described herein, together with one or more other treatments. In one embodiment, such a combination therapy achieves an additive or synergistic effect. The antigen binding proteins can be administered in combination with one or more of the type 2 diabetes or obesity treatments currently available. These treatments for diabetes include biguanide (metaformin), and sulfonylureas (such as glyburide, glipizide). Additional treatments directed at maintaining glucose homeostasis include PPAR gamma agonists (pioglitazone, rosiglitazon); glinides (meglitinide, repaglinide, and nateglinide); DPP-4 inhibitors (Januvia@ and Onglyza@) and alpha glucosidase inhibitors (acarbose, voglibose). Additional combination treatments for diabetes include injectable treatments such as insulin and incretin mimetics (Byetta@, Exnatid00), other GLP-I (glucagon-like peptide) analogs such as liraglutide, other GLP-I R agonists and Symlin® (pramlintide). Additional combination treatments directed at weight loss include Meridia@ and Xcnical@f.
EXAMPLES The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting.
EXAMPLE I PREPARATION OF FGFRIc OVER EXPRESSING CELLS FOR USE AS AN ANTIGEN Nucleic acid sequences encoding the full length human FGFRIc polypepetide (SEQ ID W0 NO:4; Figures lA-iB) and a separate sequence encoding the full length human -Klotho polypeptide (SEQ ID NO:7; Figures 2A-2C) were subcloned into suitable mammalian cell expression vectors (e.g.. pcDNA3.1 Zeo, pcDNA3.1 Hyg (Invitrogen, Carlsbad, CA) or pDSRa20. The pDSRa20 vector contains SV40 early promoter/enhancer for expressing the gene of interest and a mouse DHFR expression cassette for selection in CHO DHFR (-) host cells such as AM 1 CHO (a derivative of DG44, CHO DHFR (-)). AM-i CHO cells were seeded at 1.5 x10 cellsper 100mm dish. After 24 hours, the cells were co-transfected with linearized DNAs of pDSRa20/huFGFRIc and pDSRa20/hu-Klotho with FuGene6 (Roche Applied Science), The transfected cells were trypsinized 2 days after transfection and seeded into CHO DHFR selective growth medium containing 10% dialyzed FBS and without hypoxanthine/thymidine supplement. After 2 weeks, the resulting transfected D colonies were trypsinized and pooled. H1EK293T cells were transfected with the full length huFGFRIc and hup-Klotho in pcDNA3.I series or pTT14 (an expression vector developed by Durocher, NRCC, with CMV promoter and EBV ori, similar to pTT5 and a puromycin selection marker) based vector and selected with the corresponding drugs following similar procedure as for the CHO transfection and selection. The FGF2IR (i.e., FGFRIc and Klotho) transfected AM] CHO or 293T cell pools were sorted repeatedly using Alexa 647-labeled FGF21. As a cell-surface staining reagent, FGF21 was labeled with Alexa 647-NHS followed the method recommended by the manufacturer (Molecular Probes, Inc. Cat A 2006). The Alexa 647-labeled FGF21 showed specific staining of ) FGF2IR receptor expressing cells and not the non-transfected parental cells (Figure 3). High expressing cells were collected at the end of the final sorting,expandedandfrozenintovials. The AM-l/huFGF21R cells were prepared forimmunization and the293T/huFGF2IR cells were used for titering mouse sera by FACS after immunization and in binding screens of the hybridoma supernatants by FMAT (see Example 4).
EXAMPLE2 PREPARATION OF A SOLUBLE FGFRc/-KLOTHO COMPLEX FOR USE AS ANTIGEN Soluble FGF21 receptor constructs were generated in pTTl4 or pDNA3.1 expression vectors. The FGFRlc ECD-Fe construct (SEQ ID NO:362, Figure 4) comprises the N-terminal extracelluar domain of FGFR Ic (amino acid residues #1 - 374; SEQ ID NO:5) fused to Fe (SEQ
ID NO:384). The -Klotho ECD-Fc construct (SEQ ID NO:363, Figure 5) comprises the N terminal extracellular domain of $-Klotho (amino acid residues #1-996: SEQ ID NO:8) fused to Fe (SEQ ID NO:384). HEK293 cells (293F, Invitrogen) were transfected with huFGFRlc ECD-FcpTT5, hu$ Klotho ECD-F/pTTl4-puro and dGFP/pcDNA3.l-Neo and selected in the presence of the corresponding drugs followed by repeated FACS sorting based on dGFP expression. Cells were grown in scrum-free Dulbecco's Modified Eagle Medium (DMEM) supplemented with nonessential amino acids in HyperFlasks (Corning) for 4 days and conditioned media (CM) harvested for purification. The 293 CM was concentrated 6 fold and applied to Protein A FF equilibrated in PBS. The protein was eluted with Pierce Gentle Ag/Ab clution buffer. The Protein A pool was dialyzed against 20mM Tris-HCl, pH7, 10M NaCl and applied to SP HP at pH 7.0. The FGFRlc ECD-Fc was present in the flow-through (FT) and the heterodimer was eluted with linear gradient of 0- 0.4 M NaCl, 20 mM Tris-HCI pH 7.0. N-terminus amino acid sequencing verified the purified soluble FGF2IR to be a heterodimer composed of (1:1) ratio of FGFRlc ECD-Fc and P-Klotho ECD-Fe. The purified soluble FGF2R-Fc (Figure 6) was used as the antigen for immunization.
EXAMPLE3 PREPARATION OF MONOCLONAL ANTIBODIES Immunizations were conducted using one or more suitable forms of FGF21 receptor antigen, including: (1) cell bound receptor of CHO transfectants expressing full length human FGFRlc and 1-Klotho at the cell surface, obtained by transfecting CHO cells with cDNA encoding a human full length FGFRIc polypeptide of SEQ ID NO:4 (see also Figuresla-b) and cDNA encoding a human -Klotho polypeptide of SEQ ID NO:7 (see also Figures 2a-c); (2) membrane extract from the aforementioned cells expressing the FGF21R receptor complex; or (3) soluble FGF21R receptor obtainable by co-expressing the N-terminal extracellular domain (ECD) of FGFRlc (SEQ ID NO:5; see also Figure 4) and the N-terminal extracellular domain (ECD) of f-Klotho (SEQ ID NO:8; see also Figure 5) or (4) combinations thereof. W A suitable amount of immunogen (I.e., 10 pgs/mouse of soluble FGF21R or 3 - 4 x 10 cells/mouse of stably transfected CHO cells or 150 pgs/mouse of purified FGF2IR membranes prepared from CHO cells stably expressing FGF2IR) was used for initial immunization in XenoMouse'1 according to the methods disclosed in U.S. Patent Application Serial No. 08/759.620, filed December 3, 1996 and International Patent Application Nos. WO 98/24893. and WO 00/76310, the disclosures of which are hereby incorporated by reference. Following the initial immunization. subsequent boost immunizations of immunogen (5 pg/mouse of soluble FGF21R or 1.7 x 106 FGF21R transfected cells/mouse or 75 jgs of purified FGF2IR membranes) were administered on a schedule and for the duration necessary to induce a suitable anti-FGF21R titer in the mice. Titers were determined by a suitable method, for example, by enzyme immunoassay, fluorescence activated cell sorting (FACS), or by other methods (including combinations of enzyme immunoassays and FACS). Animals exhibiting suitable titers were identified, and lymphocytes were obtained from draining lymph nodes and, if necessary, pooled for each cohort. Lymphocytes were dissociated from lymphoid tissue by grinding in a suitable medium (for example, Dulbecco's Modified Eagle Medium: DMEM; obtainable from Invitrogen, Carlsbad, CA) to release the cells from the tissues, and suspended in DMEM. B cells were selected and/or expanded using standard methods, and fused with suitable fusion partner, for example, nonsecretory mycloma P3X63Ag8.653 cells (American Type Culture Collection CRL 1580; Kearney et al, .1. Imunol. 123, 1979, 1548-1550), using techniques that were known in the art. In one suitable fusion method, lymphocytes were mixed with fusion partner cells at a 3 ratio of 1:4. The cell mixture was gently pelleted by centrifugation at 400 x g for 4minutes, the supernatant decanted, and the cell mixture gently mixed (for example, by using a I ml pipette). Fusion was induced with PEG/DMSO (polyethylene glycol/dimethyl sulfoxide; obtained from Sigma-Aldrich, St. Louis MO; I ml per million of lymphocytes), PEG/DMSO was slowly added with gentle agitation over one minute followed, by one minute of mixing. IDMEM (DMEM without glutamine; 2 ml per million of B cells), was then added over 2 minutes with gentle agitation, followed by additional IDMEM (8 ml per million B-cells) which was added over 3 minutes. The fused cells were pelleted (400 x g 6 minutes) and resuspended in 20 ml Selection media (for example, DMEM containing Azaserine and Hypoxanthine [HA] and other supplemental materials as necessary) per million B-cells. Cells were incubated for 20-30 minutes at 37°C and then resuspended in 200 ml selection media and cultured for three to four days in T175 flasks prior to 96 well plating. Cells were distributed into 96-well plates using standard techniques to maximize clonality of the resulting colonies. After several days of culture, supernatants were collected and subjected to screening assays as detailed in the examples below, including confirmation of binding to human FGF21 receptor, specificity and/or cross-species reactivity. Positive cells were further selected and subjected to standard cloning and subeloning techniques. Clonal lines were expanded in vitro, and the secreted human antibodies obtained for analysis. In this manner, mice were immunized with either cells or membranes expressing full length FGF21R cells, or soluble FGF21R extracellular domain, with a range of 11-17 immunizations over a period of approximately one to three and one-half months. Several cell lines secreting FGF21R-specific antibodies were obtained, and the antibodies were further characterized. The sequences thereof are presented herein and in the Sequence Listing, and results of various tests using these antibodies are provided.
EXAMPLE4 SELECTION OF BINDING ANTIBODIES BY FMAT After 14 days of culture, hybridoma supernatants were screened for FGF21R-specific monoclonal antibodies by Fluorometric Microvolume Assay Technology (FMAT) by screening against either the CHO AML/huFGF2IR cell line or recombinant HEK293 cells that were transfected with human FGF21R and counter-screening against parental CHO or HEK293 cells. Briefly the cells in Freestyle media (Invitrogen) were seeded into 384-well FMAT plates in a volume of 50 IL/well at a density of 4,000 cells/well for the stable transfectants, and at a density of 16,000 cells/well for the parental cells, and cells were incubated overnight at 37°C. 10 pL/well of supernatant was then added, and the plates were incubated for approximately one hour at 4°C, after which 10 pL/well of anti-human IgG-Cy5 secondary antibody was added at a concentration of 2.8 g/ml (400ng/ml final concentration). Plates were then incubated for one hour at 4'C, and fluorescence was read using an FMAT Cellular Detection System (Applied Biosystems).
In total, over 3,000 hybridoma supernatants were identified as binding to the FGF21 receptor expressing cells but not to parental cells by the FMAT method. These supernatants were then tested in the FGF21 functional assays as described below.
EXAMPLE S SELECTION OF ANTIBODIES THAT INDUCE FGF21-LIKE SIGNALING Experiments were performed to identify functional antibodies that mimic wild-type FGF21 activity (e.g., the ability to induce FGF21-like signaling) using a suitable FGF21 reporter assay. The disclosed FGF2Ireporter assay measures activation of FGFR signaling via a MAPK pathway readout. $-Klotho is a co-receptor for FGF2I signaling, and although it is believed not to have any inherent signaling capability due to its very short cytoplasmic domain, it is required for FGF21 to induce signaling through FGFRs.
Example 5.1 ELK-Luciferase Reporter Assay ELK-luciferase assays were performed using a recombinant human 293T kidney cell or CHO cell system. Specifically, the host cells were engineered to over-express p-Klotho and ILuciferase reporter constructs. The reporter constructs contain sequences encoding GAL4-ELKI and 5xUAS-Luc, a luciferase reporter driven by a promoter containing five tandem copies of the Gal4 binding site. Activation of the FGF2I receptor complex in these recombinant reporter cell lines induces intracellular signal transduction, which in turn leads to ERK and ELK phosphorylation. Luciferase activity is regulated by the level of phosphorylated ELK, and is used to indirectly monitor and quantify FGF21 activity. In one example, CHO cells were transfected sequentially using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer's protocol with the receptor constructs expressing $-Klotho, FGFRIc and the reporter plasmids: 5x Gal4-Luciferase (minimal TK promoter with 5xGal4 binding sites upstream of luciferase) and Gal4-ELK Gal4 ELKI binds to the Gal4 binding sites and activates transcription when it is phosphorylated by ERK. Luciferase transcription, and thereby the corresponding enzymatic activity in this context is regulated by the level of phosphorylated ELKI, and is used to indirectly monitor and quantify FGF21 activity.
Clone 2E10 was selected as the FGF21 luciferase reporter cell line based on the optimal assay window of 10-20 fold with native FGF21 exhibiting an EC50 in the single nM range. For the assay, the ELK-luciferase reporter cells were plated in 96 well assay plates, and serum starved overnight. FGF2Ior test samples were added for 6 hours at 37 degrees. The plates were then allowed to cool to room temperature and the luciferase activity in the cell lysates was measured with Bright-Glo (Promega).
Example 5.2 ERK-Phosphorvlation Assay Alternative host cell lines specifically L6 (a rat myoblastic cell line) was developed and applied to identify antibodies with FGF21-like signaling activity. The rat L6 cell line is a desirable host cell line for the activity assay because it is known to express minimal levels of endogeneous FGF receptors. The L6 cells do not respond to FGF21 even when transfected with f-Klotho expression vector and therefore provides a cleaner background. (Kurosu et al., (2007) J. Biol Chenm. 282, 26687-26695). L6 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and penicillin/streptornycin. Cells were transfected with plasmids expressing pKlotho and individual FGFR using the Lipofcctamine 2000 transfection reagent (Invitrogen)according to the manufacturer's protocol. Analysis of FGF signaling in L6 cells was performed as described in the literature (Kurosu et al., (2007) .. Rio/ Chen. 82, 26687-26695). Cell cultures were collected 10 min after the treatment of FGF21 or test molecules and snap frozen in liquid nitrogen, homogenized in the lysis buffer and subjected to western blot analysis using an anti-phospho-p44/42 MAP kinase (ERKI/2) antibody and an anti-ERK antibody (Cell Signaling). The percent of phosphorylated ERK versus total ERK protein was determined in this way. In addition. the factor-dependent mouse BaF3 cell-based proliferation assay used frequently for cytokine receptors can also be developed and applied. Among the hybridoma supernatants tested in the CHO cell (clone 2E10) based human FGF21 ELK-luciferase reporter assay, over 30 were identified as positive (> 5% of the activity of FGF21) when compared to 20nM FGF21 as the positive control. Antibodies were then purified from the conditioned media of the hybridoma cultures of these positives and tested again in the CHO cell based ELK-luciferase reporter assay. (Figure 7) showed the representative antibodies in the dose-responsive potency assay with estimated EC50 less than ltg/ml (or 6.7nM). The activities were confirmed in the L6 cell based ERK/2-phosphrylation assay (Figure 8) with EC50 less than 10 nM which is consistent to the ELK-luciferase assay in the CHO stable cell line 2E 10.
EXAMPLE 6 INDUCTION OF FGF21-LIKE SIGNALING IS SPECIFIC TO THE FGFRIc/KLOTHO COMPLEX FGF21 has been reported to signal through multiple receptor complexes including FGFRic, 2c, 3c and 4 when paired with -Klotho. The selectivity of the FGF21 agonistic antibodies was tested in the rat myoblastic L6 cells transfected with vectors expressing the respective FGFRs and Klotho. The results shown in Figure 9 demonstrate that the activity was mediated selectively and exclusively through FGFRlc and not through FGFR2c, 3c or 4 when they were paired with -Klotho because no activity was detected on the latter receptors up to 100 nM of the agonistic antibodies. This unique selectivity strongly suggests that the action of these antibodies is B-Klotho-dependent yet it must also involve specifically the FGFRIc component of the signaling complex.
EXAMPLE 7 ACTIVITY IN PRIMARY HUMAN ADIPOCYTES FGF21 stimulates glucose uptake and lipolysis in cultured adipocytes, and adipocytes are considered to be more physiologically relevant than the recombinant reporter cell system. A panel of the antibodies was shown to exhibit Erk-phosphorylation activity similar to FGF21 in the human adipocyte assay (Figure 10) with estimated EC50 less than 10 nM.
EXAMPLE8 COMPETITION BINDING AND EPITOPE BINNING To compare the similarity of the binding sites of the antibodies on the FGF21 receptor, a series of competition binding experiments were performed and measured by Biacore. In one example (and as shown in Figure 11), two representative agonistic FGF2 receptor antibodies (24HI11 and 1718) and one non-functional FGF2I receptor binding antibodies (IA 2 .1) were immobilized on thesensor chip surface. Soluble human FGFRc/-Klotho ECD-Fc complex or
D-Klotho was then captured on the immobilized antibody surfaces. Finally, several of the test FGF21 receptor antibodies were injected individually over the captured soluble human FGF21 receptor or $-Klotho. If the injected antibody recognizes a distinct binding site relative to that recognized by the immobilized antibody, a second binding event will be observed. If the antibodies recognize very similar binding site, no more binding will be observed. As shown in (Figure I IA.), there are two distinct yet partially overlapping binding sites for the agonistic antibodies tested. One site is covered by 24111, 21112, 18B1.1 and 17C3 (Group A) and the other site covered by 17D8, 12E4 and 18G1 (Group B). The two non functional antibodies 2G10 and 1A2, bind to different sites from each other and are distinct from the two sites covered by the agonistic antibodies in Group A and B. Other functional antibodies binding to Group A epitope included 20D4, 221-15. 167, 40D2 and 46DI1. Two other functional antibodies 26H11 and 37D3 were shown by this method to bind the same site covered by the Group B antibodies. In addition, a third binding site for unctional antibodies was identified for 39F11, 39F7 and 39G5 (group C) which appeared to be distinct from Group A and B binding sites (Figure 1B). Another Biacore analysis was carried out with biotinylated-FGF21 immobilized on the sensor ship. 10 nM soluble -Klotho was then passed over the chip alone or mixed with the individual test antibodies at 100nM. (Figure 12) showed that several agonistic antibodies in group A (24H11, 18B11, 17C3) and antibody 12E4 (from group B) competed significantly with 10121 in binding to soluble -Klotho whereas the non-functional antibodies 2010 and 1A2 and several other functional antibodies did not show competition binding with FGF21. 5 Figure I IC summarizes the binning results obtained.
EXAMPLE 9 RECOGNITION OF NATIVE AND DENATURES STRUCTURES The ability of disclosed antigen binding proteins to recognize denatured and native structures was investigated. The procedure and results were as follows.
Example 9.1 FGF21 Receptor A2onistic Antibodies do not Recognize Denatured Structures, as Shown by FACS Cell lysates from CHO cells stably expressing FGF21 receptor (FGFRIc and -Klotho) or CHO parental cells were diluted with sample bufferwithout beta-mercaptoethanol (non reducing conditions). 20l of cell lysate was loaded per lane on adjacent lanes separated with a molecular weight marker lane on 4-20% SDS-PAGE gels. Following electrophoresis, the gels were blotted onto 0.2p nitrocellulose filters. The blots were treated with Tris-buffered saline/Triton-X (TBST) plus 5% non-fat milk (blocking buffer) for 30 minutes. The blots were then cut along the molecular weight marker lanes. The strips were then probed with FGF2I receptor agonistic antibodies (12C3, 26H11, 12E4, 21H2, 18B , or 2004), and commercial goat anti-murine $Klotho or mouse anti-huFGFRI (R&D Diagnostics) in TBST/5% milk. Blots were incubated with the antibodies for one hour at room temperature, followed by three washes with TBST + 1% milk. The blots were then probed with anti-human or anti-goat IgG-HRP secondary antibodies for 20 min. Blots were given three 15 min. washes with TBST followed by treatment with Pierce Supersignal West Dura developing reagent (1 min.) and exposure to Kodak Biomax X-ray film. The commercial anti-P-Klotho and anti-FGFRI antibodies detected the corresponding receptor proteins in the SDS-PAGE indicating they bind to denatured receptor proteins. In contrast, none of the FGF21 receptor agonistic antibodies tested detected the corresponding protein species suggesting they bind to the native conformational epitope distinct from the commercial antibodies which bind to denatured sequences.
Example 9.2 FGF21 Receptor Agonistic Antibodies Bind To Native Receptor Structure, As Shown Bv FACS A FACS binding assay was performed with several commercially available FGFR1c and -Klotho antibodies, and several of the disclosed FGF21 receptor agonistic antibodies. The experiments were performed as follows. CHO cells stably expressing FGF21 receptor were treated with R&D Systems mouse anti-huFGFR I, goat anti-mu S-Klotho, or FGF21 receptor antibodies 24H 11, 17C3, 17D8,
18G1, or 2G10 (1pg per Ix10' cells in I00pl PBS/0.5% BSA). Cells were incubated with the antibodies at 4C followed by two washes with PBS/BSA. Cells were then treated with FTC labeled secondary antibodies at 4'C followed by two washes. The cells were resuspended in Iml PBS/BSA and antibody binding was analyzed using a FACS Calibur instrument. Consistent with western blot results, all of the FGF21 receptor agonistic antibodies tested bind well to cell surface FGF21 receptor in FACS whereas the commercial anti-§-Klotho or anti-FGFRI antibodies did not. This observation further confirmed that the FGF21 receptor agonistic antibodies recognize the native structure whereas the commercial antibodies to the receptor components do not. D EXAMPLE 10 ARGININE SCANNING As described above, antigen binding proteins that bind human FGF21R, e.g., FGFRIc,f Klotho or both FGFRic and -K]otho, were created and characterized. To determine the neutralizing determinants on human FGFRIc and/or -Klotho that these various antigen binding proteins bound, a number of mutant FGFRIc and/or $-Klotho proteins can be constructed having arginine substitutions at select amino acid residues of human FGFR]c and/or -Klotho. Arginine scanning is an art-recognized method of evaluating where antibodies, or other proteins, bind to another protein, see, e.g., Nanevicz et al., (1995) J. Rio. Chem., 270:37, 21619-21625 ) and Zupnick et al., (2006) .L Biol. Chem., 281:29, 20464-20473. In general, the arginine sidechain is positively charged and relatively bulky as compared to other amino acids, which can disrupt antibody binding to a region of the antigen where the mutation is introduced. Arginine scanning is a method that determines if a residue is part of a neutralizing determinant and/or an epitope. Various amino acids distributed throughout the human FGFRIc and/or -Klotho extracellular domains can be selected for mutation to arginine, The selection can be biased towards charged or polar amino acids to maximize the possibility of the residue being on the surface and reduce the likelihood of the mutation resulting in misfolded protein. Using standard techniques known in the art, sense and anti-sense oligonucleotides containing the mutated residues can be designed based on criteria provided by Stratagene Quickchangc Il protocol kit (Stratagene/Agilent, Santa Clara, CA). Mutagenesis of the wild-type (WT) FGFRIc and/or P
Klotho sequences can be performed using a Quickchange 11 kit (Stratagene). Chimeric constructs can be engineered to encode a FLAG-histidine tag (six histidines (SEQ ID NO: 382)) on the carboxy terminus of the extracellular domain to facilitate purification via the poly-His tag. Multiplex analysis using the Bio-Plex Workstation and software (BioRad, Hercules, CA) can be performed to determine neutralizing determinants on human FGFRIc and/or -Klotho by analyzing exemplary human FGFRc and/or P-Klotho mAbs differential binding to arginine mutants versus wild-type FGFRIc and/or -Klotho proteins. Any number of bead codes of pentaHis-coated beads ("penta-His" disclosed as SEQ ID NO: 383) (Qiagen, Valencia, CA; see wwwl.qiagen.com) can be used to capture histidine-tagged protein. The bead codes can allow the multiplexing of FGFRlc and/or -Klotho arginine mutants and wild-type human FGFRlc and/or $-Klotho. To prepare the beads, I00ul of wild-type FGFR Ic and/or -Klotho and FGFRIc and/or $-Klotho arginine mutant supernatants from transient expression culture are bound to penta-His coated beads ("penta-His" disclosed as SEQ ID NO: 383) overnight at 4°C or 2 hours at room temperature with vigorous shaking. The beads are then washed as per the manufacturer's protocol and the bead set pooled and aliquoted into 2 or 3 columns of a 96-well filter plate (Millipore, Bellerica, MA, product #MSBVN250) for duplicate or triplicate assay points, respectively. 100pl anti-FGFRlc and/or anti-D-Klotho antibodies in 4-fold dilutions are added to the wells, incubated for I hour at room temperature, and washed. I00pl of a 1:100 dilution of PE-conjugated anti-human IgG Fe (Jackson Labs., Bar Harbor, ME, product #109-116-170) is added to each well, incubated for I hour at room temperature and washed. Beads are resuspended in 1% BSA, shaken for 3 minutes, and read on the Bio-Plex workstation. Antibody binding to FGFRIc and/orJ-Klotho arginine mutant protein is compared to antibody binding to the human FGFRc and/or $-Klotho wild-type from the same pool. A titration of antibody over approximately a 5 log scale can be performed. Median Fluorescence Intensity (MFI) of FGFR Ic and/or -Klotho arginine mutant proteins can be graphed as a percent of maximum wild-type human FGFRic and/or $-Klotho signal. Those mutants for which signal from all the antibodies are below a cut-off value, e.g., 30% of wild-type FGFRlc and/or -Klotho can be deemed to be either of too low a protein concentration on the bead due to poor expression in the transient culture or possibly misfolded and can be excluded from analysis. Mutations (i.e., arginine substitutions) that increase the EC50 for the FGFRIc and/or $-Klotho mAb by a cut-off value, e.g., 3-fold or greater (as calculated by. e.g., GraphPad Prism) can be considered to have negatively affected FGFRIc and/or -Kiotho mAb binding. Through these methods, neutralizing determinants and epitopes for various FGFRic and/or -Klotho antibodies are elucidated.
EXAMPLE 11 CONSTRUCTION OF CHIMERIC RECEPTORS In another method of determining the activation determinants on human FGFRlc and/or D -Klotho that these various antigen binding proteins bind, specific chimeric FGFRlc and/or Klotho proteins between human and mouse species can be constructed, expressed in transient or stable 293 or CHO cells as described before and tested. For example, a chimeric FGF21 receptor can be constructed comprising native human FGFRIc, FGFR2C, FGFR3c or FGFR4, in one example FGFRIc, paired with chimeric human/mouse -Klotho in which selected regions or sequences on the human -Klotho are systematically replaced by thecorresponding mouse specific residues (see, e.g., Figure 2A-2C). Similarly, native human -Klotho paired with chimeric human/mouse FGFRIc, FGFR2c, FGFR3c or FGFR4, in one example FGFRIc in which selected regions or sequences on the human FGFRIc are systematically replaced by the corresponding mouse-specific residues (see, e.g., the alignments of FiguresiA-1B). The critical ) sequences involved in the binding and/or activity of the antigen binding proteins can be derived through binding assay or activity measurements described in previous Examples 4, 5, 6 and 7 based on the chimeric FGF21 receptors.
Example 11.1 Construction of Specific Chimeras Human-mouse j-Klotho chimeras were constructed using the methodology described in Example 14. A schematic of the chimeras constructed is presented in Figure 29; summarily, the chimeras generated comprised (from N to C terminus) a fusion of a human -Klotho sequence fused to a murine D-Klotho sequence fused to a human -Klotho sequence. Human -Klotho (SEQ ID NO:8) was used as a framework into which regions of murine B-Klotho (full length sequence shown in SEQ ID NO:468) were inserted, The regions of murine -Kotho that were inserted were as follows: Murine Residues 82P-520P PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYFLEKDLL ALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLP LTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGFGTGMHA PGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITLGSHWIEPNRTDNM EDVINCQHSMSSVLGWFANPHODGDYPEFMKTGAMIPEFSEAEKEEVRGTADFFAFSF GPNNFRPSNTVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENGWFTDSYIKTEDTTAIY MMKNFLNQVLQAIKFDE1RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKP KSSAHYYKQIIQDNGFPLKESTPDMKGRFP (SEQ ID NO:470)
Murine Residues 506F1043S FPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGNRLLYRVEG VRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILPTGNLSKVNRQVLRYYR CVVSEGLKLGVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMNTAKAFQDYAELCFRELG DLVKLWITINEPNRLSDMYNRTSNDTYRAAHNLMIAIHAQVWHLYDRQYRPVQHGAVS LSL HCDWAEPANPFVDSHWKAAERFLQFE]AWFADPLFKTGDYPSVMKEYASKNQRG o LSSSVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQDITRLS SPSRLAVTPWGVRKLLAW1RRNYRDRDIYITANGIDDLALEDDQIRKYYLEKYVQEALK AYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFRAKSSVQFYSKLISSSGLPAENRSPACG QPAEDTDCTICSFLVEKKPLIFFGCCFISTLAVLLSITVFH HQKRRKFQKARNLQNIPLKK GHSRVFS (SEQ ID NO:471)
Murine Residues lM-193L MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAVTGFSGDGK AIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYS D HLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYY RALLDSLVLRNIEPIVTL (SEQ ID NO:472)
Murine Residues 82P-302S PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLL ALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYH WDLP LTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGFGTGMHA PGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITLGS (SEQ ID NO:473)
Murine Residues 194Y-416G YHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITLGSHWIEP NRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMIPEFSEAEKEEVRGTA
DFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENG (SEQ ID NO:474)
Murine Residues 302S-506F SHWIEPNRTDNMEDVINCQHSMSSVLGWFANP1HGDGDYPEFMKTGAMIPEFSEAEKEE VRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENGWFT DSYIKTEDTTAIYMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFEWQDAYTTRRGLFY VDFNSEQKER.KPKSSAHYYKQIIQDNGF (SEQ ID NO:475)
Murine Residues 416G-519P GWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFEWQDAYTTR RGLFYVDFNSEQKERKPKSSAHYYKQIIQDNGFPLKESTPDMKGRF (SEQ ID NO:476)
Murine Residues 507P-632G PLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGNRLLYRVEGV RLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILPTGNLSKVNRQVLRYYRC VVSEGLKLG (SEQ ID NO:477)
Murine Residues 520P-735A PCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGNRLLYRVEGVRLKTRPSQCTDY VSIKKRVEMLAKMKVTHYQFALDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFP MVTLYHPTHSHLGLPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNR LSDMYNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPVQHGA (SEQ ID NO:478)
Murine Residues 632G-849Q GVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITIN EPNRLSDMYNRTSNDTYRAAIHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAE PANPFVDSHIWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSSSVLPRFT AKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQ (SEQ ID NO:479)
Murine Residues 735A-963S AVSLSLHCDWAEPANPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKN QRGLSSSVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQDIT RLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDDQIRKYYLEKYVQE ALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFRAKSSVQFYSKLISSS (SEQ ID NO:480)
Murine Residues 1M-81 F MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAVTGFSGDGK AIWDKKQYVSPVNPSQLFLYDTF (SEQ ID NO:48 1)
Murine Residues 82P-193L PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYFLEKDLL ALDFLGVSFYQFSSWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTL (SEQ ID NO:482)
The chimeras generated using the murine -Klotho sequences comprised the following components:
Construct Identifier Construct N-terminal Mouse -Klotho C-terminal SEQ ID Human - Residues Human $-Klotho NO Klotho Residues Residues huleta_Klothotl-81, 523- 1-81 82-520 523-1044 1044)(muleiaKLOT1082-520) huIBeta_Klotho(1- 1-507 506-1043 507)(muBetaKLOT10 506F 1045s) buBelta__Kloiho(194- 1-193 194-1044 1044)(muIfetaKLOTHO 1-LI93) huNetaKlotho(I-81, 303- 1-81 82-302 303-1044 1044)(mufIetaKLOT1O82P 302S) huBetaKlotho(1-193,419- 1-193 194-416 419-1044 1044)(muBetaKLOTIO Y194 416G) IuetaKlotho(-301,509- 1-301 302-506 509-1044 1044)(muleaKLOTI 0 S302 F506) luiBetaKlotho(1-417, 522- 1-417 416-519 522-1044 1044)(muBelaKLOTI 0 G416 F519) huta_Klolho(1-507, 635- 1-508 507-632 635-1044 1044)(muBla KLOTI1O F06 G632) huleta_Klotho(1-521,738- 1-521 520-735 738-1044 1044)(mutlcla KLOTIO 5201P 735A) huletalKloho(I-633, 852- 1-633 632-849 852-1044 1044)(mlu3ela KLOTHO 632G 849Q) huBeta_Kuloho(1-736,967- 1-736 735-963 967-1044 1044)(muleta KLOTHO 735A 963S)
Construct Identifier Construct N-tenninal Mouse J-Klotho C-terminal SEQ ID Human 0- Residues Human Q-Klotho NO Klotho Residues Residues huleta_Klotho(82-044)(muetia 1-81 82-1044 KLOTHO 1-8 F) hmBetaKlotho(I-81, 194- 1-81 82- 193 194-1044 1044)etcia K LOT)X82P 193L)
The generated chimeras comprised the following amino acid sequences: (i) huBeta_Klotho(1-81, 523-1044)(muBetaKLOTHO 82-520) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALLLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW IKLEYDDPQILISENGWFTDSYIKTEDTTAIY MMKNFLNQVLQAIKFDEI RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQ IQDNGFPLKESTPDMKGRFPCDFSWGVTESVLKPESVASSPQFSDPH LYV WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP YADSH WRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKH RRGLSSSA LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:455) !5 (ii) huBeta_Klotho(1-507)(muBetaKLOTHO 506F-1045S) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW KKDGKGPSIWDHFIH THLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAK.MGQNVSLNLREAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK
QIIRENGFPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHL YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM YNRTSNDTYRAA HNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPA NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYASKNQRGLSS SVLPRFTAKESRLVKGTVDFYALNHIFTTRFVIHKQLNTNRSVADRDVQFL QDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGDDLALEDD QIRKYYL EKYVQEA L KAY LI DKVK IKGYYAFKLTEEKSKPRFGFFTSDFR AKSSVQFYSKLISSSGLPAENRSPACGQPAEDTDCTICSFLVEKKPLIFF GCCFISTLAVLLSITVFHHQKRRKFQKARNLQNIPLK.KGHSRVFS (SEQ ID NO:456)
(iii) huBeta_Klotho(194-1044)(muBetaKLOTHO I-L193) MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQVEGSW KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYIHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMHAPGEKGNLAAVYTVGHNLKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHA HLG LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA D NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYASKHRRGLSS SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL QDITR LSSPTRLAVIPWGVRKLL RWVRRNYGDMDIYITASGIDDQA LEDD RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQKRRKEFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:457)
(iv) huBeta_Klotho(1-81, 303-1044)(muBetaKLOTHO 82P-302S) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW to KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEAEKH EMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNL REAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTH A H LG LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI YNRSGNDTYGAAfHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDR.DIQFL QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:458)
(v) huBetaKlotho(1-193, 419-1044)(muBetaKLOTHO Y194-416G) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQ L FLYDTFPKNFFWGIGTGALQVEGSW KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW IKLEYDDPQILISENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLDE RVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYKQI IRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHIAHLGLP EPLLHIADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP o YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASK.HRR.GLSSSA LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:459)
(vi) huBeta_Klotho(1-301, 509-1044)(muBetaKLOTHO S302-F506) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW t0 KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW IKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDE
RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQI IQDNGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSA LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:460)
(vii) huBcta_Klotho(1-417, 522-1044)(nuBetaKLOTHO G416-F519) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDG RAIWSKNPNFTPVNESQLFLY DTFPKNFFWG IGTGALQVEGSW KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ FStSWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMH APGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEA EKHEMRGTA DFFAFSFGPNNFKPLNTMAKMGQNVSLN LREA L NWIKLEYNNPRILIAENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFD EIRVFGYTA WTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYK QIIQDNGFPLK.ESTPDMKGRFPCDFSWGVTESVLKPESVASSPQFSDPH L YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYASKHRRGLSS SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQK.RRKFWKAKNLQHIPLKKGK.RVVS (SEQ ID NO:461)
(viii) huBeta_Klotho(1-507, 635-1044)(muBeta KLOTHO F06-G632) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW
[0 KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEAEKH EMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIRENGFPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHL YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGISAMVTLYYPTHAHLG LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKH RRGLSS SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:462)
(ix) huBeta_Klotho(I-521, 738-1044)(muBeta.KLOTHO 520P-735A) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTCALQVEGSW KKDGKGPSIWDHFlHITHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTH FRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPEFTVSSPQFTDPIL YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM YNRTSNDTYRAAIHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHADWAEPA NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDQFL QDITRLSSPTRLAVIPWGVRKLL RWVR RNYGDMDIYITASGIDDQA LEDD RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL ;5 GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:463)
(x) huBetaKlotho(I-633, 852-1044)(muBeta KLOTHO 632G-849Q) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYFLEKDLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMHAPGEKGNLAAVYTVGIHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS r5 V LPIFSEAEKHEMRGTADFFA FSFGPNNFKPLNTMAKMGQNVSLNL REAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQA IRLD
EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM YNRTSNDTYRAAHNLMIAHAQVWH LYDRQYRPVQHGAVSLSLHCDWA EPA NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSS SVLPRFTAKESRLVKGTVDFYALNH FTTRFVIHKQLNTNRSVADRDVQFL QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQKR RKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:464)
(xi) huBeta_Klotho(l-736, 967-1044)(muBeta KLOTHO 735A-963S) MKPGCAAGSPGNEWIFFSTDEITTRYRNT MSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEK.DLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTI]DIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY ) GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL YVWNATGNR.LLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA LD\WASVLPTGNLSAVNRQA LRYY RCVVSEG LKLGISAM VTLYYPTHAHLG LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHCDWAEPA NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYASKNQRGLSS SVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFL QDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYTANGIDDLALEDD QIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFR AKSSVQFYSKLISSSGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:465)
(xii) huBeta_Klotho(82-1044)(m uBeta KLOTHO I-8 IF) MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFFWGIGTGALQVEGSW KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD
EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHiLG LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLH-ADWAEPA NPYADSIH WRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKH RRGLSS SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:466)
(xiii) huBeta_Klotho(-81, 194-1044)(muBeta KLOTHO 82P-193L) MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHCY GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIJHGDGDYPEGMRKKLFS VLPIFSEAEKHIEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL NWIKLEYNNPRILIAENGWFTDSRVKTEDTTA1YMMKNFLSQVLQAIRLD EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHY RFA LDWASVLPTGNLSAVNRQA LRYY RCVVSEGLKLGISAM VTLYYPTHAH LG LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA D NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL QDITR LSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQA LED D RLRKYYLGKYLQEVLIKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS (SEQ ID NO:467)
Various antigen binding proteins provided herein, as well as human FGF21, were tested for the ability to activate the chimeras in L6 cells. Figure 30 correlates the observed results with each tested molecule. These data indicate that while human FGF21 was able to activate FGFRIc combined with all of the human/mouse f-Klotho chimeras ("+" sign indicate activity on the receptor), the substitutions of mouse sequences into human j-Klotho affected the activities of 16H7, 37D3, and 39F7. See Figure 30. These results suggest that -Klotho sequences 1-81, 302-522, and 849-1044 are important for the activities of agonistic antigen binding proteins and may represent an important epitope for their function.
EXAMPLE 12 PROTEASE PROTECTION ANALYSIS Regions of the human FGF21 receptor bound by the antigen binding proteins that bind human FGF21 receptor, e.g., FGFRlc, -Klotho or FGFRIc and f-Klotho complex can be identified by fragmenting human FGF2 Ireceptor into peptides with specific proteases, e.g., D AspN, Lys-C, chyrnotrypsin or trypsin. The sequence of the resulting human FGF21 receptor peptides (i.e., both disulfide- and non-disulfide-containing peptide fragments from FGFRIc and §-Klotho portions) can then be determined. In one example, soluble forms of a human FGF21 receptor, e.g., a complex comprising the FGFRIc ECD-Fc and -Klotho ECD-Fc heterodimer described herein can be digested with AspN (which cleaves after aspartic acid and some glutamic acid residues at the amino end) by incubating about 100 pg of soluble FGF21 receptor at 1.0 mg/ml in 0.1 M sodium phosphate (pH 6.5) for 20 hrs at 37°C with 2 pg of AspN. A peptide profile of the AspN digests can then be generated on HPLC chromatography while a control digestion with a similar amount of antibody is expected to be essentially resistant to AspN endoprotease. A protease protection assay can then be performed to determine the ) proteolytic digestion of human FGF21 receptor in the presence of the antigen binding proteins. The general principle of this assay is that binding of an antigen binding protein to the FGF21 receptor can result in protection of certain specific protease cleavage sites and this information can be used to determine the region or portion of FGF21 receptor where the antigen binding protein binds. Briefly, the peptide digests can be subjected to HPLC peptide mapping; the individual peaks are collected, and the peptides are identified and mapped by on-lineelectrospray ionization LC-MS (ESI-LC-MS) analyses and/or by N-terminal sequencing. HPLC analyses for these studies can be performed using a narrow bore reverse-phase C18column (Agilent Technologies) for off-line analysis and using a capillary reverse phase C18 column (The Separation Group) for LC-MS. HPLC peptide mapping can be performed with a linear gradient from 0.05% trifluoroacetic acid (mobile phase A) to 90% acetonitrile in 0.05% trifluoroacetic acid. Columns can be developed at desirable flow rate for narrow bore HPLC for off-line or on-line LC-MS analyses, and for capillary HPLC for on-line LC-MS analyses. Sequence analyses can be conducted by on-line LC-MS/MS and by Edman sequencing on the peptide peaks recovered from HPLC. On-line ESI LC-MS analyses of the peptide digest can be performed to determine the precise mass and sequence of the peptides that are separated by HPLC. The identities of selected peptides present in the peptide peaks from the protease digestion can thus be determined.
EXAMPLE 13 CYNOMOLGOUS MONKEY STUDY A construct encoding the antigen binding protein designated herein as 16H7 was generated using the methodology disclosed in Examples 1-3. 16H7 was expressed, purified and characterized as described in Examples 1-5 and was studied in vivo in obese cynomogus monkeys. 16H7 is a fully human IgGI antibody and is described by the sequences provided in Tables 1-4, supra.
Example 13.1 Study Design Thestudy was conducted in obese cynomolgus monkeys. The monkeys were 8-19 years old. Their body weights ranged from 7-14 kg and BMI ranged from 36-74 kg/mt Monkeys were acclimated for 6 weeks prior to the initiation of compound administration. During the acclimation period, the monkeys were familiarized with study-related procedures, including chair-restraint, subcutaneous injection (PBS, 0.1 ml/kg), gavage (water, 10 ml/kg), and blood drawn for non-OGTT and OGTT samples. After 4 weeks of training, baseline OGTT and plasma metabolic parameters were measured. 20 monkeys were selected and randomized into two treatment groups to achieve similar baseline levels of body weight, glucose OGTT profiles, and plasma glucose and triglyceride levels.
The study was conducted in a blinded fashion. Vehicle (n=10), 16H7 (n=10). Compound was given every other week (5 mg/kg). On the week when animals were not injected with 16H7, they received vehicle injection instead. After 2 injections of 16H7, animals were monitored during an additional 6 weeks for compound washout and recovery from treatments.
Food intake, body weight, clinical chemistry and OGTT were monitored throughout the study. Food intake was measured every meal. Body weight was measured weekly. Blood samples were collected on different days in fasted or fed state to measure glucose, insulin and triglyceride levels. OGTTs were conducted every two weeks after the initiation of the study. The day starting the treatment is designated as 0 and the detailed study plan is shown in Figure 14. The results presented in this Example represent data collected throughout the 68 days of the study.
Example 13.2 Effect of 16H7 on Food Intake
Animals were fed twice a day, with each animal receiving 120 g of formulated food established during the acclimation period. The remaining food was removed and weighed after each meal to calculate food intake. The feeding times were from 8:00 AM to 8:30 AM (±30 minutes) and then from 4:30PM to 5:00PM (±30 minutes). Fruit (150 g) was supplied to each animal at 11:30 to 12:30 PM (±30 minutes) every day. Compared with vehicle, 16H7 reduced food intake in the monkeys. The effect diminished and the food intake returned to close to baseline or control levels after about 21 days of treatment. 16H7 did not have a significant effect on AM food intake (Figure 15) and only modestly reduced food intake on PM meal during the treatment (Figure 16). An increase in AM O food intake was seen after day 49 (Figure 15). Throughout the study (and even during the acclimation period), fruit intake seemed lower in the 161-17 group compared to the vehicle group. Overall. 16H7 showed a significant effect on inhibiting food intake.
Example 13.3 Effect of 161-17 on Body Weight Body weight was monitored weekly throughout the study. Over the course of the 4 week treatments, the body weight of animals treated with vehicle remained constant while body weight of animals treated with 16H7 progressively decreased. Body weight did not return to baseline by the end of the 6 weeks wash out period (Figure 17).
Example 13.4 Effect of 16H7 on Body Mass Index (BMI), Abdominal Circumference (AC) and Skin Fold Thickness (SFT) BMI, AC and SFT were monitored weekly throughout the study, both pre- and post administration of test compound when the body weight was taken. BMI is defined as the individual's body weight divided by the square of his or her height. SFT is the thickness of a double layer of skin and the fat beneath it as measured with a caliper. BMI, SFT and AC are relatively accurate, simple, and inexpensive measurements of body composition, particularly indicative of subcutaneous fat. Animals treated with vehicle showed relatively stable BMI, SFT and AC throughout the study. Animals treated with 16H7 showed decreased levels of BMI, AC and SFT over the course of the 4 week study, suggesting that 16H7 compound resulted in reduction of fat mass. Results are shown in Figures 18-20, respectively. These measured parameters did not come back to baseline values at the end of the 6 weeks wash out period.
Example 13.5 Effect of 16H7 on Oral Glucose Tolerance Test (OGTT) OGTTs were conducted before and after initiation of treatments. Before 16H7 injections baseline values for glucose and insulin levels were measured throughout the OGTT (Figures 21 and 22, respectively) and were not statistically significantly different between the vehicle and D 16H7 groups. Post-dose OGTTs were performed every two weeks during the treatment period and after 3 weeks of wash out period. 16H7 slightly improved glucose tolerance after 4 weeks of treatment and 3 weeks of wash out period. The animal model used isnot glucose intolerant explaining the modest effects observed (Figure 21). Insulin levels were statistically significantly decreased in animals treated with 16H7 (significance observed at time 0 during the OGTT performed after 2 weeks of treatment, at time 0 and 15 minutes during the OGTT performed after 4 weeks of treatment and at time 0 and 60 minutes during the OGTT performed after 2 weeks of treatment) (Figure 22).
Example 13.6 Effect of 16H7 on Fasting and Fed Blood Glucose and Insulin Levels Blood was collected from overnight fasted animals or in fed conditions after the AM feeding. In the fasted conditions, blood drawn was conducted weekly 5 days post each injection. In the fed conditions, blood drawn was conducted on days 2, 11, 16. 25 and 46 post first injection. 16H7 did not reduce fasting or fed blood glucose levels (Figures 23 and 25). No hypoglycemia was observed in any of the monkeys treated with 16117. 16H7 did, however, result in a statistically significant decrease in fasting and fed plasma insulin levels (Figures 24 and 26).
Example 13.7 Effect of 161H7 on Triglyceride Levels Measurements were made from the same samples collected for glucose and insulin measurements. Triglyceride levels were significantly reduced in animals treated with 161-17 when measured in fasted or fed conditions (Figures 27 and 28).
Example 13.8 Conclusions In a study conducted in male obese cynomnogus monkeys, animals treated with 16117 showed improved metabolic parameters. Body weight was reduced and body composition was improved. Short-term reduction of food intake was observed and the effect diminished and the food intake recovered to baseline or control levels at 21 days into the study. Fasting insulin and triglyceride levels were also reduced by 16117. Insulin levels measured during OGTT were also improved. EXAMPLE 14 VARIANT FORMS OF ANTIGEN BINDING PROTEINS 16H7 AND 22H5 Antigen binding proteins 16H7 and 22H5, which are described herein in Tables 1-4, were mutated to impart different properties to the molecule, such as changes in solubility, pl, overall charge, immunogenicity in humans and in animal models, stability, etc. The mutations comprised additions, deletions or substitutions in either the light chain (designated "LC", SEQ
ID NO:14) or heavy chain (designated "HC", SEQ ID NO:32) of the molecule. The disclosed single point mutations were made individually or two or more mutations were combined. Examples of mutations and combinations of mutations that were introduced into the 16H7 heavy and light chain sequences include the following: 183K (in 16H7 heavy chain) (SEQ ID NO:396) E16Q (in 16117 heavy chain) + V24F (in 16H7 heavy chain) + 183T (in 16H7 heavy chain)+ S1001 (in 16H7 heavy chain)+ TI 19L (in 161-17 heavy chain) (SEQ ID NO:395) D109S (in 16117 heavy chain) (SEQ ID NO:401) Deletion of Y l07 (in 16117 heavy chain) (SEQ1D NO:400) Insertion of a Y residue on the N-terminal side of Y107 (in 16HI7 heavy chain) (SEQ ID NO:405) D88R+ P89A+ V90E (in 16H7 heavy chain) (SEQ ID NO:398) D49Y (in 16H7 light chain) (SEQ ID NO:386) D49A (in 16H7 light chain) (SEQ ID NO:387) D9IA (in 161-17 light chain) (SEQ ID NO:388) D49A (in 16H7 light chain)+ D91A (in 16H7 light chain) (SEQ ID NO:389) QI6K (in 16H7 light chain) (SEQ ID NO:385)
Examples of mutations and combinations of mutations that were introduced into the ) 221-15 heavy and light chain sequences include the following: N92Q (in 22H5 light chain) (SEQ ID NO:402) S94A (in 22H5 light chain) (SEQ ID NO:403) C109S (in 22H5 heavy chain) (SEQ ID NO:404)
Summarily, the generated antigen binding proteins comprised the following pairs of 16117 heavy and light chains: (i) 16H7 light chain (SEQ ID NO:14) paired with a 16117 heavy chain comprising 183K (SEQ ID NO:396); (ii) 16H7 light chain (SEQ ID NO:14) paired with a 16H7 heavy chain comprising E16Q, V24F, 183T, S100,I, T19L (SEQ ID NO:395):
(iii) 16H7 light chain (SEQ ID NO:14) paired with a 16H7 heavy chain comprising D109S (SEQIDNO:401); (iv) 16H7 light chain (SEQ ID NO:14) paired with a 16H7 heavy chain comprising the deletion of Y 107 (SEQ ID NO:400); (v) 16H7 light chain (SEQ ID NO:14) paired with. a 16H7 heavy chain comprising the insertion of a Y residue on the N-terminal side of Y107 (SEQ ID NO:405); (vi) 16H7 light chain (SEQ ID NO:14) paired with a 16H7 heavy chain comprising D88R, P89A, V90E, (SEQ ID NO:398); (vii) 16H7 heavy chain (SEQ ID NO:32) paired with a 16H7 light chain comprising D49Y (SEQ ID NO:386); (viii) 16H7 heavy chain (SEQ ID NO:32) paired with a 16H7 light chain comprising D49A (LC) (SEQ ID NO:387); (xi) 16H7 heavy chain (SEQ ID NO:32) paired with a 16H7 light chain comprising D9IA (SEQ ID NO:388); (ix) 16H7 heavy chain (SEQ ID NO:32) paired with a 16H7 light chain comprising D49A, D91A (SEQ ID NO:389); (x) 16H7 heavy chain (SEQ ID NO:32) paired with a 16H7 light chain comprising Q16K (LC) (SEQ ID NO:385);
and the following pairs of 22H5 heavy and light chain sequences: (xi) 22H5 heavy chain (SEQ ID NO:31) paired with a 221-15 light chain comprising N92Q (LC) (SEQ ID NO:402); (xii) 22H5 heavy chain (SEQ ID NO:31) paired with a 22H5 light chain comprising S94A (LC) (SEQ ID NO:403); (xiii) 22H5 light chain (SEQ ID NO:13) paired with a 22H5 heavy chain comprising C109S (HC) (SEQ ID NO:404); (xiv) 22H5 light chain (SEQ ID NO:13) paried with a 22H5 heavy chain comprising an insertion of of a tyrosine residue at position 107 (SEQ ID NO:405).
The amino acid sequences for the generated light chain variants are shown in Table 6:
Table 6A Amino Acid Sequences of 16H7 and 22H5 Variants
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPG-QAPVLVVY.D DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTIEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYA DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49A H13 32 FGGGTKLTVLGQPKANPTVTLFPPS 387 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence NO: Sequence SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 3 3 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLT PEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y 113 FGGGTKLTVLGQPKANPTVTLFPPS 386 SH SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWAGNSDHVV light D91A H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 388 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
Core SEQ ID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVIHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSONTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y ,2 FGGGTKLTVLGQPKANPTVTLFPPS Y H3 . 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NK(YAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYA DSDRPSGIPERFSGSNSGNTATLTIS 16H7 D49A RVEAGDEADYYCQVWAGNSDHVV light + H3 3~2 FGGGTKLTVLGQPKANPTVTLFPPS SEELQANKATLVCLISDFYPGAVTV 389 chain D91A AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain nce Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Qi6K H-13 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTFS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLIMTNMDPVDTATYYCAR SVVTGGYYYDGMDVWGQGTTVT VSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSWNSGALT SGVHTFPAVLQSSGLYSLSSVVTVP 16H7 SSNFGTQTYTCNVDHKPSNTKVDK TVERKCCVECPPCPAPPVAGPSVFL ,
heavy V24F L3 14 FPPKPKDTLMISRTPEVTCVVVDVS 390 chain HEDPEVQFNWYVDGVEVHNAKTK PREEQFNSTFRVVSVLTVVHQDWL NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQ ID SEQ Se- Vari- Paired NO of Amino Acid Sequence of Variant ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 h QSEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS CFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLTMTNMDPVDTATYYCA RSVVTGGYYYDGMDVWGQGTTVT VSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSWNSGALT SGVHTFPAVLQSSGLYSLSSVVTVP 16H7 SSNFGTQTYTCNVDHKPSNTKVDK heavy 183T L3 14 TVERKCCVECPPCPAPPVAGPSVFL 391 FPPKPKDTLMISRTPEVTCVVVDVS chain HEDPEVQFNWYVDGVEVHNAKTK PREEQFNSTFRVVSVLTVVHQDWL NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQ ID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Q16K [3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 3 3 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 161H7 RVEAGDEADYYCQVWDOGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS SEELQANKATLVCLISDFYPGAVTV 386 chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTFS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLTMTNMDPVDTATYYCA RSVVTGGYYYDGMDVWGQGTTVT VSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSWNSGALT SGVHTFPAVLQSSGLYSLSSVVTVP 16H7 SSNFGTQTYTCNVDHKPSNTKVDK V24F+ L 14 TVERKCCVECPPCPAPPVAGPSVFL 392 y 183T FPPKPKDTLMISRTPEVTCVVVDVS chain HEDPEVQFNWYVDGVEVHNAKTK PREEQFNSTFRVVSVLTVVHQDWL NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQ ID SEQ Se- Vari- Paired NO of Amino Acid Sequence of Variant I ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H13 32 FGCGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTQTLTLTCTFS CFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLTMTNMDPVDTATYYCA RSVVTGGYYYDGMDVWGQGTTVT VSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSWNSGALT SGVHTFPAVLQSSGLYSLSSVVTVP 16H7 E16Q SSNFGTQTYTCNVDHKPSNTKVDK TVERKCCVECPPCPAPPVACPSVFL heavy +V24F L3 14 FPPKPKDTLMISRTPEVTCVVVDVS 393 chain +183T HEDPEVQFNWYVDGVEVHNAKTK PR.EEQFNSTFRVVSVLTVVHQDWL NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K 1-H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 h QSEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y iY H3 ,-13 32 FGGGTKLTVLGQPKANPTVTLFPPS SEELQANKATLVCLISDFYPGAVTV 386 chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHECSTVEKTVAPTECS
QVTLKESGPVLVKPTQTLTLTCTFS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLTMTNMDPVDTATYYCA RSVVTGGYYYDGMDVWGQGTLV TVSSASTKGPSVFPLAPCSRSTSEST AALGCLVKDYFPEPVTVSWNSGAL F16Q TSGVHTFPAVLQSSGLYSLSSVVTV 16H7 +V24F PSSNFGTQTYTCNVDHKPSNTKVD KTVERKCCVECPPCPAPPVAGPSVF ,
heavy +183T L3 14 LFPPKPKDTLMISRTPEVTCVVVDV .94 chain +T119 SHEDPEVQFNWYVDGVEVHNAKT L KPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISK TKGQPREPQVYTLPPSREEMTKNQ VSLTCLVKGFYPSDIAVEWESNGQP ENNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Q16K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLK.ESGPVLVKPTQTLTLTCTFS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLTMTNMDPVDTATYYCA RIVVTOGYYYDGMDVWGQGTLVT VSSASTKGPSVFPLAPCSRSTSESTA E16Q ALGCLVKDYFPEPVTVSWNSGALT +V24F SGVHTFPAVLQSSGLYSLSSVVTVP 16H7 SSNFGTQTYTCNVDHKPSNTKVDK +183T TVERKCCVECPPCPAPPVAGPSVFL havy +S00 L3 14 FPPKPKDTLMISRTPEVTCVVVDVS chain HEDPEVQFNWYVDGVEVHNAKTK l+T]l PREEQFNSTFRVVSVLTVVHQDWL 9L NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core I SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NLGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Q16K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y [iY H3 32 FGGGTKLTVLGQPKANPTVTLFPPS SEELQANKATLVCLISDFYPGAVTV 386 chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESCPVLVKPTETLTLTCTVS GFSLNNARMGVSWIRQPPCKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLKMTNMDPVDTATYYCA RSVVTGGYYYDGMDVWGQGTTVT VSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSWNSGALT SGVHTFPAVLQSSGLYSLSSVVTVP 16H7 SSNFGTQTYTCNVDHKPSNTKVDK heavy 183K L-3 14 TVERKCCVECPPCPAPPVAGPSVFL 396 FPPKPKDTLMISRTPEVTCVVVDVS chain HEDPEVQFNWYVDGVEVHNAKTK PREEQFNSTFRVVSVLTVVHQDWL NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 h QSEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDCNSDHVV light D49Y 83 HiR 32 3- FGGGTKLTVLGQPKANPTVTLFPPS SEELQANKATLVCLlSDFYPGAVTV 386 chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLIMTNMDPVDTATYYCAR IVVTGGYYYDGMDVWGQGTTVTV SSASTKGPSVFPLAPCSRSTSESTAA LGCLVKDYFPEPVTVSWNSGALTS GVHTFPAVLQSSGLYSLSSVVTVPS 16H7 SNFGTQTYTCNVDHKPSNTKVDKT VERKCCVECPPCPAPPVAGPSVFLF heavy S1001 L3 14 PPKPKDTLMISRTPEVTCVVVDVSH 39 chain EDPEVQFNWYVDGVEVHNAKTKP REEQFNSTFRVVSVLTVVHQDWLN GKEYKCKVSNKGLPAPIEKTISKTK GQPREPQVYTLPPSR.EEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPEN NYKTTPPMLDSDGSFFLYSKLTVD KSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK
Core SEQ ID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Ql6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 h QSEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLIMTNMRAEDTATYYCAR SVVTGGYYYDGMDVWGQGTTVT VSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSVNSGALT D88R SGVHTFPAVLQSSGLYSLSSVVTVP 16H7 SSNFGTQTYTCNVDHKPSNTKVDK +P89A TVERKCCVECPPCPAPPVAGPSVFL heavy +V90 L3 14 FPPKPKDTLMISRTPEVTCVVVDVS 398 ch+in HEDPEVQFNWYVDGVEVHNAKTK E PREEQFNSTFRVVSVLTVVHQDWL NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQID SEQ Se- Vari- Paired NO of Amino Acid Sequence of Variant ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Ql6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 ~l SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSITPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 161-17 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLIMTNMRAEDTATYYCAR IVVTGGYYYDOMDVWGQGTTVTV SSASTKGPSVFPLAPCSRSTSESTAA D88R LGCLVKDYFPEPVTVSWNSGALTS GVHTFPAVLQSSGLYSLSSVVTVPS 16H7 +P89A SNFGTQTYTCNVDHKPSNTKVDKT VERKCCVECPPCPAPPVAGPSVFLF heavy +tV90 L3 14 PPKPKDTLMISRTPEVTCVVVDVSH chain E+S10 EDPEVQFNWYVDGVEVHNAKTKP 01 REEQFNSTFRVVSVLTVVHQDWLN GKEYKCKVSNKGLPAPIEKTISKTK GQPREPQVYTLPPSREEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPEN NYKTTPPMLDSDGSFFLYSKLTVD KSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK
SEQID Core SEQ Vari- Paired NO of Amino Acid Sequence of Variant Sc- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Q16K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chai AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPG_QTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS SEELQANKATLVCLISDFYPGAVTV 386 chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLIMTNMDPVDTATYYCAR SVVTGGYYDGMDVWGQGTTVTVS SASTKGPSVFPLAPCSRSTSESTAAL GCLVKDYFPEPVTVSWNSGALTSG VHTFPAVLQSSCLYSLSSVVTVPSS 16H7 Deleti NFGTQTYTCNVDHKPSNTKVDKTV heavy onof L3 14 ERKCCVECPPCPAPPVAGPSVFLFPP 400 KPKDTLMISRTPEVTCVVVDVSHE chain Y107 DPEVQFNWYVDGVEVHNAKTKPR EEQFNSTFRVVSVLTVVHQDWLNG KEYKCKVSNKGLPAPIEKTISKTKG QPREPQVYTLPPSREEMTKNQVSLT CLVKGFYPSDIAVEWESNGQPENN YKTTPPMLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQ KSLSLSPGK
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Q16K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 Chain SEELQANKATLVCLISDFYPGAVTV AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y 1 FGGGTKLTVLGQPKANPTVTLFPPS 86 iY H3 32 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLIMTNMDPVDTATYYCAR SVVTGGYYYSGMDVWGQGTTVTV SSASTKGPSVFPLAPCSRSTSESTAA LGCLVKDYFPEPVTVSWNSGALTS GVHTFPAVLQSSGLYSLSSVVTVPS 16H7 SNFGTQTYTCNVDHKPSNTKVDKT VERKCCVECPPCPAPPVAGPSVFLF heavy DI09S L3 14 PPKPKDTLMISRTPEVTCVVVDVSH 401 chain EDPEVQFNWYVDGVEVHNAKTKP REEQFNSTFRVVSVLTVVHQDWLN GKEYKCKVSNKGLPAPIEKTISKTK GQPREPQVYTLPPSREEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPEN NYKTTPPMLDSDGSFFLYSKLTVD KSRWQQGNVFSCSVMHEALHfNHY TQKSLSLSPGK
SEQ ID Core SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence NO: Sequence SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Q16K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPG_QTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSQSVHWYQQKPGQAPVLVVY DDSDRPSGIPERFSGSNSGNTATLT 22H5 SRVEAGDEADYYCQVWDQTSDHV light N92Q 12 H2 31 31 VFGGGTKLTVLGQPKANPTVTLFPP SSEELQANKATLVCLISDFYPGAVT 402 chain VAWKADGSPVKAGVETTKPSKQS NNKYAASSYLSLTPEQWKSHRSYS CQVTHEGSTVEKTVAPTECS
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light Q16K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y , 32 FGGGTKLTVLGQPKANPTVTLFPPS YH 3 3 SEELQANKATLVCLISDFYPGAVTV 386 chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSQSVHWYQQKPGQAPVLVVY DDSDRPSGIPERFSGSNSGNTATLTI 22H5 SRVEAGDEADYYCQVWDNTADHV light S94A 12 31 VFGGGTKLTVLGQPKANPTVTLFPP 403 SSEELQANKATLVCLISDFYPGAVT chain VAWKADGSPVKAGVETTKPSKQS NNKYAASSYLSLTPEQWKSHRSYS CQVTHEGSTVEKTVAPTECS
Core SEQ ID SEQ Se- Vari- Paired NO of Amino Acid Sequence of Variant ID action With Paired Chain nce Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPCQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chaill AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSG]PERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS GFSLSNARMGVSW1RQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLTMTNMDPVDTATYYCA RILLVGAYYYSGMDVWGQGTTVT VSSASTKGPSVFPLAPCSRSTSESTA ALGCLVKDYFPEPVTVSWNSGALT SGVHTFPAVLQSSGLYSLSSVVTVP 22H5 SSNFGTQTYTCNVDHKPSNTKVDK TVERKCCVECPPCPAPPVAGPSVFL heavy C]09S L2 13 FPPKPKDTLMISRTPEVTCVVVDVS 404 chain HEDPEVQFNWYVDGVEVHNAKTK PREEQFNSTFRVVSVLTVVHQDWL NGKEYKCKVSNKGLPAPIEKTISKT KGQPREPQVYTLPPSREEMTKNQV SLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Core SEQID SEQ Vari- Paired NO of Amino Acid Sequence of Variant Se- ID ation With Paired Chain quence Sequence NO:
SYVLTQPPSVSVAPGKTARITCGGN NIGSESVHWYQQKPGQAPVLVVYD DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light QI6K H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 385 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
SYVLTQPPSVSVAPGQTARITCGGN NIGSESVHWYQQKPGQAPVLVVYY DSDRPSGIPERFSGSNSGNTATLTIS 16H7 RVEAGDEADYYCQVWDGNSDHVV light D49Y H3 32 FGGGTKLTVLGQPKANPTVTLFPPS 386 SEELQANKATLVCLISDFYPGAVTV chain AWKADGSPVKAGVETTKPSKQSN NKYAASSYLSLTPEQWKSHRSYSC QVTHEGSTVEKTVAPTECS
QVTLKESGPVLVKPTETLTLTCTVS GFSLNNARMGVSWIRQPPGKALEW LAHIFSNDEKSYSTSLKSRLTISKDT SKSQVVLIMTNMDPVDTATYYCAR SVVTGGYYYYDGMDVWGQGTTV TVSSASTKGPSVFPLAPCSRSTSEST AALGCLVKDYFPEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTV 16H7 Inserti PSSNFGTQTYTCNVDHKPSNTKVD hcavy onlof L3 14 KTVERKCCVECPPCPAPPVAGPSVF 405 LFPPKPKDTLMISRTPEVTCVVVDV chain Y107 SHEDPEVQFNWYVDGVEVHNAKT KPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISK TKGQPREPQVYTLPPSREEMTKNQ VSLTCLVKGFYPSDIAVEWESNGQP ENNYKTFTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK
Table 6B Nucleic Acid Sequences of 16H7 and 22H5 Variants Core Nucleic Acid Sequence SEQ ID NO: Sequence Variation TCCTATGTGCTGACTCAGCCACCCTCGGTGT CAGTGGCCCCAGGAAAGACGGCCAGGATT ACCTGTGGGGGAAACAACATTGGAAGTGA AAGTGTGCACTGGTACCAGCAGAAGCCAGG CCAGGCCCCTGTGCTGGTCGTCTATGATGA TAGCGACCGGCCCTCAGGGATCCCTGAGCG ATTCTCTGGCTCCAACTCTGGGAACACGGC CACCCTGACCATCAGCAGGGTCGAAGCCGG GGATGAGGCCGACTATTACTGTCAGGTGTG 16H7 GGATGGTAATAGTGACCATGTGGTATTCGG light Q16K CGGAGGGACCAAGCTGACCGTCCTAGGTCA 406 GCCCAAGGCCAACCCCACTGTCACTCTGTT chain CCCGCCCTCCTCTGAGGACCTCCAAGCCAA CAAGGCCACACTAGTGTGTCTGATCAGTGA CTTCTACCCGGGAGCTGTGACAGTGGCCTG GAAGGCAGATGGCAGCCCCGTCAAGGCGG GAGTGGAGACCACCAAACCCTCCAAACAG AGCAACAACAAGTACGCGGCCAGCAGCTA CCTGAGCCTGACGCCCGAGCAGTGGAAGTC CCACAGAAGCTACAGCTGCCAGGTCACGCA TGAAGGGAGCACCGTGGAGAAGACAGTGG CCCCTACAGAATGTTCA TCCTATGTGCTGACTCAGCCACCCTCGGTGT CAGTGGCCCCAGGACAGACGGCCAGGATTA CCTGTGGGGGAAACAACATTGGAAGTGAA 16H7 AGTGTGCACTGGTACCAGCAGAAGCCAGGC light D49Y CAGGCCCCTGTGCTGGTCGTCTATTATGAT 407 AGCGACCGGCCCTCAGGGATCCCTGAGCGA chain TTCTCTGGCTCCAACTCTGGGAACACGGCC ACCCTGACCATCAGCAGGGTCGAAGCCGGG GATGAGGCCGACTATTACTGTCAGGTGTGG GATGGTAATAGTGACCATGTGGTATTCGGC
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence GGAGGGACCAAGCTGACCGTCCTAGGTCAG CCCAAGGCCAACCCCACTGTCACTCTGTTC CCGCCCTCCTCTGAGGAGCTCCAAGCCAAC AAGGCCACACTAGTGTGTCTGATCAGTGAC TTCTACCCGGGAGCTGTGACAGTGGCCTCG AAGGCAGATGGCAGCCCCGTCAAGGCGGG AGTGGAGACCACCAAACCCTCCAAACAGA GCAACAACAAGTACGCGGCCAGCAGCTACC TGAGCCTGACGCCCGAGCAGTGGAAGTCCC ACAGAAGCTACAGCTGCCAGGTCACGCATG AAGGGAGCACCGTGGAGAAGACAGTGGCC CCTACAGAATGTTCA TCCTATGTGCTGACTCAGCCACCCTCGGTGT CAGTGGCCCCAGGACAGACGGCCAGGATTA CCTGTGGGGGAAACAACATTGGAAGTGAA AGTGTGCACTGGTACCAGCAGAAGCCAGGC CAGGCCCCTGTGCTGGTCGTCTATGCTGAT AGCGACCGGCCCTCAGGGATCCCTGAGCGA TTCTCTGGCTCCAACTCTGGGAACACGGCC ACCCTGACCATCAGCAGGGTCGAAGCCGGG GATGAGGCCGACTATTACTGTCAGGTGTGG 16H7 GATGGTAATACTGACCATGTGGTATTCGGC light D49A GGAGGGACCAAGCTGACCGTCCTAGGTCAG 408 CCCAAGGCCAACCCCACTGTCACTCTGTTC chain CCGCCCTCCTCTGAGGAGCTCCAAGCCAAC AAGGCCACACTAGTGTGTCTGATCAGTGAC TTCTACCCGGGAGCTGTGACAGTGGCCTGG AAGGCAGATGGCAGCCCCGTCAAGGCGGG AGTGGAGACCACCAAACCCTCCAAACAGA GCAACAACAAGTACGCGGCCAGCAGCTACC TGAGCCTGACGCCCGAGCAGTGGAAGTCCC ACAGAAGCTACAGCTGCCAGGTCACGCATG AAGGGAGCACCGTGGAGAAGACAGTGGCC CCTACAGAATGTTCA 16H7 TCCTATGTGCTGACTCAGCCACCCTCGGTGT light D91A CAGTGGCCCCAGGACAGACGGCCAGGATTA 409 CCTGTGGGGGAAACAACATTGGAAGTGAA chain AGTGTGCACTGGTACCAGCAGAAGCCAGGC
Core Nucleic Acid Sequence SEQ ID NO: Sequence Variation CAGGCCCCTGTGCTGGTCGTCTATGATGAT AGCGACCGGCCCTCAGGGATCCCTGAGCGA TTCTC'TGGCTCCAACTCTGGGAACACGGCC ACCCTGACCATCAGCAGGGTCGAAGCCGGG GATGAGGCCGACTATTACTGTCAGGTGTGG GCTGGTAATAGTGACCATGTGGTATTCGGC GGAGGGACCAAGCTGACCGTCCTAGGTCAG CCCAAGGCCAACCCCACTGTCACTCTGTTC CCGCCCTCCTCTGAGGAGCTCCAAGCCAAC AAGGCCACACTAGTGTGTCTGATCAGTGAC TTCTACCCGGGAGCTGTGACAGTGGCCTGG AAGGCAGATGGCAGCCCCGTCAAGGCGGG AGTGGAGACCACCAAACCCTCCAAACAGA GCAACAACAAGTACGCGGCCAGCAGCTACC TGAGCCTGACGCCCGAGCAGTGGAAGTCCC ACAGAAGCTACAGCTGCCAGGTCACGCATG AAGGGAGCACCGTGGAGAAGACAGTGGCC CCTACAGAATGTTCA TCCTATGTGCTGACTCAGCCACCCTCGGTGT CAGTGGCCCCAGGACAGACGGCCAGGATTA CCTGTGGGGGAAACAACATTGGAAGTGAA AGTGTGCACTGGTACCAGCAGAAGCCAGGC CAGGCCCCTGTGCTGGTCGTCTATGCTGAT AGCGACCGGCCCTCAGGGATCCCTGAGCGA TTCTCTGGCTCCAACTCTGGGAACACGGCC ACCCTGACCATCAGCAGGGTCGAAGCCGGG 16H7 GATGAGGCCGACTATTACTGTCAGGTGTGG light D49A+D91 GCTGGTAATAGTGACCATGTGGTATTCGGC 410 A GGAGGGACCAAGCTGACCGTCCTAGGTCAG chain CCCAAGGCCAACCCCACTGTCACTCTGTTC CCGCCCTCCTCTGAGGAGCTCCAAGCCAAC AAGGCCACACTAGTGTGTCTGATCAGTGAC TTCTACCCGGGAGCTGTGACAGTGGCCTGG AAGGCAGATGGCAGCCCCGTCAAGGCGGG AGTGGAGACCACCAAACCCTCCAAACAGA GCAACAACAAGTACGCGGCCAGCAGCTACC TGAGCCTGACGCCCGAGCAGTGGAAGTCCC ACAGAAGCTACAGCTGCCAGGTCACGCATG
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence AAGGGAGCACCGTGGAGAAGACAGTGGCC CCTACAGAATGTTCA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCTTCTCTGGGTTCTCACTCAACA ATCCTAGAATGGGTGTGAGCTGGATCCGTC AGCCCCCAGGGAAGGCCCTGGAGTGGCTTG CACACATTTTTTCGAATGACGAAAAATCCT ACAGCACATCTCTGAAGAGCAGGCTCACCA TCTCCAAGGACACCTCCAAAAGCCAGGTGG TCCTAATTATGACCAACATGGACCCTGTGG ACACAGCCACATATTACTGTGCACGGTCAG TAGTAACTGGCGGCTACTACTACGACGGTA TGGACGTCTGGGGCCAAGGGACCACGGTCA CCGTCTCTAGTGCCTCCACCAAGGGCCCAT CGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG 16H7 TGACGGTGTCGTGGAACTCAGGCGCTCTGA heavy V24F CCAGCGGCGTGCACACCTTCCCAGCTGTCC 411 TACAGTCCTCAGGACTCTACTCCCTCAGCA chain GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA
Core Sqee Variation Nucleic Acid Sequence SEQ ID NO: Sequence GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCGTGTCTGGGTTCTCACTCAAC AATGCTAGAATGGGTGTGAGCTGGATCCGT CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTAACCATGACCAACATGGACCCTGTG GACACAGCCACATATTACTGTGCACGGTCA GTAGTAACTGGCGGCTACTACTACGACGGT ATGGACGTCTGGGGCCAAGGGACCACGGTC 16H7 ACCGTCTCTAGTGCCTCCACCAAGGGCCCA heavy 183T TCGGTCTTCCCCCTGGCGCCCTGCTCCAGGA 412 GCACCTCCGAGAGCACAGCGGCCCTGGGCT Chain GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGCACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence ACGTGCACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACCGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTCGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCTTCTCTGGGTTCTCACTCAACA ATGCTAGAATGGGTGTGAGCTGGATCCGTC AGCCCCCAGGGAAGGCCCTCGAGTGGCTTG CACACATTTTTTCGAATGACGAAAAATCCT ACAGCACATCTCTGAAGAGCAGGCTCACCA TCTCCAAGGACACCTCCAAAAGCCAGGTGG 16H7 TCCTAACCATGACCAACATGGACCCTOTGG heavy V24F+183T ACACAGCCACATATTACTGTGCACGGTCAG 413 TAGTAACTGGCGGCTACTACTACGACGGTA chain TGGACGTCTGGGGCCAAGGGACCACGGTCA CCGTCTCTAGTGCCTCCACCAAGGGCCCAT CGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACITCG
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCACCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA
CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACACAGACCCTCACGCTG ACCTGCACCTTCTCTGGGTTCTCACTCAACA
16H7 ATGCTAGAATGGGTGTGAGCTGGATCCGTC El6Q+V24 AGCCCCCAGGGAAGGCCCTGGAGTGGCTTG heavy F+183T CACACATTTTTTCGAATGACGAAAAATCCT 414 chain ACAGCACATCTCTGAAGAGCAGGCTCACCA TCTCCAAGGACACCTCCAAAAGCCAGGTGG TCCTAACCATGACCAACATGGACCCTGTGG ACACAGCCACATATTACTGTGCACGGTCAG TAGTAACTGGCGGCTACTACTACGACGGTA
Core Nucleic Acid Sequence SEQ ID NO: Sequence Variation TGGACGTCTGGGGCCAAGGGACCACGGTCA CCGTCTCTAGTGCCTCCACCAAGGGCCCAT CGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTCACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTOC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACCTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGCTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA 16H7 EI6Q+V24 CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACACAGACCCTCACGCTG 415 heavy F+183T+T1 ACCTGCACCTTCTCTGGGTTCTCACTCAACA
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence chain 19L ATGCTAGAATGGGTGTGAGCTGGATCCGTC AGCCCCCAGGGAAGGCCCTGGAGTGGCTTG CACACATTTfTTCGAATGACGAAAAATCCT ACAGCACATCTCTGAAGAGCAGGCTCACCA TCTCCAAGGACACCTCCAAAAGCCAGGTGG TCCTAACCATGACCAACATGGACCCTGTGG ACACAGCCACATATTACTGTGCACGGTCAG TAGTAACTGGCGGCTACTACTACGACGGTA TGGACGTCTGGGGCCAAGGGACCCTGGTCA CCGTCTCTAGTGCCTCCACCAAGGGCCCAT CGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGCA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACACAGACCCTCACGCTG ACCTGCACCTTCTCTGGGTTCTCACTCAACA ATGCTAGAATGGGTGTGAGCTGGATCCGTC AGCCCCCAGGGAAGGCCCTGGAGTGGCTTG CACACATTTTTTCGAATGACGAAAAATCCT ACAGCACATCTCTGAAGAGCAGGCTCACCA TCTCCAAGGACACCTCCAAAAGCCAGGTGG TCCTAACCATGACCAACATGGACCCTGTGG ACACAGCCACATATTACTGTGCACGGATCG TAGTAACTGGCGCCTACTACTACGACGGTA TGGACGTCTGGGGCCAAGGGACCCTGGTCA CCGTCTCTAGTGCCTCCACCAAGGGCCCAT CGGTCTTCCCCCTGGCGCCCTGCTCCAGGA
16H7 EI6Q+V24 GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG heavy F+I83T+SI TGACGGTGTCGTGGAACTCAGGCGCTCTGA 416 chain 00+T]19L CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGCTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGCGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCGTGTCTGGGTTCTCACTCAAC AATGCTAGAATGGGTGTGAGCTGGATCCGT CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTAAAGATGACCAACATGGACCCTGTG GACACAGCCACATATTACTGTGCACGGTCA GTAGTAACTGGCGGCTACTACTACGACGGT 16H7 ATGGACGTCTGGGGCCAAGGGACCACGGTC heavy 183K ACCGTCTCTAGTGCCTCCACCAAGGGCCCA 417 chain TCGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA
Core Sqee Variation Nucleic Acid Sequence SEQ ID NO: Sequence AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATCCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA CAGGTCACQTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCGTGTCTGGGTTCTCACTCAAC AATCCTAGAATGGGTGTGAGCTGGATCCGT CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT GCACACATTTTTTCGAATGACGAAAAATCC
16H7 TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG heavy S1001 GTCCTAATTATGACCAACATGGACCCTGTG 418 chain GACACAGCCACATATTACTGTGCACGGATC GTAGTAACTGGCGGCTACTACTACGACGGT ATGGACGTCTGGGGCCAAGGGACCACGGTC ACCGTCTCTAGTGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCGTGTCTGGGTTCTCACTCAAC D88R+P89 AATGCTAGAATGGGTGTGAGCTGGATCCGT heavy A+V90E CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT 419 chain GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTAATTATGACCAACATGAGAGCTGAG
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence GACACAGCCACATATTACTGTGCACGGTCA GTAGTAACTGGCGGCTACTACTACGACGGT ATGGACGTCTCGGGCCAAGGGACCACGGTC ACCGTCTCTAGTGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGCGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCGTGTCTGGGITCTCACTCAAC AATGCTAGAATGGGTGTGAGCTGGATCCGT CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTAATTATGACCAACATGAGAGCTGAG GACACAGCCACATATTACTGTGCACGGATC GTAGTAACTGGCGGCTACTACTACGACGGT ATGGACGTCTGGGGCCAAGGGACCACGGTC ACCGTCTCTAGTGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA 16H7 D88R+P89 CCAGCGGCGTGCACACCTTCCCAGCTGTCC heavy A- V90E+S TACAGTCCTCAGGACTCTACTCCCTCAGCA 420 GCGTGGTGACCGTGCCCTCCAGCAACTTCG chain 1001 GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGCTCACGTCCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TOCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTCCACCGTGTCTGGGTTCTCACTCAAC AATGCTAGAATGGGTGTGAGCTGGATCCGT CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTAATTATGACCAACATGGACCCTGTG GACACAGCCACATATTACTGTGCACGGTCA GTAGTAACTGGCGGCTAC|TACGACGGTATG GACGTCTGGGGCCAAGGGACCACGGTCACC GTCTCTAGTGCCTCCACCAAGGGCCCATCG 16H7 GTCTTCCCCCTGGCGCCCTGCTCCAGGAGC heavy Deletion of ACCTCCGAGAGCACAGCGGCCCTGGGCTGC 421 YI07 CTGGTCAAGGACTACTTCCCCGAACCGGTG chain ACGGTGTCGTGGAACTCAGGCGCTCTGACC AGCGGCGTGCACACCTTCCCAGCTGTCCTA CAGTCCTCAGGACTCTACTCCCTCAGCAGC GTGGTGACCGTGCCCTCCAGCAACTTCGGC ACCCAGACCTACACCTGCAACGTAGATCAC AAGCCCAGCAACACCAAGGTGGACAAGAC AGTTGAGCGCAAATGTTGTGTCGAGTGCCC ACCGTGCCCAGCACCACCTGTGGCAGGACC GTCAGTCTTCCTCTTCCCCCCAAAACCCAAG GACACCCTCATGATCTCCCGGACCCCTGAG GTCACGTGCGTGGTGGTGGACGTGAGCCAC GAAGACCCCGAGGTCCAGTTCAACTGGTAC GTGGACGGCGTGGAGGTGCATAATGCCAAG ACAAAGCCACGGGAGGAGCAGTTCAACAG
Core Nucleic Acid Sequence SEQ ID NO: Sequence Variation CACGTTCCGTGTGGTCAGCGTCCTCACCGTT GTGCACCAGGACTGGCTGAACGGCAAGGA GTACAAGTGCAAGGTCTCCAACAAAGGCCT CCCAGCCCCCATCGAGAAAACCATCTCCAA AACCAAAGGGCAGCCCCGAGAACCACAGG TGTACACCCTGCCCCCATCCCGGGAGGAGA TGACCAAGAACCAGGTCAGCCTGACCTGCC TGGTCAAAGGCTTCTACCCCAGCGACATCG CCGTGGAGTGGGAGAGCAATGGGCAGCCG GAGAACAACTACAAGACCACACCTCCCATG CTGGACTCCGACGGCTCCTTCTTCCTCTACA GCAAGCTCACCGTGGACAAGAGCAGGTGG CAGCAGGGGAACGTCTTCTCATGCTCCGTG ATGCATGAGGCTCTGCACAACCACTACACG CAGAAGAGCCTCTCCCTGTCTCCGGGTAAA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCGTGTCTGGGTTCTCACTCAAC AATGCTAGAATGGGTGTGAGCTGGATCCGT CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTAATTATGACCAACATGGACCCTGTG
1.6H7 GACACAGCCACATATTACTGTGCACGGTCA GTAGTAACTGGCGGCTACTACTACAGCGGT heavy D109S ATGGACGTCTGGGGCCAAGGGACCACGGTC 422 chain ACCGTCTCTAGTGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTCCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA TCCTATGTGCTGACTCAGCCACCCTCGGTGT CAGTGGCCCCAGGACAGACGGCCAGGATTA CCTGTGGGGGAAACAACATTGGAAGTCAAA GTGTGCACTGGTACCAGCAGAAGCCAGGCC AGGCCCCTGTCCTGGTCGTCTATGATGATA GCGACCGGCCCTCAGGGATCCCTGAGCGAT 22H5 TCTCTGGTTCCAACTCTGGGAACACGGCCA light N92Q CCCTGACCATCAGCAGGGTCGAAGCCGGGG 423 chain ATGAGGCCGACTATTACTGTCAGGTGTGGG ATCAGACTAGTGATCATGTGGTATTCGGCG GGGGGACCAAGCTGACCGTCCTAGGTCAGC CCAAGGCCAACCCCACTGTCACTCTGTTCC CGCCCTCCTCTGAGGAGCTCCAAGCCAACA AGGCCACACTAGTGTGTCTGATCAGTGACT TCTACCCGGGAGCTGTGACAGTGGCCTGGA
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence AGGCAGATGGCAGCCCCGTCAAGGCGGGA GTGGAGACCACCAAACCCTCCAAACAGAGC AACAACAAGTACGCGGCCAGCAGCTACCTG AGCCTGACGCCCGAGCAGTGGAAGTCCCAC AGAAGCTACAGCTGCCAGGTCACGCATGAA GGGAGCACCGTGGAGAAGACAGTGGCCCC TACAGAATGTTCA TCCTATGTGCTGACTCAGCCACCCTCGGTGT CAGTGGCCCCAGGACAGACGGCCAGGATTA CCTGTGGGGGAAACAACATTGGAAGTCAAA GTGTGCACTGGTACCAGCAGAAGCCAGGCC AGGCCCCTGTCCTGGTCGTCTATGATGATA GCGACCGGCCCTCAGGGATCCCTGAGCGAT TCTCTGGTTCCAACTCTGGGAACACGGCCA CCCTGACCATCAGCAGGGTCGAAGCCGGGG ATGAGGCCGACTATTACTGTCAGGTCTGGG 221H5 ATAATACTGCTGATCATGTGGTATTCGGCG light S94A GGGGGACCAAGCTGACCGTCCTAGGTCAGC 424 CCAAGGCCAACCCCACTGTCACTCTGTTCC chain CGCCCTCCTCTGAGGAGCTCCAAGCCAACA AGGCCACACTAGTGTGTCTGATCAGTGACT TCTACCCGGGAGCTCTGACAGTGGCCTGGA AGGCAGATGGCAGCCCCGTCAAGGCGGGA GTGGAGACCACCAAACCCTCCAAACAGAGC AACAACAAGTACGCGGCCAGCAGCTACCTG AGCCTGACGCCCGAGCAGTGGAAGTCCCAC AGAAGCTACAGCTGCCAGGTCACGCATGAA GGGAGCACCGTGGAGAAGACAGTGGCCCC TACAGAATGTTCA CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTCCACCGTGTCTGGGTTCTCACTCAGC 22H15 AATGCTAGAATGGGTGTGAGCTGGATCCGT heavy C109S CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT 425 chain GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTTACCATGACCAACATGGACCCTGTG
Core Variation Nucleic Acid Sequence SEQ ID NO: Sequence GACACAGCCACATATTACTGTGCACGGATA TTATTAGTGGGAGCTTACTACTACAGCGGT ATGGACGTCTGGGGCCAAGGGACCACGGTC ACCGTCTCTAGTGCCTCCACCAAGGGCCCA TCGGTCTTCCCCCTGGCGCCCTGCTCCAGGA GCACCTCCGAGAGCACAGCGGCCCTGGGCT GCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCTCTGA CCAGCGGCGTGCACACCTTCCCAGCTGTCC TACAGTCCTCAGGACTCTACTCCCTCAGCA GCGTGGTGACCGTGCCCTCCAGCAACTTCG GCACCCAGACCTACACCTGCAACGTAGATC ACAAGCCCAGCAACACCAAGGTGGACAAG ACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCA AGGACACCCTCATGATCTCCCGGACCCCTG AGGTCACGTGCGTGGTGGTGGACGTGAGCC ACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGGCGTGCAGGTGCATAATGCCA AGACAAAGCCACGGGAGGAGCAGTTCAAC AGCACGTTCCGTGTGGTCAGCGTCCTCACC GTTGTGCACCAGGACTGGCTGAACGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGGC CTCCCAGCCCCCATCGAGAAAACCATCTCC AAAACCAAAGGGCAGCCCCGAGAACCACA GGTGTACACCCTGCCCCCATCCCGGGAGGA GATGACCAAGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTACCCCAGCGACAT CGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACACCTCCCA TGCTGGACTCCGACGGCTCCTTCTTCCTCTA CAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACA CGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AA
Core Nucleic Acid Sequence SEQ ID NO: Sequence Variation CAGGTCACCTTGAAGGAGTCTGGTCCTGTG CTGGTGAAACCCACAGAGACCCTCACGCTG ACCTGCACCGTGTCTGGGTTCTCACTCAAC AATGCTAGAATGGGTGTGAGCTGGATCCGT CAGCCCCCAGGGAAGGCCCTGGAGTGGCTT GCACACATTTTTTCGAATGACGAAAAATCC TACAGCACATCTCTGAAGAGCAGGCTCACC ATCTCCAAGGACACCTCCAAAAGCCAGGTG GTCCTAATTATGACCAACATGGACCCTGTG GACACAGCCACATATTACTGTGCACGGTCA GTAGTAACTGGCGGCTACTATTACTACGAC GGTATGGACGTCTGGGGCCAAGGGACCACG GTCACCGTCTCTAGTGCCTCCACCAAGGGC CCATCGGTCTTCCCCCTGGCGCCCTGCTCCA GGAGCACCTCCGAGAGCACAGCGGCCCTGG GCTGCCTGGTCAAGGACTACTTCCCCGAAC CGGTGACGGTGTCGTGGAACTCAGGCGCTC 16H7 TGACCAGCGGCGTGCACACCTTCCCAGCTG heavy Insertion of TCCTACAGTCCTCAGGACTCTACTCCCTCAG 426 Y107 CAGCGTGGTGACCGTGCCCTCCAGCAACTT Chain CGGCACCCAGACCTACACCTGCAACGTAGA TCACAAGCCCAGCAACACCAAGGTGGACA AGACAGTTGAGCGCAAATGTTGTGTCGAGT GCCCACCGTGCCCAGCACCACCTGTGGCAG GACCGTCAGTCTTCCTCTTCCCCCCAAAACC CAAGGACACCCTCATGATCTCCCGGACCCC TGAGGTCACGTGCGTGGTGOTGGACGTGAG CCACGAAGACCCCGAGGTCCAGTTCAACTG GTACGTGGACGGCGTGGAGGTGCATAATGC CAAGACAAAGCCACGGGAGGAGCAGTTCA ACAGCACGTTCCGTGTGGTCAGCGTCCTCA CCGTTGTGCACCAGGACTGGCTGAACGGCA AGGAGTACAAGTGCAAGGTCTCCAACAAA GGCCTCCCAGCCCCCATCGAGAAAACCATC TCCAAAACCAAAGGGCAGCCCCGAGAACC ACAGGTGTACACCCTGCCCCCATCCCGGGA GGAGATGACCAAGAACCAGGTCAGCCTGA CCTGCCTGGTCAAAGGCTTCTACCCCAGCG
Core Nucleic Acid Sequence SEQ ID NO: Sequence Variation ACATCGCCGTGGAGTGGGAGAGCAATGGG CAGCCGGAGAACAACTACAAGACCACACCT CCCATGCTGGACTCCGACGGCTCCTTCTTCC TCTACAGCAAGCTCACCGTGGACAAGAGCA GGTGGCAGCAGGGGAACGTCTTCTCATGCT CCGTGATGCATGAGGCTCTGCACAACCACT ACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAA
Table 6C CDR Amino Acid Sequences of Variants Loca- CDR1 CDR2 CDR3 Core Vari- tion of CDR1 SEQ CDR2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO: 16H7 light QJ6K FW GNNI 166 DDSDR 17 QVWDG chain GSSH Ps NSDHVV
16H7 light GGNNI YDSDR QVWDG D49Y CDR2 GSESV 166 Y 427 188 H chainlgh 16H7 H GGNNI Ps ADSDR NSDHVV QVWDG igh D49A CDR2 GSESV 166 _S 428 188 chain H PS NSDHVV
GGNNI 16H7 light D49A+ CDR2' 166 ADSDR 427 QVWAG 430 chain D91A CDR3 GSESV PS NSDHVV H
16H7 HIFSN SVVTGG heavy V24F FW NA 22 STSLI 133 YYYDG 148 chain MDV
Loca- CDRI CDR2 CDR3 Core Vari- tion of CDR1 SEQ CDR2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO:
16H7 NARM HIFSN SVVTGG heavy 183T FW GVS 122 DEKSY 133 YYYDG 148 chain STSLK MDV S 16H7 HIFSN SVVTCG heavy V24F+1 F\ NARM 122 DEKSY 133 YYYDG 148 chain 83T GVS STSLK MDV HSN 16H7 E16Q+ HIFSN SVVTGG heavy V24F+I FW NA122 TLK 133 YYYDG 148 chain 83T MDV
16H7 E16Q+ HIFSN SVVTGG V24F+1 F\ NARM DEKSY 133 YYYDG 148 vy 83T+T1 GVS 1 STSLK chain 19L SMDV
E16Q+ HIFSN 16H7 V24F+l FW NARM DEKSY IVVTGG heavy 83T+SI CDR3 GVS 122 STSLK 133 YYYDG 431 chain 00O+TII MDV 9L
16H7 16117 NARM -IIFSN DEKSY SVVTGG SVG heavy 183K FW GVS 122 STSLK 133 YYYDG 148 chain MDV
16H7 HIFSN IVVTGG heavy S1001 CDR3 NAR 122 133 YYYDG 432 chain GVS STSLK MDV
16H7 D88R+P NARM HIFSN SVVTGG heavy 89A+V9 FW GVS 122 DEKSY 133 YYYDG 148 chain OE STSLK MDV
S
Loca- CDR1 CDR2 CDR3 Core Vari- tion of CDR1 SEQ CDR2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO:
16H7 D88R+P HIFSN IVVTGG heavy 89A+V9 FW, NARM 122 DEKSY 133 YYYDG 433 . 0E+S10 CDR3 GVS STSLK chai 01 s MDV
hicvy DeeinCDR3 NARM 122 S 133 YYDOM 434 chaini oY0 V TL DV
HIFSN
16H7 DEKSY SVVTGG heavy D109S CDR3 122 S 133 YYYSGM 435 chain DV
2h5aigh N92Q CDR3 GSQSV 167 DDsD 176 TSHV 436 H
GSQSV 167 DDsD 176 TAHV 437 22ha igh S94A CDR3 H
22H5 HIFSN ILLVGA heavy C109S CDR3 NARM 122 STSLK 133 YYYSGM 438 chain GVS S DV
16H7 HIFSN SVVTGG heavy fN92 CDR3 NAQ 122 DDS 133 YYYYDG 439 chain oS DV 2S
heav Cl9S CR3 22
Table 6D CDR Nucleic Acid Sequences of Variants Loca- CDR1 CDR2 CDR3 Core Vari- tion of CDR1 SEQ CDR2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO: GGGGG CAGGTG AAACA GATGA TGGGAT 16H7 light AGATT TAGCG GGTAAT chaii Q16K FW GGAAG 239 ACCGG 249 AG T GAT 260 TGAAA CCCTC CATGTG GTG A GTA TGCAC GGGGG CAGGTG AAACA TATGA TGGGAT 16H7 light ACATT TAGCG GGTAAT chain D49Y CDR2 GGAAG 239 ACCGG 442 AGTGAT 260 TGAAA CCCTC CATGTG GTG A GTA TGCAC GGGGG CAGGTG AAACA GCTG TGGGAT 16H7 light ACATE ATAGC GGTAAT chan D49A CDR2 GGAAG 239 GACCG 443 AGTGAT 260 TGAAA GCCCT CATGTG GTG CA GTA TGCAC GGGGG CAGGTG AAACA GATGA TGGGCT 16H7 light ACATE TAGCG GGTAAT . D91A CDR3 GGAAG 239 ACCGG 249 445 chain TGAAA CCCTC AGTGAC GTG A CATGTG TGCAC GTA GGGGG CAGGTG AAACA GCTG TGGGCT 16H7 light D49A+ CDR2, AGATT ATAGC GGTAAT chain D91A CDR3 GGAAG 239 GACCG 444 AGTGAC 445 TGAAA GCCCT GATOTO GTG CA GT TGCAC GTA
Loca- CDR1 CDR2 CDR3 Core Vari- tion of CDR1 SEQ CDR2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO: CACAT TTTTT CGAAT TCAGTA AATGC GACGA GTAACT 16H7 TAGAA AAAA GGCGGC heavy V24F FW TGGGT 196 TCCTA 206 TACTAC 221 chain GTGAG CAGCA TACGAC C CATCT GGTATG CTGA.A GACGTC GAGC CACAT TTTTT CGAAT TCAGTA AATOC GACGA GTAACT 16H7 TAGAA AAAA GGCGGC heavy 183T FW TGGGT 196 TCCTA 206 TACTAC 221 chain GTGAG CAGCA TACGAC C CATCT GGTATG GACGTC CTGAA GAGC CACAT TTTTT CGAAT TCAGTA AATGC GACGA GTAACT 16H7 V24F+1 TAGAA AAAA GGCGGC heavy 83T FW TGGGT 196 TCCTA 206 TACTAC 221 chain GTGAG CAGCA TACGAC C CATCT GGTATG CTGAA GACGTC GAGC
Loca- CDRI CDR2 CDR3 Core Vari- tion of CDR] SEQ CDR2 SEQ CDR3 SEQ Sequence action Muta- ID ID ID tion NO NO NO: CACAT TTTTT CGAAT TCAGTA AATGC GACGA GTAACT 16H7 E16Q+ TAGAA AAAA GGCGGC heavy V24F+ FW TGGGT 196 TCCTA 206 TACTAC 221 chain 83T GTGAG CAGCA TACGAC C CATCT GGTATG CTGAA GACGTC GAGC CACAT TTTTT CGAAT TCAGTA EI6Q+ AATGC GACGA GTAACT 16H7 V24F+1 TAGAA AAAA GGCGGC heavy 83T+T FW TGGGT 196 TCCTA 206 TACTAC 221 chain GTGAG CAGCA TACGAC 19L C CATCT GGTATG CTGAA GACGTC GAGC CACAT TTTTT ATCGTA E16Q+ AATGC CGA GTAACT 16H7 V24F+I TAGAA AAAA GGCGGC heavy 83T+SI CDR3 TGGGT 196 TCCTA 206 TACTAC 446 chain 001+TI1 GTGAG CAGCA TACGAC 9L C CATCT GGTATG CTGAA GACGTC GAGC
Loca- CDRI CDR2 CDR3 Core Vari- tion of CDRI R2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO: CACAT TTTTT CGAAT TCAGTA AATGC GACGA GTAACT 16H7 TAGAA AAAA GGCGGC heavy 183K FW TGGGT 196 TCCTA 206 TACTAC 221 chain GTGAG CAGCA TACGAC C CATCT GGTATG CTGAA GACGTC GAGC CACAT TTTTT ATCGTA AATGC CGA GTAACT 16H7 TAGAA AAAA GGCGGC heavy Sl00! CDR3 TGGGT 196 TCCTA 206 TACTAC 446 chain GTGAG CAGCA TACGAC C CATCT GGTATG CTGAA GACGTC GAGC CACAT TTTTT CGAAT TCAGTA MTG GACGA GTAACT 16H7 D88R+P TAGAA AAAA GGCGGC heavy 89A+V9 FW TGGGT 196 TCCTA 206 TACTAC 221 chain OE GTGAG CAGCA TACGAC C CATCT GGTATG CTGAA GACGTC GAGC
Loca- CDRI CDR2 CDR3 Core Vari- tion of CDR] SEQ CDR2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO: CACAT TTTTT ATCGTA AATGC CGAAT GTAACT 16H7 8A+ FW TAGAA ACGA GGCGGC heavy 0E+S10 CDR3 TGGGT 196 TCCTA 206 TACTAC 446 chain 01 GTGAG CAGCA TACGAC C CATCT GGTATG CTGAA GACGTC GAGC CACAT TTTTT TCAGTA AATGC GAGA GTAACT 16H7 Deletion TAGAA AAAA GGCGGC heavy ofY107 CDR3 TGGGT 196 TCCTA 206 TACTAC 447 chain GTGAG CAGCA GACGGT C CATCT ATGGAC CTGAA GTC GAGC CACAT TTTTT TCAGTA AATGC GAA GTAACT 16H7 TAGAA AAAA GGCGGC heavy D109S CDR3 TGGGT 196 TCCTA 206 TACTAC 448 chain GTGAG CAGCA TACAGC C CATCT GGTATG CTGAA GACGTC GAGC GGGGG CAGGTG AAACA GATGA TGGGAT 22H5 light N92Q CDR ACATT TAC CAGACT N92Q CDR3 GGAAG 240 ACCGG 249 AGAT 44 chamn TCAAA CCCTC AGTGAT GTG A CATGTG TGCAC GTA
Loca- CDRI CDR2 CDR3 Core Vari- tion of CDRI SEQ CDR2 SEQ CDR3 SEQ Sequence ation Muta- ID ID ID tion NO NO NO: GGGGG CAGGTG AAACA GATGA TGGGAT 22115 light ACATT TAGCG AATACT .i S94A CDR3 GGAAG 240 ACCGG 249 450 chamn TCAAA CCCTC GCTGAT GTG A CATGTG TGCAC GTA CACAT TTTTT ATATTA AATGC GAA TTAGTG 22H5 TAGAA AAAA GGAGCT heavy CI09S CDR3 TGGGT 196 TCCTA 206 TACTAC 451 chain GTGAG CAGCA TACAGC C CATCT GGTATG CTGAA GACGTC GAGC CACAT TTTTT TCAGTA CGAAT GTAACT AATCC 17AA GACGA GGCGGC h7v Insertion TGAA AAAA TACTAT 452 heavy fY107 CDR3 TGT 196 TCCTA 206 TACTAC chain GTGAG CAGCA GACGGT C CATCT ATGGAC CTGAA GTC GAGC
Additionally, a "hemibody" was generated and studied. This structure comprised the 16H7 light chain (L3; SEQ ID NO:50), which was paired with anengineered form of the 16H7 heavy chain; the engineered heavy chain comprised the 16H7 heavy chain (SEQ ID NO:32) joined via a (G4S)S linker (SEQ ID NO:440) to an IgG2 Fc sequence (SEQ ID NO:441), which paired with the Fc sequence of the 16H7 heavy chain. The component parts of the hemibody have the following sequences:
16H7 Heavy Chain MDMRVPAQLLGLLLLWLRGARCQVTLKESGPVLVIKPTETLTLTCTVSGFSLNNARMGV SWIRQPPGKALEWLAH IFSNDEKSYSTSLKSRLTISKDTSKSQVVLIMTNMDPVDTATYY CARSVVTGGYYYDGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVK DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKP SNTKVDKTVERKSSVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED PEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP (SEQ ID NO:32)
Linker GGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGS (SEQ ID NO:440)
IgG2 Fe ERKSSVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSIHEDPEVQFNWYV DGVEVHNAKTKPREEQFNSTFRVVSVLTVVIHQDWLNGKEYKCKVSNKG LPAPEKTIS KTKGQPR.EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP M LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGK (SEQ ID NO:441)
The full hemibody heavy chain had the amino acid sequence shown below: MDMRVPAQLLGLLLLWLRGARCQVTLKESGPVLVKPTETLTLTCTVSGFSLNNARMGV SWIRQPPGKA LEWLA HIFSNDEKSYSTSLKSRLTISKDTSKSQVVLIMTNMDPVDTATYY CARSVVTGGYYYDGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVK DYFPEPVTVSWNSGALTSGVH TFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKP SNTKVDKTVERKSSVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED PEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSERKSSVECPPCPAPPV
AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHIEALHNHYTQKSLSLSPGK (SEQ ID NO:453)
which is encoded by the follow sequence: ATGGACATGAGGGTGCCCGCTCAGCTCCTGGGGCTCCTGCTGCTGTGGCTGAGAGGT GCGCGCTGTCAGGTCACCTTGAAGGAGTCTGGTCCTGTGCTGGTGAAACCCACAGAG ACCCTCACGCTGACCTGCACCGTGTCTGGGTTCTCACTCAACAATGCTAGAATGGGT GTGAGCTGGATCCGTCAGCCCCCAGGGAAGGCCCTGGAGTGGCTTGCACACATTTTT TCGAATGACGAAAAATCCTACAGCACATCTCTGAAGAGCAGGCTCACCATCTCCAA GGACACCTCCAAAAGCCAGGTGGTCCTAATTATGACCAACATGGACCCTGTGGACA CAGCCACATATTACTGTGCACGGTCAGTAGTAACTGGCGGCTACTACTACGACGGTA TGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCTAGTGCCAGCACCAAGGGC CCCTCCGTGTTCCCTCTGGCCCCCTGCAGCAGAAGCACCAGCGAGAGCACAGCCGCC CTGGGCTGCCTGGTCAAGGACTACTTCCCCGAGCCCGTGACCGTGTCTTGGAACAGC GGAGCCCTGACCAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGCGGCCT GTACAGCCTGAGCAGCGTGGTCACCGTGCCCAGCAGCAACTTCGGCACCCAGACCT ACACCTGTAACGTGGACCACAAGCCCAGCAACACCAAGGTGGACAAGACAGTGGA D GCGGAAGTCCAGCGTGGAGTGCCCTCCTTGTCCTGCCCCTCCTGTGGCCGGACCTAG CGTGTTCCTGTTCCCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGA AGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGCAGTTCAATT GGTACGTGGACGGGGTOGAGGTGCACAACGCCAAGACCAAGCCCCGGGAGGAACA GTTCAACAGCACCTTCCGGGTGGTGTCCGTCCTCACCGTGGTGCACCAGGACTGGCT !5 GAACGGCAAAGAGTACAAGTGCAAGGTCTCCAACAAGGGCCTGCCTGCCCCCATCG AGAAAACCATCAGCAAGACCAAGGGCCAGCCTCGGGAGCCTCAGGTGTACACCCTG CCCCCCAGCCGGGAGGAAATGACCAAGAACCAGGTGTCCCTGACCTGCCTCGTGAA GGGCTTCTACCCCAGCGATATCGCCGTGGAGTGGGAGAGCAACGGCCAGCCCGAGA ACAACTACAAGACCACCCCCCCCATGCTGGACAGCGACGGCAGCTTCTTCCTGTACT CCAAACTGACCGTGGACAAGAGCCGGTGGCAGCAGGGCAACGTGTTCAGCTGTAGC GTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGAGCCTGTCTCCT
GGCGGAGGCGGAGGATCTGGCGGCGGAGGAAGTGGAGGGGGCGGATCTGGTGGTG GAGGCAGCGGCGGAGGTGGAAGTGGCGGTGGAGGATCCGGTGGAGGCGGCTCAGG TGGCGGCGGAAGCGAGAGAAAGTCCTCCGTGGAGTGTCCACCATGCCCTGCTCCAC CAGTGGCTGGCCCTTCCGTCTTTCTCTTTCCACCTAAACCTAAGGATACACTCATGAT CTCCAGAACTCCAGAGGTCACATGTGTGGTCGTCGATGTCAGTCATGAGGATCCTGA AGTCCAGT TTAACTGGTATGTGGATGGCGTCGAAGTCCATAATGCTAAGACAAAACC TCGCGAAGAACAGTTTAACTCCACCTTTAGAGTCGTGAGCGTGCTGACAGTCGTCCA TCAGGATTGGCTCAATGGGAAAGAATACAAATGTAAAGTCTCTAACAAAGGACTGC CCGCTCCTATCGAAAAGACCATCTCCAAAACAAAGGGGCAGCCCAGAGAGCCCCAG GTCTACACACTCCCACCCTCCAGAGAAGAGATGACAAAAAATCAGGTGTCACTCAC CTGTCTGGTCAAGGGGTTTTACCCCTCCGACATTGCCGTGGAATGGGAATCCAATGG GCAGCCTGAAAACAATTATAAGACTACACCTCCTATGCTCGACTCTGATGGGAGTTT CTTTCTCTACTCTAAACTCACAGTGGATAAGTCTAGATGGCAGCAGGGGAATGTCTT TTCCTGCTCCGTCATGCATGAAGCTCTCCACAATCATTATACACAGAAGTCTTTGTCC CTGTCCCCCGGCAAG (SEQ ID NO:454)
Example 14.1 5-Kotho Binding ELISA for Engineered Antibodies The engineered forms of 16H7 and 22H5 were tested for -Klotho binding using an ELISA assay. Conditions for the ELISA were as follows. Streptavidin coated Maxisorp plates were incubated with 2pg/ml -Klotho overnight at 4 degrees. Antibodies were added in 3-fold serial dilutions starting at I g for I hour at room temp. HRP conjugated anti-human Fc was used as the detector antibody. Signal was developed with Lumiglo and read on Envision. Results of the ELISA assay are shown in Figure 32A-32C and indicate that most variants of 16117 bound to human Q-Klotho except for a mutant carrying insertion of tyrosine at position 107.
Example 14.2 Engineered Variants of 16117 and 22H5 Bind to Native Receptor Structure, as Shown by FACS A FACS binding assay was performed with several of the engineered forms of 16H7 and 221-15. The experiments were performed as follows. CHO cells stably expressing FGF21 receptor were treated with parent antibody 16H7 and 22H5 and also with engineered variants of them (tg per lx10( cells in OO0l PBS/0.5% BSA). Cells were incubated with the antibodies at 4C followed by two washes with PBS/BSA. Cells were then treated with FITC-labeled secondary antibodies at 4 T followed by two washes. The cells were resuspended in Iml PBSBSA and antibody binding was analyzed using a FACS Calibur instrument. Consistent with ELISA results, most of engineered variants of FGF21 receptor agonistic antibodies tested bind well to cell surface FGF21 receptor in FACS. This observation further confirmed that the guided engineering of FGF21 receptor agonistic antibodies maintain binding to the native structure, In one mutant, in which CDR3 was engineered to include a tyrosine at position Y107, a complete loss of binding to cell surface receptor was observed, which is similar to the ELISA results. This observation points to the role of CDR3 loop in binding to native conformation.
D Example 14.3 Activity of 16H7 and 22H5 Variants in Primary Human Adipocytes FGF21 stimulates glucose uptake and lipolysis in cultured adipocytes and, therefore, adipocytes are often considered to be a physiologically relevant assay. A panel of the engineered variants of 16H7 and 22H5 was shown to exhibit Erk-phosphorylation activity similar to FGF21 in the human adipocyte assay with an estimated EC50 less than 10 nM, as shown in Table 7.
Table 7 Activity of Variants in Human Adipocvte Assay Core Sequence SEQ ID NO of Variant EC50 (nM) Variant Chain 16H7 Heavy Chain 391 183T 0.73
Core Sequence SEQ ID NO of Variant EC50 (nM) Variant Chain 16H7 Heavy Chain 393 E l6Q+V24F+183T 0.38 16H7 Heavy Chain 398 D88R+P89A+V90E 0.35 16H7 Heavy Chain 394 E16Q+V24F+183T+TI 19L 0.36 16H7 (WT) 0.53 22H5 Lihit Chain 403 S94A 1.98 22H5 Light Chain 402 N92Q 3.33 16H7 Heavy Chain 400 Deletion o[Y107 1.04 16H7 Heavy Chain 396 183K 0.39 16H7 Heavy Chain 397 Sool 0.17 16H7 Heavy Chain 401 D109S 0.31 16H7 Heavy Chain 399 D88R+PR9A+V90E+Sl001 0.14 16H7 Heavy Chain 395 E16Q+V24F+183T+SJOOI+Tl19L 0.24 22H5 Heavy Chain 405 Insertion of Y107 0.51
16H7 Heavy Chain 390 V24F 0.75 16H7 Heavy Chain 392 V24F+183T 0.37 16117 Liht Chain 386 D49Y 0.60 16H7 Light Chain 387 D49A 0.63 16H7 Lighi Chain 389 D49A, D9IA 1.4 1611.7 Light Chain 388 D91A 1.3 16H7 Light Chain 385 Q16K 0.11 22H5(WT) 2.27
Example 14.4 Biacore Binding Experiments and Off-rate Measurement Binding of 16H7 and 22H5 variants to human -Klotho was tested using Biacore assays. Briefly, mouse anti-His antibody (Qiagen, Valencia, CA) was immobilized on a CM5 chip using amine coupling reagents (General Electronics, Piscataway, NJ). His-tagged human recombinant
-Klotho was captured on the second flow cell to ~100RU. The first flow cell was used as a background control. 100nM mAbs were diluted in PBS plus 0.1mg/ml BSA, 0.005% P20 and injected over the -Klotho captured on anti-His antibody surface. For kinetic measurement, 0.78-100nM mAbs diluted in PBS plus 0.1mg/ml BSA, 0.005% P20 were injected over the Klotho surface. The variants tested are summarized in Table 8:
Table 8 Variants Studied in Binding and Off-rate Experiments Core Light Chain Heavy Light Heavy ChainM Construct Antigen Identifier/Varia- Chain Chain Identifier/Varia Number Binding tion tion SEQ ID SEQ ID Protein NO NO 22H5 H2 L2 31 13 #1, P60881.3 16H7 183T L3 391 14 #2, P60880.3 16H7 E16Q+V24F+183T L3 393 14 #3, P60890.3 16H7 D88R+P89A+V90E L3 398 14
394 14 16H7 E16Q+V24F+183T+ #4, P60878.3 TI 19L L3 #5, 16H7 WT 16H7 H3 L3 32 14 #6, P60898.3 22H5 H2 S94A 31 403 #7, P60897.3 221 H5 H2 N92Q 31 402 #8, P60886.3 16H7 Deletion of Y107 L3 400 14 #9, P60885.3 16H7 183K L3 396 14 #10, P60884.3 16H7 S1001 L3 397 14 #11, P60883.3 16H7 D109S L3 401 14 D88R+P89A+V90E 399 14 16H7 #12, P60879.3 +S1001 L3
453 14 16H7 Hemibody Heavy #13, P60882.3 Chain L3
Core Light Chain Heavy Light Construct Antigen Identifier/Varia- Chain Chain Identifier/Varia Number Binding tioi tion SEQ ID SEQ ID Protein NO NO
395 14 16H7 E16Q+V24F+183T+ #14, P60891.3 SI00I+T1 19L L3 #15, P60889.3 16H7 Insertion of Y107 L3 405 14 #16, P60888.3 16H7 V24F L3 390 14 #17, P60887.3 16H7 V24F+183T L3 392 14 #18, P60894.3 16H7 H3 D49Y 32 386 #19, P60895.3 16H7 H3 D49A 32 387 #20, P60893.3 16H7 H3 D49A+D91A 32 389 #21, P60892.3 16H7 H3 D91A 32 388 #22, P60896.3 16H7 H3 Q16K 32 385 #23, P60899.2 22H5 C109S L2 404 13
Among the engineered mAbs tested, the majority of them showed tight binding to human
Q-Kotho, except #15 which showed no binding. Table 9 below shows 100nM mAbs binding to D-Klotho captured on anti-His. Figure 33shows the comparison to off-rate.
Table 9 Binding to B-Klotho Sample koff (I/s) #20, P60893.3 1.9E-04 #11, P60883.3 2.6E-04 #23, P60899.2 3.OE-04 22H5 3.1E-04 #18, P60894.3 3.1E-04 #6, P60898.3 3.5E-04 #13, P60882.3 4.4E-04 #7, P60897.3 5.2E-04 #8, P60886.3 5.3E-04
EXAMPLE 15 Combinations of Antigen Binding Proteins Show an Additive Effect Antigen binding proteins representing different binding bins (Fig I Ia and b) were selected and tested in reporter assays in pairs to determine if the pair of molecules would behave in an additive fashion. Assays were run as follows. On day one, AM-1/D FGFRlc+-Klotho Luc clone was seeded in a 96-well plate at 20K cells/well in DMEM + 10% FBS medium. The plate was incubated overnight. The following day, the medium was replaced with assay medium (DMEM + 0.2% FBS) and incubated overnight. From an antibody working stock (I mg/mL in PBS), each antibody under study was prepared at a dilution of 2 g/ml in assay medium. 100 L of each antibody to be tested was combined in a U-bottom plate. The assay medium was removed from the cells, and 50 L of the antibody mixtures was transferred to the cells. The antibody mixtures were incubated on the cells for 5 hrs. Lastly, each sample was read-out with SteadyGlo Luciferase reagent (50 vl/well),per the manufacturer's specifications. Table 10 below is a summary of the activity (% of FGF21 activity from the reporter assay) observed from the study; Table I I expresses the observed activities with respect to bins.
Table 10 Antibody Combination Activity (%) Iso 6 5 4 3 2 1 IgG2k 2Gb0 16H7 12E4.1 20D4.1 39F7 26H 1,1 iso IgzG2k ND -1.1 23.5 25.4 12.5 9.2 17.9 1 26H]1.1 17.9 19.1 36.7 21.4 28.3 20.7 2 39F7 9.2 9.1 37.0 30.8 21.4 3 20D4.1 12.5 13.5 19.4 32.0 1 1 4 12E4.1 25.4 28.8 41.5 5 16H7 23.5 27.8 6 2G10 -1.1 | !0
Table 11 Antibody Combinations Expressed in Terms of Bins
tin Ab ID Isotype 2G10 39F7 12E4.1 26H11.I 16H7 20D4.1 A 20D4.1 12.5 13.5 21.4 32.0 28.3 19.4 A 16147 23.5 27.8 37,0 41.5 36.7 E B 26H11.1 17.9 19.1 20.7 21.4 B 12E4.1 25.4 28.8 30.8 C 39F7 9.2 9.1 D 2G0 J-1.1 Surprisingly, several pairs of molecules showed an additive effect. As shown in Figures 34 and 35, respectively, 39F I and FGF21 showed an additive effect when measured in the reporter assay of Example 5, as did 16H7 and 39H1I1. Summarizing the data from this set of experiments, it was observed that antigen binding proteins from the same binding bin, e.g., 16H7 when paired with 20D4 (both from Group A), the summed activity was not additive. This was also observed when 12E4 was paired with 26H1 I D (both from Group B). Additionally, paired antigen binding proteins from non-overlapping bins showed additive activities, e.g, 16H7 (Group A) paired with 26H11 or 12E4 (Group B), or paired with 39E7 (Group C). Further, antigen binding proteins 26H I l and 12E4 (Group B) showed additive effect when combined with Abs from Group A but not Group C, suggesting there may be some overlap between the binding sites of Group B and Group C and/or that the activation conformations induced by the antigen binding proteins from Group B and Group C are not mutually compatible. Finally, as expected, when a functional antigen binding protein is paired with a non-functional antigen binding protein (e.g., 2G10) which binds to a distinct and non-overlapping binding site from Group A, B or C, there is no effect upon the activity from the functional antigen binding protein from Group A, B or C. Collectively, this data suggests that the disclosed antigen binding proteins can be co administered to enhance the effect that a given antigen binding protein may provide on its own.
Each reference cited herein is incorporated by reference in its entirety for all that it teaches and for all purposes.
The present disclosure is not to be limited in scope by the specific embodiments described herein, which are intended as illustrations of individual aspects of the disclosure, and functionally equivalent methods and components form aspects of the disclosure. Indeed, various modifications of the disclosure, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.
503583504_1.txt Jul 2019
SEQUENCE LISTING <110> AMGEN INC.
<120> HUMAN ANTIGEN BINDING PROTEINS THAT BIND BETA-KLOTHO, FGF RECEPTORS AND COMPLEXES THEREOF
<130> A-1519-WO-PCT <140> US/PCT10/XXXXX <141> 2010-12-03 2019210504
<150> US 61/267,321 <151> 2009-12-07 <150> US 61/381,846 <151> 2010-09-10
<160> 483 <170> PatentIn version 3.5 <210> 1 <211> 630 <212> DNA <213> Homo sapiens
<400> 1 atggactcgg acgagaccgg gttcgagcac tcaggactgt gggtttctgt gctggctggt 60
cttctgctgg gagcctgcca ggcacacccc atccctgact ccagtcctct cctgcaattc 120
gggggccaag tccggcagcg gtacctctac acagatgatg cccagcagac agaagcccac 180
ctggagatca gggaggatgg gacggtgggg ggcgctgctg accagagccc cgaaagtctc 240
ctgcagctga aagccttgaa gccgggagtt attcaaatct tgggagtcaa gacatccagg 300 ttcctgtgcc agcggccaga tggggccctg tatggatcgc tccactttga ccctgaggcc 360
tgcagcttcc gggagctgct tcttgaggac ggatacaatg tttaccagtc cgaagcccac 420
ggcctcccgc tgcacctgcc agggaacaag tccccacacc gggaccctgc accccgagga 480 ccagctcgct tcctgccact accaggcctg ccccccgcac ccccggagcc acccggaatc 540 ctggcccccc agccccccga tgtgggctcc tcggaccctc tgagcatggt gggaccttcc 600
cagggccgaa gccccagcta cgcttcctga 630
<210> 2 <211> 209 <212> PRT <213> Homo sapiens <400> 2 Met Asp Ser Asp Glu Thr Gly Phe Glu His Ser Gly Leu Trp Val Ser 1 5 10 15
Val Leu Ala Gly Leu Leu Leu Gly Ala Cys Gln Ala His Pro Ile Pro 20 25 30
Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr 35 40 45
Page 1
503583504_1.txt Jul 2019
Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg 50 55 60
Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu 65 70 75 80
Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val 85 90 95 2019210504
Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly 100 105 110
Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Leu Leu Leu 115 120 125
Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu 130 135 140
His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly 145 150 155 160
Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Pro Pro Glu 165 170 175
Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp 180 185 190
Pro Leu Ser Met Val Gly Pro Ser Gln Gly Arg Ser Pro Ser Tyr Ala 195 200 205
Ser
<210> 3 <211> 2469 <212> DNA <213> Homo sapiens
<400> 3 atgtggagct ggaagtgcct cctcttctgg gctgtgctgg tcacagccac actctgcacc 60 gctaggccgt ccccgacctt gcctgaacaa gcccagccct ggggagcccc tgtggaagtg 120 gagtccttcc tggtccaccc cggtgacctg ctgcagcttc gctgtcggct gcgggacgat 180
gtgcagagca tcaactggct gcgggacggg gtgcagctgg cggaaagcaa ccgcacccgc 240 atcacagggg aggaggtgga ggtgcaggac tccgtgcccg cagactccgg cctctatgct 300
tgcgtaacca gcagcccctc gggcagtgac accacctact tctccgtcaa tgtttcagat 360 gctctcccct cctcggagga tgatgatgat gatgatgact cctcttcaga ggagaaagaa 420 acagataaca ccaaaccaaa ccgtatgccc gtagctccat attggacatc accagaaaag 480
atggaaaaga aattgcatgc agtgccggct gccaagacag tgaagttcaa atgcccttcc 540 Page 2
503583504_1.txt Jul 2019
agtgggacac caaacccaac actgcgctgg ttgaaaaatg gcaaagaatt caaacctgac 600
cacagaattg gaggctacaa ggtccgttat gccacctgga gcatcataat ggactctgtg 660 gtgccctctg acaagggcaa ctacacctgc attgtggaga atgagtacgg cagcatcaac 720
cacacatacc agctggatgt cgtggagcgg tcccctcacc ggcccatcct gcaagcaggg 780 ttgcccgcca acaaaacagt ggccctgggt agcaacgtgg agttcatgtg taaggtgtac 840 agtgacccgc agccgcacat ccagtggcta aagcacatcg aggtgaatgg gagcaagatt 900 2019210504
ggcccagaca acctgcctta tgtccagatc ttgaagactg ctggagttaa taccaccgac 960 aaagagatgg aggtgcttca cttaagaaat gtctcctttg aggacgcagg ggagtatacg 1020 tgcttggcgg gtaactctat cggactctcc catcactctg catggttgac cgttctggaa 1080
gccctggaag agaggccggc agtgatgacc tcgcccctgt acctggagat catcatctat 1140 tgcacagggg ccttcctcat ctcctgcatg gtggggtcgg tcatcgtcta caagatgaag 1200 agtggtacca agaagagtga cttccacagc cagatggctg tgcacaagct ggccaagagc 1260
atccctctgc gcagacaggt aacagtgtct gctgactcca gtgcatccat gaactctggg 1320 gttcttctgg ttcggccatc acggctctcc tccagtggga ctcccatgct agcaggggtc 1380
tctgagtatg agcttcccga agaccctcgc tgggagctgc ctcgggacag actggtctta 1440
ggcaaacccc tgggagaggg ctgctttggg caggtggtgt tggcagaggc tatcgggctg 1500
gacaaggaca aacccaaccg tgtgaccaaa gtggctgtga agatgttgaa gtcggacgca 1560
acagagaaag acttgtcaga cctgatctca gaaatggaga tgatgaagat gatcgggaag 1620 cataagaata tcatcaacct gctgggggcc tgcacgcagg atggtccctt gtatgtcatc 1680
gtggagtatg cctccaaggg caacctgcgg gagtacctgc aggcccggag gcccccaggg 1740
ctggaatact gctacaaccc cagccacaac ccagaggagc agctctcctc caaggacctg 1800 gtgtcctgcg cctaccaggt ggcccgaggc atggagtatc tggcctccaa gaagtgcata 1860
caccgagacc tggcagccag gaatgtcctg gtgacagagg acaatgtgat gaagatagca 1920 gactttggcc tcgcacggga cattcaccac atcgactact ataaaaagac aaccaacggc 1980 cgactgcctg tgaagtggat ggcacccgag gcattatttg accggatcta cacccaccag 2040
agtgatgtgt ggtctttcgg ggtgctcctg tgggagatct tcactctggg cggctcccca 2100 taccccggtg tgcctgtgga ggaacttttc aagctgctga aggagggtca ccgcatggac 2160 aagcccagta actgcaccaa cgagctgtac atgatgatgc gggactgctg gcatgcagtg 2220
ccctcacaga gacccacctt caagcagctg gtggaagacc tggaccgcat cgtggccttg 2280 acctccaacc aggagtacct ggacctgtcc atgcccctgg accagtactc ccccagcttt 2340
cccgacaccc ggagctctac gtgctcctca ggggaggatt ccgtcttctc tcatgagccg 2400 ctgcccgagg agccctgcct gccccgacac ccagcccagc ttgccaatgg cggactcaaa 2460 cgccgctga 2469
Page 3
503583504_1.txt Jul 2019
<210> 4 <211> 822 <212> PRT <213> Homo sapiens <400> 4 Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 1 5 10 15
Thr Leu Cys Thr Ala Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln 20 25 30 2019210504
Pro Trp Gly Ala Pro Val Glu Val Glu Ser Phe Leu Val His Pro Gly 35 40 45
Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile 50 55 60
Asn Trp Leu Arg Asp Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg 65 70 75 80
Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser 85 90 95
Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr 100 105 110
Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp 115 120 125
Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr 130 135 140
Lys Pro Asn Arg Met Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys 145 150 155 160
Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe 165 170 175
Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys 180 185 190
Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val 195 200 205
Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp 210 215 220
Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn 225 230 235 240
His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile 245 250 255 Page 4
503583504_1.txt Jul 2019
Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn 260 265 270
Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln 275 280 285
Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn 290 295 300 2019210504
Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp 305 310 315 320
Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala 325 330 335
Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His 340 345 350
Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val 355 360 365
Met Thr Ser Pro Leu Tyr Leu Glu Ile Ile Ile Tyr Cys Thr Gly Ala 370 375 380
Phe Leu Ile Ser Cys Met Val Gly Ser Val Ile Val Tyr Lys Met Lys 385 390 395 400
Ser Gly Thr Lys Lys Ser Asp Phe His Ser Gln Met Ala Val His Lys 405 410 415
Leu Ala Lys Ser Ile Pro Leu Arg Arg Gln Val Thr Val Ser Ala Asp 420 425 430
Ser Ser Ala Ser Met Asn Ser Gly Val Leu Leu Val Arg Pro Ser Arg 435 440 445
Leu Ser Ser Ser Gly Thr Pro Met Leu Ala Gly Val Ser Glu Tyr Glu 450 455 460
Leu Pro Glu Asp Pro Arg Trp Glu Leu Pro Arg Asp Arg Leu Val Leu 465 470 475 480
Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly Gln Val Val Leu Ala Glu 485 490 495
Ala Ile Gly Leu Asp Lys Asp Lys Pro Asn Arg Val Thr Lys Val Ala 500 505 510
Val Lys Met Leu Lys Ser Asp Ala Thr Glu Lys Asp Leu Ser Asp Leu 515 520 525 Page 5
503583504_1.txt Jul 2019
Ile Ser Glu Met Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile 530 535 540
Ile Asn Leu Leu Gly Ala Cys Thr Gln Asp Gly Pro Leu Tyr Val Ile 545 550 555 560
Val Glu Tyr Ala Ser Lys Gly Asn Leu Arg Glu Tyr Leu Gln Ala Arg 565 570 575 2019210504
Arg Pro Pro Gly Leu Glu Tyr Cys Tyr Asn Pro Ser His Asn Pro Glu 580 585 590
Glu Gln Leu Ser Ser Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala 595 600 605
Arg Gly Met Glu Tyr Leu Ala Ser Lys Lys Cys Ile His Arg Asp Leu 610 615 620
Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala 625 630 635 640
Asp Phe Gly Leu Ala Arg Asp Ile His His Ile Asp Tyr Tyr Lys Lys 645 650 655
Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu 660 665 670
Phe Asp Arg Ile Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val 675 680 685
Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Val 690 695 700
Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp 705 710 715 720
Lys Pro Ser Asn Cys Thr Asn Glu Leu Tyr Met Met Met Arg Asp Cys 725 730 735
Trp His Ala Val Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu 740 745 750
Asp Leu Asp Arg Ile Val Ala Leu Thr Ser Asn Gln Glu Tyr Leu Asp 755 760 765
Leu Ser Met Pro Leu Asp Gln Tyr Ser Pro Ser Phe Pro Asp Thr Arg 770 775 780
Ser Ser Thr Cys Ser Ser Gly Glu Asp Ser Val Phe Ser His Glu Pro 785 790 795 800 Page 6
503583504_1.txt Jul 2019
Leu Pro Glu Glu Pro Cys Leu Pro Arg His Pro Ala Gln Leu Ala Asn 805 810 815
Gly Gly Leu Lys Arg Arg 820
<210> 5 <211> 374 2019210504
<212> PRT <213> Homo sapiens <400> 5 Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 1 5 10 15
Thr Leu Cys Thr Ala Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln 20 25 30
Pro Trp Gly Ala Pro Val Glu Val Glu Ser Phe Leu Val His Pro Gly 35 40 45
Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile 50 55 60
Asn Trp Leu Arg Asp Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg 65 70 75 80
Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser 85 90 95
Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr 100 105 110
Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp 115 120 125
Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr 130 135 140
Lys Pro Asn Arg Met Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys 145 150 155 160
Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe 165 170 175
Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys 180 185 190
Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val 195 200 205
Page 7
503583504_1.txt Jul 2019
Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp 210 215 220
Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn 225 230 235 240
His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile 245 250 255 2019210504
Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn 260 265 270
Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln 275 280 285
Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn 290 295 300
Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp 305 310 315 320
Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala 325 330 335
Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His 340 345 350
Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val 355 360 365
Met Thr Ser Pro Leu Tyr 370
<210> 6 <211> 3135 <212> DNA <213> Homo sapiens <400> 6 atgaagccag gctgtgcggc aggatctcca gggaatgaat ggattttctt cagcactgat 60 gaaataacca cacgctatag gaatacaatg tccaacgggg gattgcaaag atctgtcatc 120
ctgtcagcac ttattctgct acgagctgtt actggattct ctggagatgg aagagctata 180 tggtctaaaa atcctaattt tactccggta aatgaaagtc agctgtttct ctatgacact 240
ttccctaaaa actttttctg gggtattggg actggagcat tgcaagtgga agggagttgg 300 aagaaggatg gaaaaggacc ttctatatgg gatcatttca tccacacaca ccttaaaaat 360 gtcagcagca cgaatggttc cagtgacagt tatatttttc tggaaaaaga cttatcagcc 420
ctggatttta taggagtttc tttttatcaa ttttcaattt cctggccaag gcttttcccc 480 gatggaatag taacagttgc caacgcaaaa ggtctgcagt actacagtac tcttctggac 540
Page 8
503583504_1.txt Jul 2019
gctctagtgc ttagaaacat tgaacctata gttactttat accactggga tttgcctttg 600 gcactacaag aaaaatatgg ggggtggaaa aatgatacca taatagatat cttcaatgac 660 tatgccacat actgtttcca gatgtttggg gaccgtgtca aatattggat tacaattcac 720
aacccatatc tagtggcttg gcatgggtat gggacaggta tgcatgcccc tggagagaag 780 ggaaatttag cagctgtcta cactgtggga cacaacttga tcaaggctca ctcgaaagtt 840 tggcataact acaacacaca tttccgccca catcagaagg gttggttatc gatcacgttg 900 2019210504
ggatctcatt ggatcgagcc aaaccggtcg gaaaacacga tggatatatt caaatgtcaa 960 caatccatgg tttctgtgct tggatggttt gccaacccta tccatgggga tggcgactat 1020
ccagagggga tgagaaagaa gttgttctcc gttctaccca ttttctctga agcagagaag 1080 catgagatga gaggcacagc tgatttcttt gccttttctt ttggacccaa caacttcaag 1140
cccctaaaca ccatggctaa aatgggacaa aatgtttcac ttaatttaag agaagcgctg 1200 aactggatta aactggaata caacaaccct cgaatcttga ttgctgagaa tggctggttc 1260 acagacagtc gtgtgaaaac agaagacacc acggccatct acatgatgaa gaatttcctc 1320
agccaggtgc ttcaagcaat aaggttagat gaaatacgag tgtttggtta tactgcctgg 1380
tctctcctgg atggctttga atggcaggat gcttacacca tccgccgagg attattttat 1440
gtggatttta acagtaaaca gaaagagcgg aaacctaagt cttcagcaca ctactacaaa 1500 cagatcatac gagaaaatgg tttttcttta aaagagtcca cgccagatgt gcagggccag 1560
tttccctgtg acttctcctg gggtgtcact gaatctgttc ttaagcccga gtctgtggct 1620
tcgtccccac agttcagcga tcctcatctg tacgtgtgga acgccactgg caacagactg 1680
ttgcaccgag tggaaggggt gaggctgaaa acacgacccg ctcaatgcac agattttgta 1740 aacatcaaaa aacaacttga gatgttggca agaatgaaag tcacccacta ccggtttgct 1800
ctggattggg cctcggtcct tcccactggc aacctgtccg cggtgaaccg acaggccctg 1860
aggtactaca ggtgcgtggt cagtgagggg ctgaagcttg gcatctccgc gatggtcacc 1920
ctgtattatc cgacccacgc ccacctaggc ctccccgagc ctctgttgca tgccgacggg 1980 tggctgaacc catcgacggc cgaggccttc caggcctacg ctgggctgtg cttccaggag 2040
ctgggggacc tggtgaagct ctggatcacc atcaacgagc ctaaccggct aagtgacatc 2100 tacaaccgct ctggcaacga cacctacggg gcggcgcaca acctgctggt ggcccacgcc 2160
ctggcctggc gcctctacga ccggcagttc aggccctcac agcgcggggc cgtgtcgctg 2220 tcgctgcacg cggactgggc ggaacccgcc aacccctatg ctgactcgca ctggagggcg 2280
gccgagcgct tcctgcagtt cgagatcgcc tggttcgccg agccgctctt caagaccggg 2340 gactaccccg cggccatgag ggaatacatt gcctccaagc accgacgggg gctttccagc 2400 tcggccctgc cgcgcctcac cgaggccgaa aggaggctgc tcaagggcac ggtcgacttc 2460
tgcgcgctca accacttcac cactaggttc gtgatgcacg agcagctggc cggcagccgc 2520 tacgactcgg acagggacat ccagtttctg caggacatca cccgcctgag ctcccccacg 2580
Page 9
503583504_1.txt Jul 2019
cgcctggctg tgattccctg gggggtgcgc aagctgctgc ggtgggtccg gaggaactac 2640 ggcgacatgg acatttacat caccgccagt ggcatcgacg accaggctct ggaggatgac 2700 cggctccgga agtactacct agggaagtac cttcaggagg tgctgaaagc atacctgatt 2760
gataaagtca gaatcaaagg ctattatgca ttcaaactgg ctgaagagaa atctaaaccc 2820 agatttggat tcttcacatc tgattttaaa gctaaatcct caatacaatt ttacaacaaa 2880 gtgatcagca gcaggggctt cccttttgag aacagtagtt ctagatgcag tcagacccaa 2940 2019210504
gaaaatacag agtgcactgt ctgcttattc cttgtgcaga agaaaccact gatattcctg 3000 ggttgttgct tcttctccac cctggttcta ctcttatcaa ttgccatttt tcaaaggcag 3060
aagagaagaa agttttggaa agcaaaaaac ttacaacaca taccattaaa gaaaggcaag 3120 agagttgtta gctaa 3135
<210> 7 <211> 1044 <212> PRT <213> Homo sapiens
<400> 7 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser Page 10
503583504_1.txt Jul 2019
165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 2019210504
210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg Page 11
503583504_1.txt Jul 2019
435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 2019210504
485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala Page 12
503583504_1.txt Jul 2019
705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Arg Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 2019210504
755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val Page 13
503583504_1.txt Jul 2019
980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 2019210504
1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 8 <211> 996 <212> PRT <213> Homo sapiens <400> 8 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Page 14
503583504_1.txt Jul 2019
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220 2019210504
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Page 15
503583504_1.txt Jul 2019
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495 2019210504
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720
Page 16
503583504_1.txt Jul 2019
Leu Ala Trp Arg Leu Tyr Asp Arg Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765 2019210504
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Page 17
503583504_1.txt Jul 2019
Gln Lys Lys Pro 995
<210> 9 <211> 326 <212> PRT <213> Homo sapiens <400> 9 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 2019210504
1 5 10 15
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60
Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr 65 70 75 80
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro 100 105 110
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140
Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly 145 150 155 160
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175
Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp 180 185 190
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro 195 200 205
Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Page 18
503583504_1.txt Jul 2019
225 230 235 240
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 260 265 270
Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 2019210504
275 280 285
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 290 295 300
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320
Ser Leu Ser Pro Gly Lys 325
<210> 10 <211> 107 <212> PRT <213> Homo sapiens <400> 10 Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 1 5 10 15
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 35 40 45
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 50 55 60
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 65 70 75 80
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85 90 95
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 105
<210> 11 <211> 106 <212> PRT <213> Homo sapiens <400> 11 Gly Gln Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Page 19
503583504_1.txt Jul 2019
1 5 10 15
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 20 25 30
Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro 35 40 45
Val Lys Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn 2019210504
50 55 60
Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys 65 70 75 80
Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val 85 90 95
Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 100 105
<210> 12 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 12 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Gln Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Ser Ser Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Page 20
503583504_1.txt Jul 2019
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175 2019210504
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
<210> 13 <211> 214 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 13 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Gln Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Asn Thr Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Page 21
503583504_1.txt Jul 2019
130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 2019210504
180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
<210> 14 <211> 214 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 14 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Glu Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gly Asn Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Page 22
503583504_1.txt Jul 2019
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190 2019210504
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
<210> 15 <211> 215 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 15 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Asn Phe Asp Ser Ser 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Thr Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ile Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Tyr Gly Gly Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Glu Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Page 23
503583504_1.txt Jul 2019
145 150 155 160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 2019210504
195 200 205
Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 16 <211> 215 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 16 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Gly Asn 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ala Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160
Page 24
503583504_1.txt Jul 2019
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205 2019210504
Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 17 <211> 215 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 17 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Gly Asn 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Ser Lys Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Page 25
503583504_1.txt Jul 2019
165 170 175
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205
Ser Phe Asn Arg Gly Glu Cys 2019210504
210 215
<210> 18 <211> 215 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 18 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Asn Phe Asp Ser Asn 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Asn Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175
Page 26
503583504_1.txt Jul 2019
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205
Ser Phe Asn Arg Gly Glu Cys 210 215 2019210504
<210> 19 <211> 215 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 19 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Asn Phe Asp Ser Ser 20 25 30
Ser Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Cys Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Page 27
503583504_1.txt Jul 2019
180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205
Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 20 2019210504
<211> 214 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 20 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 20 25 30
Tyr Leu Ala Trp His Gln Gln Lys Pro Gly Gln Gly Leu Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Phe 85 90 95
Thr Phe Gly Gly Gly Thr Arg Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190
Page 28
503583504_1.txt Jul 2019
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205
Phe Asn Arg Gly Glu Cys 210
<210> 21 <211> 219 <212> PRT 2019210504
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 21 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Tyr Tyr 20 25 30
Asn Gly Phe Thr Tyr Leu Asp Trp Phe Leu Gln Lys Pro Gly Gln Ser 35 40 45
Pro His Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Val Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ser 85 90 95
Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys 100 105 110
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 115 120 125
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130 135 140
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 145 150 155 160
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 165 170 175
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180 185 190
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Page 29
503583504_1.txt Jul 2019
195 200 205
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 22 <211> 214 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 22 Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Asn Ser Asn 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45
Tyr Gly Val Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Arg Ser Leu Gln Ser 65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Asn Asn Trp Pro Pro 85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205
Page 30
503583504_1.txt Jul 2019
Phe Asn Arg Gly Glu Cys 210
<210> 23 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
polypeptide <400> 23 Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Ile Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Arg Tyr Asp 20 25 30
Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile 35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Val Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Leu 85 90 95
Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Glu Arg Thr Val Ala Ala 100 105 110
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205
Phe Asn Arg Gly Glu Cys Page 31
503583504_1.txt Jul 2019
210
<210> 24 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide 2019210504
<400> 24 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ile Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Asp Phe Pro Ile 85 90 95
Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205
Phe Asn Arg Gly Glu Cys 210
Page 32
503583504_1.txt Jul 2019
<210> 25 <211> 219 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 25 Asp Phe Val Met Thr Gln Thr Pro Leu Ser Leu Ser Val Thr Pro Gly 2019210504
1 5 10 15
Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Gln Ser 20 25 30
Asp Gly Lys Thr Tyr Leu Tyr Trp Tyr Leu Gln Lys Pro Gly Gln Pro 35 40 45
Pro His Leu Leu Ile Tyr Glu Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ser 85 90 95
Ile Gln Leu Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 110
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 115 120 125
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130 135 140
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 145 150 155 160
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 165 170 175
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180 185 190
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 195 200 205
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 26 Page 33
503583504_1.txt Jul 2019
<211> 219 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 26 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15 2019210504
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30
Asn Gly Tyr Asn Phe Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45
Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asp Arg Ala Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Leu Tyr Tyr Cys Met Gln Ala 85 90 95
Leu Gln Thr Pro Cys Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 115 120 125
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130 135 140
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 145 150 155 160
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 165 170 175
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180 185 190
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 195 200 205
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 27 <211> 215 <212> PRT Page 34
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 27 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 2019210504
20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Glu Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205
Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 28 <211> 215 <212> PRT <213> Artificial Sequence
Page 35
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 28 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 20 25 30 2019210504
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Ser Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205
Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 29 <211> 215 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 36
503583504_1.txt Jul 2019
polypeptide <400> 29 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 2019210504
35 40 45
Ile Tyr Gly Ala Ser Phe Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala 100 105 110
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205
Ser Phe Asn Arg Gly Glu Cys 210 215
<210> 30 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
Page 37
503583504_1.txt Jul 2019
<400> 30 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45 2019210504
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ile Leu Leu Leu Gly Ala Tyr Tyr Tyr Tyr Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Page 38
503583504_1.txt Jul 2019
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320 2019210504
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 31 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 31 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu Page 39
503583504_1.txt Jul 2019
35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 2019210504
85 90 95
Cys Ala Arg Ile Leu Leu Val Gly Ala Tyr Tyr Tyr Cys Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Page 40
503583504_1.txt Jul 2019
305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 2019210504
355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 32 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 32 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Page 41
503583504_1.txt Jul 2019
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125 2019210504
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Page 42
503583504_1.txt Jul 2019
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400 2019210504
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 33 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 33 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Asn Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Page 43
503583504_1.txt Jul 2019
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 2019210504
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Page 44
503583504_1.txt Jul 2019
385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 2019210504
435 440 445
Gly Lys 450
<210> 34 <211> 447 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 34 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Arg Phe Thr Phe Ser Thr Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly Ile Ser Gly Ser Gly Val Ser Thr His Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp His Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125
Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160
Page 45
503583504_1.txt Jul 2019
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190
Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His 195 200 205 2019210504
Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys 210 215 220
Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val 225 230 235 240
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255
Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 260 265 270
Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser 290 295 300
Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 305 310 315 320
Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile 325 330 335
Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350
Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser 385 390 395 400
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 405 410 415
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430
Page 46
503583504_1.txt Jul 2019
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445
<210> 35 <211> 447 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
polypeptide <400> 35 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Tyr Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Met Val Tyr Val Leu Asp Tyr Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125
Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190
Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His 195 200 205
Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Page 47
503583504_1.txt Jul 2019
210 215 220
Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val 225 230 235 240
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255
Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 2019210504
260 265 270
Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser 290 295 300
Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 305 310 315 320
Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile 325 330 335
Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350
Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser 385 390 395 400
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 405 410 415
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445
<210> 36 <211> 447 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
Page 48
503583504_1.txt Jul 2019
<400> 36 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Tyr Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 2019210504
Ser Ala Ile Ser Gly Ser Gly Val Ser Thr Asn Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Met Val Tyr Val Leu Asp Tyr Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125
Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190
Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His 195 200 205
Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys 210 215 220
Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val 225 230 235 240
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255
Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 260 265 270
Page 49
503583504_1.txt Jul 2019
Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser 290 295 300
Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 305 310 315 320 2019210504
Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile 325 330 335
Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350
Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser 385 390 395 400
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 405 410 415
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445
<210> 37 <211> 447 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 37 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Arg Phe Thr Phe Ser Thr Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val Page 50
503583504_1.txt Jul 2019
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp Tyr Trp Gly 2019210504
100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125
Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190
Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His 195 200 205
Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys 210 215 220
Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val 225 230 235 240
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255
Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 260 265 270
Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser 290 295 300
Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 305 310 315 320
Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Page 51
503583504_1.txt Jul 2019
325 330 335
Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350
Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 2019210504
370 375 380
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser 385 390 395 400
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 405 410 415
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445
<210> 38 <211> 447 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 38 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30
Tyr Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Val Thr Met Ser Lys Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80
Lys Leu Arg Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Asp Pro Asp Gly Asp Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly 100 105 110
Page 52
503583504_1.txt Jul 2019
Gln Gly Thr Ser Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125
Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160 2019210504
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190
Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His 195 200 205
Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys 210 215 220
Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val 225 230 235 240
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255
Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 260 265 270
Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser 290 295 300
Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 305 310 315 320
Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile 325 330 335
Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350
Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380
Page 53
503583504_1.txt Jul 2019
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser 385 390 395 400
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 405 410 415
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430 2019210504
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445
<210> 39 <211> 447 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 39 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30
Phe Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Val Thr Met Ser Ile Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Asp Pro Asp Gly Asp Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly 100 105 110
Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125
Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Page 54
503583504_1.txt Jul 2019
165 170 175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190
Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His 195 200 205
Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys 2019210504
210 215 220
Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val 225 230 235 240
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255
Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 260 265 270
Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser 290 295 300
Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 305 310 315 320
Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile 325 330 335
Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350
Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser 385 390 395 400
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 405 410 415
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Page 55
503583504_1.txt Jul 2019
435 440 445
<210> 40 <211> 453 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide 2019210504
<400> 40 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Ala 20 25 30
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr 85 90 95
Phe Cys Thr Ser Thr Tyr Ser Ser Gly Trp Tyr Val Trp Asp Tyr Tyr 100 105 110
Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala 115 120 125
Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser 130 135 140
Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe 145 150 155 160
Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly 165 170 175
Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 180 185 190
Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr 195 200 205
Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr 210 215 220
Page 56
503583504_1.txt Jul 2019
Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro 225 230 235 240
Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255
Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 2019210504
Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 275 280 285
Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 290 295 300
Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu 305 310 315 320
Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 325 330 335
Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro 340 345 350
Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 355 360 365
Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380
Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400
Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430
Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445
Leu Ser Pro Gly Lys 450
<210> 41 <211> 454 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 57
503583504_1.txt Jul 2019
polypeptide <400> 41 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15
Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Asp Leu 20 25 30
Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 2019210504
35 40 45
Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe 50 55 60
Gln Gly Arg Ile Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Ser Ile Val Val Val Pro Ala Ala Ile Gln Ser Tyr Tyr Tyr Tyr 100 105 110
Tyr Gly Met Gly Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120 125
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 130 135 140
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 145 150 155 160
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 165 170 175
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 180 185 190
Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr 195 200 205
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 210 215 220
Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro 225 230 235 240
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 245 250 255
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Page 58
503583504_1.txt Jul 2019
260 265 270
Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly 275 280 285
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn 290 295 300
Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp 2019210504
305 310 315 320
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro 325 330 335
Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu 340 345 350
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 355 360 365
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 370 375 380
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 385 390 395 400
Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 405 410 415
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 420 425 430
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 435 440 445
Ser Leu Ser Pro Gly Lys 450
<210> 42 <211> 451 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 42 Gln Val Thr Leu Lys Glu Ala Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Page 59
503583504_1.txt Jul 2019
Arg Met Gly Val Asn Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80 2019210504
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Val Arg Ile Ala Gly Asp Tyr Tyr Tyr Tyr Tyr Gly Met 100 105 110
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr 115 120 125
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser 130 135 140
Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu 145 150 155 160
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His 165 170 175
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser 180 185 190
Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys 195 200 205
Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu 210 215 220
Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala 225 230 235 240
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 245 250 255
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 260 265 270
Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val 275 280 285
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe 290 295 300
Page 60
503583504_1.txt Jul 2019
Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly 305 310 315 320
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile 325 330 335
Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val 340 345 350 2019210504
Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 355 360 365
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 370 375 380
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 385 390 395 400
Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 405 410 415
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 420 425 430
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 435 440 445
Pro Gly Lys 450
<210> 43 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 43 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Page 61
503583504_1.txt Jul 2019
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 2019210504
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Page 62
503583504_1.txt Jul 2019
340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 2019210504
385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 44 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 44 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30
Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp 100 105 110
Page 63
503583504_1.txt Jul 2019
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160 2019210504
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Page 64
503583504_1.txt Jul 2019
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430 2019210504
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 45 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 45 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Tyr Gly Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Page 65
503583504_1.txt Jul 2019
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 2019210504
195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Page 66
503583504_1.txt Jul 2019
420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 46 2019210504
<211> 453 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 46 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly 20 25 30
Gly Tyr Asn Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45
Trp Ile Gly Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser 50 55 60
Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe 65 70 75 80
Ser Leu Lys Leu Arg Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95
Cys Ala Arg Glu Asn Ile Val Val Ile Pro Ala Ala Ile Phe Ala Gly 100 105 110
Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala 115 120 125
Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser 130 135 140
Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe 145 150 155 160
Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly 165 170 175
Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 180 185 190
Page 67
503583504_1.txt Jul 2019
Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr 195 200 205
Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr 210 215 220
Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro 225 230 235 240 2019210504
Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255
Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270
Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 275 280 285
Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 290 295 300
Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu 305 310 315 320
Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 325 330 335
Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro 340 345 350
Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 355 360 365
Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380
Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400
Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430
Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445
Leu Ser Pro Gly Lys 450
Page 68
503583504_1.txt Jul 2019
<210> 47 <211> 448 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 47 Glu Val His Leu Val Glu Ser Gly Gly Gly Leu Ala Lys Pro Gly Gly 2019210504
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Asn Ala 20 25 30
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Glu Tyr 85 90 95
Tyr Cys Ile Thr Asp Arg Val Leu Ser Tyr Tyr Ala Met Ala Val Trp 100 105 110
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 115 120 125
Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr 130 135 140
Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 145 150 155 160
Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 165 170 175
Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 180 185 190
Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp 195 200 205
His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys 210 215 220
Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Page 69
503583504_1.txt Jul 2019
225 230 235 240
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255
Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 2019210504
275 280 285
Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val 290 295 300
Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320
Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335
Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350
Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365
Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp 385 390 395 400
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415
Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445
<210> 48 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 48 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Page 70
503583504_1.txt Jul 2019
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Gln Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60 2019210504
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Ser Ser Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105
<210> 49 <211> 108 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 49 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Gln Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Asn Thr Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105
<210> 50 <211> 108 <212> PRT <213> Artificial Sequence
Page 71
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 50 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Glu Ser Val 20 25 30 2019210504
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gly Asn Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105
<210> 51 <211> 108 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 51 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Asn Phe Asp Ser Ser 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Thr Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ile Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Tyr Gly Gly Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Glu Val Glu Ile Lys Page 72
503583504_1.txt Jul 2019
100 105
<210> 52 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide 2019210504
<400> 52 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Gly Asn 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ala Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105
<210> 53 <211> 108 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 53 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Gly Asn 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Page 73
503583504_1.txt Jul 2019
65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Ser Lys Val Glu Ile Lys 100 105
<210> 54 2019210504
<211> 108 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 54 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Asn Phe Asp Ser Asn 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Asn Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105
<210> 55 <211> 108 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 55 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Asn Phe Asp Ser Ser 20 25 30
Ser Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Page 74
503583504_1.txt Jul 2019
35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln Cys Gly Ser Ser Pro 2019210504
85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105
<210> 56 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 56 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 20 25 30
Tyr Leu Ala Trp His Gln Gln Lys Pro Gly Gln Gly Leu Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Phe 85 90 95
Thr Phe Gly Gly Gly Thr Arg Val Glu Ile Lys 100 105
<210> 57 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 57 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Page 75
503583504_1.txt Jul 2019
1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Tyr Tyr 20 25 30
Asn Gly Phe Thr Tyr Leu Asp Trp Phe Leu Gln Lys Pro Gly Gln Ser 35 40 45
Pro His Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 2019210504
50 55 60
Asp Arg Phe Ser Gly Ser Val Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ser 85 90 95
Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys 100 105 110
<210> 58 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 58 Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Asn Ser Asn 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45
Tyr Gly Val Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Arg Ser Leu Gln Ser 65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Asn Asn Trp Pro Pro 85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105
<210> 59 <211> 107 <212> PRT Page 76
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 59 Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Ile Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Arg Tyr Asp 2019210504
20 25 30
Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile 35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Val Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Leu 85 90 95
Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Glu 100 105
<210> 60 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 60 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ile Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Asp Phe Pro Ile 85 90 95
Page 77
503583504_1.txt Jul 2019
Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys 100 105
<210> 61 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
polypeptide <400> 61 Asp Phe Val Met Thr Gln Thr Pro Leu Ser Leu Ser Val Thr Pro Gly 1 5 10 15
Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Gln Ser 20 25 30
Asp Gly Lys Thr Tyr Leu Tyr Trp Tyr Leu Gln Lys Pro Gly Gln Pro 35 40 45
Pro His Leu Leu Ile Tyr Glu Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ser 85 90 95
Ile Gln Leu Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 110
<210> 62 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 62 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30
Asn Gly Tyr Asn Phe Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45
Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asp Arg Ala Ser Gly Val Pro 50 55 60
Page 78
503583504_1.txt Jul 2019
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Leu Tyr Tyr Cys Met Gln Ala 85 90 95
Leu Gln Thr Pro Cys Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 2019210504
<210> 63 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 63 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Glu Val Glu Ile Lys 100 105
<210> 64 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 64 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 20 25 30
Page 79
503583504_1.txt Jul 2019
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Ser Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80 2019210504
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105
<210> 65 <211> 108 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 65 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
Ile Tyr Gly Ala Ser Phe Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Gly Ser Ser Pro 85 90 95
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105
<210> 66 <211> 124 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
Page 80
503583504_1.txt Jul 2019
<400> 66 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45 2019210504
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ile Leu Leu Leu Gly Ala Tyr Tyr Tyr Tyr Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 67 <211> 124 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 67 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ile Leu Leu Val Gly Ala Tyr Tyr Tyr Cys Gly Met Asp Page 81
503583504_1.txt Jul 2019
100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 68 <211> 124 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 68 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 69 <211> 124 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 69 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu Page 82
503583504_1.txt Jul 2019
35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Asn Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 2019210504
85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 70 <211> 121 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 70 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Arg Phe Thr Phe Ser Thr Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly Ile Ser Gly Ser Gly Val Ser Thr His Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp His Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 71 <211> 121 <212> PRT Page 83
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 71 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Tyr Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 2019210504
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Met Val Tyr Val Leu Asp Tyr Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 72 <211> 121 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 72 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Tyr Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala Ile Ser Gly Ser Gly Val Ser Thr Asn Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Page 84
503583504_1.txt Jul 2019
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Met Val Tyr Val Leu Asp Tyr Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 2019210504
<210> 73 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 73 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Arg Phe Thr Phe Ser Thr Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp Tyr Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 74 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 74 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Page 85
503583504_1.txt Jul 2019
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30
Tyr Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60 2019210504
Ser Arg Val Thr Met Ser Lys Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80
Lys Leu Arg Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Asp Pro Asp Gly Asp Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly 100 105 110
Gln Gly Thr Ser Val Thr Val Ser Ser 115 120
<210> 75 <211> 121 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 75 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30
Phe Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Val Thr Met Ser Ile Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Asp Pro Asp Gly Asp Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly 100 105 110
Gln Gly Thr Thr Val Thr Val Ser Ser Page 86
503583504_1.txt Jul 2019
115 120
<210> 76 <211> 127 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide 2019210504
<400> 76 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Ala 20 25 30
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr 85 90 95
Phe Cys Thr Ser Thr Tyr Ser Ser Gly Trp Tyr Val Trp Asp Tyr Tyr 100 105 110
Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120 125
<210> 77 <211> 127 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 77 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Ala 20 25 30
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala Page 87
503583504_1.txt Jul 2019
50 55 60
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr 85 90 95
Phe Cys Thr Ser Thr Tyr Ser Ser Gly Trp Tyr Val Trp Asp Tyr Tyr 2019210504
100 105 110
Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120 125
<210> 78 <211> 128 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 78 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15
Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Asp Leu 20 25 30
Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45
Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe 50 55 60
Gln Gly Arg Ile Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Ser Ile Val Val Val Pro Ala Ala Ile Gln Ser Tyr Tyr Tyr Tyr 100 105 110
Tyr Gly Met Gly Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120 125
<210> 79 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 88
503583504_1.txt Jul 2019
polypeptide <400> 79 Gln Val Thr Leu Lys Glu Ala Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Asn Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 2019210504
35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Val Arg Ile Ala Gly Asp Tyr Tyr Tyr Tyr Tyr Gly Met 100 105 110
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120 125
<210> 80 <211> 127 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 80 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly 20 25 30
Gly Tyr Asn Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45
Trp Ile Gly Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser 50 55 60
Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe 65 70 75 80
Ser Leu Lys Leu Arg Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95
Page 89
503583504_1.txt Jul 2019
Cys Ala Arg Glu Asn Ile Val Val Ile Pro Ala Ala Ile Phe Ala Gly 100 105 110
Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125
<210> 81 <211> 122 <212> PRT 2019210504
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 81 Glu Val His Leu Val Glu Ser Gly Gly Gly Leu Ala Lys Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Asn Ala 20 25 30
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Glu Tyr 85 90 95
Tyr Cys Ile Thr Asp Arg Val Leu Ser Tyr Tyr Ala Met Ala Val Trp 100 105 110
Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 82 <211> 124 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 82 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30
Page 90
503583504_1.txt Jul 2019
Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 2019210504
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 83 <211> 124 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 83 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 84 Page 91
503583504_1.txt Jul 2019
<211> 124 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 84 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15 2019210504
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Tyr Gly Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 85 <211> 324 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 85 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggtcagac ggccaggatt 60 acctgtgggg gaaacaacat tggaagtcag agtgtgcact ggtaccagca gaagccaggc 120 caggcccctg tcctggtcgt ctatgatgat agcgaccggc cctcagggat ccctgagcga 180
ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gatagtagta gtgatcatgt ggtattcggc 300
ggagggacca agctgaccgt ccta 324
<210> 86 <211> 324 <212> DNA <213> Artificial Sequence Page 92
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 86 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60 acctgtgggg gaaacaacat tggaagtcaa agtgtgcact ggtaccagca gaagccaggc 120 caggcccctg tcctggtcgt ctatgatgat agcgaccggc cctcagggat ccctgagcga 180 2019210504
ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gataatacta gtgatcatgt ggtattcggc 300
ggggggacca aactgaccgt ccta 324
<210> 87 <211> 324 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 87 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60
acctgtgggg gaaacaacat tggaagtgaa agtgtgcact ggtaccagca gaagccaggc 120
caggcccctg tgctggtcgt ctatgatgat agcgaccggc cctcagggat ccctgagcga 180
ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gatggtaata gtgatcatgt ggtattcggc 300
ggagggacca agctgaccgt ccta 324
<210> 88 <211> 324 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 88 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgca gggccagtca gaattttgac agcagttact tagcctggta ccagcagaaa 120 cctggccagg ctccccggct cctcatctat ggtacatcca gcagggccac tggcatccca 180
gacaggttca gtggcattgg gtctgggaca gacttcactc tcaccatcaa cagactggag 240 cctgaagatt ttgcaatgta ttactgtcag cagtatggtg gctcaccgct cactttcggc 300 ggagggaccg aggtggaaat caaa 324
<210> 89 <211> 324 <212> DNA Page 93
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 89 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttagc ggcaactact tggcctggta ccagcagaaa 120 cctggccagg ctcccaggct cctcatctat ggtgcatcca gcagggccac tggcatccca 180 2019210504
gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 240 cctgaagatt ttgcagtgta ttattgtcag cagtatggta gcgcaccgct cactttcggc 300 ggagggacca aggtggaaat caaa 324
<210> 90 <211> 324 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 90 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttagc ggcaactact tggcctggta ccagcagaaa 120
cctggccagg ctcccaggct cctcatctat ggtgcatcca gcagggccac tggcatccca 180
gacagattca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 240
cctgaagatt ttgcaatgta ttattgtcag cagtatggta gctcaccgct cactttcggc 300 ggagggtcca aggtggagat caaa 324
<210> 91 <211> 324 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 91 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gaatttcgac agcaactact tagcctggta ccagcagaag 120
cctggccagg ctccccggct cctcatctat ggtgcatcca gcagggccac tggcatccca 180 gacaacttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 240
cctgaagatt ttgcaatgta ttactgtcag cagtatggta gttcaccgct cactttcggc 300 ggagggacca aggtggaaat caaa 324
<210> 92 <211> 324 Page 94
503583504_1.txt Jul 2019
<212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 92 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagggccacc 60 ctctcctgca gggccagtca gaattttgac agcagctcct tagcctggta ccagcagaaa 120 2019210504
cctggccagg ctccccggct cctcatctat ggtgcatcca gcagggccac tggcatccca 180 gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 240
cctgaagatt ttgcaatgta ttactgtcag cagtgtggta gctcaccgct cactttcggc 300 ggagggacca aggtggaaat caaa 324
<210> 93 <211> 321 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 93 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgca gggccagtca gagtgttagc agtacctact tagcctggca ccagcagaaa 120
cctggccagg gtcttaggct cctcatctat ggtgcatcca gcagggccac tggcatccca 180 gacaggttca gtggcagtgg gtctgggaca gacttcactc ttaccatcag cagactggag 240
cctgaagatt ttgcagtgta ttactgtcag cagtatggaa gctcattcac tttcggcgga 300
gggaccaggg tggagatcaa a 321
<210> 94 <211> 336 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 94 gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60 atctcctgca ggtctagtca gagcctcctg tattataatg gattcaccta tttggattgg 120
ttcctgcaga agccagggca gtctccacat ctcctgatct atttgggttc taatcgggcc 180 tccggggtcc ctgacaggtt cagtggcagt gtttcaggca cagattttac actgaaaatc 240 agcagagtgg aggctgagga tgttggggtt tattattgca tgcagtctct gcaaactcca 300
ttcactttcg gccctgggac caaagtggat atcaaa 336
<210> 95 Page 95
503583504_1.txt Jul 2019
<211> 321 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 95 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttaac agcaacttag cctggtacca gcagaaacct 120 2019210504
ggccaggctc ccaggctcct catttatggt gtatccacca gggccactgg tatcccagcc 180 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatccgcag cctgcagtct 240 gaagattttg cagtttatta ctgtcagcag tataataact ggcctccgac gttcggccaa 300
gggaccaagg tggaaatcaa a 321
<210> 96 <211> 321 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 96 gacatacagc tgacccagtc tccatcctcc ctgtctgcat ctataggaga cagagtcacc 60
atcacttgcc gggcaagtca ggacattaga tatgatttag gctggtatca gcagaaacca 120
gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccttca 180
aggttcagcg gcagtggatc tgggacagaa ttcactctca cagtcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt accctctcac tttcggcgga 300
gggaccaagg tggagatcga a 321
<210> 97 <211> 321 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 97 gacatccaga tgacccagtc tccctcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
atcacttgtc gggcgagtca gggtattagc atctggttag cctggtatca gcagaaacct 120 gggaaagccc ctaaactcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
aggttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240 gaagattttg caacttacta ttgtcaacag gctaacgatt tcccgatcac cttcggccaa 300 gggacacgac tggagattaa a 321
Page 96
503583504_1.txt Jul 2019
<210> 98 <211> 336 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 98 gattttgtga tgacccagac tccactctct ctgtccgtca cccctggaca gccggcctcc 60 2019210504
atctcctgca agtctagtca gagcctccta cagagtgatg gaaagaccta tttgtattgg 120 tacctgcaga agccaggcca gcctccacat ctcctgatct atgaagtttc caaccgattc 180
tctggagtgc cagataggtt cagtggcagc gggtcaggga cagatttcac actgaaaatc 240 agccgggtgg aggctgagga tgttggggtt tattactgca tgcaaagtat acagcttcct 300
cggacgttcg gccaagggac caaggtggaa atcaaa 336
<210> 99 <211> 336 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 99 gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
atctcctgca ggtctagtca gagcctcctg catagtaatg gatacaactt tttggattgg 120 tacctacaga agccagggca gtctccacag ctcctgatct atttgggttc tgatcgggcc 180
tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagagtttac actgaaaatc 240
agcagagtgg aggctgagga tgttgggctt tattactgca tgcaagctct acaaactccg 300 tgcagttttg gccaggggac caagctggag atcaaa 336
<210> 100 <211> 324 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 100 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgca gggccagtca gagtgttagt agcacctatt tagcctggta ccagcagaaa 120 cctggccagg ctcccaggct cctcatctat ggtgcatcca gcagggccac tggcatccca 180 gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 240
cctgaagatt ttgcagttta ttactgtcag cagtctggta gctcaccgct cactttcggc 300 ggagggaccg aggtggagat caaa 324
Page 97
503583504_1.txt Jul 2019
<210> 101 <211> 324 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 101 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60 2019210504
ctctcctgca gggccagtca gagtgttagc agcacctact tagcctggta ccagcagaaa 120 cctggccagg ctcccagtct cctcatctat ggtgcatcca gcagggccac tggcatccca 180 gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 240
cctgaggatt ttgcagtgta ttactgtcag cagtctggta gctcacctct cactttcggc 300 ggagggacca aggtggagat caaa 324
<210> 102 <211> 324 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 102 gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgca gggccagtca gagtgttagc agcacctact tagcctggta ccagcagaaa 120
cctggccagg ctcccaggct cctcatctat ggtgcatcct tcagggccac tggcatccca 180 gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 240
cctgaggatt ttgcagtgta ttactgtcag cagtctggta gctcacctct cactttcggc 300
ggagggacca aggtggagat caaa 324
<210> 103 <211> 372 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 103 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60 acctgcaccg tctctgggtt ctcactcagc aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtccttacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggata 300
ttattactgg gagcttacta ctactacggt atggacgtct ggggccaagg gaccacggtc 360 Page 98
503583504_1.txt Jul 2019
accgtctcct ca 372
<210> 104 <211> 372 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide 2019210504
<400> 104 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tctctgggtt ctcactcagc aatgctagaa tgggtgtgag ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtccttacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggata 300 ttattagtgg gagcttacta ctactgcggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcct ca 372
<210> 105 <211> 372 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 105 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tctctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaatta tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcct ca 372
<210> 106 <211> 372 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 106 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60 acctgcaccg tctctgggtt ctcactcagc aatgctagaa tgggtgtgag ctggatccgt 120
Page 99
503583504_1.txt Jul 2019
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagaa caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtccttatta tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300
gtagtgactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360 accgtctcct ca 372
<210> 107 2019210504
<211> 363 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 107 gaggtgcagc tgttggagtc tgggggaggg ttggtacagc cgggggggtc cctgagactc 60 tcctgtgcag cctctagatt cacctttagc acctatgcca tgagctgggt ccgccaggct 120
ccagggaagg ggctggagtg ggtctcaggt attagtggta gtggtgtcag cacacactac 180 gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaatccctc 300
attgtagtaa tagtatatgc ccttgaccac tggggccagg gaaccctggt caccgtctcc 360
tca 363
<210> 108 <211> 363 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 108 gaggtgcagc tgttggagtc tgggggaggc ttggtacagc cgggggggta cctgagactc 60 tcctgtgcag cctctggatt cacgtttagt acctatgcca tgagctgggt ccgccaggct 120
ccagggaagg gactggagtg ggtctcagct atcagtggta gtggtgttag cacatactac 180 gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaatccctt 300 attgtagtaa tggtgtatgt ccttgactac tggggccagg gaaccctggt caccgtctcc 360
tca 363
<210> 109 <211> 363 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 100
503583504_1.txt Jul 2019
polynucleotide <400> 109 gaggtgcagc tgttggagtc tgggggaggc ttggtacagc cgggggggta cctgagactc 60 tcctgtgcag cctctggatt cacgtttagc acctatgcca tgagctgggt ccgccaggct 120
ccagggaagg gactggagtg ggtctcagct attagtggca gtggtgtgag cacaaactac 180 gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaatccctt 300 2019210504
attgtagtaa tggtgtatgt ccttgactac tggggccagg gaaccctggt caccgtctcc 360 tca 363
<210> 110 <211> 363 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 110 gaggtgcagc tgttggagtc tgggggaggg ttggtacagc cgggggggtc cctgagactc 60
tcctgtgcag cctctagatt cacctttagc acctatgcca tgagctgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcaggt attagtggta gtggtgttag cacatactac 180
gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaatccctt 300
attgtagtaa tagtatatgc ccttgactac tggggccagg gaaccctggt caccgtctcc 360 tca 363
<210> 111 <211> 363 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 111 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagt agttactact ggagctggat ccggcagccc 120
gccgggaagg gactggagtg gattgggcgt atctatacca gtgggagcac caactacaac 180 ccctccctca agagtcgggt caccatgtca aaagacacgt ccaagaacca gttctccctg 240
aagctgaggt ctgtgaccgc cgcggacacg gccgtgtatt actgtgcgag agatccggac 300 ggtgactact actactacgg tatggacgtc tggggccaag ggacctcggt caccgtctcc 360 tca 363
Page 101
503583504_1.txt Jul 2019
<210> 112 <211> 363 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 112 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60 2019210504
acctgcactg tctctggtgg ctccatcagt agttacttct ggagctggat ccggcagccc 120 gccgggaagg gactggagtg gattgggcgt atctatacca gtgggagcac caactacaac 180
ccctccctca agagtcgagt caccatgtca atagacacgt ccaagaacca gttctccctg 240 aagctgagtt ctgtgaccgc cgcggacacg gccgtgtatt actgtgcgag agatccggac 300
ggtgactact actactacgg tatggacgtc tggggccaag ggaccacggt caccgtctcc 360 tca 363
<210> 113 <211> 381 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 113 gaggtgcagc tggtggagtc tgggggaggc ttggtaaagc ctggggggtc ccttagactc 60 tcctgtgcag cctctggatt cactttcagt gacgcctgga tgagctgggt ccgccaggct 120
ccagggaagg ggctggagtg ggttggccgt attaaaagca aaactgatgg tgggacaaca 180
gactacgctg cacccgtgaa aggcagattc accatctcaa gagatgattc aaaaaacact 240 ctgtatctgc aaatgaacag cctgaaaacc gaggacacag ccgtgtattt ttgtacctct 300
acgtatagca gtggctggta cgtatgggac tactacggta tggacgtctg gggccaaggg 360 accacggtca ccgtctcctc a 381
<210> 114 <211> 384 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 114 caggtccagc tggtacagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg tttcgggata caccctcact gatttatcca tgcactgggt gcgacaggct 120
cctggaaaag ggcttgagtg gatgggaggt tttgatcctg aagatggtga aacaatctac 180 gcacagaagt tccagggcag aatcaccatg accgaggaca catctacaga cacagcctac 240
Page 102
503583504_1.txt Jul 2019
atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc aagtattgta 300 gtagtcccag ctgctataca gagttactac tactactacg gtatgggcgt ctggggccaa 360 gggaccacgg tcaccgtctc ctcc 384
<210> 115 <211> 375 <212> DNA <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 115 caggtcacct tgaaggaggc tggtcctgtg ttggtgaaac ccacagagac cctcacgttg 60
acctgcaccg tctctgggtt ctcactcagc aatgctagaa tgggtgtgaa ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240
gtccttacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacgggtt 300 cgtatagcag gtgattacta ctactactac ggtatggacg tctggggcca agggaccacg 360
gtcaccgtct cctca 375
<210> 116 <211> 381 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 116 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc agtggtggtt acaactggag ctggatccgc 120
cagcacccag ggaagggcct ggagtggatt gggaacatct attacagtgg gagcacctac 180 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240
tccctgaagc tgagatctgt gactgccgcg gacacggccg tgtattactg tgcgagagag 300 aatattgtag taataccagc tgctatattc gcgggttggt tcgacccctg gggccaggga 360
accctggtca ccgtctcctc a 381
<210> 117 <211> 366 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 117 gaggtgcacc tggtggagtc tgggggaggc ttggcaaagc ctggggggtc ccttagactc 60 Page 103
503583504_1.txt Jul 2019
tcctgtgcag cctctggatt cactttcaga aacgcctgga tgagctgggt ccgccaggct 120
ccaggaaagg ggctggaatg ggttggccgt attaaaagca aaactgatgg tgggacaaca 180 gactacgctg cacccgtgaa aggcagattc accatctcga gagatgattc aaaaaacacg 240
ctgtatctgc aaatgaacag cctgaaaacc gaggacacag ccgagtatta ctgtatcaca 300 gatcgggtgc taagctacta cgctatggcc gtctggggcc aagggaccac ggtcaccgtc 360 tcctca 366 2019210504
<210> 118 <211> 372 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 118 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt aactatggca ttcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtat taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagatagg 300
gcagcagctg gtctccacta ctactacggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcct ca 372
<210> 119 <211> 372 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 119 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt agctatggca tccactgggt ccgccaggct 120 ccaggcaagg ggctggaatg ggtggcagtt atatggtatg atggaagtga taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
ctacaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagatagg 300 gcagcagctg gtctccacta ttattacggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcct ca 372
<210> 120 <211> 372 <212> DNA <213> Artificial Sequence Page 104
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 120 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag tgtctggatt caccttcagt agctatggca tccactgggt ccgccaggct 120 ccaggcaagg ggctggaatg ggtggcagtt atatggtatg atggaagtga taaatactat 180 2019210504
ggagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctacaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagatagg 300
gcagcagctg gtctccacta ttattacggt atggacgtct ggggccaagg gaccacggtc 360 accgtctcct ca 372
<210> 121 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 121 Asp Leu Ser Met His 1 5
<210> 122 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 122 Asn Ala Arg Met Gly Val Ser 1 5
<210> 123 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 123 Asp Ala Trp Met Ser 1 5
<210> 124 <211> 5 <212> PRT <213> Artificial Sequence
Page 105
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 124 Thr Tyr Ala Met Ser 1 5
<210> 125 <211> 5 <212> PRT 2019210504
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 125 Ser Tyr Phe Trp Ser 1 5
<210> 126 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 126 Asn Ala Arg Met Gly Val Asn 1 5
<210> 127 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 127 Asn Ala Trp Met Ser 1 5
<210> 128 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 128 Ser Tyr Gly Ile His 1 5
<210> 129 <211> 5 <212> PRT Page 106
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 129 Asn Tyr Gly Ile His 1 5
<210> 130 2019210504
<211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 130 Ser Gly Gly Tyr Asn Trp Ser 1 5
<210> 131 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 131 Ser Tyr Tyr Trp Ser 1 5
<210> 132 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 132 Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe Gln 1 5 10 15
Gly
<210> 133 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 133 His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser Leu Lys Ser Page 107
503583504_1.txt Jul 2019
1 5 10 15
<210> 134 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 2019210504
<400> 134 His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser Leu Lys Asn 1 5 10 15
<210> 135 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 135 Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala Pro 1 5 10 15
Val Lys Gly
<210> 136 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 136 Gly Ile Ser Gly Ser Gly Val Ser Thr His Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 137 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 137 Gly Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly Page 108
503583504_1.txt Jul 2019
<210> 138 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 2019210504
<400> 138 Ala Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 139 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 139 Ala Ile Ser Gly Ser Gly Val Ser Thr Asn Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 140 <211> 16 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 140 Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser 1 5 10 15
<210> 141 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 141 Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly Page 109
503583504_1.txt Jul 2019
<210> 142 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 2019210504
<400> 142 Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 143 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 143 Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Tyr Gly Asp Ser Val Lys 1 5 10 15
Gly
<210> 144 <211> 16 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 144 Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser 1 5 10 15
<210> 145 <211> 19 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 145 Ile Val Val Val Pro Ala Ala Ile Gln Ser Tyr Tyr Tyr Tyr Tyr Gly 1 5 10 15
Met Gly Val Page 110
503583504_1.txt Jul 2019
<210> 146 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 2019210504
<400> 146 Ile Leu Leu Leu Gly Ala Tyr Tyr Tyr Tyr Gly Met Asp Val 1 5 10
<210> 147 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 147 Ile Leu Leu Val Gly Ala Tyr Tyr Tyr Cys Gly Met Asp Val 1 5 10
<210> 148 <211> 14 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 148 Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp Val 1 5 10
<210> 149 <211> 16 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 149 Thr Tyr Ser Ser Gly Trp Tyr Val Trp Asp Tyr Tyr Gly Met Asp Val 1 5 10 15
<210> 150 <211> 12 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
Page 111
503583504_1.txt Jul 2019
<400> 150 Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp His 1 5 10
<210> 151 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
peptide <400> 151 Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp Tyr 1 5 10
<210> 152 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 152 Ser Leu Ile Val Val Met Val Tyr Val Leu Asp Tyr 1 5 10
<210> 153 <211> 13 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 153 Asp Pro Asp Gly Asp Tyr Tyr Tyr Tyr Gly Met Asp Val 1 5 10
<210> 154 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 154 Val Arg Ile Ala Gly Asp Tyr Tyr Tyr Tyr Tyr Gly Met Asp Val 1 5 10 15
<210> 155 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 112
503583504_1.txt Jul 2019
peptide <400> 155 Asp Arg Val Leu Ser Tyr Tyr Ala Met Ala Val 1 5 10
<210> 156 <211> 15 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 156 Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp Val 1 5 10 15
<210> 157 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 157 Glu Asn Ile Val Val Ile Pro Ala Ala Ile Phe Ala Gly Trp Phe Asp 1 5 10 15
Pro
<210> 158 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 158 Arg Ala Ser Gln Asp Ile Arg Tyr Asp Leu Gly 1 5 10
<210> 159 <211> 16 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 159 Arg Ser Ser Gln Ser Leu Leu Tyr Tyr Asn Gly Phe Thr Tyr Leu Asp 1 5 10 15
<210> 160 Page 113
503583504_1.txt Jul 2019
<211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 160 Arg Ala Ser Gln Asn Phe Asp Ser Ser Ser Leu Ala 1 5 10 2019210504
<210> 161 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 161 Arg Ala Ser Gln Asn Phe Asp Ser Ser Tyr Leu Ala 1 5 10
<210> 162 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 162 Arg Ala Ser Gln Ser Val Ser Gly Asn Tyr Leu Ala 1 5 10
<210> 163 <211> 12 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 163 Arg Ala Ser Gln Ser Val Ser Ser Thr Tyr Leu Ala 1 5 10
<210> 164 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 164 Arg Ala Ser Gln Asn Phe Asp Ser Asn Tyr Leu Ala 1 5 10
Page 114
503583504_1.txt Jul 2019
<210> 165 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 165 Arg Ala Ser Gln Ser Val Asn Ser Asn Leu Ala 2019210504
1 5 10
<210> 166 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 166 Gly Gly Asn Asn Ile Gly Ser Glu Ser Val His 1 5 10
<210> 167 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 167 Gly Gly Asn Asn Ile Gly Ser Gln Ser Val His 1 5 10
<210> 168 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 168 Arg Ala Ser Gln Gly Ile Ser Ile Trp Leu Ala 1 5 10
<210> 169 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 169 Lys Ser Ser Gln Ser Leu Leu Gln Ser Asp Gly Lys Thr Tyr Leu Tyr Page 115
503583504_1.txt Jul 2019
1 5 10 15
<210> 170 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 2019210504
<400> 170 Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Tyr Asn Phe Leu Asp 1 5 10 15
<210> 171 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 171 Ala Ala Ser Ser Leu Gln Ser 1 5
<210> 172 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 172 Leu Gly Ser Asn Arg Ala Ser 1 5
<210> 173 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 173 Gly Ala Ser Ser Arg Ala Thr 1 5
<210> 174 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
Page 116
503583504_1.txt Jul 2019
<400> 174 Gly Thr Ser Ser Arg Ala Thr 1 5
<210> 175 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
peptide <400> 175 Gly Val Ser Thr Arg Ala Thr 1 5
<210> 176 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 176 Asp Asp Ser Asp Arg Pro Ser 1 5
<210> 177 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 177 Glu Val Ser Asn Arg Phe Ser 1 5
<210> 178 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 178 Leu Gly Ser Asp Arg Ala Ser 1 5
<210> 179 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 117
503583504_1.txt Jul 2019
peptide <400> 179 Gly Ala Ser Phe Arg Ala Thr 1 5
<210> 180 <211> 9 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 180 Leu Gln His Asn Ser Tyr Pro Leu Thr 1 5
<210> 181 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 181 Met Gln Ser Leu Gln Thr Pro Phe Thr 1 5
<210> 182 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 182 Gln Gln Cys Gly Ser Ser Pro Leu Thr 1 5
<210> 183 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 183 Gln Gln Tyr Gly Gly Ser Pro Leu Thr 1 5
<210> 184 <211> 9 <212> PRT <213> Artificial Sequence
Page 118
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 184 Gln Gln Tyr Gly Ser Ala Pro Leu Thr 1 5
<210> 185 <211> 8 <212> PRT 2019210504
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 185 Gln Gln Tyr Gly Ser Ser Phe Thr 1 5
<210> 186 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 186 Gln Gln Tyr Gly Ser Ser Pro Leu Thr 1 5
<210> 187 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 187 Gln Gln Tyr Asn Asn Trp Pro Pro Thr 1 5
<210> 188 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 188 Gln Val Trp Asp Gly Asn Ser Asp His Val Val 1 5 10
<210> 189 <211> 11 <212> PRT Page 119
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 189 Gln Val Trp Asp Asn Thr Ser Asp His Val Val 1 5 10
<210> 190 2019210504
<211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 190 Gln Val Trp Asp Ser Ser Ser Asp His Val Val 1 5 10
<210> 191 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 191 Gln Gln Ala Asn Asp Phe Pro Ile Thr 1 5
<210> 192 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 192 Met Gln Ser Ile Gln Leu Pro Arg Thr 1 5
<210> 193 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 193 Met Gln Ala Leu Gln Thr Pro Cys Ser 1 5
<210> 194 Page 120
503583504_1.txt Jul 2019
<211> 9 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 194 Gln Gln Ser Gly Ser Ser Pro Leu Thr 1 5 2019210504
<210> 195 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 195 gatttatcca tgcac 15
<210> 196 <211> 21 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 196 aatgctagaa tgggtgtgag c 21
<210> 197 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 197 gacgcctgga tgagc 15
<210> 198 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 198 acctatgcca tgagc 15
<210> 199 <211> 15 <212> DNA Page 121
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 199 agttacttct ggagc 15
<210> 200 <211> 21 2019210504
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 200 aatgctagaa tgggtgtgaa c 21
<210> 201 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 201 aacgcctgga tgagc 15
<210> 202 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 202 agctatggca tccac 15
<210> 203 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 203 aactatggca ttcac 15
<210> 204 <211> 21 <212> DNA <213> Artificial Sequence
<220> Page 122
503583504_1.txt Jul 2019
<223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 204 agtggtggtt acaactggag c 21
<210> 205 <211> 51 <212> DNA <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 205 ggttttgatc ctgaagatgg tgaaacaatc tacgcacaga agttccaggg c 51
<210> 206 <211> 48 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 206 cacatttttt cgaatgacga aaaatcctac agcacatctc tgaagagc 48
<210> 207 <211> 48 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 207 cacatttttt cgaatgacga aaaatcctac agcacatctc tgaagaac 48
<210> 208 <211> 57 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 208 cgtattaaaa gcaaaactga tggtgggaca acagactacg ctgcacccgt gaaaggc 57
<210> 209 <211> 51 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
Page 123
503583504_1.txt Jul 2019
<400> 209 ggtattagtg gtagtggtgt cagcacacac tacgcagact ccgtgaaggg c 51
<210> 210 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide 2019210504
<400> 210 ggtattagtg gtagtggtgt tagcacatac tacgcagact ccgtgaaggg c 51
<210> 211 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 211 gctatcagtg gtagtggtgt tagcacatac tacgcagact ccgtgaaggg c 51
<210> 212 <211> 51 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 212 gctattagtg gcagtggtgt gagcacaaac tacgcagact ccgtgaaggg c 51
<210> 213 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 213 cgtatctata ccagtgggag caccaactac aacccctccc tcaagagt 48
<210> 214 <211> 51 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 214 gttatatggt atgatggaag tgataaatac tatgcagact ccgtgaaggg c 51
Page 124
503583504_1.txt Jul 2019
<210> 215 <211> 51 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 215 gttatatggt atgatggaag tattaaatac tatgcagact ccgtgaaggg c 51 2019210504
<210> 216 <211> 51 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 216 gttatatggt atgatggaag tgataaatac tatggagact ccgtgaaggg c 51
<210> 217 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 217 aacatctatt acagtgggag cacctactac aacccgtccc tcaagagt 48
<210> 218 <211> 57 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 218 attgtagtag tcccagctgc tatacagagt tactactact actacggtat gggcgtc 57
<210> 219 <211> 42 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 219 atattattac tgggagctta ctactactac ggtatggacg tc 42
<210> 220 <211> 42 Page 125
503583504_1.txt Jul 2019
<212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 220 atattattag tgggagctta ctactactgc ggtatggacg tc 42
<210> 221 2019210504
<211> 42 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 221 tcagtagtaa ctggcggcta ctactacgac ggtatggacg tc 42
<210> 222 <211> 48 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 222 acgtatagca gtggctggta cgtatgggac tactacggta tggacgtc 48
<210> 223 <211> 36 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 223 tccctcattg tagtaatagt atatgccctt gaccac 36
<210> 224 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 224 tcccttattg tagtaatagt atatgccctt gactac 36
<210> 225 <211> 36 <212> DNA <213> Artificial Sequence
Page 126
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 225 tcccttattg tagtaatggt gtatgtcctt gactac 36
<210> 226 <211> 39 <212> DNA <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 226 gatccggacg gtgactacta ctactacggt atggacgtc 39
<210> 227 <211> 45 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 227 gttcgtatag caggtgatta ctactactac tacggtatgg acgtc 45
<210> 228 <211> 33 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 228 gatcgggtgc taagctacta cgctatggcc gtc 33
<210> 229 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 229 gatagggcag cagctggtct ccactattat tacggtatgg acgtc 45
<210> 230 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide Page 127
503583504_1.txt Jul 2019
<400> 230 gagaatattg tagtaatacc agctgctata ttcgcgggtt ggttcgaccc c 51
<210> 231 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
oligonucleotide <400> 231 cgggcaagtc aggacattag atatgattta ggc 33
<210> 232 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 232 aggtctagtc agagcctcct gtattataat ggattcacct atttggat 48
<210> 233 <211> 36 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 233 agggccagtc agaattttga cagcagctcc ttagcc 36
<210> 234 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 234 agggccagtc agaattttga cagcagttac ttagcc 36
<210> 235 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 235 agggccagtc agagtgttag cggcaactac ttggcc 36 Page 128
503583504_1.txt Jul 2019
<210> 236 <211> 36 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 236 2019210504
agggccagtc agagtgtgag cagtacctac ttagcc 36
<210> 237 <211> 36 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 237 agggccagtc agaatttcga cagcaactac ttagcc 36
<210> 238 <211> 33 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 238 agggccagtc agagtgttaa cagcaactta gcc 33
<210> 239 <211> 33 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 239 gggggaaaca acattggaag tgaaagtgtg cac 33
<210> 240 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 240 gggggaaaca acattggaag tcaaagtgtg cac 33
<210> 241 Page 129
503583504_1.txt Jul 2019
<211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 241 cgggcgagtc agggtattag catctggtta gcc 33 2019210504
<210> 242 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 242 aagtctagtc agagcctcct acagagtgat ggaaagacct atttgtat 48
<210> 243 <211> 48 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 243 aggtctagtc agagcctcct gcatagtaat ggatacaact ttttggat 48
<210> 244 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 244 gctgcatcca gtttgcaaag t 21
<210> 245 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 245 ttgggttcta atcgggcctc c 21
<210> 246 <211> 21 <212> DNA <213> Artificial Sequence Page 130
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 246 ggtgcatcca gcagggccac t 21
<210> 247 <211> 21 <212> DNA 2019210504
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 247 ggtacatcca gcagggccac t 21
<210> 248 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 248 ggtgtatcca ccagggccac t 21
<210> 249 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 249 gatgatagcg accggccctc a 21
<210> 250 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 250 gaagtttcca accgattctc t 21
<210> 251 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 131
503583504_1.txt Jul 2019
oligonucleotide <400> 251 ttgggttctg atcgggcctc c 21
<210> 252 <211> 27 <212> DNA <213> Artificial Sequence <220> 2019210504
<223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 252 ctacagcata atagttaccc tctcact 27
<210> 253 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 253 atgcagtctc tgcaaactcc attcact 27
<210> 254 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 254 cagcagtgtg gtagctcacc gctcact 27
<210> 255 <211> 27 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 255 cagcagtatg gtggctcacc gctcact 27
<210> 256 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 256 Page 132
503583504_1.txt Jul 2019
cagcagtatg gtagcgcacc gctcact 27
<210> 257 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide 2019210504
<400> 257 cagcagtatg gaagttcatt cact 24
<210> 258 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 258 cagcagtatg gtagctcacc gctcact 27
<210> 259 <211> 27 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 259 cagcagtata ataactggcc tccgacg 27
<210> 260 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 260 caggtgtggg atggtaatag tgatcatgtg gta 33
<210> 261 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 261 caggtgtggg ataatactag tgatcatgtg gta 33
Page 133
503583504_1.txt Jul 2019
<210> 262 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 262 caggtgtggg atagtagtag tgatcatgtg gta 33 2019210504
<210> 263 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 263 caacaggcta acgatttccc gatcacc 27
<210> 264 <211> 27 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 264 atgcaaagta tacagcttcc tcggacg 27
<210> 265 <211> 27 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 265 atgcaagctc tacaaactcc gtgcagt 27
<210> 266 <211> 27 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 266 cagcagtctg gtagctcacc tctcact 27
<210> 267 <211> 9 <212> PRT Page 134
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 267 Leu Gln His Asn Ser Tyr Pro Leu Thr 1 5
<210> 268 2019210504
<211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 268 Met Gln Ser Leu Gln Thr Pro Phe Thr 1 5
<210> 269 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 269 Gln Gln Tyr Asn Asn Trp Pro Pro Thr 1 5
<210> 270 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 270 Met Gln Ser Ile Gln Leu Pro Arg Thr 1 5
<210> 271 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 271 Gln Gln Ala Asn Asp Phe Pro Ile Thr 1 5
<210> 272 Page 135
503583504_1.txt Jul 2019
<211> 9 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 272 Met Gln Ala Leu Gln Thr Pro Cys Ser 1 5 2019210504
<210> 273 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 273 Gln Val Trp Asp Gly Asn Ser Asp His Val Val 1 5 10
<210> 274 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 274 Gln Val Trp Asp Asn Thr Ser Asp His Val Val 1 5 10
<210> 275 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 275 Gln Val Trp Asp Ser Ser Ser Asp His Val Val 1 5 10
<210> 276 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (5)..(5) Page 136
503583504_1.txt Jul 2019
<223> Gly, Ser or Asn <220> <221> MOD_RES <222> (6)..(6) <223> Ser, Thr or Asn
<400> 276 Gln Val Trp Asp Xaa Xaa Ser Asp His Val Val 1 5 10 2019210504
<210> 277 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 277 Gln Gln Cys Gly Ser Ser Pro Leu Thr 1 5
<210> 278 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 278 Gln Gln Tyr Gly Gly Ser Pro Leu Thr 1 5
<210> 279 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 279 Gln Gln Tyr Gly Ser Ala Pro Leu Thr 1 5
<210> 280 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 280 Gln Gln Tyr Gly Ser Ser Phe Thr 1 5
Page 137
503583504_1.txt Jul 2019
<210> 281 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 281 Gln Gln Tyr Gly Ser Ser Pro Leu Thr 1 5 2019210504
<210> 282 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 282 Gln Gln Ser Gly Ser Ser Pro Leu Thr 1 5
<210> 283 <211> 9 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (3)..(3) <223> Cys, Tyr or Ser <220> <221> MOD_RES <222> (5)..(5) <223> Ser or Gly <220> <221> MOD_RES <222> (6)..(6) <223> Ser or Ala <220> <221> MOD_RES <222> (7)..(7) <223> Pro or Phe
<220> <221> MOD_RES <222> (8)..(8) <223> Leu or absent <400> 283 Gln Gln Xaa Gly Xaa Xaa Xaa Xaa Thr 1 5
Page 138
503583504_1.txt Jul 2019
<210> 284 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 284 Ala Ala Ser Ser Leu Gln Ser 1 5 2019210504
<210> 285 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 285 Gly Val Ser Thr Arg Ala Thr 1 5
<210> 286 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 286 Asp Asp Ser Asp Arg Pro Ser 1 5
<210> 287 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 287 Glu Val Ser Asn Arg Phe Ser 1 5
<210> 288 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 288 Leu Gly Ser Asn Arg Ala Ser 1 5 Page 139
503583504_1.txt Jul 2019
<210> 289 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 289 2019210504
Leu Gly Ser Asp Arg Ala Ser 1 5
<210> 290 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (4)..(4) <223> Asn or Asp
<400> 290 Leu Gly Ser Xaa Arg Ala Ser 1 5
<210> 291 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 291 Gly Ala Ser Ser Arg Ala Thr 1 5
<210> 292 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 292 Gly Thr Ser Ser Arg Ala Thr 1 5
<210> 293 <211> 7 <212> PRT <213> Artificial Sequence Page 140
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 293 Gly Ala Ser Phe Arg Ala Thr 1 5
<210> 294 <211> 7 2019210504
<212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (2)..(2) <223> Ala or Thr
<220> <221> MOD_RES <222> (4)..(4) <223> Ser or Phe
<400> 294 Gly Xaa Ser Xaa Arg Ala Thr 1 5
<210> 295 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 295 Arg Ala Ser Gln Ser Val Asn Ser Asn Leu Ala 1 5 10
<210> 296 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 296 Arg Ala Ser Gln Asp Ile Arg Tyr Asp Leu Gly 1 5 10
<210> 297 <211> 11 <212> PRT <213> Artificial Sequence
Page 141
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 297 Arg Ala Ser Gln Gly Ile Ser Ile Trp Leu Ala 1 5 10
<210> 298 <211> 16 <212> PRT 2019210504
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 298 Lys Ser Ser Gln Ser Leu Leu Gln Ser Asp Gly Lys Thr Tyr Leu Tyr 1 5 10 15
<210> 299 <211> 12 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 299 Arg Ala Ser Gln Asn Phe Asp Ser Ser Ser Leu Ala 1 5 10
<210> 300 <211> 12 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 300 Arg Ala Ser Gln Asn Phe Asp Ser Ser Tyr Leu Ala 1 5 10
<210> 301 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 301 Arg Ala Ser Gln Ser Val Ser Gly Asn Tyr Leu Ala 1 5 10
<210> 302 <211> 12 <212> PRT Page 142
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 302 Arg Ala Ser Gln Ser Val Ser Gly Thr Tyr Leu Ala 1 5 10
<210> 303 2019210504
<211> 12 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 303 Arg Ala Ser Gln Asn Phe Asp Ser Asn Tyr Leu Ala 1 5 10
<210> 304 <211> 12 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (5)..(5) <223> Asn or Ser <220> <221> MOD_RES <222> (6)..(6) <223> Val or Phe
<220> <221> MOD_RES <222> (7)..(7) <223> Asp or Ser
<220> <221> MOD_RES <222> (8)..(8) <223> Gly or Ser <220> <221> MOD_RES <222> (9)..(9) <223> Ser, Asn or Thr <220> <221> MOD_RES <222> (10)..(10) <223> Ser or Tyr <400> 304 Arg Ala Ser Gln Xaa Xaa Xaa Xaa Xaa Xaa Leu Ala 1 5 10 Page 143
503583504_1.txt Jul 2019
<210> 305 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 305 2019210504
Gly Gly Asn Asn Ile Gly Ser Glu Ser Val His 1 5 10
<210> 306 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 306 Gly Gly Asn Asn Ile Gly Ser Gln Ser Val His 1 5 10
<210> 307 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (8)..(8) <223> Glu or Gln
<400> 307 Gly Gly Asn Asn Ile Gly Ser Xaa Ser Val His 1 5 10
<210> 308 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 308 Arg Ser Ser Gln Ser Leu Leu Tyr Tyr Asn Gly Phe Thr Tyr Leu Asp 1 5 10 15
<210> 309 <211> 16 <212> PRT <213> Artificial Sequence Page 144
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 309 Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Tyr Asn Phe Leu Asp 1 5 10 15
<210> 310 <211> 16 2019210504
<212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (8)..(8) <223> Tyr or His
<220> <221> MOD_RES <222> (9)..(9) <223> Tyr or Ser
<220> <221> MOD_RES <222> (12)..(12) <223> Phe or Tyr
<220> <221> MOD_RES <222> (13)..(13) <223> Thr or Asn <220> <221> MOD_RES <222> (14)..(14) <223> Tyr or Phe
<400> 310 Arg Ser Ser Gln Ser Leu Leu Xaa Xaa Asn Gly Xaa Xaa Xaa Leu Asp 1 5 10 15
<210> 311 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 311 Ile Val Val Val Pro Ala Ala Ile Gln Ser Tyr Tyr Tyr Tyr Tyr Gly 1 5 10 15
Met Gly Val
Page 145
503583504_1.txt Jul 2019
<210> 312 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 312 Asp Pro Asp Gly Asp Tyr Tyr Tyr Tyr Gly Met Asp Val 1 5 10 2019210504
<210> 313 <211> 16 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 313 Thr Tyr Ser Ser Gly Trp Tyr Val Trp Asp Tyr Tyr Gly Met Asp Val 1 5 10 15
<210> 314 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 314 Asp Arg Val Leu Ser Tyr Tyr Ala Met Ala Val 1 5 10
<210> 315 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 315 Val Arg Ile Ala Gly Asp Tyr Tyr Tyr Tyr Tyr Gly Met Asp Val 1 5 10 15
<210> 316 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 316 Glu Asn Ile Val Val Ile Pro Ala Ala Ile Phe Ala Gly Trp Phe Asp 1 5 10 15 Page 146
503583504_1.txt Jul 2019
Pro
<210> 317 <211> 15 <212> PRT <213> Artificial Sequence <220> 2019210504
<223> Description of Artificial Sequence: Synthetic peptide <400> 317 Asp Arg Ala Ala Ala Gly Leu His Tyr Tyr Tyr Gly Met Asp Val 1 5 10 15
<210> 318 <211> 14 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 318 Ile Leu Leu Leu Gly Ala Tyr Tyr Tyr Tyr Gly Met Asp Val 1 5 10
<210> 319 <211> 14 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 319 Ile Leu Leu Val Gly Ala Tyr Tyr Tyr Cys Gly Met Asp Val 1 5 10
<210> 320 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 320 Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp Val 1 5 10
<210> 321 <211> 14 <212> PRT <213> Artificial Sequence
<220> Page 147
503583504_1.txt Jul 2019
<223> Description of Artificial Sequence: Synthetic peptide
<400> 321 Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp Val 1 5 10
<210> 322 <211> 14 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (1)..(1) <223> Ile, Val or Ser <220> <221> MOD_RES <222> (2)..(2) <223> Leu or Val
<220> <221> MOD_RES <222> (3)..(3) <223> Leu, Thr or Val
<220> <221> MOD_RES <222> (4)..(4) <223> Leu, Val, Gly or Thr
<220> <221> MOD_RES <222> (6)..(6) <223> Ala, Gly or absent <220> <221> MOD_RES <222> (10)..(10) <223> Tyr, Cys or Asp <400> 322 Xaa Xaa Xaa Xaa Gly Xaa Tyr Tyr Tyr Xaa Gly Met Asp Val 1 5 10
<210> 323 <211> 12 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 323 Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp His 1 5 10
<210> 324 Page 148
503583504_1.txt Jul 2019
<211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 324 Ser Leu Ile Val Val Ile Val Tyr Ala Leu Asp Tyr 1 5 10 2019210504
<210> 325 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 325 Ser Leu Ile Val Val Met Val Tyr Val Leu Asp Tyr 1 5 10
<210> 326 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (6)..(6) <223> Ile or Met
<220> <221> MOD_RES <222> (9)..(9) <223> Ala or Val <220> <221> MOD_RES <222> (12)..(12) <223> His or Tyr <400> 326 Ser Leu Ile Val Val Xaa Val Tyr Xaa Leu Asp Xaa 1 5 10
<210> 327 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 327 Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe Gln Page 149
503583504_1.txt Jul 2019
1 5 10 15
Gly
<210> 328 <211> 19 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 328 Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala Pro 1 5 10 15
Val Lys Gly
<210> 329 <211> 16 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 329 Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser 1 5 10 15
<210> 330 <211> 18 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 330 Arg Ile Lys Ser Lys Asp Gly Gly Thr Thr Asp Tyr Ala Ala Pro Val 1 5 10 15
Lys Gly
<210> 331 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 331 His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser Leu Lys Ser Page 150
503583504_1.txt Jul 2019
1 5 10 15
<210> 332 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 2019210504
<400> 332 His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser Leu Lys Asn 1 5 10 15
<210> 333 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (16)..(16) <223> Ser or Asn <400> 333 His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser Leu Lys Xaa 1 5 10 15
<210> 334 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 334 Gly Ile Ser Gly Ser Gly Val Ser Thr His Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 335 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 335 Gly Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 5 10 15
Page 151
503583504_1.txt Jul 2019
Gly
<210> 336 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
peptide <400> 336 Ala Ile Ser Gly Ser Gly Val Ser Thr Tyr Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 337 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 337 Ala Ile Ser Gly Ser Gly Val Ser Thr Asn Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 338 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (1)..(1) <223> Gly or Ala <220> <221> MOD_RES <222> (10)..(10) <223> His, Tyr or Asn
<400> 338 Xaa Ile Ser Gly Ser Gly Val Ser Thr Xaa Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
Page 152
503583504_1.txt Jul 2019
<210> 339 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 339 2019210504
Val Ile Trp Tyr Asp Gly Ser Asp Lys Tyr Tyr Ala Asp Ser Val Lys 1 5 10 15
Gly
<210> 340 <211> 17 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 340 Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Gly Asp Ser Val Lys 1 5 10 15
Gly
<210> 341 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (8)..(8) <223> Asp or Ile <220> <221> MOD_RES <222> (12)..(12) <223> Ala or Gly
<400> 341 Val Ile Trp Tyr Asp Gly Ser Xaa Lys Tyr Tyr Xaa Asp Ser Val Lys 1 5 10 15
Gly
<210> 342 Page 153
503583504_1.txt Jul 2019
<211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 342 Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser 1 5 10 15 2019210504
<210> 343 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 343 Arg Ile Tyr Thr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser 1 5 10 15
<210> 344 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (1)..(1) <223> Asn or Arg
<220> <221> MOD_RES <222> (4)..(4) <223> Tyr or Thr <220> <221> MOD_RES <222> (9)..(9) <223> Tyr or Asn <400> 344 Xaa Ile Tyr Xaa Ser Gly Ser Thr Xaa Tyr Asn Pro Ser Leu Lys Ser 1 5 10 15
<210> 345 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 345 Asp Leu Ser Met His Page 154
503583504_1.txt Jul 2019
1 5
<210> 346 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 2019210504
<400> 346 Asp Ala Trp Met Ser 1 5
<210> 347 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 347 Thr Tyr Ala Met Ser 1 5
<210> 348 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 348 Ser Tyr Phe Trp Ser 1 5
<210> 349 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 349 Ser Gly Gly Tyr Asn Trp Ser 1 5
<210> 350 <211> 7 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
Page 155
503583504_1.txt Jul 2019
<400> 350 Asn Ala Arg Met Gly Val Ser 1 5
<210> 351 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 2019210504
peptide <400> 351 Asn Ala Arg Met Gly Val Asn 1 5
<210> 352 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (7)..(7) <223> Ser or Asn
<400> 352 Asn Ala Arg Met Gly Val Xaa 1 5
<210> 353 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 353 Ser Tyr Gly Ile His 1 5
<210> 354 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 354 Asn Tyr Gly Ile His 1 5
<210> 355 Page 156
503583504_1.txt Jul 2019
<211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (1)..(1) 2019210504
<223> Ser or Asn <400> 355 Xaa Tyr Gly Ile His 1 5
<210> 356 <211> 822 <212> PRT <213> Homo sapiens <400> 356 Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 1 5 10 15
Thr Leu Cys Thr Ala Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln 20 25 30
Pro Trp Gly Ala Pro Val Glu Val Glu Ser Phe Leu Val His Pro Gly 35 40 45
Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile 50 55 60
Asn Trp Leu Arg Asp Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg 65 70 75 80
Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser 85 90 95
Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr 100 105 110
Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp 115 120 125
Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr 130 135 140
Lys Pro Asn Arg Met Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys 145 150 155 160
Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe 165 170 175
Page 157
503583504_1.txt Jul 2019
Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys 180 185 190
Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val 195 200 205
Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp 210 215 220 2019210504
Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn 225 230 235 240
His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile 245 250 255
Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn 260 265 270
Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln 275 280 285
Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn 290 295 300
Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp 305 310 315 320
Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala 325 330 335
Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His 340 345 350
Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val 355 360 365
Met Thr Ser Pro Leu Tyr Leu Glu Ile Ile Ile Tyr Cys Thr Gly Ala 370 375 380
Phe Leu Ile Ser Cys Met Val Gly Ser Val Ile Val Tyr Lys Met Lys 385 390 395 400
Ser Gly Thr Lys Lys Ser Asp Phe His Ser Gln Met Ala Val His Lys 405 410 415
Leu Ala Lys Ser Ile Pro Leu Arg Arg Gln Val Thr Val Ser Ala Asp 420 425 430
Ser Ser Ala Ser Met Asn Ser Gly Val Leu Leu Val Arg Pro Ser Arg 435 440 445
Page 158
503583504_1.txt Jul 2019
Leu Ser Ser Ser Gly Thr Pro Met Leu Ala Gly Val Ser Glu Tyr Glu 450 455 460
Leu Pro Glu Asp Pro Arg Trp Glu Leu Pro Arg Asp Arg Leu Val Leu 465 470 475 480
Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly Gln Val Val Leu Ala Glu 485 490 495 2019210504
Ala Ile Gly Leu Asp Lys Asp Lys Pro Asn Arg Val Thr Lys Val Ala 500 505 510
Val Lys Met Leu Lys Ser Asp Ala Thr Glu Lys Asp Leu Ser Asp Leu 515 520 525
Ile Ser Glu Met Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile 530 535 540
Ile Asn Leu Leu Gly Ala Cys Thr Gln Asp Gly Pro Leu Tyr Val Ile 545 550 555 560
Val Glu Tyr Ala Ser Lys Gly Asn Leu Arg Glu Tyr Leu Gln Ala Arg 565 570 575
Arg Pro Pro Gly Leu Glu Tyr Cys Tyr Asn Pro Ser His Asn Pro Glu 580 585 590
Glu Gln Leu Ser Ser Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala 595 600 605
Arg Gly Met Glu Tyr Leu Ala Ser Lys Lys Cys Ile His Arg Asp Leu 610 615 620
Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala 625 630 635 640
Asp Phe Gly Leu Ala Arg Asp Ile His His Ile Asp Tyr Tyr Lys Lys 645 650 655
Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu 660 665 670
Phe Asp Arg Ile Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val 675 680 685
Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Val 690 695 700
Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp 705 710 715 720
Page 159
503583504_1.txt Jul 2019
Lys Pro Ser Asn Cys Thr Asn Glu Leu Tyr Met Met Met Arg Asp Cys 725 730 735
Trp His Ala Val Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu 740 745 750
Asp Leu Asp Arg Ile Val Ala Leu Thr Ser Asn Gln Glu Tyr Leu Asp 755 760 765 2019210504
Leu Ser Met Pro Leu Asp Gln Tyr Ser Pro Ser Phe Pro Asp Thr Arg 770 775 780
Ser Ser Thr Cys Ser Ser Gly Glu Asp Ser Val Phe Ser His Glu Pro 785 790 795 800
Leu Pro Glu Glu Pro Cys Leu Pro Arg His Pro Ala Gln Leu Ala Asn 805 810 815
Gly Gly Leu Lys Arg Arg 820
<210> 357 <211> 822 <212> PRT <213> Mus musculus
<400> 357 Met Trp Gly Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 1 5 10 15
Thr Leu Cys Thr Ala Arg Pro Ala Pro Thr Leu Pro Glu Gln Ala Gln 20 25 30
Pro Trp Gly Val Pro Val Glu Val Glu Ser Leu Leu Val His Pro Gly 35 40 45
Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile 50 55 60
Asn Trp Leu Arg Asp Gly Val Gln Leu Val Glu Ser Asn Arg Thr Arg 65 70 75 80
Ile Thr Gly Glu Glu Val Glu Val Arg Asp Ser Ile Pro Ala Asp Ser 85 90 95
Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr 100 105 110
Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp 115 120 125
Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr Page 160
503583504_1.txt Jul 2019
130 135 140
Lys Pro Asn Arg Arg Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys 145 150 155 160
Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe 165 170 175
Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys 2019210504
180 185 190
Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val 195 200 205
Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp 210 215 220
Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn 225 230 235 240
His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile 245 250 255
Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn 260 265 270
Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln 275 280 285
Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn 290 295 300
Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp 305 310 315 320
Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala 325 330 335
Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His 340 345 350
Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val 355 360 365
Met Thr Ser Pro Leu Tyr Leu Glu Ile Ile Ile Tyr Cys Thr Gly Ala 370 375 380
Phe Leu Ile Ser Cys Met Leu Gly Ser Val Ile Ile Tyr Lys Met Lys 385 390 395 400
Ser Gly Thr Lys Lys Ser Asp Phe His Ser Gln Met Ala Val His Lys Page 161
503583504_1.txt Jul 2019
405 410 415
Leu Ala Lys Ser Ile Pro Leu Arg Arg Gln Val Thr Val Ser Ala Asp 420 425 430
Ser Ser Ala Ser Met Asn Ser Gly Val Leu Leu Val Arg Pro Ser Arg 435 440 445
Leu Ser Ser Ser Gly Thr Pro Met Leu Ala Gly Val Ser Glu Tyr Glu 2019210504
450 455 460
Leu Pro Glu Asp Pro Arg Trp Glu Leu Pro Arg Asp Arg Leu Val Leu 465 470 475 480
Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly Gln Val Val Leu Ala Glu 485 490 495
Ala Ile Gly Leu Asp Lys Asp Lys Pro Asn Arg Val Thr Lys Val Ala 500 505 510
Val Lys Met Leu Lys Ser Asp Ala Thr Glu Lys Asp Leu Ser Asp Leu 515 520 525
Ile Ser Glu Met Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile 530 535 540
Ile Asn Leu Leu Gly Ala Cys Thr Gln Asp Gly Pro Leu Tyr Val Ile 545 550 555 560
Val Glu Tyr Ala Ser Lys Gly Asn Leu Arg Glu Tyr Leu Gln Ala Arg 565 570 575
Arg Pro Pro Gly Leu Glu Tyr Cys Tyr Asn Pro Ser His Asn Pro Glu 580 585 590
Glu Gln Leu Ser Ser Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala 595 600 605
Arg Gly Met Glu Tyr Leu Ala Ser Lys Lys Cys Ile His Arg Asp Leu 610 615 620
Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala 625 630 635 640
Asp Phe Gly Leu Ala Arg Asp Ile His His Ile Asp Tyr Tyr Lys Lys 645 650 655
Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu 660 665 670
Phe Asp Arg Ile Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Page 162
503583504_1.txt Jul 2019
675 680 685
Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Val 690 695 700
Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp 705 710 715 720
Lys Pro Ser Asn Cys Thr Asn Glu Leu Tyr Met Met Met Arg Asp Cys 2019210504
725 730 735
Trp His Ala Val Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu 740 745 750
Asp Leu Asp Arg Ile Val Ala Leu Thr Ser Asn Gln Glu Tyr Leu Asp 755 760 765
Leu Ser Ile Pro Leu Asp Gln Tyr Ser Pro Ser Phe Pro Asp Thr Arg 770 775 780
Ser Ser Thr Cys Ser Ser Gly Glu Asp Ser Val Phe Ser His Glu Pro 785 790 795 800
Leu Pro Glu Glu Pro Cys Leu Pro Arg His Pro Thr Gln Leu Ala Asn 805 810 815
Ser Gly Leu Lys Arg Arg 820
<210> 358 <211> 822 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic consensus sequence
<220> <221> MOD_RES <222> (3)..(3) <223> Ser or Gly
<220> <221> MOD_RES <222> (36)..(36) <223> Ala or Val <220> <221> MOD_RES <222> (43)..(43) <223> Phe or Leu
<220> <221> MOD_RES <222> (74)..(74) <223> Ala or Val Page 163
503583504_1.txt Jul 2019
<220> <221> MOD_RES <222> (89)..(89) <223> Gln or Arg
<220> <221> MOD_RES <222> (149)..(149) <223> Met or Arg <220> 2019210504
<221> MOD_RES <222> (812)..(812) <223> Ala or Thr
<220> <221> MOD_RES <222> (817)..(817) <223> Gly or Ser <400> 358 Met Trp Xaa Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 1 5 10 15
Thr Leu Cys Thr Ala Arg Pro Ala Pro Thr Leu Pro Glu Gln Ala Gln 20 25 30
Pro Trp Gly Xaa Pro Val Glu Val Glu Ser Xaa Leu Val His Pro Gly 35 40 45
Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile 50 55 60
Asn Trp Leu Arg Asp Gly Val Gln Leu Xaa Glu Ser Asn Arg Thr Arg 65 70 75 80
Ile Thr Gly Glu Glu Val Glu Val Xaa Asp Ser Ile Pro Ala Asp Ser 85 90 95
Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr 100 105 110
Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp 115 120 125
Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr 130 135 140
Lys Pro Asn Arg Xaa Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys 145 150 155 160
Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe 165 170 175
Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys 180 185 190 Page 164
503583504_1.txt Jul 2019
Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val 195 200 205
Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp 210 215 220
Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn 225 230 235 240 2019210504
His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile 245 250 255
Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn 260 265 270
Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln 275 280 285
Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn 290 295 300
Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp 305 310 315 320
Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala 325 330 335
Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His 340 345 350
Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val 355 360 365
Met Thr Ser Pro Leu Tyr Leu Glu Ile Ile Ile Tyr Cys Thr Gly Ala 370 375 380
Phe Leu Ile Ser Cys Met Leu Gly Ser Val Ile Ile Tyr Lys Met Lys 385 390 395 400
Ser Gly Thr Lys Lys Ser Asp Phe His Ser Gln Met Ala Val His Lys 405 410 415
Leu Ala Lys Ser Ile Pro Leu Arg Arg Gln Val Thr Val Ser Ala Asp 420 425 430
Ser Ser Ala Ser Met Asn Ser Gly Val Leu Leu Val Arg Pro Ser Arg 435 440 445
Leu Ser Ser Ser Gly Thr Pro Met Leu Ala Gly Val Ser Glu Tyr Glu 450 455 460 Page 165
503583504_1.txt Jul 2019
Leu Pro Glu Asp Pro Arg Trp Glu Leu Pro Arg Asp Arg Leu Val Leu 465 470 475 480
Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly Gln Val Val Leu Ala Glu 485 490 495
Ala Ile Gly Leu Asp Lys Asp Lys Pro Asn Arg Val Thr Lys Val Ala 500 505 510 2019210504
Val Lys Met Leu Lys Ser Asp Ala Thr Glu Lys Asp Leu Ser Asp Leu 515 520 525
Ile Ser Glu Met Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile 530 535 540
Ile Asn Leu Leu Gly Ala Cys Thr Gln Asp Gly Pro Leu Tyr Val Ile 545 550 555 560
Val Glu Tyr Ala Ser Lys Gly Asn Leu Arg Glu Tyr Leu Gln Ala Arg 565 570 575
Arg Pro Pro Gly Leu Glu Tyr Cys Tyr Asn Pro Ser His Asn Pro Glu 580 585 590
Glu Gln Leu Ser Ser Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala 595 600 605
Arg Gly Met Glu Tyr Leu Ala Ser Lys Lys Cys Ile His Arg Asp Leu 610 615 620
Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala 625 630 635 640
Asp Phe Gly Leu Ala Arg Asp Ile His His Ile Asp Tyr Tyr Lys Lys 645 650 655
Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu 660 665 670
Phe Asp Arg Ile Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val 675 680 685
Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Val 690 695 700
Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp 705 710 715 720
Lys Pro Ser Asn Cys Thr Asn Glu Leu Tyr Met Met Met Arg Asp Cys 725 730 735 Page 166
503583504_1.txt Jul 2019
Trp His Ala Val Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu 740 745 750
Asp Leu Asp Arg Ile Val Ala Leu Thr Ser Asn Gln Glu Tyr Leu Asp 755 760 765
Leu Ser Ile Pro Leu Asp Gln Tyr Ser Pro Ser Phe Pro Asp Thr Arg 770 775 780 2019210504
Ser Ser Thr Cys Ser Ser Gly Glu Asp Ser Val Phe Ser His Glu Pro 785 790 795 800
Leu Pro Glu Glu Pro Cys Leu Pro Arg His Pro Xaa Gln Leu Ala Asn 805 810 815
Xaa Gly Leu Lys Arg Arg 820
<210> 359 <211> 1044 <212> PRT <213> Homo sapiens
<400> 359 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Page 167
503583504_1.txt Jul 2019
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190 2019210504
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Page 168
503583504_1.txt Jul 2019
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460 2019210504
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Page 169
503583504_1.txt Jul 2019
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Arg Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735 2019210504
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Page 170
503583504_1.txt Jul 2019
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005 2019210504
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 360 <211> 1043 <212> PRT <213> Mus musculus
<400> 360 Met Lys Thr Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Ser Asp Glu Arg Asn Thr Arg Ser Arg Lys Thr Met Ser Asn 20 25 30
Arg Ala Leu Gln Arg Ser Ala Val Leu Ser Ala Phe Val Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Lys Ala Ile Trp Asp Lys Lys 50 55 60
Gln Tyr Val Ser Pro Val Asn Pro Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val 85 90 95
Glu Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg 100 105 110
Tyr Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160 Page 171
503583504_1.txt Jul 2019
Asn Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg 165 170 175
Ala Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly 195 200 205 2019210504
Trp Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile Asn Cys Gln 305 310 315 320
His Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met Ile Pro Glu 340 345 350
Phe Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala Asp Phe Phe 355 360 365
Ala Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn Thr Val Val 370 375 380
Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val Leu Asn Trp 385 390 395 400
Ile Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser Glu Asn Gly 405 410 415
Trp Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr Ala Ile Tyr 420 425 430 Page 172
503583504_1.txt Jul 2019
Met Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile Lys Phe Asp 435 440 445
Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu Asp Gly Phe 450 455 460
Glu Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe Tyr Val Asp 465 470 475 480 2019210504
Phe Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His Tyr 485 490 495
Tyr Lys Gln Ile Ile Gln Asp Asn Gly Phe Pro Leu Lys Glu Ser Thr 500 505 510
Pro Asp Met Lys Gly Arg Phe Pro Cys Asp Phe Ser Trp Gly Val Thr 515 520 525
Glu Ser Val Leu Lys Pro Glu Phe Thr Val Ser Ser Pro Gln Phe Thr 530 535 540
Asp Pro His Leu Tyr Val Trp Asn Val Thr Gly Asn Arg Leu Leu Tyr 545 550 555 560
Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ser Gln Cys Thr Asp 565 570 575
Tyr Val Ser Ile Lys Lys Arg Val Glu Met Leu Ala Lys Met Lys Val 580 585 590
Thr His Tyr Gln Phe Ala Leu Asp Trp Thr Ser Ile Leu Pro Thr Gly 595 600 605
Asn Leu Ser Lys Val Asn Arg Gln Val Leu Arg Tyr Tyr Arg Cys Val 610 615 620
Val Ser Glu Gly Leu Lys Leu Gly Val Phe Pro Met Val Thr Leu Tyr 625 630 635 640
His Pro Thr His Ser His Leu Gly Leu Pro Leu Pro Leu Leu Ser Ser 645 650 655
Gly Gly Trp Leu Asn Met Asn Thr Ala Lys Ala Phe Gln Asp Tyr Ala 660 665 670
Glu Leu Cys Phe Arg Glu Leu Gly Asp Leu Val Lys Leu Trp Ile Thr 675 680 685
Ile Asn Glu Pro Asn Arg Leu Ser Asp Met Tyr Asn Arg Thr Ser Asn 690 695 700 Page 173
503583504_1.txt Jul 2019
Asp Thr Tyr Arg Ala Ala His Asn Leu Met Ile Ala His Ala Gln Val 705 710 715 720
Trp His Leu Tyr Asp Arg Gln Tyr Arg Pro Val Gln His Gly Ala Val 725 730 735
Ser Leu Ser Leu His Cys Asp Trp Ala Glu Pro Ala Asn Pro Phe Val 740 745 750 2019210504
Asp Ser His Trp Lys Ala Ala Glu Arg Phe Leu Gln Phe Glu Ile Ala 755 760 765
Trp Phe Ala Asp Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ser Val Met 770 775 780
Lys Glu Tyr Ile Ala Ser Lys Asn Gln Arg Gly Leu Ser Ser Ser Val 785 790 795 800
Leu Pro Arg Phe Thr Ala Lys Glu Ser Arg Leu Val Lys Gly Thr Val 805 810 815
Asp Phe Tyr Ala Leu Asn His Phe Thr Thr Arg Phe Val Ile His Lys 820 825 830
Gln Leu Asn Thr Asn Arg Ser Val Ala Asp Arg Asp Val Gln Phe Leu 835 840 845
Gln Asp Ile Thr Arg Leu Ser Ser Pro Ser Arg Leu Ala Val Thr Pro 850 855 860
Trp Gly Val Arg Lys Leu Leu Ala Trp Ile Arg Arg Asn Tyr Arg Asp 865 870 875 880
Arg Asp Ile Tyr Ile Thr Ala Asn Gly Ile Asp Asp Leu Ala Leu Glu 885 890 895
Asp Asp Gln Ile Arg Lys Tyr Tyr Leu Glu Lys Tyr Val Gln Glu Ala 900 905 910
Leu Lys Ala Tyr Leu Ile Asp Lys Val Lys Ile Lys Gly Tyr Tyr Ala 915 920 925
Phe Lys Leu Thr Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe Phe Thr 930 935 940
Ser Asp Phe Arg Ala Lys Ser Ser Val Gln Phe Tyr Ser Lys Leu Ile 945 950 955 960
Ser Ser Ser Gly Leu Pro Ala Glu Asn Arg Ser Pro Ala Cys Gly Gln 965 970 975 Page 174
503583504_1.txt Jul 2019
Pro Ala Glu Asp Thr Asp Cys Thr Ile Cys Ser Phe Leu Val Glu Lys 980 985 990
Lys Pro Leu Ile Phe Phe Gly Cys Cys Phe Ile Ser Thr Leu Ala Val 995 1000 1005
Leu Leu Ser Ile Thr Val Phe His His Gln Lys Arg Arg Lys Phe 1010 1015 1020 2019210504
Gln Lys Ala Arg Asn Leu Gln Asn Ile Pro Leu Lys Lys Gly His 1025 1030 1035
Ser Arg Val Phe Ser 1040
<210> 361 <211> 1045 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic consensus sequence
<220> <221> MOD_RES <222> (3)..(3) <223> Pro or Thr <220> <221> MOD_RES <222> (22)..(22) <223> Ile or Arg
<220> <221> MOD_RES <222> (23)..(23) <223> Thr or Asn <220> <221> MOD_RES <222> (26)..(26) <223> Tyr or Ser <220> <221> MOD_RES <222> (28)..(28) <223> Asn or Lys
<220> <221> MOD_RES <222> (33)..(33) <223> Gly or Arg <220> <221> MOD_RES <222> (39)..(39) <223> Val or Ala
<220> Page 175
503583504_1.txt Jul 2019
<221> MOD_RES <222> (44)..(44) <223> Leu or Phe <220> <221> MOD_RES <222> (62)..(62) <223> Ser or Asp <220> <221> MOD_RES <222> (64)..(64) 2019210504
<223> Asn or Lys <220> <221> MOD_RES <222> (65)..(65) <223> Pro or Gln
<220> <221> MOD_RES <222> (66)..(66) <223> Asn or Tyr <220> <221> MOD_RES <222> (67)..(67) <223> Phe or Val
<220> <221> MOD_RES <222> (72)..(72) <223> Glu or Pro
<220> <221> MOD_RES <222> (86)..(86) <223> Phe or Ser
<220> <221> MOD_RES <222> (94)..(94) <223> Leu or Phe
<220> <221> MOD_RES <222> (102)..(102) <223> Lys or Thr <220> <221> MOD_RES <222> (112)..(112) <223> His or Arg
<220> <221> MOD_RES <222> (120)..(120) <223> Asn or Gly <220> <221> MOD_RES <222> (122)..(122) <223> Ser or Asn
<220> <221> MOD_RES <222> (123)..(123) <223> Ser or Gly Page 176
503583504_1.txt Jul 2019
<220> <221> MOD_RES <222> (125)..(125) <223> Asn or Asp
<220> <221> MOD_RES <222> (126)..(126) <223> Gly or Arg <220> 2019210504
<221> MOD_RES <222> (139)..(139) <223> Ser or Leu
<220> <221> MOD_RES <222> (161)..(161) <223> Asp or Asn <220> <221> MOD_RES <222> (163)..(163) <223> Ile or Thr
<220> <221> MOD_RES <222> (165)..(165) <223> Thr or Ala
<220> <221> MOD_RES <222> (166)..(167) <223> Val or Ala
<220> <221> MOD_RES <222> (170)..(170) <223> Lys or Gln
<220> <221> MOD_RES <222> (173)..(173) <223> Gln or Arg
<220> <221> MOD_RES <222> (176)..(176) <223> Ser or Arg
<220> <221> MOD_RES <222> (177)..(177) <223> Thr or Ala <220> <221> MOD_RES <222> (201)..(201) <223> Ala or Thr
<220> <221> MOD_RES <222> (205)..(205) <223> Lys or Glu <220> <221> MOD_RES Page 177
503583504_1.txt Jul 2019
<222> (212)..(212) <223> Asp or Ala
<220> <221> MOD_RES <222> (228)..(228) <223> Met or Thr <220> <221> MOD_RES <222> (264)..(264) <223> Ala or Thr 2019210504
<220> <221> MOD_RES <222> (285)..(285) <223> Asn or Asp <220> <221> MOD_RES <222> (286)..(286) <223> Thr or Lys <220> <221> MOD_RES <222> (287)..(287) <223> His or Asn
<220> <221> MOD_RES <222> (313)..(313) <223> Thr or Met
<220> <221> MOD_RES <222> (314)..(314) <223> Met or Glu
<220> <221> MOD_RES <222> (317)..(317) <223> Phe or Ile <220> <221> MOD_RES <222> (318)..(318) <223> Lys or Asn <220> <221> MOD_RES <222> (321)..(321) <223> Gln or His <220> <221> MOD_RES <222> (324)..(324) <223> Val or Ser
<220> <221> MOD_RES <222> (343)..(343) <223> Gly or Phe <220> <221> MOD_RES <222> (346)..(346) <223> Lys or Thr
Page 178
503583504_1.txt Jul 2019
<220> <221> MOD_RES <222> (347)..(347) <223> Lys or Gly <220> <221> MOD_RES <222> (348)..(348) <223> Leu or absent <220> <221> MOD_RES 2019210504
<222> (349)..(349) <223> Phe or absent <220> <221> MOD_RES <222> (354)..(354) <223> Ile or glu
<220> <221> MOD_RES <222> (361)..(361) <223> His or Glu
<220> <221> MOD_RES <222> (382)..(382) <223> Leu or Ser
<220> <221> MOD_RES <222> (386)..(386) <223> Ala or Val
<220> <221> MOD_RES <222> (398)..(398) <223> Glu or Gln <220> <221> MOD_RES <222> (399)..(399) <223> Ala or Val
<220> <221> MOD_RES <222> (408)..(409) <223> Asn or Asp
<220> <221> MOD_RES <222> (411)..(411) <223> Arg or Gln <220> <221> MOD_RES <222> (424)..(424) <223> Arg or Tyr <220> <221> MOD_RES <222> (441)..(441) <223> Ser or Asn <220> <221> MOD_RES <222> (449)..(449) Page 179
503583504_1.txt Jul 2019
<223> Leu or Phe <220> <221> MOD_RES <222> (474)..(474) <223> Ile or Thr
<220> <221> MOD_RES <222> (486)..(486) <223> Lys or Glu 2019210504
<220> <221> MOD_RES <222> (504)..(504) <223> Arg or Gln <220> <221> MOD_RES <222> (509)..(509) <223> Ser or Pro <220> <221> MOD_RES <222> (518)..(518) <223> Gln or Lys <220> <221> MOD_RES <222> (520)..(520) <223> Gln or Arg <220> <221> MOD_RES <222> (538)..(538) <223> Ser or Phe <220> <221> MOD_RES <222> (539)..(539) <223> Val or Thr
<220> <221> MOD_RES <222> (540)..(540) <223> Ala or Val <220> <221> MOD_RES <222> (555)..(555) <223> Ala or Val <220> <221> MOD_RES <222> (581)..(581) <223> Asn or Ser
<220> <221> MOD_RES <222> (585)..(585) <223> Gln or Arg <220> <221> MOD_RES <222> (598)..(598) <223> Arg or Gln
<220> Page 180
503583504_1.txt Jul 2019
<221> MOD_RES <222> (604)..(604) <223> Ala or Thr <220> <221> MOD_RES <222> (614)..(614) <223> Ala or Lys <220> <221> MOD_RES <222> (619)..(619) 2019210504
<223> Ala or Val <220> <221> MOD_RES <222> (636)..(636) <223> Ser or Phe
<220> <221> MOD_RES <222> (637)..(637) <223> Ala or Pro <220> <221> MOD_RES <222> (653)..(653) <223> Glu or Leu
<220> <221> MOD_RES <222> (657)..(657) <223> His or Ser
<220> <221> MOD_RES <222> (659)..(659) <223> Asp or Gly
<220> <221> MOD_RES <222> (664)..(664) <223> Pro or Met
<220> <221> MOD_RES <222> (665)..(665) <223> Ser or Asn <220> <221> MOD_RES <222> (668)..(668) <223> Glu or Lys
<220> <221> MOD_RES <222> (672)..(672) <223> Ala or Asp <220> <221> MOD_RES <222> (675)..(675) <223> Gly or Glu
<220> <221> MOD_RES <222> (679)..(679) <223> Gln or Arg Page 181
503583504_1.txt Jul 2019
<220> <221> MOD_RES <222> (705)..(705) <223> Gly or Ser
<220> <221> MOD_RES <222> (710)..(710) <223> Gly or Arg <220> 2019210504
<221> MOD_RES <222> (721)..(721) <223> Leu or Gln
<220> <221> MOD_RES <222> (722)..(722) <223> Ala or Val <220> <221> MOD_RES <222> (724)..(724) <223> Arg or His
<220> <221> MOD_RES <222> (733)..(733) <223> Ser or Val
<220> <221> MOD_RES <222> (735)..(735) <223> Arg or His
<220> <221> MOD_RES <222> (744)..(744) <223> Ala or Cys
<220> <221> MOD_RES <222> (754)..(754) <223> Ala or Val
<220> <221> MOD_RES <222> (785)..(785) <223> Ala or Val
<220> <221> MOD_RES <222> (794)..(794) <223> His or Asn <220> <221> MOD_RES <222> (795)..(795) <223> Arg or Gln
<220> <221> MOD_RES <222> (802)..(802) <223> Ala or Val <220> <221> MOD_RES Page 182
503583504_1.txt Jul 2019
<222> (806)..(806) <223> Leu or Phe
<220> <221> MOD_RES <222> (808)..(808) <223> Glu or Ala <220> <221> MOD_RES <222> (809)..(809) <223> Ala or Lys 2019210504
<220> <221> MOD_RES <222> (811)..(811) <223> Arg or Ser <220> <221> MOD_RES <222> (821)..(821) <223> Cys or Tyr <220> <221> MOD_RES <222> (834)..(834) <223> Glu or Lys
<220> <221> MOD_RES <222> (837)..(837) <223> Ala or Asn
<220> <221> MOD_RES <222> (838)..(838) <223> Gly or Thr
<220> <221> MOD_RES <222> (839)..(839) <223> Ser or Asn <220> <221> MOD_RES <222> (841)..(841) <223> Tyr or Ser <220> <221> MOD_RES <222> (842)..(842) <223> Asp or Val <220> <221> MOD_RES <222> (865)..(865) <223> Ile or Thr
<220> <221> MOD_RES <222> (874)..(874) <223> Arg or Ala <220> <221> MOD_RES <222> (881)..(881) <223> Gly or Arg
Page 183
503583504_1.txt Jul 2019
<220> <221> MOD_RES <222> (883)..(883) <223> Met or Arg <220> <221> MOD_RES <222> (890)..(890) <223> Ser or Asn <220> <221> MOD_RES 2019210504
<222> (895)..(895) <223> Gln or Leu <220> <221> MOD_RES <222> (901)..(901) <223> Arg or Gln
<220> <221> MOD_RES <222> (908)..(908) <223> Gly or Glu
<220> <221> MOD_RES <222> (914)..(914) <223> Val or Ala
<220> <221> MOD_RES <222> (934)..(934) <223> Ala or Thr
<220> <221> MOD_RES <222> (959)..(959) <223> Asn or Ser <220> <221> MOD_RES <222> (965)..(965) <223> Arg or Ser
<220> <221> MOD_RES <222> (967)..(967) <223> Phe or Leu
<220> <221> MOD_RES <222> (969)..(969) <223> Phe or Ala <220> <221> MOD_RES <222> (972)..(972) <223> Ser or Arg <220> <221> MOD_RES <222> (974)..(974) <223> Ser or Pro <220> <221> MOD_RES <222> (975)..(975) Page 184
503583504_1.txt Jul 2019
<223> Arg or Ala <220> <221> MOD_RES <222> (977)..(977) <223> Ser or Gly
<220> <221> MOD_RES <222> (979)..(979) <223> Thr or Pro 2019210504
<220> <221> MOD_RES <222> (980)..(980) <223> Gln or Ala <220> <221> MOD_RES <222> (982)..(982) <223> Asn or Asp <220> <221> MOD_RES <222> (989)..(989) <223> Leu or Ser <220> <221> MOD_RES <222> (993)..(993) <223> Gln or Glu <220> <221> MOD_RES <222> (1000)..(1000) <223> Leu or Phe <220> <221> MOD_RES <222> (1005)..(1005) <223> Phe or Ile
<220> <221> MOD_RES <222> (1009)..(1009) <223> Val or Ala <220> <221> MOD_RES <222> (1015)..(1015) <223> Ala or Thr <220> <221> MOD_RES <222> (1018)..(1018) <223> Gln or His
<220> <221> MOD_RES <222> (1019)..(1019) <223> Arg or His <220> <221> MOD_RES <222> (1026)..(1026) <223> Trp or Gln
<220> Page 185
503583504_1.txt Jul 2019
<221> MOD_RES <222> (1033)..(1033) <223> His or Asn <220> <221> MOD_RES <222> (1040)..(1040) <223> Lys or His <220> <221> MOD_RES <222> (1041)..(1041) 2019210504
<223> Arg or Ser <220> <221> MOD_RES <222> (1042)..(1042) <223> Val or Arg
<220> <221> MOD_RES <222> (1044)..(1044) <223> Ser or Phe <220> <221> MOD_RES <222> (1045)..(1045) <223> Ser or absent
<400> 361 Met Lys Xaa Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Ser Asp Glu Xaa Xaa Thr Arg Xaa Arg Xaa Thr Met Ser Asn 20 25 30
Xaa Ala Leu Gln Arg Ser Xaa Ile Leu Ser Ala Xaa Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Lys Ala Ile Trp Xaa Lys Xaa 50 55 60
Xaa Xaa Xaa Ser Pro Val Asn Xaa Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Xaa Trp Gly Ile Gly Thr Gly Ala Xaa Gln Val 85 90 95
Glu Gly Ser Trp Lys Xaa Asp Gly Lys Gly Pro Ser Ile Trp Asp Xaa 100 105 110
Phe Ile His Ser His Leu Lys Xaa Val Xaa Xaa Thr Xaa Xaa Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Xaa Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160 Page 186
503583504_1.txt Jul 2019
Xaa Gly Xaa Val Xaa Xaa Xaa Asn Ala Xaa Gly Leu Xaa Tyr Tyr Xaa 165 170 175
Xaa Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Xaa Leu Gln Glu Xaa Tyr Gly Gly 195 200 205 2019210504
Trp Lys Asn Xaa Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Xaa Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Xaa Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Xaa Xaa Xaa Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Asp Asn Xaa Xaa Asp Ile Xaa Xaa Cys Gln 305 310 315 320
Xaa Ser Met Xaa Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Xaa Met Lys Xaa Xaa Xaa Xaa Ala Met Ile 340 345 350
Pro Xaa Phe Ser Glu Ala Glu Lys Xaa Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Xaa Asn Thr 370 375 380
Met Xaa Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Xaa Xaa Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Xaa Xaa Pro Xaa Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Xaa Ile Lys Thr Glu Asp Thr Thr Ala 420 425 430 Page 187
503583504_1.txt Jul 2019
Ile Tyr Met Met Lys Asn Phe Leu Xaa Gln Val Leu Gln Ala Ile Lys 435 440 445
Xaa Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Xaa Arg Arg Gly Leu Phe Tyr 465 470 475 480 2019210504
Val Asp Phe Asn Ser Xaa Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Xaa Asp Asn Gly Phe Xaa Leu Lys Glu 500 505 510
Ser Thr Pro Asp Met Xaa Gly Xaa Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Xaa Xaa Xaa Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Xaa Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Xaa Ile Lys Lys Xaa Leu Glu Met Leu Ala Lys Met 580 585 590
Lys Val Thr His Tyr Xaa Phe Ala Leu Asp Trp Xaa Ser Ile Leu Pro 595 600 605
Thr Gly Asn Leu Ser Xaa Val Asn Arg Gln Xaa Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Xaa Xaa Met Val Thr 625 630 635 640
Leu Tyr His Pro Thr His Ala His Leu Gly Leu Pro Xaa Pro Leu Leu 645 650 655
Xaa Ala Xaa Gly Trp Leu Asn Xaa Xaa Thr Ala Xaa Ala Phe Gln Xaa 660 665 670
Tyr Ala Xaa Leu Cys Phe Xaa Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700 Page 188
503583504_1.txt Jul 2019
Xaa Asn Asp Thr Tyr Xaa Ala Ala His Asn Leu Leu Ile Ala His Ala 705 710 715 720
Xaa Xaa Trp Xaa Leu Tyr Asp Arg Gln Phe Arg Pro Xaa Gln Xaa Gly 725 730 735
Ala Val Ser Leu Ser Leu His Xaa Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750 2019210504
Phe Xaa Asp Ser His Trp Lys Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Asp Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Xaa Met Lys Glu Tyr Ile Ala Ser Lys Xaa Xaa Arg Gly Leu Ser Ser 785 790 795 800
Ser Xaa Leu Pro Arg Xaa Thr Xaa Xaa Glu Xaa Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Xaa Ala Leu Asn His Phe Thr Thr Arg Phe Val Ile 820 825 830
His Xaa Gln Leu Xaa Xaa Xaa Arg Xaa Xaa Ala Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Ser Arg Leu Ala Val 850 855 860
Xaa Pro Trp Gly Val Arg Lys Leu Leu Xaa Trp Ile Arg Arg Asn Tyr 865 870 875 880
Xaa Asp Xaa Asp Ile Tyr Ile Thr Ala Xaa Gly Ile Asp Asp Xaa Ala 885 890 895
Leu Glu Asp Asp Xaa Ile Arg Lys Tyr Tyr Leu Xaa Lys Tyr Leu Gln 900 905 910
Glu Xaa Leu Lys Ala Tyr Leu Ile Asp Lys Val Lys Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Xaa Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Xaa Lys 945 950 955 960
Leu Ile Ser Ser Xaa Gly Xaa Pro Xaa Glu Asn Xaa Ser Xaa Xaa Cys 965 970 975 Page 189
503583504_1.txt Jul 2019
Xaa Gln Xaa Xaa Glu Xaa Thr Asp Cys Thr Ile Cys Xaa Phe Leu Val 980 985 990
Xaa Lys Lys Pro Leu Ile Phe Xaa Gly Cys Cys Phe Xaa Ser Thr Leu 995 1000 1005
Xaa Leu Leu Leu Ser Ile Xaa Ile Phe Xaa Xaa Gln Lys Arg Arg 1010 1015 1020 2019210504
Lys Phe Xaa Lys Ala Lys Asn Leu Gln Xaa Ile Pro Leu Lys Lys 1025 1030 1035
Gly Xaa Xaa Xaa Val Xaa Xaa 1040 1045
<210> 362 <211> 585 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 362 Asp Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln Pro Trp Gly Ala Pro 1 5 10 15
Val Glu Val Glu Ser Phe Leu Val His Pro Gly Asp Leu Leu Gln Leu 20 25 30
Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile Asn Trp Leu Arg Asp 35 40 45
Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg Ile Thr Gly Glu Glu 50 55 60
Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser Gly Leu Tyr Ala Cys 65 70 75 80
Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr Tyr Phe Ser Val Asn 85 90 95
Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp Asp Asp Asp Asp Asp 100 105 110
Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr Lys Pro Asn Arg Met 115 120 125
Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys Met Glu Lys Lys Leu 130 135 140
Page 190
503583504_1.txt Jul 2019
His Ala Val Pro Ala Ala Lys Thr Val Lys Phe Lys Cys Pro Ser Ser 145 150 155 160
Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys Asn Gly Lys Glu Phe 165 170 175
Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val Arg Tyr Ala Thr Trp 180 185 190 2019210504
Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr 195 200 205
Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr Gln Leu 210 215 220
Asp Val Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu 225 230 235 240
Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn Val Glu Phe Met Cys 245 250 255
Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln Trp Leu Lys His Ile 260 265 270
Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu Pro Tyr Val Gln 275 280 285
Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp Lys Glu Met Glu Val 290 295 300
Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala Gly Glu Tyr Thr Cys 305 310 315 320
Leu Ala Gly Asn Ser Ile Gly Leu Ser His His Ser Ala Trp Leu Thr 325 330 335
Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val Met Thr Ser Pro Leu 340 345 350
Tyr Gly Gly Gly Gly Gly Asp Lys Thr His Thr Cys Pro Pro Cys Pro 355 360 365
Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 370 375 380
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 385 390 395 400
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 405 410 415
Page 191
503583504_1.txt Jul 2019
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 420 425 430
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 435 440 445
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 450 455 460 2019210504
Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 465 470 475 480
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 485 490 495
Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 500 505 510
Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 515 520 525
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 530 535 540
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 545 550 555 560
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 565 570 575
Lys Ser Leu Ser Leu Ser Pro Gly Lys 580 585
<210> 363 <211> 1176 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 363 Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn Pro Asn Phe Thr 1 5 10 15
Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr Phe Pro Lys Asn 20 25 30
Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val Glu Gly Ser Trp 35 40 45
Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His Phe Ile His Thr 50 55 60 Page 192
503583504_1.txt Jul 2019
His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser Asp Ser Tyr Ile 65 70 75 80
Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile Gly Val Ser Phe 85 90 95
Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro Asp Gly Ile Val 100 105 110 2019210504
Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser Thr Leu Leu Asp 115 120 125
Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr Leu Tyr His Trp 130 135 140
Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly Trp Lys Asn Asp 145 150 155 160
Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr Cys Phe Gln Met 165 170 175
Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His Asn Pro Tyr Leu 180 185 190
Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala Pro Gly Glu Lys 195 200 205
Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn Leu Ile Lys Ala 210 215 220
His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe Arg Pro His Gln 225 230 235 240
Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp Ile Glu Pro Asn 245 250 255
Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln Gln Ser Met Val 260 265 270
Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly Asp Gly Asp Tyr 275 280 285
Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu Pro Ile Phe Ser 290 295 300
Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp Phe Phe Ala Phe 305 310 315 320
Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr Met Ala Lys Met 325 330 335 Page 193
503583504_1.txt Jul 2019
Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu Asn Trp Ile Lys 340 345 350
Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu Asn Gly Trp Phe 355 360 365
Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala Ile Tyr Met Met 370 375 380 2019210504
Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg Leu Asp Glu Ile 385 390 395 400
Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp Gly Phe Glu Trp 405 410 415
Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr Val Asp Phe Asn 420 425 430
Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His Tyr Tyr Lys 435 440 445
Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu Ser Thr Pro Asp 450 455 460
Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly Val Thr Glu Ser 465 470 475 480
Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln Phe Ser Asp Pro 485 490 495
His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu Leu His Arg Val 500 505 510
Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys Thr Asp Phe Val 515 520 525
Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met Lys Val Thr His 530 535 540
Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro Thr Gly Asn Leu 545 550 555 560
Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg Cys Val Val Ser 565 570 575
Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr Leu Tyr Tyr Pro 580 585 590
Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu His Ala Asp Gly 595 600 605 Page 194
503583504_1.txt Jul 2019
Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala Tyr Ala Gly Leu 610 615 620
Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp Ile Thr Ile Asn 625 630 635 640
Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser Gly Asn Asp Thr 645 650 655 2019210504
Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala Leu Ala Trp Arg 660 665 670
Leu Tyr Asp Arg Gln Phe Arg Pro Ser Gln Arg Gly Ala Val Ser Leu 675 680 685
Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro Tyr Ala Asp Ser 690 695 700
His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu Ile Ala Trp Phe 705 710 715 720
Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala Ala Met Arg Glu 725 730 735
Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser Ser Ala Leu Pro 740 745 750
Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly Thr Val Asp Phe 755 760 765
Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met His Glu Gln Leu 770 775 780
Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln Phe Leu Gln Asp 785 790 795 800
Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val Ile Pro Trp Gly 805 810 815
Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr Gly Asp Met Asp 820 825 830
Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala Leu Glu Asp Asp 835 840 845
Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln Glu Val Leu Lys 850 855 860
Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr Tyr Ala Phe Lys 865 870 875 880 Page 195
503583504_1.txt Jul 2019
Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe Phe Thr Ser Asp 885 890 895
Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys Val Ile Ser Ser 900 905 910
Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys Ser Gln Thr Gln 915 920 925 2019210504
Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val Gln Lys Lys Pro 930 935 940
Gly Gly Gly Gly Gly Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala 945 950 955 960
Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 965 970 975
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 980 985 990
Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 995 1000 1005
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 1010 1015 1020
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 1025 1030 1035
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 1040 1045 1050
Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala 1055 1060 1065
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 1070 1075 1080
Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 1085 1090 1095
Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 1100 1105 1110
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 1115 1120 1125
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 1130 1135 1140 Page 196
503583504_1.txt Jul 2019
Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 1145 1150 1155
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 1160 1165 1170
Pro Gly Lys 1175 2019210504
<210> 364 <211> 88 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 364 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp 20 25 30
Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile 35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys 85
<210> 365 <211> 88 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 365 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Page 197
503583504_1.txt Jul 2019
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys 85 2019210504
<210> 366 <211> 93 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 366 Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Ser Val Thr Pro Gly 1 5 10 15
Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu His Ser 20 25 30
Asp Gly Lys Thr Tyr Leu Tyr Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45
Pro Gln Leu Leu Ile Tyr Glu Val Ser Ser Arg Phe Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys 85 90
<210> 367 <211> 93 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 367 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30
Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Page 198
503583504_1.txt Jul 2019
Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys 85 90 2019210504
<210> 368 <211> 93 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 368 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30
Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45
Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys 85 90
<210> 369 <211> 89 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 369 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45 Page 199
503583504_1.txt Jul 2019
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys 85 2019210504
<210> 370 <211> 88 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 370 Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Asn 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45
Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser 65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys 85
<210> 371 <211> 87 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 371 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Lys Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45 Page 200
503583504_1.txt Jul 2019
Tyr Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys 85 2019210504
<210> 372 <211> 98 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 372 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15
Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu 20 25 30
Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45
Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe 50 55 60
Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Thr
<210> 373 <211> 99 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 373 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30 Page 201
503583504_1.txt Jul 2019
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80 2019210504
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg
<210> 374 <211> 100 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 374 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Ala 20 25 30
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Thr Thr 100
<210> 375 <211> 98 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide Page 202
503583504_1.txt Jul 2019
<400> 375 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 2019210504
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys
<210> 376 <211> 98 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 376 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg
Page 203
503583504_1.txt Jul 2019
<210> 377 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 377 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 5 10 15 2019210504
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly 20 25 30
Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45
Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser 50 55 60
Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe 65 70 75 80
Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95
Cys Ala Arg
<210> 378 <211> 97 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 378 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80
Page 204
503583504_1.txt Jul 2019
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg
<210> 379 <211> 5 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 379 Gly Gly Gly Gly Gly 1 5
<210> 380 <211> 5 <212> PRT <213> Homo sapiens <400> 380 Cys Pro Ser Cys Pro 1 5
<210> 381 <211> 5 <212> PRT <213> Homo sapiens <400> 381 Cys Pro Pro Cys Pro 1 5
<210> 382 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 6xHis tag
<400> 382 His His His His His His 1 5
<210> 383 <211> 5 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 383 His His His His His 1 5 Page 205
503583504_1.txt Jul 2019
<210> 384 <211> 227 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 384 2019210504
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 1 5 10 15
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 65 70 75 80
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 145 150 155 160
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175
Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220
Page 206
503583504_1.txt Jul 2019
Pro Gly Lys 225
<210> 385 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide 2019210504
<400> 385 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Glu Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gly Asn Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210 Page 207
503583504_1.txt Jul 2019
<210> 386 <211> 214 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 386 2019210504
Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Glu Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Tyr Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gly Asn Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
Page 208
503583504_1.txt Jul 2019
<210> 387 <211> 214 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 387 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15 2019210504
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Glu Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Ala Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gly Asn Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
<210> 388 <211> 214 Page 209
503583504_1.txt Jul 2019
<212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 388 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15 2019210504
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Glu Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Ala Gly Asn Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
<210> 389 <211> 214 <212> PRT <213> Artificial Sequence Page 210
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 389 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Glu Ser Val 20 25 30 2019210504
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Ala Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Ala Gly Asn Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
<210> 390 <211> 450 <212> PRT <213> Artificial Sequence
<220> Page 211
503583504_1.txt Jul 2019
<223> Description of Artificial Sequence: Synthetic polypeptide
<400> 390 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30 2019210504
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Page 212
503583504_1.txt Jul 2019
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300 2019210504
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 391 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 391 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30 Page 213
503583504_1.txt Jul 2019
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80 2019210504
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300 Page 214
503583504_1.txt Jul 2019
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350 2019210504
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 392 <211> 450 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 392 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Page 215
503583504_1.txt Jul 2019
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110 2019210504
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Page 216
503583504_1.txt Jul 2019
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380 2019210504
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 393 <211> 450 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 393 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Gln 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110 Page 217
503583504_1.txt Jul 2019
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160 2019210504
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380 Page 218
503583504_1.txt Jul 2019
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430 2019210504
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 394 <211> 450 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 394 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Gln 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Page 219
503583504_1.txt Jul 2019
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190 2019210504
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Page 220
503583504_1.txt Jul 2019
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450 2019210504
<210> 395 <211> 450 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 395 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Gln 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ile Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190 Page 221
503583504_1.txt Jul 2019
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240 2019210504
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450 Page 222
503583504_1.txt Jul 2019
<210> 396 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 396 2019210504
Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Lys Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Page 223
503583504_1.txt Jul 2019
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270 2019210504
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 397 <211> 450 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide Page 224
503583504_1.txt Jul 2019
<400> 397 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45 2019210504
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ile Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270 Page 225
503583504_1.txt Jul 2019
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320 2019210504
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 398 <211> 450 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 398 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Page 226
503583504_1.txt Jul 2019
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80 2019210504
Val Leu Ile Met Thr Asn Met Arg Ala Glu Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Page 227
503583504_1.txt Jul 2019
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350 2019210504
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 399 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 399 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80 Page 228
503583504_1.txt Jul 2019
Val Leu Ile Met Thr Asn Met Arg Ala Glu Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ile Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125 2019210504
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350 Page 229
503583504_1.txt Jul 2019
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400 2019210504
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 400 <211> 449 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 400 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Asp Gly Met Asp Val 100 105 110
Page 230
503583504_1.txt Jul 2019
Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125
Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser 130 135 140
Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 2019210504
Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175
Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190
Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val 195 200 205
Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys 210 215 220
Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro 225 230 235 240
Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270
Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285
Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val 290 295 300
Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320
Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys 325 330 335
Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350
Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr 355 360 365
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380
Page 231
503583504_1.txt Jul 2019
Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu 385 390 395 400
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415
Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430 2019210504
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445
Lys
<210> 401 <211> 450 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 401 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Ser Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160 Page 232
503583504_1.txt Jul 2019
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205 2019210504
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430 Page 233
503583504_1.txt Jul 2019
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 402 <211> 214 2019210504
<212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 402 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Gln Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gln Thr Ser Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Page 234
503583504_1.txt Jul 2019
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205
Ala Pro Thr Glu Cys Ser 210
<210> 403 <211> 214 <212> PRT <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 403 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15
Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Ile Gly Ser Gln Ser Val 20 25 30
His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Asn Thr Ala Asp His 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110
Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140
Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys Ala Gly 145 150 155 160
Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205 Page 235
503583504_1.txt Jul 2019
Ala Pro Thr Glu Cys Ser 210
<210> 404 <211> 450 <212> PRT <213> Artificial Sequence <220> 2019210504
<223> Description of Artificial Sequence: Synthetic polypeptide <400> 404 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Ala 20 25 30
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ile Leu Leu Val Gly Ala Tyr Tyr Tyr Ser Gly Met Asp 100 105 110
Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 130 135 140
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 195 200 205
Page 236
503583504_1.txt Jul 2019
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 210 215 220
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255 2019210504
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 290 295 300
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 325 330 335
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445
Gly Lys 450
<210> 405 <211> 451 <212> PRT <213> Artificial Sequence Page 237
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 405 Gln Val Thr Leu Lys Glu Ser Gly Pro Val Leu Val Lys Pro Thr Glu 1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Asn Ala 20 25 30 2019210504
Arg Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His Ile Phe Ser Asn Asp Glu Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Ser Gln Val 65 70 75 80
Val Leu Ile Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ser Val Val Thr Gly Gly Tyr Tyr Tyr Tyr Asp Gly Met 100 105 110
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr 115 120 125
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser 130 135 140
Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu 145 150 155 160
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His 165 170 175
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser 180 185 190
Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys 195 200 205
Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu 210 215 220
Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala 225 230 235 240
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 245 250 255 Page 238
503583504_1.txt Jul 2019
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 260 265 270
Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val 275 280 285
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe 290 295 300 2019210504
Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly 305 310 315 320
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile 325 330 335
Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val 340 345 350
Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 355 360 365
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 370 375 380
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 385 390 395 400
Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 405 410 415
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 420 425 430
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 435 440 445
Pro Gly Lys 450
<210> 406 <211> 642 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 406 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggaaagac ggccaggatt 60 acctgtgggg gaaacaacat tggaagtgaa agtgtgcact ggtaccagca gaagccaggc 120
Page 239
503583504_1.txt Jul 2019
caggcccctg tgctggtcgt ctatgatgat agcgaccggc cctcagggat ccctgagcga 180 ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gatggtaata gtgaccatgt ggtattcggc 300
ggagggacca agctgaccgt cctaggtcag cccaaggcca accccactgt cactctgttc 360 ccgccctcct ctgaggagct ccaagccaac aaggccacac tagtgtgtct gatcagtgac 420 ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga 480 2019210504
gtggagacca ccaaaccctc caaacagagc aacaacaagt acgcggccag cagctacctg 540 agcctgacgc ccgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa 600
gggagcaccg tggagaagac agtggcccct acagaatgtt ca 642
<210> 407 <211> 642 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 407 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60
acctgtgggg gaaacaacat tggaagtgaa agtgtgcact ggtaccagca gaagccaggc 120
caggcccctg tgctggtcgt ctattatgat agcgaccggc cctcagggat ccctgagcga 180
ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gatggtaata gtgaccatgt ggtattcggc 300
ggagggacca agctgaccgt cctaggtcag cccaaggcca accccactgt cactctgttc 360
ccgccctcct ctgaggagct ccaagccaac aaggccacac tagtgtgtct gatcagtgac 420 ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga 480
gtggagacca ccaaaccctc caaacagagc aacaacaagt acgcggccag cagctacctg 540 agcctgacgc ccgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa 600 gggagcaccg tggagaagac agtggcccct acagaatgtt ca 642
<210> 408 <211> 642 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 408 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60
acctgtgggg gaaacaacat tggaagtgaa agtgtgcact ggtaccagca gaagccaggc 120 caggcccctg tgctggtcgt ctatgctgat agcgaccggc cctcagggat ccctgagcga 180
Page 240
503583504_1.txt Jul 2019
ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gatggtaata gtgaccatgt ggtattcggc 300 ggagggacca agctgaccgt cctaggtcag cccaaggcca accccactgt cactctgttc 360
ccgccctcct ctgaggagct ccaagccaac aaggccacac tagtgtgtct gatcagtgac 420 ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga 480 gtggagacca ccaaaccctc caaacagagc aacaacaagt acgcggccag cagctacctg 540 2019210504
agcctgacgc ccgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa 600 gggagcaccg tggagaagac agtggcccct acagaatgtt ca 642
<210> 409 <211> 642 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 409 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60
acctgtgggg gaaacaacat tggaagtgaa agtgtgcact ggtaccagca gaagccaggc 120
caggcccctg tgctggtcgt ctatgatgat agcgaccggc cctcagggat ccctgagcga 180
ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240
gatgaggccg actattactg tcaggtgtgg gctggtaata gtgaccatgt ggtattcggc 300 ggagggacca agctgaccgt cctaggtcag cccaaggcca accccactgt cactctgttc 360
ccgccctcct ctgaggagct ccaagccaac aaggccacac tagtgtgtct gatcagtgac 420
ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga 480 gtggagacca ccaaaccctc caaacagagc aacaacaagt acgcggccag cagctacctg 540
agcctgacgc ccgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa 600 gggagcaccg tggagaagac agtggcccct acagaatgtt ca 642
<210> 410 <211> 642 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 410 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60 acctgtgggg gaaacaacat tggaagtgaa agtgtgcact ggtaccagca gaagccaggc 120
caggcccctg tgctggtcgt ctatgctgat agcgaccggc cctcagggat ccctgagcga 180 ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240
Page 241
503583504_1.txt Jul 2019
gatgaggccg actattactg tcaggtgtgg gctggtaata gtgaccatgt ggtattcggc 300 ggagggacca agctgaccgt cctaggtcag cccaaggcca accccactgt cactctgttc 360 ccgccctcct ctgaggagct ccaagccaac aaggccacac tagtgtgtct gatcagtgac 420
ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga 480 gtggagacca ccaaaccctc caaacagagc aacaacaagt acgcggccag cagctacctg 540 agcctgacgc ccgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa 600 2019210504
gggagcaccg tggagaagac agtggcccct acagaatgtt ca 642
<210> 411 <211> 1350 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 411 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60 acctgcacct tctctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240
gtcctaatta tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300
gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360 accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480
gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540 ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600
ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660 acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780
gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900 agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960
gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020 aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080
atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320 Page 242
503583504_1.txt Jul 2019
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 412 <211> 1350 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide 2019210504
<400> 412 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480
gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540 ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600
ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660
acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720
ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780 gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840
tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900
agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960
gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020 aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080
atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200
ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 413 <211> 1350 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic Page 243
503583504_1.txt Jul 2019
polynucleotide <400> 413 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60 acctgcacct tctctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300 2019210504
gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360 accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420 agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480
gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540 ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600 ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660
acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780
gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840
tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900
agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960
gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020 aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080
atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140
gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320 cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 414 <211> 1350 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 414 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacacagac cctcacgctg 60 acctgcacct tctctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240
Page 244
503583504_1.txt Jul 2019
gtcctaacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360 accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540 ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600 2019210504
ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660 acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720
ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780 gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840
tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900 agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020
aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080
atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140
gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 415 <211> 1350 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 415 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacacagac cctcacgctg 60
acctgcacct tctctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240
gtcctaacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccctggtc 360
accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420 agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540
ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600 Page 245
503583504_1.txt Jul 2019
ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660
acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780
gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900 agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 2019210504
gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020 aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080 atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140
gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 416 <211> 1350 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 416 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacacagac cctcacgctg 60 acctgcacct tctctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240
gtcctaacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggatc 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccctggtc 360
accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420 agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480
gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540 ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600
ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660 acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780
gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900
Page 246
503583504_1.txt Jul 2019
agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020 aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080
atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260 2019210504
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320 cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 417 <211> 1350 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 417 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240
gtcctaaaga tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540
ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600 ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660 acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720
ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780 gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900
agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020
aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080 atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200
ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260 Page 247
503583504_1.txt Jul 2019
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 418 <211> 1350 <212> DNA <213> Artificial Sequence <220> 2019210504
<223> Description of Artificial Sequence: Synthetic polynucleotide <400> 418 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60 acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaatta tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggatc 300
gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540
ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600
ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660
acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780
gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840
tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900
agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020
aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080 atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140
gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320 cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 419 <211> 1350 <212> DNA <213> Artificial Sequence
Page 248
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 419 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 2019210504
gtcctaatta tgaccaacat gagagctgag gacacagcca catattactg tgcacggtca 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360 accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540 ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600
ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660 acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720
ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780
gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840
tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900
agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020
aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080
atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200
ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320 cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 420 <211> 1350 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 420 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
Page 249
503583504_1.txt Jul 2019
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaatta tgaccaacat gagagctgag gacacagcca catattactg tgcacggatc 300 gtagtaactg gcggctacta ctacgacggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420 agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540 2019210504
ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600 ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660
acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780
gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900 agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960
gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020
aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080
atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200
ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 421 <211> 1347 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 421 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60 acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120 cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaatta tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300
gtagtaactg gcggctacta cgacggtatg gacgtctggg gccaagggac cacggtcacc 360 gtctctagtg cctccaccaa gggcccatcg gtcttccccc tggcgccctg ctccaggagc 420 acctccgaga gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg 480
acggtgtcgt ggaactcagg cgctctgacc agcggcgtgc acaccttccc agctgtccta 540 Page 250
503583504_1.txt Jul 2019
cagtcctcag gactctactc cctcagcagc gtggtgaccg tgccctccag caacttcggc 600
acccagacct acacctgcaa cgtagatcac aagcccagca acaccaaggt ggacaagaca 660 gttgagcgca aatgttgtgt cgagtgccca ccgtgcccag caccacctgt ggcaggaccg 720
tcagtcttcc tcttcccccc aaaacccaag gacaccctca tgatctcccg gacccctgag 780 gtcacgtgcg tggtggtgga cgtgagccac gaagaccccg aggtccagtt caactggtac 840 gtggacggcg tggaggtgca taatgccaag acaaagccac gggaggagca gttcaacagc 900 2019210504
acgttccgtg tggtcagcgt cctcaccgtt gtgcaccagg actggctgaa cggcaaggag 960 tacaagtgca aggtctccaa caaaggcctc ccagccccca tcgagaaaac catctccaaa 1020 accaaagggc agccccgaga accacaggtg tacaccctgc ccccatcccg ggaggagatg 1080
accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctaccccag cgacatcgcc 1140 gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacacc tcccatgctg 1200 gactccgacg gctccttctt cctctacagc aagctcaccg tggacaagag caggtggcag 1260
caggggaacg tcttctcatg ctccgtgatg catgaggctc tgcacaacca ctacacgcag 1320 aagagcctct ccctgtctcc gggtaaa 1347
<210> 422 <211> 1350 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 422 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaatta tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300
gtagtaactg gcggctacta ctacagcggt atggacgtct ggggccaagg gaccacggtc 360 accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540
ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600 ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660 acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720
ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780 gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840
Page 251
503583504_1.txt Jul 2019
tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900 agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020
aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080 atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200 2019210504
ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260 cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 423 <211> 642 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 423 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60
acctgtgggg gaaacaacat tggaagtcaa agtgtgcact ggtaccagca gaagccaggc 120
caggcccctg tcctggtcgt ctatgatgat agcgaccggc cctcagggat ccctgagcga 180
ttctctggtt ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gatcagacta gtgatcatgt ggtattcggc 300
ggggggacca agctgaccgt cctaggtcag cccaaggcca accccactgt cactctgttc 360
ccgccctcct ctgaggagct ccaagccaac aaggccacac tagtgtgtct gatcagtgac 420 ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga 480
gtggagacca ccaaaccctc caaacagagc aacaacaagt acgcggccag cagctacctg 540 agcctgacgc ccgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa 600 gggagcaccg tggagaagac agtggcccct acagaatgtt ca 642
<210> 424 <211> 642 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 424 tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60
acctgtgggg gaaacaacat tggaagtcaa agtgtgcact ggtaccagca gaagccaggc 120 caggcccctg tcctggtcgt ctatgatgat agcgaccggc cctcagggat ccctgagcga 180
Page 252
503583504_1.txt Jul 2019
ttctctggtt ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240 gatgaggccg actattactg tcaggtgtgg gataatactg ctgatcatgt ggtattcggc 300 ggggggacca agctgaccgt cctaggtcag cccaaggcca accccactgt cactctgttc 360
ccgccctcct ctgaggagct ccaagccaac aaggccacac tagtgtgtct gatcagtgac 420 ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga 480 gtggagacca ccaaaccctc caaacagagc aacaacaagt acgcggccag cagctacctg 540 2019210504
agcctgacgc ccgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa 600 gggagcaccg tggagaagac agtggcccct acagaatgtt ca 642
<210> 425 <211> 1350 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 425 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
acctgcaccg tgtctgggtt ctcactcagc aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180
tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240
gtccttacca tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggata 300 ttattagtgg gagcttacta ctacagcggt atggacgtct ggggccaagg gaccacggtc 360
accgtctcta gtgcctccac caagggccca tcggtcttcc ccctggcgcc ctgctccagg 420
agcacctccg agagcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg 480 gtgacggtgt cgtggaactc aggcgctctg accagcggcg tgcacacctt cccagctgtc 540
ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcaacttc 600 ggcacccaga cctacacctg caacgtagat cacaagccca gcaacaccaa ggtggacaag 660 acagttgagc gcaaatgttg tgtcgagtgc ccaccgtgcc cagcaccacc tgtggcagga 720
ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780 gaggtcacgt gcgtggtggt ggacgtgagc cacgaagacc ccgaggtcca gttcaactgg 840 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cacgggagga gcagttcaac 900
agcacgttcc gtgtggtcag cgtcctcacc gttgtgcacc aggactggct gaacggcaag 960 gagtacaagt gcaaggtctc caacaaaggc ctcccagccc ccatcgagaa aaccatctcc 1020
aaaaccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080 atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctaccc cagcgacatc 1140 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac acctcccatg 1200
ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260 Page 253
503583504_1.txt Jul 2019
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320
cagaagagcc tctccctgtc tccgggtaaa 1350
<210> 426 <211> 1353 <212> DNA <213> Artificial Sequence <220> 2019210504
<223> Description of Artificial Sequence: Synthetic polynucleotide <400> 426 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60 acctgcaccg tgtctgggtt ctcactcaac aatgctagaa tgggtgtgag ctggatccgt 120
cagcccccag ggaaggccct ggagtggctt gcacacattt tttcgaatga cgaaaaatcc 180 tacagcacat ctctgaagag caggctcacc atctccaagg acacctccaa aagccaggtg 240 gtcctaatta tgaccaacat ggaccctgtg gacacagcca catattactg tgcacggtca 300
gtagtaactg gcggctacta ttactacgac ggtatggacg tctggggcca agggaccacg 360
gtcaccgtct ctagtgcctc caccaagggc ccatcggtct tccccctggc gccctgctcc 420
aggagcacct ccgagagcac agcggccctg ggctgcctgg tcaaggacta cttccccgaa 480 ccggtgacgg tgtcgtggaa ctcaggcgct ctgaccagcg gcgtgcacac cttcccagct 540
gtcctacagt cctcaggact ctactccctc agcagcgtgg tgaccgtgcc ctccagcaac 600
ttcggcaccc agacctacac ctgcaacgta gatcacaagc ccagcaacac caaggtggac 660
aagacagttg agcgcaaatg ttgtgtcgag tgcccaccgt gcccagcacc acctgtggca 720 ggaccgtcag tcttcctctt ccccccaaaa cccaaggaca ccctcatgat ctcccggacc 780
cctgaggtca cgtgcgtggt ggtggacgtg agccacgaag accccgaggt ccagttcaac 840
tggtacgtgg acggcgtgga ggtgcataat gccaagacaa agccacggga ggagcagttc 900
aacagcacgt tccgtgtggt cagcgtcctc accgttgtgc accaggactg gctgaacggc 960 aaggagtaca agtgcaaggt ctccaacaaa ggcctcccag cccccatcga gaaaaccatc 1020
tccaaaacca aagggcagcc ccgagaacca caggtgtaca ccctgccccc atcccgggag 1080 gagatgacca agaaccaggt cagcctgacc tgcctggtca aaggcttcta ccccagcgac 1140
atcgccgtgg agtgggagag caatgggcag ccggagaaca actacaagac cacacctccc 1200 atgctggact ccgacggctc cttcttcctc tacagcaagc tcaccgtgga caagagcagg 1260
tggcagcagg ggaacgtctt ctcatgctcc gtgatgcatg aggctctgca caaccactac 1320 acgcagaaga gcctctccct gtctccgggt aaa 1353
<210> 427 <211> 7 <212> PRT <213> Artificial Sequence
Page 254
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 427 Tyr Asp Ser Asp Arg Pro Ser 1 5
<210> 428 <211> 7 <212> PRT 2019210504
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 428 Ala Asp Ser Asp Arg Pro Ser 1 5
<210> 429 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 429 Gln Val Trp Ala Gly Asn Ser Asp His Val Val 1 5 10
<210> 430 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 430 Gln Val Trp Ala Gly Asn Ser Asp His Val Val 1 5 10
<210> 431 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 431 Ile Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp Val 1 5 10
<210> 432 <211> 14 <212> PRT Page 255
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 432 Ile Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp Val 1 5 10
<210> 433 2019210504
<211> 14 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 433 Ile Val Val Thr Gly Gly Tyr Tyr Tyr Asp Gly Met Asp Val 1 5 10
<210> 434 <211> 13 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 434 Ser Val Val Thr Gly Gly Tyr Tyr Asp Gly Met Asp Val 1 5 10
<210> 435 <211> 14 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 435 Ser Val Val Thr Gly Gly Tyr Tyr Tyr Ser Gly Met Asp Val 1 5 10
<210> 436 <211> 11 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 436 Gln Val Trp Asp Gln Thr Ser Asp His Val Val 1 5 10
<210> 437 Page 256
503583504_1.txt Jul 2019
<211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 437 Gln Val Trp Asp Asn Thr Ala Asp His Val Val 1 5 10 2019210504
<210> 438 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 438 Ile Leu Leu Val Gly Ala Tyr Tyr Tyr Ser Gly Met Asp Val 1 5 10
<210> 439 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<400> 439 Ser Val Val Thr Gly Gly Tyr Tyr Tyr Tyr Asp Gly Met Asp Val 1 5 10 15
<210> 440 <211> 40 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 440 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 1 5 10 15
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 20 25 30
Gly Gly Ser Gly Gly Gly Gly Ser 35 40
<210> 441 <211> 228 <212> PRT <213> Artificial Sequence
Page 257
503583504_1.txt Jul 2019
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 441 Glu Arg Lys Ser Ser Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val 1 5 10 15
Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30 2019210504
Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 35 40 45
His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 50 55 60
Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 65 70 75 80
Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn 85 90 95
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro 100 105 110
Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln 115 120 125
Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val 130 135 140
Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175
Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190
Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220
Ser Pro Gly Lys 225
<210> 442 <211> 21 <212> DNA Page 258
503583504_1.txt Jul 2019
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 442 tatgatagcg accggccctc a 21
<210> 443 <211> 21 2019210504
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 443 gctgatagcg accggccctc a 21
<210> 444 <211> 21 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 444 gctgatagcg accggccctc a 21
<210> 445 <211> 33 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 445 caggtgtggg ctggtaatag tgaccatgtg gta 33
<210> 446 <211> 42 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 446 atcgtagtaa ctggcggcta ctactacgac ggtatggacg tc 42
<210> 447 <211> 39 <212> DNA <213> Artificial Sequence
<220> Page 259
503583504_1.txt Jul 2019
<223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 447 tcagtagtaa ctggcggcta ctacgacggt atggacgtc 39
<210> 448 <211> 42 <212> DNA <213> Artificial Sequence 2019210504
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 448 tcagtagtaa ctggcggcta ctactacagc ggtatggacg tc 42
<210> 449 <211> 33 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 449 caggtgtggg atcagactag tgatcatgtg gta 33
<210> 450 <211> 33 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
<400> 450 caggtgtggg ataatactgc tgatcatgtg gta 33
<210> 451 <211> 42 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 451 atattattag tgggagctta ctactacagc ggtatggacg tc 42
<210> 452 <211> 45 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
Page 260
503583504_1.txt Jul 2019
<400> 452 tcagtagtaa ctggcggcta ctattactac gacggtatgg acgtc 45
<210> 453 <211> 739 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide 2019210504
<400> 453 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 1 5 10 15
Leu Arg Gly Ala Arg Cys Gln Val Thr Leu Lys Glu Ser Gly Pro Val 20 25 30
Leu Val Lys Pro Thr Glu Thr Leu Thr Leu Thr Cys Thr Val Ser Gly 35 40 45
Phe Ser Leu Asn Asn Ala Arg Met Gly Val Ser Trp Ile Arg Gln Pro 50 55 60
Pro Gly Lys Ala Leu Glu Trp Leu Ala His Ile Phe Ser Asn Asp Glu 65 70 75 80
Lys Ser Tyr Ser Thr Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp 85 90 95
Thr Ser Lys Ser Gln Val Val Leu Ile Met Thr Asn Met Asp Pro Val 100 105 110
Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Ser Val Val Thr Gly Gly Tyr 115 120 125
Tyr Tyr Asp Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val 130 135 140
Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys 145 150 155 160
Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys 165 170 175
Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu 180 185 190
Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu 195 200 205
Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr 210 215 220 Page 261
503583504_1.txt Jul 2019
Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val 225 230 235 240
Asp Lys Thr Val Glu Arg Lys Ser Ser Val Glu Cys Pro Pro Cys Pro 245 250 255
Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 260 265 270 2019210504
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 275 280 285
Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 290 295 300
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 305 310 315 320
Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln 325 330 335
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 340 345 350
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro 355 360 365
Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr 370 375 380
Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 385 390 395 400
Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 405 410 415
Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 420 425 430
Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 435 440 445
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 450 455 460
Ser Leu Ser Leu Ser Pro Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly 465 470 475 480
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 485 490 495 Page 262
503583504_1.txt Jul 2019
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu 500 505 510
Arg Lys Ser Ser Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala 515 520 525
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 530 535 540 2019210504
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 545 550 555 560
Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val 565 570 575
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe 580 585 590
Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly 595 600 605
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile 610 615 620
Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val 625 630 635 640
Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 645 650 655
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 660 665 670
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 675 680 685
Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 690 695 700
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 705 710 715 720
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 725 730 735
Pro Gly Lys
<210> 454 <211> 2217 Page 263
503583504_1.txt Jul 2019
<212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polynucleotide
<400> 454 atggacatga gggtgcccgc tcagctcctg gggctcctgc tgctgtggct gagaggtgcg 60 cgctgtcagg tcaccttgaa ggagtctggt cctgtgctgg tgaaacccac agagaccctc 120 2019210504
acgctgacct gcaccgtgtc tgggttctca ctcaacaatg ctagaatggg tgtgagctgg 180 atccgtcagc ccccagggaa ggccctggag tggcttgcac acattttttc gaatgacgaa 240
aaatcctaca gcacatctct gaagagcagg ctcaccatct ccaaggacac ctccaaaagc 300 caggtggtcc taattatgac caacatggac cctgtggaca cagccacata ttactgtgca 360
cggtcagtag taactggcgg ctactactac gacggtatgg acgtctgggg ccaagggacc 420 acggtcaccg tctctagtgc cagcaccaag ggcccctccg tgttccctct ggccccctgc 480 agcagaagca ccagcgagag cacagccgcc ctgggctgcc tggtcaagga ctacttcccc 540
gagcccgtga ccgtgtcttg gaacagcgga gccctgacca gcggcgtgca cacctttcca 600
gccgtgctgc agagcagcgg cctgtacagc ctgagcagcg tggtcaccgt gcccagcagc 660
aacttcggca cccagaccta cacctgtaac gtggaccaca agcccagcaa caccaaggtg 720 gacaagacag tggagcggaa gtccagcgtg gagtgccctc cttgtcctgc ccctcctgtg 780
gccggaccta gcgtgttcct gttcccccca aagcccaagg acaccctgat gatcagccgg 840
acccccgaag tgacctgcgt ggtggtggac gtgtcccacg aggaccccga ggtgcagttc 900
aattggtacg tggacggggt ggaggtgcac aacgccaaga ccaagccccg ggaggaacag 960 ttcaacagca ccttccgggt ggtgtccgtc ctcaccgtgg tgcaccagga ctggctgaac 1020
ggcaaagagt acaagtgcaa ggtctccaac aagggcctgc ctgcccccat cgagaaaacc 1080
atcagcaaga ccaagggcca gcctcgggag cctcaggtgt acaccctgcc ccccagccgg 1140
gaggaaatga ccaagaacca ggtgtccctg acctgcctcg tgaagggctt ctaccccagc 1200 gatatcgccg tggagtggga gagcaacggc cagcccgaga acaactacaa gaccaccccc 1260
cccatgctgg acagcgacgg cagcttcttc ctgtactcca aactgaccgt ggacaagagc 1320 cggtggcagc agggcaacgt gttcagctgt agcgtgatgc acgaggccct gcacaaccac 1380
tacacccaga agtccctgag cctgtctcct ggcggaggcg gaggatctgg cggcggagga 1440 agtggagggg gcggatctgg tggtggaggc agcggcggag gtggaagtgg cggtggagga 1500
tccggtggag gcggctcagg tggcggcgga agcgagagaa agtcctccgt ggagtgtcca 1560 ccatgccctg ctccaccagt ggctggccct tccgtctttc tctttccacc taaacctaag 1620 gatacactca tgatctccag aactccagag gtcacatgtg tggtcgtcga tgtcagtcat 1680
gaggatcctg aagtccagtt taactggtat gtggatggcg tcgaagtcca taatgctaag 1740 acaaaacctc gcgaagaaca gtttaactcc acctttagag tcgtgagcgt gctgacagtc 1800
Page 264
503583504_1.txt Jul 2019
gtccatcagg attggctcaa tgggaaagaa tacaaatgta aagtctctaa caaaggactg 1860 cccgctccta tcgaaaagac catctccaaa acaaaggggc agcccagaga gccccaggtc 1920 tacacactcc caccctccag agaagagatg acaaaaaatc aggtgtcact cacctgtctg 1980
gtcaaggggt tttacccctc cgacattgcc gtggaatggg aatccaatgg gcagcctgaa 2040 aacaattata agactacacc tcctatgctc gactctgatg ggagtttctt tctctactct 2100 aaactcacag tggataagtc tagatggcag caggggaatg tcttttcctg ctccgtcatg 2160 2019210504
catgaagctc tccacaatca ttatacacag aagtctttgt ccctgtcccc cggcaag 2217
<210> 455 <211> 1042 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 455 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val 85 90 95
Glu Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg 100 105 110
Tyr Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asn Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg 165 170 175
Page 265
503583504_1.txt Jul 2019
Ala Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly 195 200 205
Trp Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr 210 215 220 2019210504
Cys Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile Asn Cys Gln 305 310 315 320
His Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met Ile Pro Glu 340 345 350
Phe Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala Asp Phe Phe 355 360 365
Ala Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn Thr Val Val 370 375 380
Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val Leu Asn Trp 385 390 395 400
Ile Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser Glu Asn Gly 405 410 415
Trp Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr Ala Ile Tyr 420 425 430
Met Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile Lys Phe Asp 435 440 445
Page 266
503583504_1.txt Jul 2019
Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu Asp Gly Phe 450 455 460
Glu Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe Tyr Val Asp 465 470 475 480
Phe Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His Tyr 485 490 495 2019210504
Tyr Lys Gln Ile Ile Gln Asp Asn Gly Phe Pro Leu Lys Glu Ser Thr 500 505 510
Pro Asp Met Lys Gly Arg Phe Pro Cys Asp Phe Ser Trp Gly Val Thr 515 520 525
Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln Phe Ser 530 535 540
Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu Leu His 545 550 555 560
Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys Thr Asp 565 570 575
Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met Lys Val 580 585 590
Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro Thr Gly 595 600 605
Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg Cys Val 610 615 620
Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr Leu Tyr 625 630 635 640
Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu His Ala 645 650 655
Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala Tyr Ala 660 665 670
Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp Ile Thr 675 680 685
Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser Gly Asn 690 695 700
Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala Leu Ala 705 710 715 720
Page 267
503583504_1.txt Jul 2019
Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly Ala Val 725 730 735
Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro Tyr Ala 740 745 750
Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu Ile Ala 755 760 765 2019210504
Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala Ala Met 770 775 780
Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser Ser Ala 785 790 795 800
Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly Thr Val 805 810 815
Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met His Glu 820 825 830
Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln Phe Leu 835 840 845
Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val Ile Pro 850 855 860
Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr Gly Asp 865 870 875 880
Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala Leu Glu 885 890 895
Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln Glu Val 900 905 910
Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr Tyr Ala 915 920 925
Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe Phe Thr 930 935 940
Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys Val Ile 945 950 955 960
Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys Ser Gln 965 970 975
Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val Gln Lys 980 985 990
Page 268
503583504_1.txt Jul 2019
Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu Val Leu 995 1000 1005
Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg Lys Phe 1010 1015 1020
Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys Gly Lys 1025 1030 1035 2019210504
Arg Val Val Ser 1040
<210> 456 <211> 1045 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 456 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser Page 269
503583504_1.txt Jul 2019
165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 2019210504
210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg Page 270
503583504_1.txt Jul 2019
435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 2019210504
485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Pro Leu Lys Glu 500 505 510
Ser Thr Pro Asp Met Lys Gly Arg Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Phe Thr Val Ser Ser Pro Gln 530 535 540
Phe Thr Asp Pro His Leu Tyr Val Trp Asn Val Thr Gly Asn Arg Leu 545 550 555 560
Leu Tyr Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ser Gln Cys 565 570 575
Thr Asp Tyr Val Ser Ile Lys Lys Arg Val Glu Met Leu Ala Lys Met 580 585 590
Lys Val Thr His Tyr Gln Phe Ala Leu Asp Trp Thr Ser Ile Leu Pro 595 600 605
Thr Gly Asn Leu Ser Lys Val Asn Arg Gln Val Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Val Phe Pro Met Val Thr 625 630 635 640
Leu Tyr His Pro Thr His Ser His Leu Gly Leu Pro Leu Pro Leu Leu 645 650 655
Ser Ser Gly Gly Trp Leu Asn Met Asn Thr Ala Lys Ala Phe Gln Asp 660 665 670
Tyr Ala Glu Leu Cys Phe Arg Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Met Tyr Asn Arg Thr 690 695 700
Ser Asn Asp Thr Tyr Arg Ala Ala His Asn Leu Met Ile Ala His Ala Page 271
503583504_1.txt Jul 2019
705 710 715 720
Gln Val Trp His Leu Tyr Asp Arg Gln Tyr Arg Pro Val Gln His Gly 725 730 735
Ala Val Ser Leu Ser Leu His Cys Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Phe Val Asp Ser His Trp Lys Ala Ala Glu Arg Phe Leu Gln Phe Glu 2019210504
755 760 765
Ile Ala Trp Phe Ala Asp Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ser 770 775 780
Val Met Lys Glu Tyr Ile Ala Ser Lys Asn Gln Arg Gly Leu Ser Ser 785 790 795 800
Ser Val Leu Pro Arg Phe Thr Ala Lys Glu Ser Arg Leu Val Lys Gly 805 810 815
Thr Val Asp Phe Tyr Ala Leu Asn His Phe Thr Thr Arg Phe Val Ile 820 825 830
His Lys Gln Leu Asn Thr Asn Arg Ser Val Ala Asp Arg Asp Val Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Ser Arg Leu Ala Val 850 855 860
Thr Pro Trp Gly Val Arg Lys Leu Leu Ala Trp Ile Arg Arg Asn Tyr 865 870 875 880
Arg Asp Arg Asp Ile Tyr Ile Thr Ala Asn Gly Ile Asp Asp Leu Ala 885 890 895
Leu Glu Asp Asp Gln Ile Arg Lys Tyr Tyr Leu Glu Lys Tyr Val Gln 900 905 910
Glu Ala Leu Lys Ala Tyr Leu Ile Asp Lys Val Lys Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Thr Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Arg Ala Lys Ser Ser Val Gln Phe Tyr Ser Lys 945 950 955 960
Leu Ile Ser Ser Ser Gly Leu Pro Ala Glu Asn Arg Ser Pro Ala Cys 965 970 975
Gly Gln Pro Ala Glu Asp Thr Asp Cys Thr Ile Cys Ser Phe Leu Val Page 272
503583504_1.txt Jul 2019
980 985 990
Glu Lys Lys Pro Leu Ile Phe Phe Gly Cys Cys Phe Ile Ser Thr Leu 995 1000 1005
Ala Val Leu Leu Ser Ile Thr Val Phe His His Gln Lys Arg Arg 1010 1015 1020
Lys Phe Gln Lys Ala Arg Asn Leu Gln Asn Ile Pro Leu Lys Lys 2019210504
1025 1030 1035
Gly His Ser Arg Val Phe Ser 1040 1045
<210> 457 <211> 1044 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 457 Met Lys Thr Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Ser Asp Glu Arg Asn Thr Arg Ser Arg Lys Thr Met Ser Asn 20 25 30
Arg Ala Leu Gln Arg Ser Ala Val Leu Ser Ala Phe Val Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Lys Ala Ile Trp Asp Lys Lys 50 55 60
Gln Tyr Val Ser Pro Val Asn Pro Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val 85 90 95
Glu Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg 100 105 110
Tyr Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Page 273
503583504_1.txt Jul 2019
Asn Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg 165 170 175
Ala Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205 2019210504
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Page 274
503583504_1.txt Jul 2019
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480 2019210504
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Page 275
503583504_1.txt Jul 2019
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750 2019210504
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Page 276
503583504_1.txt Jul 2019
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020 2019210504
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 458 <211> 1044 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 458 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val 85 90 95
Glu Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg 100 105 110
Tyr Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro Page 277
503583504_1.txt Jul 2019
145 150 155 160
Asn Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg 165 170 175
Ala Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly 2019210504
195 200 205
Trp Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala Page 278
503583504_1.txt Jul 2019
420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 2019210504
465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser Page 279
503583504_1.txt Jul 2019
690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 2019210504
740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys Page 280
503583504_1.txt Jul 2019
965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 2019210504
1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 459 <211> 1042 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 459 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Page 281
503583504_1.txt Jul 2019
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190 2019210504
Leu Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly 195 200 205
Trp Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile Asn Cys Gln 305 310 315 320
His Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met Ile Pro Glu 340 345 350
Phe Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala Asp Phe Phe 355 360 365
Ala Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn Thr Val Val 370 375 380
Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val Leu Asn Trp 385 390 395 400
Ile Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser Glu Asn Gly 405 410 415
Page 282
503583504_1.txt Jul 2019
Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala Ile Tyr 420 425 430
Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg Leu Asp 435 440 445
Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp Gly Phe 450 455 460 2019210504
Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr Val Asp 465 470 475 480
Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His Tyr 485 490 495
Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu Ser Thr 500 505 510
Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly Val Thr 515 520 525
Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln Phe Ser 530 535 540
Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu Leu His 545 550 555 560
Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys Thr Asp 565 570 575
Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met Lys Val 580 585 590
Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro Thr Gly 595 600 605
Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg Cys Val 610 615 620
Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr Leu Tyr 625 630 635 640
Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu His Ala 645 650 655
Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala Tyr Ala 660 665 670
Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp Ile Thr 675 680 685
Page 283
503583504_1.txt Jul 2019
Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser Gly Asn 690 695 700
Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala Leu Ala 705 710 715 720
Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly Ala Val 725 730 735 2019210504
Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro Tyr Ala 740 745 750
Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu Ile Ala 755 760 765
Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala Ala Met 770 775 780
Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser Ser Ala 785 790 795 800
Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly Thr Val 805 810 815
Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met His Glu 820 825 830
Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln Phe Leu 835 840 845
Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val Ile Pro 850 855 860
Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr Gly Asp 865 870 875 880
Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala Leu Glu 885 890 895
Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln Glu Val 900 905 910
Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr Tyr Ala 915 920 925
Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe Phe Thr 930 935 940
Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys Val Ile 945 950 955 960
Page 284
503583504_1.txt Jul 2019
Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys Ser Gln 965 970 975
Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val Gln Lys 980 985 990
Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu Val Leu 995 1000 1005 2019210504
Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg Lys Phe 1010 1015 1020
Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys Gly Lys 1025 1030 1035
Arg Val Val Ser 1040
<210> 460 <211> 1042 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 460 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile Page 285
503583504_1.txt Jul 2019
130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 2019210504
180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile Asn Cys Gln 305 310 315 320
His Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met Ile Pro Glu 340 345 350
Phe Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala Asp Phe Phe 355 360 365
Ala Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn Thr Val Val 370 375 380
Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val Leu Asn Trp 385 390 395 400
Ile Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser Glu Asn Gly Page 286
503583504_1.txt Jul 2019
405 410 415
Trp Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr Ala Ile Tyr 420 425 430
Met Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile Lys Phe Asp 435 440 445
Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu Asp Gly Phe 2019210504
450 455 460
Glu Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe Tyr Val Asp 465 470 475 480
Phe Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His Tyr 485 490 495
Tyr Lys Gln Ile Ile Gln Asp Asn Gly Phe Ser Leu Lys Glu Ser Thr 500 505 510
Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly Val Thr 515 520 525
Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln Phe Ser 530 535 540
Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu Leu His 545 550 555 560
Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys Thr Asp 565 570 575
Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met Lys Val 580 585 590
Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro Thr Gly 595 600 605
Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg Cys Val 610 615 620
Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr Leu Tyr 625 630 635 640
Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu His Ala 645 650 655
Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala Tyr Ala 660 665 670
Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp Ile Thr Page 287
503583504_1.txt Jul 2019
675 680 685
Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser Gly Asn 690 695 700
Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala Leu Ala 705 710 715 720
Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly Ala Val 2019210504
725 730 735
Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro Tyr Ala 740 745 750
Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu Ile Ala 755 760 765
Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala Ala Met 770 775 780
Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser Ser Ala 785 790 795 800
Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly Thr Val 805 810 815
Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met His Glu 820 825 830
Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln Phe Leu 835 840 845
Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val Ile Pro 850 855 860
Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr Gly Asp 865 870 875 880
Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala Leu Glu 885 890 895
Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln Glu Val 900 905 910
Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr Tyr Ala 915 920 925
Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe Phe Thr 930 935 940
Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys Val Ile Page 288
503583504_1.txt Jul 2019
945 950 955 960
Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys Ser Gln 965 970 975
Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val Gln Lys 980 985 990
Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu Val Leu 2019210504
995 1000 1005
Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg Lys Phe 1010 1015 1020
Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys Gly Lys 1025 1030 1035
Arg Val Val Ser 1040
<210> 461 <211> 1044 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 461 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Page 289
503583504_1.txt Jul 2019
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175 2019210504
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Page 290
503583504_1.txt Jul 2019
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile Lys 435 440 445 2019210504
Phe Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Gln Asp Asn Gly Phe Pro Leu Lys Glu 500 505 510
Ser Thr Pro Asp Met Lys Gly Arg Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Page 291
503583504_1.txt Jul 2019
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720 2019210504
Leu Ala Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Page 292
503583504_1.txt Jul 2019
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990 2019210504
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 462 <211> 1044 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 462 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser Page 293
503583504_1.txt Jul 2019
115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 2019210504
165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu Page 294
503583504_1.txt Jul 2019
385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 2019210504
435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Pro Leu Lys Glu 500 505 510
Ser Thr Pro Asp Met Lys Gly Arg Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Phe Thr Val Ser Ser Pro Gln 530 535 540
Phe Thr Asp Pro His Leu Tyr Val Trp Asn Val Thr Gly Asn Arg Leu 545 550 555 560
Leu Tyr Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ser Gln Cys 565 570 575
Thr Asp Tyr Val Ser Ile Lys Lys Arg Val Glu Met Leu Ala Lys Met 580 585 590
Lys Val Thr His Tyr Gln Phe Ala Leu Asp Trp Thr Ser Ile Leu Pro 595 600 605
Thr Gly Asn Leu Ser Lys Val Asn Arg Gln Val Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala Page 295
503583504_1.txt Jul 2019
660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 2019210504
705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe Page 296
503583504_1.txt Jul 2019
930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 2019210504
980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 463 <211> 1044 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 463 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Page 297
503583504_1.txt Jul 2019
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160 2019210504
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Page 298
503583504_1.txt Jul 2019
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430 2019210504
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Phe Thr Val Ser Ser Pro Gln 530 535 540
Phe Thr Asp Pro His Leu Tyr Val Trp Asn Val Thr Gly Asn Arg Leu 545 550 555 560
Leu Tyr Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ser Gln Cys 565 570 575
Thr Asp Tyr Val Ser Ile Lys Lys Arg Val Glu Met Leu Ala Lys Met 580 585 590
Lys Val Thr His Tyr Gln Phe Ala Leu Asp Trp Thr Ser Ile Leu Pro 595 600 605
Thr Gly Asn Leu Ser Lys Val Asn Arg Gln Val Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Val Phe Pro Met Val Thr 625 630 635 640
Leu Tyr His Pro Thr His Ser His Leu Gly Leu Pro Leu Pro Leu Leu 645 650 655
Page 299
503583504_1.txt Jul 2019
Ser Ser Gly Gly Trp Leu Asn Met Asn Thr Ala Lys Ala Phe Gln Asp 660 665 670
Tyr Ala Glu Leu Cys Phe Arg Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Met Tyr Asn Arg Thr 690 695 700 2019210504
Ser Asn Asp Thr Tyr Arg Ala Ala His Asn Leu Met Ile Ala His Ala 705 710 715 720
Gln Val Trp His Leu Tyr Asp Arg Gln Tyr Arg Pro Val Gln His Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Page 300
503583504_1.txt Jul 2019
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975 2019210504
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 464 <211> 1044 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 464 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His Page 301
503583504_1.txt Jul 2019
100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 2019210504
145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr Page 302
503583504_1.txt Jul 2019
370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 2019210504
420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Val Phe Pro Met Val Thr 625 630 635 640
Leu Tyr His Pro Thr His Ser His Leu Gly Leu Pro Leu Pro Leu Leu Page 303
503583504_1.txt Jul 2019
645 650 655
Ser Ser Gly Gly Trp Leu Asn Met Asn Thr Ala Lys Ala Phe Gln Asp 660 665 670
Tyr Ala Glu Leu Cys Phe Arg Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Met Tyr Asn Arg Thr 2019210504
690 695 700
Ser Asn Asp Thr Tyr Arg Ala Ala His Asn Leu Met Ile Ala His Ala 705 710 715 720
Gln Val Trp His Leu Tyr Asp Arg Gln Tyr Arg Pro Val Gln His Gly 725 730 735
Ala Val Ser Leu Ser Leu His Cys Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Phe Val Asp Ser His Trp Lys Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Asp Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ser 770 775 780
Val Met Lys Glu Tyr Ile Ala Ser Lys Asn Gln Arg Gly Leu Ser Ser 785 790 795 800
Ser Val Leu Pro Arg Phe Thr Ala Lys Glu Ser Arg Leu Val Lys Gly 805 810 815
Thr Val Asp Phe Tyr Ala Leu Asn His Phe Thr Thr Arg Phe Val Ile 820 825 830
His Lys Gln Leu Asn Thr Asn Arg Ser Val Ala Asp Arg Asp Val Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr Page 304
503583504_1.txt Jul 2019
915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 2019210504
965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 465 <211> 1044 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 465 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val 85 90 95
Page 305
503583504_1.txt Jul 2019
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 130 135 140 2019210504
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Page 306
503583504_1.txt Jul 2019
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415 2019210504
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Page 307
503583504_1.txt Jul 2019
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685 2019210504
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Cys Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Phe Val Asp Ser His Trp Lys Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Asp Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ser 770 775 780
Val Met Lys Glu Tyr Ile Ala Ser Lys Asn Gln Arg Gly Leu Ser Ser 785 790 795 800
Ser Val Leu Pro Arg Phe Thr Ala Lys Glu Ser Arg Leu Val Lys Gly 805 810 815
Thr Val Asp Phe Tyr Ala Leu Asn His Phe Thr Thr Arg Phe Val Ile 820 825 830
His Lys Gln Leu Asn Thr Asn Arg Ser Val Ala Asp Arg Asp Val Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Ser Arg Leu Ala Val 850 855 860
Thr Pro Trp Gly Val Arg Lys Leu Leu Ala Trp Ile Arg Arg Asn Tyr 865 870 875 880
Arg Asp Arg Asp Ile Tyr Ile Thr Ala Asn Gly Ile Asp Asp Leu Ala 885 890 895
Leu Glu Asp Asp Gln Ile Arg Lys Tyr Tyr Leu Glu Lys Tyr Val Gln 900 905 910
Page 308
503583504_1.txt Jul 2019
Glu Ala Leu Lys Ala Tyr Leu Ile Asp Lys Val Lys Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Thr Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Arg Ala Lys Ser Ser Val Gln Phe Tyr Ser Lys 945 950 955 960 2019210504
Leu Ile Ser Ser Ser Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 466 <211> 1044 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide
<400> 466 Met Lys Thr Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Ser Asp Glu Arg Asn Thr Arg Ser Arg Lys Thr Met Ser Asn 20 25 30
Arg Ala Leu Gln Arg Ser Ala Val Leu Ser Ala Phe Val Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Lys Ala Ile Trp Asp Lys Lys 50 55 60
Gln Tyr Val Ser Pro Val Asn Pro Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Phe Trp Gly Ile Gly Thr Gly Ala Leu Gln Val Page 309
503583504_1.txt Jul 2019
85 90 95
Glu Gly Ser Trp Lys Lys Asp Gly Lys Gly Pro Ser Ile Trp Asp His 100 105 110
Phe Ile His Thr His Leu Lys Asn Val Ser Ser Thr Asn Gly Ser Ser 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Ser Ala Leu Asp Phe Ile 2019210504
130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asp Gly Ile Val Thr Val Ala Asn Ala Lys Gly Leu Gln Tyr Tyr Ser 165 170 175
Thr Leu Leu Asp Ala Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp Page 310
503583504_1.txt Jul 2019
355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 2019210504
405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr Page 311
503583504_1.txt Jul 2019
625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 2019210504
675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln Page 312
503583504_1.txt Jul 2019
900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 2019210504
945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 467 <211> 1044 <212> PRT <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 467 Met Lys Pro Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Thr Asp Glu Ile Thr Thr Arg Tyr Arg Asn Thr Met Ser Asn 20 25 30
Gly Gly Leu Gln Arg Ser Val Ile Leu Ser Ala Leu Ile Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Arg Ala Ile Trp Ser Lys Asn 50 55 60
Pro Asn Phe Thr Pro Val Asn Glu Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Page 313
503583504_1.txt Jul 2019
Phe Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val 85 90 95
Glu Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg 100 105 110
Tyr Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr 115 120 125 2019210504
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asn Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg 165 170 175
Ala Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Ala Leu Gln Glu Lys Tyr Gly Gly 195 200 205
Trp Lys Asn Asp Thr Ile Ile Asp Ile Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Met Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Tyr Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Ala Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asn Thr His Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Ser Glu Asn Thr Met Asp Ile Phe Lys Cys Gln 305 310 315 320
Gln Ser Met Val Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Gly Met Arg Lys Lys Leu Phe Ser Val Leu 340 345 350
Page 314
503583504_1.txt Jul 2019
Pro Ile Phe Ser Glu Ala Glu Lys His Glu Met Arg Gly Thr Ala Asp 355 360 365
Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Lys Pro Leu Asn Thr 370 375 380
Met Ala Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Glu Ala Leu 385 390 395 400 2019210504
Asn Trp Ile Lys Leu Glu Tyr Asn Asn Pro Arg Ile Leu Ile Ala Glu 405 410 415
Asn Gly Trp Phe Thr Asp Ser Arg Val Lys Thr Glu Asp Thr Thr Ala 420 425 430
Ile Tyr Met Met Lys Asn Phe Leu Ser Gln Val Leu Gln Ala Ile Arg 435 440 445
Leu Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Ser Leu Leu Asp 450 455 460
Gly Phe Glu Trp Gln Asp Ala Tyr Thr Ile Arg Arg Gly Leu Phe Tyr 465 470 475 480
Val Asp Phe Asn Ser Lys Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala 485 490 495
His Tyr Tyr Lys Gln Ile Ile Arg Glu Asn Gly Phe Ser Leu Lys Glu 500 505 510
Ser Thr Pro Asp Val Gln Gly Gln Phe Pro Cys Asp Phe Ser Trp Gly 515 520 525
Val Thr Glu Ser Val Leu Lys Pro Glu Ser Val Ala Ser Ser Pro Gln 530 535 540
Phe Ser Asp Pro His Leu Tyr Val Trp Asn Ala Thr Gly Asn Arg Leu 545 550 555 560
Leu His Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ala Gln Cys 565 570 575
Thr Asp Phe Val Asn Ile Lys Lys Gln Leu Glu Met Leu Ala Arg Met 580 585 590
Lys Val Thr His Tyr Arg Phe Ala Leu Asp Trp Ala Ser Val Leu Pro 595 600 605
Thr Gly Asn Leu Ser Ala Val Asn Arg Gln Ala Leu Arg Tyr Tyr Arg 610 615 620
Page 315
503583504_1.txt Jul 2019
Cys Val Val Ser Glu Gly Leu Lys Leu Gly Ile Ser Ala Met Val Thr 625 630 635 640
Leu Tyr Tyr Pro Thr His Ala His Leu Gly Leu Pro Glu Pro Leu Leu 645 650 655
His Ala Asp Gly Trp Leu Asn Pro Ser Thr Ala Glu Ala Phe Gln Ala 660 665 670 2019210504
Tyr Ala Gly Leu Cys Phe Gln Glu Leu Gly Asp Leu Val Lys Leu Trp 675 680 685
Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp Ile Tyr Asn Arg Ser 690 695 700
Gly Asn Asp Thr Tyr Gly Ala Ala His Asn Leu Leu Val Ala His Ala 705 710 715 720
Leu Ala Trp Arg Leu Tyr Asp Gln Gln Phe Arg Pro Ser Gln Arg Gly 725 730 735
Ala Val Ser Leu Ser Leu His Ala Asp Trp Ala Glu Pro Ala Asn Pro 740 745 750
Tyr Ala Asp Ser His Trp Arg Ala Ala Glu Arg Phe Leu Gln Phe Glu 755 760 765
Ile Ala Trp Phe Ala Glu Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ala 770 775 780
Ala Met Arg Glu Tyr Ile Ala Ser Lys His Arg Arg Gly Leu Ser Ser 785 790 795 800
Ser Ala Leu Pro Arg Leu Thr Glu Ala Glu Arg Arg Leu Leu Lys Gly 805 810 815
Thr Val Asp Phe Cys Ala Leu Asn His Phe Thr Thr Arg Phe Val Met 820 825 830
His Glu Gln Leu Ala Gly Ser Arg Tyr Asp Ser Asp Arg Asp Ile Gln 835 840 845
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Thr Arg Leu Ala Val 850 855 860
Ile Pro Trp Gly Val Arg Lys Leu Leu Arg Trp Val Arg Arg Asn Tyr 865 870 875 880
Gly Asp Met Asp Ile Tyr Ile Thr Ala Ser Gly Ile Asp Asp Gln Ala 885 890 895
Page 316
503583504_1.txt Jul 2019
Leu Glu Asp Asp Arg Leu Arg Lys Tyr Tyr Leu Gly Lys Tyr Leu Gln 900 905 910
Glu Val Leu Lys Ala Tyr Leu Ile Asp Lys Val Arg Ile Lys Gly Tyr 915 920 925
Tyr Ala Phe Lys Leu Ala Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 930 935 940 2019210504
Phe Thr Ser Asp Phe Lys Ala Lys Ser Ser Ile Gln Phe Tyr Asn Lys 945 950 955 960
Val Ile Ser Ser Arg Gly Phe Pro Phe Glu Asn Ser Ser Ser Arg Cys 965 970 975
Ser Gln Thr Gln Glu Asn Thr Glu Cys Thr Val Cys Leu Phe Leu Val 980 985 990
Gln Lys Lys Pro Leu Ile Phe Leu Gly Cys Cys Phe Phe Ser Thr Leu 995 1000 1005
Val Leu Leu Leu Ser Ile Ala Ile Phe Gln Arg Gln Lys Arg Arg 1010 1015 1020
Lys Phe Trp Lys Ala Lys Asn Leu Gln His Ile Pro Leu Lys Lys 1025 1030 1035
Gly Lys Arg Val Val Ser 1040
<210> 468 <211> 1043 <212> PRT <213> Mus musculus
<400> 468 Met Lys Thr Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Ser Asp Glu Arg Asn Thr Arg Ser Arg Lys Thr Met Ser Asn 20 25 30
Arg Ala Leu Gln Arg Ser Ala Val Leu Ser Ala Phe Val Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Lys Ala Ile Trp Asp Lys Lys 50 55 60
Gln Tyr Val Ser Pro Val Asn Pro Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val Page 317
503583504_1.txt Jul 2019
85 90 95
Glu Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg 100 105 110
Tyr Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu 2019210504
130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asn Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg 165 170 175
Ala Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly 195 200 205
Trp Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr 210 215 220
Cys Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His 225 230 235 240
Asn Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala 245 250 255
Pro Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn 260 265 270
Leu Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe 275 280 285
Arg Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp 290 295 300
Ile Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile Asn Cys Gln 305 310 315 320
His Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly 325 330 335
Asp Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met Ile Pro Glu 340 345 350
Phe Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala Asp Phe Phe Page 318
503583504_1.txt Jul 2019
355 360 365
Ala Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn Thr Val Val 370 375 380
Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val Leu Asn Trp 385 390 395 400
Ile Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser Glu Asn Gly 2019210504
405 410 415
Trp Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr Ala Ile Tyr 420 425 430
Met Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile Lys Phe Asp 435 440 445
Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu Asp Gly Phe 450 455 460
Glu Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe Tyr Val Asp 465 470 475 480
Phe Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His Tyr 485 490 495
Tyr Lys Gln Ile Ile Gln Asp Asn Gly Phe Pro Leu Lys Glu Ser Thr 500 505 510
Pro Asp Met Lys Gly Arg Phe Pro Cys Asp Phe Ser Trp Gly Val Thr 515 520 525
Glu Ser Val Leu Lys Pro Glu Phe Thr Val Ser Ser Pro Gln Phe Thr 530 535 540
Asp Pro His Leu Tyr Val Trp Asn Val Thr Gly Asn Arg Leu Leu Tyr 545 550 555 560
Arg Val Glu Gly Val Arg Leu Lys Thr Arg Pro Ser Gln Cys Thr Asp 565 570 575
Tyr Val Ser Ile Lys Lys Arg Val Glu Met Leu Ala Lys Met Lys Val 580 585 590
Thr His Tyr Gln Phe Ala Leu Asp Trp Thr Ser Ile Leu Pro Thr Gly 595 600 605
Asn Leu Ser Lys Val Asn Arg Gln Val Leu Arg Tyr Tyr Arg Cys Val 610 615 620
Val Ser Glu Gly Leu Lys Leu Gly Val Phe Pro Met Val Thr Leu Tyr Page 319
503583504_1.txt Jul 2019
625 630 635 640
His Pro Thr His Ser His Leu Gly Leu Pro Leu Pro Leu Leu Ser Ser 645 650 655
Gly Gly Trp Leu Asn Met Asn Thr Ala Lys Ala Phe Gln Asp Tyr Ala 660 665 670
Glu Leu Cys Phe Arg Glu Leu Gly Asp Leu Val Lys Leu Trp Ile Thr 2019210504
675 680 685
Ile Asn Glu Pro Asn Arg Leu Ser Asp Met Tyr Asn Arg Thr Ser Asn 690 695 700
Asp Thr Tyr Arg Ala Ala His Asn Leu Met Ile Ala His Ala Gln Val 705 710 715 720
Trp His Leu Tyr Asp Arg Gln Tyr Arg Pro Val Gln His Gly Ala Val 725 730 735
Ser Leu Ser Leu His Cys Asp Trp Ala Glu Pro Ala Asn Pro Phe Val 740 745 750
Asp Ser His Trp Lys Ala Ala Glu Arg Phe Leu Gln Phe Glu Ile Ala 755 760 765
Trp Phe Ala Asp Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ser Val Met 770 775 780
Lys Glu Tyr Ile Ala Ser Lys Asn Gln Arg Gly Leu Ser Ser Ser Val 785 790 795 800
Leu Pro Arg Phe Thr Ala Lys Glu Ser Arg Leu Val Lys Gly Thr Val 805 810 815
Asp Phe Tyr Ala Leu Asn His Phe Thr Thr Arg Phe Val Ile His Lys 820 825 830
Gln Leu Asn Thr Asn Arg Ser Val Ala Asp Arg Asp Val Gln Phe Leu 835 840 845
Gln Asp Ile Thr Arg Leu Ser Ser Pro Ser Arg Leu Ala Val Thr Pro 850 855 860
Trp Gly Val Arg Lys Leu Leu Ala Trp Ile Arg Arg Asn Tyr Arg Asp 865 870 875 880
Arg Asp Ile Tyr Ile Thr Ala Asn Gly Ile Asp Asp Leu Ala Leu Glu 885 890 895
Asp Asp Gln Ile Arg Lys Tyr Tyr Leu Glu Lys Tyr Val Gln Glu Ala Page 320
503583504_1.txt Jul 2019
900 905 910
Leu Lys Ala Tyr Leu Ile Asp Lys Val Lys Ile Lys Gly Tyr Tyr Ala 915 920 925
Phe Lys Leu Thr Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe Phe Thr 930 935 940
Ser Asp Phe Arg Ala Lys Ser Ser Val Gln Phe Tyr Ser Lys Leu Ile 2019210504
945 950 955 960
Ser Ser Ser Gly Leu Pro Ala Glu Asn Arg Ser Pro Ala Cys Gly Gln 965 970 975
Pro Ala Glu Asp Thr Asp Cys Thr Ile Cys Ser Phe Leu Val Glu Lys 980 985 990
Lys Pro Leu Ile Phe Phe Gly Cys Cys Phe Ile Ser Thr Leu Ala Val 995 1000 1005
Leu Leu Ser Ile Thr Val Phe His His Gln Lys Arg Arg Lys Phe 1010 1015 1020
Gln Lys Ala Arg Asn Leu Gln Asn Ile Pro Leu Lys Lys Gly His 1025 1030 1035
Ser Arg Val Phe Ser 1040
<210> 469 <211> 3132 <212> DNA <213> Mus musculus
<400> 469 atgaagacag gctgtgcagc agggtctccg gggaatgaat ggattttctt cagctctgat 60 gaaagaaaca cacgctctag gaaaacaatg tccaacaggg cactgcaaag atctgccgtg 120 ctgtctgcgt ttgttctgct gcgagctgtt accggcttct ccggagacgg gaaagcaata 180
tgggataaaa aacagtacgt gagtccggta aacccaagtc agctgttcct ctatgacact 240 ttccctaaaa acttttcctg gggcgttggg accggagcat ttcaagtgga agggagttgg 300 aagacagatg gaagaggacc ctcgatctgg gatcggtacg tctactcaca cctgagaggt 360
gtcaacggca cagacagatc cactgacagt tacatctttc tggaaaaaga cttgttggct 420 ctggattttt taggagtttc tttttatcag ttctcaatct cctggccacg gttgtttccc 480
aatggaacag tagcagcagt gaatgcgcaa ggtctccggt actaccgtgc acttctggac 540 tcgctggtac ttaggaatat cgagcccatt gttaccttgt accattggga tttgcctctg 600 acgctccagg aagaatatgg gggctggaaa aatgcaacta tgatagatct cttcaacgac 660
tatgccacat actgcttcca gacctttgga gaccgtgtca aatattggat tacaattcac 720 Page 321
503583504_1.txt Jul 2019
aacccttacc ttgttgcttg gcatgggttt ggcacaggta tgcatgcacc aggagagaag 780
ggaaatttaa cagctgtcta cactgtggga cacaacctga tcaaggcaca ttcgaaagtg 840 tggcataact acgacaaaaa cttccgccct catcagaagg gttggctctc catcaccttg 900
gggtcccatt ggatagagcc aaacagaaca gacaacatgg aggacgtgat caactgccag 960 cactccatgt cctctgtgct tggatggttc gccaacccca tccacgggga cggcgactac 1020 cctgagttca tgaagacggg cgccatgatc cccgagttct ctgaggcaga gaaggaggag 1080 2019210504
gtgaggggca cggctgattt ctttgccttt tccttcgggc ccaacaactt caggccctca 1140 aacaccgtgg tgaaaatggg acaaaatgta tcactcaact taaggcaggt gctgaactgg 1200 attaaactgg aatacgatga ccctcaaatc ttgatttcgg agaacggctg gttcacagat 1260
agctatataa agacagagga caccacggcc atctacatga tgaagaattt cctaaaccag 1320 gttcttcaag caataaaatt tgatgaaatc cgcgtgtttg gttatacggc ctggactctc 1380 ctggatggct ttgagtggca ggatgcctat acgacccgac gagggctgtt ttatgtggac 1440
tttaacagtg agcagaaaga gaggaaaccc aagtcctcgg ctcattacta caagcagatc 1500 atacaagaca acggcttccc tttgaaagag tccacgccag acatgaaggg tcggttcccc 1560
tgtgatttct cttggggagt cactgagtct gttcttaagc ccgagtttac ggtctcctcc 1620
ccgcagttta ccgatcctca cctgtatgtg tggaatgtca ctggcaacag attgctctac 1680
cgagtggaag gggtaaggct gaaaacaaga ccatcccagt gcacagatta tgtgagcatc 1740
aaaaaacgag ttgaaatgtt ggcaaaaatg aaagtcaccc actaccagtt tgctctggac 1800 tggacctcta tccttcccac tggcaatctg tccaaagtta acagacaagt gttaaggtac 1860
tataggtgtg tggtgagcga aggactgaag ctgggcgtct tccccatggt gacgttgtac 1920
cacccaaccc actcccatct cggcctcccc ctgccacttc tgagcagtgg ggggtggcta 1980 aacatgaaca cagccaaggc cttccaggac tacgctgagc tgtgcttccg ggagttgggg 2040
gacttggtga agctctggat caccatcaat gagcctaaca ggctgagtga catgtacaac 2100 cgcacgagta atgacaccta ccgtgcagcc cacaacctga tgatcgccca tgcccaggtc 2160 tggcacctct atgataggca gtataggccg gtccagcatg gggctgtgtc gctgtcctta 2220
cattgcgact gggcagaacc tgccaacccc tttgtggatt cacactggaa ggcagccgag 2280 cgcttcctcc agtttgagat cgcctggttt gcagatccgc tcttcaagac tggcgactat 2340 ccatcggtta tgaaggaata catcgcctcc aagaaccagc gagggctgtc tagctcagtc 2400
ctgccgcgct tcaccgcgaa ggagagcagg ctggtgaagg gtaccgtcga cttctacgca 2460 ctgaaccact tcactacgag gttcgtgata cacaagcagc tgaacaccaa ccgctcagtt 2520
gcagacaggg acgtccagtt cctgcaggac atcacccgcc taagctcgcc cagccgcctg 2580 gctgtaacac cctggggagt gcgcaagctc cttgcgtgga tccggaggaa ctacagagac 2640 agggatatct acatcacagc caatggcatc gatgacctgg ctctagagga tgatcagatc 2700
cgaaagtact acttggagaa gtatgtccag gaggctctga aagcatatct cattgacaag 2760 Page 322
503583504_1.txt Jul 2019
gtcaaaatca aaggctacta tgcattcaaa ctgactgaag agaaatctaa gcctagattt 2820
ggatttttca cctctgactt cagagctaag tcctctgtcc agttttacag caagctgatc 2880 agcagcagtg gcctccccgc tgagaacaga agtcctgcgt gtggtcagcc tgcggaagac 2940
acagactgca ccatttgctc atttctcgtg gagaagaaac cactcatctt cttcggttgc 3000 tgcttcatct ccactctggc tgtactgcta tccatcaccg tttttcatca tcaaaagaga 3060 agaaaattcc agaaagcaag gaacttacaa aatataccat tgaagaaagg ccacagcaga 3120 2019210504
gttttcagct aa 3132
<210> 470 <211> 439 <212> PRT <213> Mus musculus <400> 470 Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val Glu 1 5 10 15
Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg Tyr 20 25 30
Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr Asp 35 40 45
Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu Gly 50 55 60
Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro Asn 65 70 75 80
Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg Ala 85 90 95
Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr Leu 100 105 110
Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly Trp 115 120 125
Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr Cys 130 135 140
Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His Asn 145 150 155 160
Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala Pro 165 170 175
Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn Leu 180 185 190 Page 323
503583504_1.txt Jul 2019
Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe Arg 195 200 205
Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp Ile 210 215 220
Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile Asn Cys Gln His 225 230 235 240 2019210504
Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly Asp 245 250 255
Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met Ile Pro Glu Phe 260 265 270
Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala Asp Phe Phe Ala 275 280 285
Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn Thr Val Val Lys 290 295 300
Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val Leu Asn Trp Ile 305 310 315 320
Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser Glu Asn Gly Trp 325 330 335
Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr Ala Ile Tyr Met 340 345 350
Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile Lys Phe Asp Glu 355 360 365
Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu Asp Gly Phe Glu 370 375 380
Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe Tyr Val Asp Phe 385 390 395 400
Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His Tyr Tyr 405 410 415
Lys Gln Ile Ile Gln Asp Asn Gly Phe Pro Leu Lys Glu Ser Thr Pro 420 425 430
Asp Met Lys Gly Arg Phe Pro 435
<210> 471 <211> 538 Page 324
503583504_1.txt Jul 2019
<212> PRT <213> Mus musculus
<400> 471 Phe Pro Leu Lys Glu Ser Thr Pro Asp Met Lys Gly Arg Phe Pro Cys 1 5 10 15
Asp Phe Ser Trp Gly Val Thr Glu Ser Val Leu Lys Pro Glu Phe Thr 20 25 30 2019210504
Val Ser Ser Pro Gln Phe Thr Asp Pro His Leu Tyr Val Trp Asn Val 35 40 45
Thr Gly Asn Arg Leu Leu Tyr Arg Val Glu Gly Val Arg Leu Lys Thr 50 55 60
Arg Pro Ser Gln Cys Thr Asp Tyr Val Ser Ile Lys Lys Arg Val Glu 65 70 75 80
Met Leu Ala Lys Met Lys Val Thr His Tyr Gln Phe Ala Leu Asp Trp 85 90 95
Thr Ser Ile Leu Pro Thr Gly Asn Leu Ser Lys Val Asn Arg Gln Val 100 105 110
Leu Arg Tyr Tyr Arg Cys Val Val Ser Glu Gly Leu Lys Leu Gly Val 115 120 125
Phe Pro Met Val Thr Leu Tyr His Pro Thr His Ser His Leu Gly Leu 130 135 140
Pro Leu Pro Leu Leu Ser Ser Gly Gly Trp Leu Asn Met Asn Thr Ala 145 150 155 160
Lys Ala Phe Gln Asp Tyr Ala Glu Leu Cys Phe Arg Glu Leu Gly Asp 165 170 175
Leu Val Lys Leu Trp Ile Thr Ile Asn Glu Pro Asn Arg Leu Ser Asp 180 185 190
Met Tyr Asn Arg Thr Ser Asn Asp Thr Tyr Arg Ala Ala His Asn Leu 195 200 205
Met Ile Ala His Ala Gln Val Trp His Leu Tyr Asp Arg Gln Tyr Arg 210 215 220
Pro Val Gln His Gly Ala Val Ser Leu Ser Leu His Cys Asp Trp Ala 225 230 235 240
Glu Pro Ala Asn Pro Phe Val Asp Ser His Trp Lys Ala Ala Glu Arg 245 250 255
Page 325
503583504_1.txt Jul 2019
Phe Leu Gln Phe Glu Ile Ala Trp Phe Ala Asp Pro Leu Phe Lys Thr 260 265 270
Gly Asp Tyr Pro Ser Val Met Lys Glu Tyr Ile Ala Ser Lys Asn Gln 275 280 285
Arg Gly Leu Ser Ser Ser Val Leu Pro Arg Phe Thr Ala Lys Glu Ser 290 295 300 2019210504
Arg Leu Val Lys Gly Thr Val Asp Phe Tyr Ala Leu Asn His Phe Thr 305 310 315 320
Thr Arg Phe Val Ile His Lys Gln Leu Asn Thr Asn Arg Ser Val Ala 325 330 335
Asp Arg Asp Val Gln Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro 340 345 350
Ser Arg Leu Ala Val Thr Pro Trp Gly Val Arg Lys Leu Leu Ala Trp 355 360 365
Ile Arg Arg Asn Tyr Arg Asp Arg Asp Ile Tyr Ile Thr Ala Asn Gly 370 375 380
Ile Asp Asp Leu Ala Leu Glu Asp Asp Gln Ile Arg Lys Tyr Tyr Leu 385 390 395 400
Glu Lys Tyr Val Gln Glu Ala Leu Lys Ala Tyr Leu Ile Asp Lys Val 405 410 415
Lys Ile Lys Gly Tyr Tyr Ala Phe Lys Leu Thr Glu Glu Lys Ser Lys 420 425 430
Pro Arg Phe Gly Phe Phe Thr Ser Asp Phe Arg Ala Lys Ser Ser Val 435 440 445
Gln Phe Tyr Ser Lys Leu Ile Ser Ser Ser Gly Leu Pro Ala Glu Asn 450 455 460
Arg Ser Pro Ala Cys Gly Gln Pro Ala Glu Asp Thr Asp Cys Thr Ile 465 470 475 480
Cys Ser Phe Leu Val Glu Lys Lys Pro Leu Ile Phe Phe Gly Cys Cys 485 490 495
Phe Ile Ser Thr Leu Ala Val Leu Leu Ser Ile Thr Val Phe His His 500 505 510
Gln Lys Arg Arg Lys Phe Gln Lys Ala Arg Asn Leu Gln Asn Ile Pro 515 520 525
Page 326
503583504_1.txt Jul 2019
Leu Lys Lys Gly His Ser Arg Val Phe Ser 530 535
<210> 472 <211> 193 <212> PRT <213> Mus musculus <400> 472 Met Lys Thr Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15 2019210504
Phe Ser Ser Asp Glu Arg Asn Thr Arg Ser Arg Lys Thr Met Ser Asn 20 25 30
Arg Ala Leu Gln Arg Ser Ala Val Leu Ser Ala Phe Val Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Lys Ala Ile Trp Asp Lys Lys 50 55 60
Gln Tyr Val Ser Pro Val Asn Pro Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val 85 90 95
Glu Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg 100 105 110
Tyr Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr 115 120 125
Asp Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu 130 135 140
Gly Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro 145 150 155 160
Asn Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg 165 170 175
Ala Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr 180 185 190
Leu
<210> 473 <211> 221 <212> PRT <213> Mus musculus
<400> 473 Page 327
503583504_1.txt Jul 2019
Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val Glu 1 5 10 15
Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg Tyr 20 25 30
Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr Asp 35 40 45 2019210504
Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu Gly 50 55 60
Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro Asn 65 70 75 80
Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg Ala 85 90 95
Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr Leu 100 105 110
Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly Trp 115 120 125
Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr Cys 130 135 140
Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His Asn 145 150 155 160
Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala Pro 165 170 175
Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn Leu 180 185 190
Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe Arg 195 200 205
Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser 210 215 220
<210> 474 <211> 223 <212> PRT <213> Mus musculus
<400> 474 Tyr His Trp Asp Leu Pro Leu Thr Leu Gln Glu Glu Tyr Gly Gly Trp 1 5 10 15
Lys Asn Ala Thr Met Ile Asp Leu Phe Asn Asp Tyr Ala Thr Tyr Cys 20 25 30 Page 328
503583504_1.txt Jul 2019
Phe Gln Thr Phe Gly Asp Arg Val Lys Tyr Trp Ile Thr Ile His Asn 35 40 45
Pro Tyr Leu Val Ala Trp His Gly Phe Gly Thr Gly Met His Ala Pro 50 55 60
Gly Glu Lys Gly Asn Leu Thr Ala Val Tyr Thr Val Gly His Asn Leu 65 70 75 80 2019210504
Ile Lys Ala His Ser Lys Val Trp His Asn Tyr Asp Lys Asn Phe Arg 85 90 95
Pro His Gln Lys Gly Trp Leu Ser Ile Thr Leu Gly Ser His Trp Ile 100 105 110
Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile Asn Cys Gln His 115 120 125
Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro Ile His Gly Asp 130 135 140
Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met Ile Pro Glu Phe 145 150 155 160
Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala Asp Phe Phe Ala 165 170 175
Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn Thr Val Val Lys 180 185 190
Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val Leu Asn Trp Ile 195 200 205
Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser Glu Asn Gly 210 215 220
<210> 475 <211> 205 <212> PRT <213> Mus musculus <400> 475 Ser His Trp Ile Glu Pro Asn Arg Thr Asp Asn Met Glu Asp Val Ile 1 5 10 15
Asn Cys Gln His Ser Met Ser Ser Val Leu Gly Trp Phe Ala Asn Pro 20 25 30
Ile His Gly Asp Gly Asp Tyr Pro Glu Phe Met Lys Thr Gly Ala Met 35 40 45
Page 329
503583504_1.txt Jul 2019
Ile Pro Glu Phe Ser Glu Ala Glu Lys Glu Glu Val Arg Gly Thr Ala 50 55 60
Asp Phe Phe Ala Phe Ser Phe Gly Pro Asn Asn Phe Arg Pro Ser Asn 65 70 75 80
Thr Val Val Lys Met Gly Gln Asn Val Ser Leu Asn Leu Arg Gln Val 85 90 95 2019210504
Leu Asn Trp Ile Lys Leu Glu Tyr Asp Asp Pro Gln Ile Leu Ile Ser 100 105 110
Glu Asn Gly Trp Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr 115 120 125
Ala Ile Tyr Met Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile 130 135 140
Lys Phe Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu 145 150 155 160
Asp Gly Phe Glu Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe 165 170 175
Tyr Val Asp Phe Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser 180 185 190
Ala His Tyr Tyr Lys Gln Ile Ile Gln Asp Asn Gly Phe 195 200 205
<210> 476 <211> 104 <212> PRT <213> Mus musculus
<400> 476 Gly Trp Phe Thr Asp Ser Tyr Ile Lys Thr Glu Asp Thr Thr Ala Ile 1 5 10 15
Tyr Met Met Lys Asn Phe Leu Asn Gln Val Leu Gln Ala Ile Lys Phe 20 25 30
Asp Glu Ile Arg Val Phe Gly Tyr Thr Ala Trp Thr Leu Leu Asp Gly 35 40 45
Phe Glu Trp Gln Asp Ala Tyr Thr Thr Arg Arg Gly Leu Phe Tyr Val 50 55 60
Asp Phe Asn Ser Glu Gln Lys Glu Arg Lys Pro Lys Ser Ser Ala His 65 70 75 80
Tyr Tyr Lys Gln Ile Ile Gln Asp Asn Gly Phe Pro Leu Lys Glu Ser 85 90 95 Page 330
503583504_1.txt Jul 2019
Thr Pro Asp Met Lys Gly Arg Phe 100
<210> 477 <211> 126 <212> PRT <213> Mus musculus <400> 477 2019210504
Pro Leu Lys Glu Ser Thr Pro Asp Met Lys Gly Arg Phe Pro Cys Asp 1 5 10 15
Phe Ser Trp Gly Val Thr Glu Ser Val Leu Lys Pro Glu Phe Thr Val 20 25 30
Ser Ser Pro Gln Phe Thr Asp Pro His Leu Tyr Val Trp Asn Val Thr 35 40 45
Gly Asn Arg Leu Leu Tyr Arg Val Glu Gly Val Arg Leu Lys Thr Arg 50 55 60
Pro Ser Gln Cys Thr Asp Tyr Val Ser Ile Lys Lys Arg Val Glu Met 65 70 75 80
Leu Ala Lys Met Lys Val Thr His Tyr Gln Phe Ala Leu Asp Trp Thr 85 90 95
Ser Ile Leu Pro Thr Gly Asn Leu Ser Lys Val Asn Arg Gln Val Leu 100 105 110
Arg Tyr Tyr Arg Cys Val Val Ser Glu Gly Leu Lys Leu Gly 115 120 125
<210> 478 <211> 216 <212> PRT <213> Mus musculus <400> 478 Pro Cys Asp Phe Ser Trp Gly Val Thr Glu Ser Val Leu Lys Pro Glu 1 5 10 15
Phe Thr Val Ser Ser Pro Gln Phe Thr Asp Pro His Leu Tyr Val Trp 20 25 30
Asn Val Thr Gly Asn Arg Leu Leu Tyr Arg Val Glu Gly Val Arg Leu 35 40 45
Lys Thr Arg Pro Ser Gln Cys Thr Asp Tyr Val Ser Ile Lys Lys Arg 50 55 60
Val Glu Met Leu Ala Lys Met Lys Val Thr His Tyr Gln Phe Ala Leu 65 70 75 80 Page 331
503583504_1.txt Jul 2019
Asp Trp Thr Ser Ile Leu Pro Thr Gly Asn Leu Ser Lys Val Asn Arg 85 90 95
Gln Val Leu Arg Tyr Tyr Arg Cys Val Val Ser Glu Gly Leu Lys Leu 100 105 110
Gly Val Phe Pro Met Val Thr Leu Tyr His Pro Thr His Ser His Leu 115 120 125 2019210504
Gly Leu Pro Leu Pro Leu Leu Ser Ser Gly Gly Trp Leu Asn Met Asn 130 135 140
Thr Ala Lys Ala Phe Gln Asp Tyr Ala Glu Leu Cys Phe Arg Glu Leu 145 150 155 160
Gly Asp Leu Val Lys Leu Trp Ile Thr Ile Asn Glu Pro Asn Arg Leu 165 170 175
Ser Asp Met Tyr Asn Arg Thr Ser Asn Asp Thr Tyr Arg Ala Ala His 180 185 190
Asn Leu Met Ile Ala His Ala Gln Val Trp His Leu Tyr Asp Arg Gln 195 200 205
Tyr Arg Pro Val Gln His Gly Ala 210 215
<210> 479 <211> 218 <212> PRT <213> Mus musculus <400> 479 Gly Val Phe Pro Met Val Thr Leu Tyr His Pro Thr His Ser His Leu 1 5 10 15
Gly Leu Pro Leu Pro Leu Leu Ser Ser Gly Gly Trp Leu Asn Met Asn 20 25 30
Thr Ala Lys Ala Phe Gln Asp Tyr Ala Glu Leu Cys Phe Arg Glu Leu 35 40 45
Gly Asp Leu Val Lys Leu Trp Ile Thr Ile Asn Glu Pro Asn Arg Leu 50 55 60
Ser Asp Met Tyr Asn Arg Thr Ser Asn Asp Thr Tyr Arg Ala Ala His 65 70 75 80
Asn Leu Met Ile Ala His Ala Gln Val Trp His Leu Tyr Asp Arg Gln 85 90 95
Page 332
503583504_1.txt Jul 2019
Tyr Arg Pro Val Gln His Gly Ala Val Ser Leu Ser Leu His Cys Asp 100 105 110
Trp Ala Glu Pro Ala Asn Pro Phe Val Asp Ser His Trp Lys Ala Ala 115 120 125
Glu Arg Phe Leu Gln Phe Glu Ile Ala Trp Phe Ala Asp Pro Leu Phe 130 135 140 2019210504
Lys Thr Gly Asp Tyr Pro Ser Val Met Lys Glu Tyr Ile Ala Ser Lys 145 150 155 160
Asn Gln Arg Gly Leu Ser Ser Ser Val Leu Pro Arg Phe Thr Ala Lys 165 170 175
Glu Ser Arg Leu Val Lys Gly Thr Val Asp Phe Tyr Ala Leu Asn His 180 185 190
Phe Thr Thr Arg Phe Val Ile His Lys Gln Leu Asn Thr Asn Arg Ser 195 200 205
Val Ala Asp Arg Asp Val Gln Phe Leu Gln 210 215
<210> 480 <211> 229 <212> PRT <213> Mus musculus <400> 480 Ala Val Ser Leu Ser Leu His Cys Asp Trp Ala Glu Pro Ala Asn Pro 1 5 10 15
Phe Val Asp Ser His Trp Lys Ala Ala Glu Arg Phe Leu Gln Phe Glu 20 25 30
Ile Ala Trp Phe Ala Asp Pro Leu Phe Lys Thr Gly Asp Tyr Pro Ser 35 40 45
Val Met Lys Glu Tyr Ile Ala Ser Lys Asn Gln Arg Gly Leu Ser Ser 50 55 60
Ser Val Leu Pro Arg Phe Thr Ala Lys Glu Ser Arg Leu Val Lys Gly 65 70 75 80
Thr Val Asp Phe Tyr Ala Leu Asn His Phe Thr Thr Arg Phe Val Ile 85 90 95
His Lys Gln Leu Asn Thr Asn Arg Ser Val Ala Asp Arg Asp Val Gln 100 105 110
Phe Leu Gln Asp Ile Thr Arg Leu Ser Ser Pro Ser Arg Leu Ala Val 115 120 125 Page 333
503583504_1.txt Jul 2019
Thr Pro Trp Gly Val Arg Lys Leu Leu Ala Trp Ile Arg Arg Asn Tyr 130 135 140
Arg Asp Arg Asp Ile Tyr Ile Thr Ala Asn Gly Ile Asp Asp Leu Ala 145 150 155 160
Leu Glu Asp Asp Gln Ile Arg Lys Tyr Tyr Leu Glu Lys Tyr Val Gln 165 170 175 2019210504
Glu Ala Leu Lys Ala Tyr Leu Ile Asp Lys Val Lys Ile Lys Gly Tyr 180 185 190
Tyr Ala Phe Lys Leu Thr Glu Glu Lys Ser Lys Pro Arg Phe Gly Phe 195 200 205
Phe Thr Ser Asp Phe Arg Ala Lys Ser Ser Val Gln Phe Tyr Ser Lys 210 215 220
Leu Ile Ser Ser Ser 225
<210> 481 <211> 81 <212> PRT <213> Mus musculus
<400> 481 Met Lys Thr Gly Cys Ala Ala Gly Ser Pro Gly Asn Glu Trp Ile Phe 1 5 10 15
Phe Ser Ser Asp Glu Arg Asn Thr Arg Ser Arg Lys Thr Met Ser Asn 20 25 30
Arg Ala Leu Gln Arg Ser Ala Val Leu Ser Ala Phe Val Leu Leu Arg 35 40 45
Ala Val Thr Gly Phe Ser Gly Asp Gly Lys Ala Ile Trp Asp Lys Lys 50 55 60
Gln Tyr Val Ser Pro Val Asn Pro Ser Gln Leu Phe Leu Tyr Asp Thr 65 70 75 80
Phe
<210> 482 <211> 112 <212> PRT <213> Mus musculus <400> 482 Pro Lys Asn Phe Ser Trp Gly Val Gly Thr Gly Ala Phe Gln Val Glu 1 5 10 15 Page 334
503583504_1.txt Jul 2019
Gly Ser Trp Lys Thr Asp Gly Arg Gly Pro Ser Ile Trp Asp Arg Tyr 20 25 30
Val Tyr Ser His Leu Arg Gly Val Asn Gly Thr Asp Arg Ser Thr Asp 35 40 45
Ser Tyr Ile Phe Leu Glu Lys Asp Leu Leu Ala Leu Asp Phe Leu Gly 50 55 60 2019210504
Val Ser Phe Tyr Gln Phe Ser Ile Ser Trp Pro Arg Leu Phe Pro Asn 65 70 75 80
Gly Thr Val Ala Ala Val Asn Ala Gln Gly Leu Arg Tyr Tyr Arg Ala 85 90 95
Leu Leu Asp Ser Leu Val Leu Arg Asn Ile Glu Pro Ile Val Thr Leu 100 105 110
<210> 483 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
<220> <221> MOD_RES <222> (6)..(6) <223> Thr or absent
<400> 483 Arg Ile Lys Ser Lys Xaa Asp Gly Gly Thr Thr Asp Tyr Ala Ala Pro Val 1 5 10 15
Lys Gly
Page 335

Claims (12)

1. An isolated antibody or antibody fragment thereof that mimics FGF21-mediated signaling comprising: a heavy chain variable region CDR1 comprising the sequence set forth in SEQ ID NO: 129; a heavy chain variable region CDR2 comprising the sequence set forth in SEQ ID NO: 142; a heavy chain variable region CDR3 comprising the sequence set forth in SEQ ID NO: 156; a light chain variable region CDR1 comprising the sequence set forth in SEQ ID NO: 163; a light chain variable region CDR2 comprising the sequence set forth in SEQ ID NO: 173; and a light chain variable region CDR3 comprising the sequence set forth in SEQ ID NO: 194.
2. An isolated antibody or antibody fragment thereof that mimics FGF21-mediated signaling comprising a heavy chain variable region comprising the amino acid sequence set O forth in SEQ ID NO: 82 and a light chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 63.
3. A pharmaceutical composition comprising one or more antibodies or antibody fragments thereof of claim 1 or claim 2 in admixture with a pharmaceutically acceptable carrier.
4. A pharmaceutical composition comprising an antibody or antibody fragment thereof of claim 1 or claim 2 in admixture with a pharmaceutically acceptable carrier.
5. An isolated nucleic acid comprising a polynucleotide sequence encoding the antibody or antibody fragment thereof of claim 1 or claim 2.
6. An expression vector comprising the nucleic acid of claim 5.
7. An isolated cell comprising the nucleic acid of claim 5.
8. An isolated cell comprising the expression vector of claim 6.
9. A method of producing an antibody or antibody fragment thereof that specifically binds to (i) p-Klotho; (ii) FGFRlc, FGFR2c, FGFR3c or FGFR4; or (iii) a complex comprising Klotho and one of FGFRlc, FGFR2c, FGFR3c, and FGFR4, comprising incubating the cell of claim 7 or claim 8 under conditions that allow it to express the antibody.
10. An antibody or antibody fragment thereof when produced by the method of claim 9.
11. A method of preventing or treating a condition in a subject in need of such treatment comprising administering the antibody or antibody fragment thereof of claim 1 or claim 2 or claim 10, or a therapeutically effective amount of the composition of claim 3 or claim 4 to the subject, wherein the condition is type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease or metabolic syndrome.
12. Use of the antibody or antibody fragment thereof of any one of claims 1, 2 or 10 in the manufacture of a medicament for preventing or treating a condition, wherein the condition is treatable by lowering blood glucose, insulin or serum lipid levels.
AU2019210504A 2009-12-07 2019-07-30 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof Expired - Fee Related AU2019210504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019210504A AU2019210504B2 (en) 2009-12-07 2019-07-30 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US61/267,321 2009-12-07
US61/381,846 2010-09-10
AU2010328444A AU2010328444B2 (en) 2009-12-07 2010-12-03 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof
AU2014250730A AU2014250730B2 (en) 2009-12-07 2014-10-20 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof
AU2017200115A AU2017200115B2 (en) 2009-12-07 2017-01-09 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof
AU2019210504A AU2019210504B2 (en) 2009-12-07 2019-07-30 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2017200115A Division AU2017200115B2 (en) 2009-12-07 2017-01-09 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof

Publications (2)

Publication Number Publication Date
AU2019210504A1 AU2019210504A1 (en) 2019-08-15
AU2019210504B2 true AU2019210504B2 (en) 2021-08-05

Family

ID=51845241

Family Applications (3)

Application Number Title Priority Date Filing Date
AU2014250730A Active AU2014250730B2 (en) 2009-12-07 2014-10-20 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof
AU2017200115A Active AU2017200115B2 (en) 2009-12-07 2017-01-09 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof
AU2019210504A Expired - Fee Related AU2019210504B2 (en) 2009-12-07 2019-07-30 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
AU2014250730A Active AU2014250730B2 (en) 2009-12-07 2014-10-20 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof
AU2017200115A Active AU2017200115B2 (en) 2009-12-07 2017-01-09 Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof

Country Status (1)

Country Link
AU (3) AU2014250730B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2229955A1 (en) * 2003-10-16 2010-09-22 Imclone LLC Fibroblast growth factor receptor-1 inhibitors and methods of treatment using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Anonymous. "Monoclonal Anti-human/mouse Klotho β Antibody", R & D Systems, pp. 1. 6 February 2007. Retrieved from: http://www.rndsystems.com/pdf/MAB3738.pdf *
Kharitonenkov, A. et al. 2007 Endocrinology, vol. 148, no. 2, pp. 774–781 *
Suzuki, M. et al 2008 Molecular Endocrinology. vol. 22, no. 4, pp. 1006-14 *
Xu, J. et al. 2009 Diabetes, vol.58, pp. 250–259 *

Also Published As

Publication number Publication date
AU2019210504A1 (en) 2019-08-15
AU2014250730A1 (en) 2014-11-06
AU2014250730B2 (en) 2016-10-13
AU2017200115A1 (en) 2017-02-02
AU2017200115B2 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
KR102121678B1 (en) HUMAN ANTIGEN BINDING PROTEINS THAT BIND β-KLOTHO, FGF RECEPTORS AND COMPLEXES THEREOF
US11248052B2 (en) Antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
DK2379594T3 (en) Human CGRP receptor binding antibodies
KR102230620B1 (en) Antibody constructs for cdh19 and cd3
KR100938452B1 (en) Antibodies to m-csf
KR102215405B1 (en) Human pac1 antibodies
AU2019210504B2 (en) Human antigen binding proteins that bind beta-Klotho, FGF receptors and complexes thereof

Legal Events

Date Code Title Description
MK25 Application lapsed reg. 22.2i(2) - failure to pay acceptance fee