AU2015328248B9 - Vehicle having suspension with continuous damping control - Google Patents

Vehicle having suspension with continuous damping control Download PDF

Info

Publication number
AU2015328248B9
AU2015328248B9 AU2015328248A AU2015328248A AU2015328248B9 AU 2015328248 B9 AU2015328248 B9 AU 2015328248B9 AU 2015328248 A AU2015328248 A AU 2015328248A AU 2015328248 A AU2015328248 A AU 2015328248A AU 2015328248 B9 AU2015328248 B9 AU 2015328248B9
Authority
AU
Australia
Prior art keywords
controller
damping
condition
sensor
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
AU2015328248A
Other versions
AU2015328248B2 (en
AU2015328248A1 (en
Inventor
Louis J. Brady
Steven R. Franker
Aaron J. Nysse
Alex R. Scheuerell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaris Inc
Original Assignee
Polaris Industries Inc
Polaris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/507,355 external-priority patent/US9205717B2/en
Application filed by Polaris Industries Inc, Polaris Inc filed Critical Polaris Industries Inc
Publication of AU2015328248A1 publication Critical patent/AU2015328248A1/en
Publication of AU2015328248B2 publication Critical patent/AU2015328248B2/en
Application granted granted Critical
Publication of AU2015328248B9 publication Critical patent/AU2015328248B9/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0164Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during accelerating or braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/07Off-road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/32Track vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/32Track vehicles
    • B60G2300/322Snowmobiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/33Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/39Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/61Load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/04Means for informing, instructing or displaying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/20Manual control or setting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/70Computer memory; Data storage, e.g. maps for adaptive control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/014Pitch; Nose dive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • B60G2800/162Reducing road induced vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/916Body Vibration Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/94Electronic Stability Program (ESP, i.e. ABS+ASC+EMS)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A damping control system for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame includes at least one adjustable shock absorber having an adjustable damping characteristic. The system also includes a controller coupled to each adjustable shock absorber to adjust the damping characteristic of each adjustable shock absorber, and a user interface coupled to the controller and accessible to a driver of the vehicle. The user interface includes at least one user input to permit manual adjustment of the damping characteristic of the at least one adjustable shock absorber during operation of the vehicle. Vehicle sensors are also be coupled to the controller to adjust the damping characteristic of the at least one adjustable shock absorber based vehicle conditions determined by sensor output signals.

Description

VEHICLE HAVING SUSPENSION WITH
CONTINUOUS DAMPING CONTROL
FILED OF THE INVENTION [0001]
The present disclosure relates to improved suspension for a vehicle having continuous “on-the-go” damping control for shock absorbers.
BACKGROUND OF THE INVENTION [0002]
Currently some off-road vehicles include adjustable shock absorbers. These adjustments include spring preload, high and low speed compression damping and/or rebound damping. In order to make these adjustments, the vehicle is stopped and the operator makes an adjustment at each shock absorber location on the vehicle. A tool is often required for the adjustment. Some on-road automobiles also include adjustable electric shocks along with sensors for active ride control systems. However, these systems are normally controlled by a computer and are focused on vehicle stability instead of ride comfort. Accordingly, it would be advantageous to devise damping systems which allow an operator to make real time “on-the-go” adjustments to the shocks to obtain the most comfortable ride for given terrain and payload scenarios.
SUMMARY OF THE INVENTION [0003] Vehicles often have springs (coil, leaf, or air) at each wheel, track, or ski to support a majority of the load. In one of its aspects, the present invention can be implemented in land vehicles which have electronic shocks controlling the dynamic movement of each wheel, ski, or track. The electronic shocks have a valve that controls the damping force of each shock. This valve may control compression damping only, rebound damping only, or a combination of compression and rebound damping. The valve is connected to a controller having a user
- 1 2015328248 07 Feb 2019 interface that is within the driver's reach for adjustment while operating the vehicle. In one embodiment, the controller increases or decreases the damping of the shock absorbers based on user inputs received from an operator. In another embodiment, the controller has several preset damping modes for selection by the operator. The controller is also coupled to sensors on the suspension and chassis to provide an actively controlled damping system.
[0004] In accordance with another aspect, the present invention provides a damping control method for a vehicle having a suspension located between a plurality of wheels and a vehicle frame, a controller, a plurality of vehicle condition sensors, and a user interface, the suspension including a plurality of adjustable shock absorbers including a front right shock absorber, a front left shock absorber, a rear right shock absorber, and a rear left shock absorber. The damping control method includes the following steps: receiving with the controller a user input from the user interface to provide a user selected mode of damping operation for the plurality of adjustable shock absorbers during operation of the vehicle; receiving with the controller a plurality of inputs from the plurality of vehicle condition sensors including a brake sensor, a throttle sensor, and a vehicle speed sensor; determining with the controller whether vehicle brakes are actuated based on an input from the brake sensor; determining with the controller a throttle position based on an input from the throttle sensor; and determining with the controller a speed of the vehicle based on an input from the vehicle speed sensor. The damping control method will furthermore include operating the damping control in a brake condition if the 20 brakes are actuated, wherein in the brake condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and the vehicle speed; operating the damping control in a ride condition if the brakes are not actuated and a throttle position is less than a threshold Y, wherein in the ride
-2 2015328248 07 Feb 2019 condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and the vehicle speed; operating the damping control in the ride condition if the brakes are not actuated, the throttle position is greater than the threshold Y, and the vehicle speed is greater than a threshold value Z;
and operating the damping control in a squat condition if the brakes are not actuated, the throttle position is greater than the threshold Y, and the vehicle speed is less than the threshold value Z, wherein in the squat condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode, the vehicle speed, and a throttle percentage.
[0005] Additional features of the presently disclosed invention will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying modes of carrying out the invention as presently perceived. [0006] The foregoing aspects and additional features of the system and method of the invention may also be more readily appreciated and become better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS [0007] Fig. 1 is a block diagram illustrating components of a vehicle of the present disclosure having a suspension with a plurality of continuous damping control shock absorbers and a plurality of sensors integrated with the continuous damping controller;
[0008] Fig. 2 illustrates an exemplary user interface for controlling damping at a front axle and a rear axle of the vehicle;
[0009] Fig. 3 illustrates another exemplary embodiment of a user interface for continuous damping control of shock absorbers of the vehicle;
-3 2015328248 07 Feb 2019 [0010] Fig. 4 illustrates yet another user interface for setting various modes of operation of the continuous damping control depending upon the terrain being traversed by the vehicle; [0011] Fig. 5 illustrates an adjustable damping shock absorber coupled to a vehicle suspension;
[0012] Fig. 6 is a flow chart illustrating vehicle platform logic for controlling various vehicle parameters in a plurality of different user selectable modes of operation;
[0013] Fig. 7 is a block diagram illustrating a plurality of different condition modifiers used as inputs in different control modes to modify damping characteristics of electronically adjustable shock absorbers or dampers in accordance with the present disclosure;
[0014] Fig. 8 is a flow chart illustrating a damping control method for controlling the vehicle operating under a plurality of vehicle conditions based upon a plurality of sensor inputs in accordance with one embodiment of the present invention;
[0015] Fig. 9 is a flow chart illustrating another embodiment of a damping control method of the present disclosure;
[0016] Fig. 10 is a flow chart illustrating yet another damping control method of the present disclosure;
[0017] Fig. 11 is a sectional view of a stabilizer bar of the present disclosure which is selectively decoupled under certain vehicle conditions;
[0018] Fig. 12 illustrates the stabilizer bar of Fig. 11 with an actuator in a locked position to prevent movement of a piston of the stabilizer bar;
[0019] Fig. 13 is a sectional view similar to Fig. 12 illustrating an actuator in an unlocked position disengaged from the piston of the stabilizer bar to permit movement of the piston relative to a cylinder; and
-42015328248 07 Feb 2019 [0020] Fig. 14 illustrates an x-axis, a y-axis, and a z-axis for a vehicle such as an ATV.
DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION [0021] Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of various features and components according to the present disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present disclosure.
[0022] For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, which are 0 described below. The embodiments disclosed below are not intended to be exhaustive or limit the invention to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. It is understood that no limitation of the scope of the invention is thereby intended.
The invention includes any alterations and further modifications in the illustrated devices and described methods and further applications of the principles of the invention which would normally occur to one skilled in the art to which the invention relates.
[0023] Referring now to Fig. 1, the present disclosure relates to a vehicle 10 having a suspension located between a plurality of ground engaging members 12 and a vehicle frame 14. The ground engaging members 12 include wheels, skis, guide tracks, treads or the like. The suspension typically includes springs 16 and shock absorbers 18 coupled between the ground engaging members 12 and the frame 14. The springs 16 may include, for example, coil springs, leaf springs, air springs or other gas springs. The air or gas springs 16 may be adjustable. See, for example, U.S. Patent No. 7,950,486 incorporated herein by reference. The springs 16 are
-5 2015328248 07 Feb 2019 often coupled between the vehicle frame 14 and the ground engaging members 12 through an A-arm linkage 70 (See Fig. 5) or other type linkage. Adjustable shock absorbers 18 are also coupled between the ground engaging members 12 and the vehicle frame 14. An illustrating embodiment, a spring 16 and shock 18 are located adjacent each of the ground engaging members 12. In an ATV, for example, four springs 16 and adjustable shocks 18 are provided
- 5a WO 2016/057555
PCT/US2015/054296 adjacent each wheel 12. Some manufacturers offer adjustable springs 16 in the form of either air springs or hydraulic preload rings. These adjustable springs 16 allow the operator to adjust the ride height on the go. However, a majority of ride comfort comes from the damping provided by shock absorbers 18.
[0024] In an illustrated embodiment, the adjustable shocks 18 are electrically controlled shocks for adjusting damping characteristics of the shocks 18. A controller 20 provides signals to adjust damping of the shocks 18 in a continuous or dynamic manner. The adjustable shocks 18 may be adjusted to provide differing compression damping, rebound damping or both.
[0025] In an illustrated embodiment of the present disclosure, a user interface 22 is provided in a location easily accessible to the driver operating the vehicle. Preferably, the user interface 22 is either a separate user interface mounted adjacent the driver’s seat on the dashboard or integrated onto a display within the vehicle. User interface 22 includes user inputs to allow the driver or a passenger to manually adjust shock absorber 18 damping during operation of the vehicle based on road conditions that are encountered. In another illustrated embodiment, the user inputs are on a steering wheel, handle bar, or other steering control of the vehicle to facilitate actuation of the damping adjustment. A display 24 is also provided on or next to the user interface 22 or integrated into a dashboard display of the vehicle to display information related to the shock absorber damping settings.
[0026] In an illustrated embodiment, the adjustable shock absorbers 18 are model number
CDC (continuous damping control) electronically controlled shock absorbers available from ZF Sachs Automotive. See Causemann, Peter; Automotive Shock Absorbers: Features, Designs, Applications, ISBN 3-478-93230-0, Verl. Modeme Industrie, Second Edition, 2001, pages 5363, incorporated by reference herein for a description of the basic operation of the shock
-6WO 2016/057555
PCT/US2015/054296 absorbers 18 in the illustrated embodiment. It is understood that this description is not limiting and there are other suitable types of shock absorbers available from other manufacturers.
[0027] The controller 20 receives user inputs from the user interface 22 and adjusts the damping characteristics of the adjustable shocks 18 accordingly. As discussed below, the user can independently adjust front and rear shock absorbers 18 to adjust the ride characteristics of the vehicle. In certain other embodiments, each of the shocks 18 is independently adjustable so that the damping characteristics of the shocks 18 are changed from one side of the vehicle to another. Side-to-Side adjustment is desirable during sharp turns or other maneuvers in which different damping characteristics for shock absorbers 18 on opposite sides of the vehicle improves the ride. The damping response of the shock absorbers 18 can be changed in a matter of microseconds to provide nearly instantaneous changes in damping for potholes, dips in the road, or other driving conditions.
[0028] A plurality of sensors are also coupled to the controller 20. For example, the global change accelerometer 25 is coupled adjacent each ground engaging member 12. The accelerometer provides an output signal coupled to controller 20. The accelerometers 25 provide an output signal indicating movement of the ground engaging members and the suspension components 16 and 18 as the vehicle traverses different terrain.
[0029] Additional sensors may include a vehicle speed sensor 26, a steering sensor 28 and a chassis accelerometer 30 all having output signals coupled to the controller 20. Accelerometer 30 is illustratably a three-axis accelerometer located on the chassis to provide an indicating of forces on the vehicle during operation. Additional sensors include a brake sensor 32, a throttle position sensor 34, a wheel speed sensor 36, and a gear selection sensor 38. Each of these sensors has an output signal coupled to the controller 20.
-7WO 2016/057555
PCT/US2015/054296 [0030] In an illustrated embodiment of the present disclosure, the user interface 22 shown in Fig. 2 includes manual user inputs 40 and 42 for adjusting damping of the front and rear axle shock absorbers 18. User interface 22 also includes first and second displays 44 and 46 for displaying the damping level settings of the front shock absorbers and rear shock absorbers, respectively. In operation, the driver or passenger of the vehicle can adjust user inputs 40 and 42 to provide more or less damping to the shock absorbers 18 adjacent the front axle and rear axle of the vehicle. In the illustrated embodiment, user inputs 40 and 42 are rotatable knobs. By rotating knob 40 in a counter clockwise direction, the operator reduces damping of the shock absorbers 18 adjacent the front axle of the vehicle. This provides a softer ride for the front axle. By rotating the knob 40 in a clockwise direction, the operator provides more damping on the shock absorbers 18 adjacent the front axle to provide a stiffer ride. The damping level for front axle is displayed in display 44. The damping level may be indicated by any desired numeric range, such as for example, between 0-10, with 10 being the most stiff and 0 the most soft.
[0031] The operator rotates knob 42 in a counter clockwise direction to reduce damping of the shock absorbers 18 adjacent the rear axle. The operator rotates the knob 42 in a clockwise direction to provide more damping to the shock absorbers 18 adjacent the rear axle of the vehicle. The damping level setting of the rear shock absorbers 18 is displayed in display window
46.
[0032] Another embodiment of the user interface 22 is illustrated in Fig. 3. In this embodiment, push buttons 50 and 52 are provided for adjusting the damping level of shock absorbers 18 located adjacent the front axle and push buttons 54 and 56 are provided for adjusting the damping of shock absorbers 18 located adjacent rear axle. By pressing button 50, the operator increases the damping of shock absorbers 18 located adjacent the front axle and
WO 2016/057555
PCT/US2015/054296 pressing button 52 reducing the damping of shock absorbers 18 located adjacent front axle. The damping level of shock absorbers 18 adjacent front axle is displayed within display window 57. As discussed above, the input control switches can be located any desired location on the vehicle. For example, in other illustrated embodiments, the user inputs are on a steering wheel, handle bar, or other steering control of the vehicle to facilitate actuation of the damping adjustment.
[0033] Similarly, the operator presses button 54 to increase damping of the shock absorbers located adjacent the rear axle. The operator presses button 56 to decrease damping of the shock absorbers located adjacent the rear axle. Display window 58 provides a visual indication of the damping level of shock absorbers 18 adjacent the rear axle. In other embodiments, different user inputs such as touch screen controls, slide controls, or other inputs may be used to adjust the damping level of shock absorbers 18 adjacent the front and rear axles. In other embodiments, different user inputs such as touch screen controls, slide controls, or other inputs may be used to adjust the damping level of shock absorbers 18 adjacent all four wheels at once.
[0034] Fig. 4 illustrates yet another embodiment of the present disclosure in which the user interface 22 includes a rotatable knob 60 having a selection indicator 62. Knob 60 is rotatable as illustrated by double-headed arrow 64 to align the indicator 62 with a particular driving condition mode. In the illustrated embodiment, five modes are disclosed including a smooth road mode, a rough trail mode, a rock crawl mode, a chatter mode, and a whoops/jumps mode. Depending on the driving conditions, the operating rotates the control knob 60 to select the particular driving mode. Controller 20 automatically adjusts damping levels of adjustable shocks 18 adjacent front and rear axles of the vehicle based on the particular mode selected.
-9WO 2016/057555
PCT/US2015/054296 [0035] It is understood that various other modes may be provided including a sport mode, trail mode, or other desired mode. In addition, different modes may be provided for operation in two-wheel drive, four-wheel drive, high and low settings for the vehicle. Illustrative operation modes include:
• Smooth Road Mode - Very stiff settings designed to minimize transient vehicle pitch and roll through hard acceleration, braking, and cornering.
• Normal Trail Mode - Similar to smooth road mode, but a little bit softer set-up to allow for absorption of rocks, roots, and potholes but still have good cornering, accelerating, and braking performance.
• Rock Crawl Mode - This would be the softest setting allowing for maximum wheel articulation for slower speed operation. In one embodiment, the rock crawl mode is linked to vehicle speed sensor 26.
• High Speed Harsh Trail (Chatter) - This setting is between Normal Trail Mode and Rock Crawl Mode allowing for high speed control but very plush ride (bottom out easier).
• Whoops and Jumps Mode - This mode provides stiffer compression in the dampers but less rebound to keep the tires on the ground as much as possible.
• These modes are only examples one skilled in the art would understand there could be many more modes depending on the desired/intended use of the vehicle.
[0036] In addition to the driving modes, the damping control may be adjusted based on outputs from the plurality of sensors coupled with the controller 20. For instance, the setting of adjustable shock absorbers 18 may be adjusted based on vehicle speed from speed sensor 26 or outputs from the accelerometers 25 and 30. In vehicles moving slowly, the damping of adjustable shock absorbers 18 is reduced to provide a softer mode for a better ride. As vehicle’s
- 10WO 2016/057555
PCT/US2015/054296 speed increases, the shock absorbers 18 are adjusted to a stiffer damping setting. The damping of shock absorbers 18 may also be coupled and controlled by an output from a steering sensor
28. For instance, if the vehicle makes a sharp turn, damping of shock absorbers 18 on the appropriate side of the vehicle may be adjusted instantaneously to improve ride.
[0037] The continuous damping control of the present disclosure may be combined with adjustable springs 16. The springs 16 may be a preload adjustment or a continuous dynamic adjustment based on signals from the controller 20.
[0038] An output from brake sensor 32 may also be monitored and used by controller 20 to adjust the adjustable shocks 18. For instance, during heavy braking, damping levels of the adjustable shocks 18 adjacent the front axle may be adjusted to reduce “dive” of the vehicle. In an illustrated embodiment, dampers are adjusted to minimize pitch by determining which direction the vehicle is traveling, by sensing an input from the gear selection sensor 38 and then adjusting the damping when the brakes are applied as detected by the brake sensor 32. In an illustrative example, for improved braking feel, the system increases the compression damping for shock absorbers 18 in the front of the vehicle and adds rebound damping for shock absorbers 18 in the rear of the vehicle for a forward traveling vehicle.
[0039] In another embodiment, an output from the throttle position sensor is used by controller 20 to adjust the adjustable shock absorbers 18 to adjust or control vehicle squat which occurs when the rear of the vehicle drops or squats during acceleration. For example, controller 20 may stiffen the damping of shock absorbers 18 adjacent rear axle during rapid acceleration of the vehicle. Another embodiment includes driver-selectable modes that control a vehicle's throttle map and damper settings simultaneously. By linking the throttle map and the CDC
- 11 WO 2016/057555
PCT/US2015/054296 damper calibrations together, both the throttle (engine) characteristics and the suspension settings simultaneously change when a driver changes operating modes.
[0040] In another embodiment, a position sensor is provided adjacent the adjustable shock absorbers 18. The controller 20 uses these position sensors to stiffen the damping of the adjustable shocks 18 near the ends of travel of the adjustable shocks. This provides progressive damping control for the shock absorbers. In one illustrated embodiment, the adjustable shock position sensor is an angle sensor located on an A-arm of the vehicle suspension. In another embodiment, the adjustable shocks include built in position sensors to provide an indication when the shock is near the ends of its stroke.
[0041] In another illustrated embodiment, based on gear selection detected by gear selection sensor 38, the system limits the range of adjustment of the shock absorbers 18. For example, the damping adjustment range is larger when the gear selector is in low range compared to high range to keep the loads in the accepted range for both the vehicle and the operator.
[0042] Fig. 5 illustrates an adjustable shock absorber 18 mounted on an A-arm linkage 70 having a first end coupled to the vehicle frame 14 and a second end coupled to a wheel 12. The adjustable shock absorber 18 includes a first end 72 pivotably coupled to the A-arm 70 and a second end (not shown) pivotably coupled to the frame 14. A damping control activator 74 is coupled to controller 20 by a wire 76.
DEMONSTRATION MODE [0043] In an illustrated embodiment of the present disclosure, a battery 80 is coupled to controller 20 as shown in Fig. 1. For operation in a demonstration mode in a showroom, the controller 20, user interface 22 and display 24 are activated using a key in an ignition of the
- 12 WO 2016/057555
PCT/US2015/054296 vehicle or a wireless key to place the vehicle in accessory mode. This permits adjustment of the adjustable shock absorbers 18 without starting the vehicle. Therefore, the operation of the continuous damping control features of the present disclosure may be demonstrated to customers in a show room where it is not permitted to start the vehicle due to the enclosed space. This provides an effective tool for demonstrating how quickly the continuous damping control of the present disclosure works to adjust damping of front and rear axles of the vehicle.
[0044] As described herein, the system of the present disclosure includes four levels or tiers of operation. In the first tier, the adjustable shock absorbers 18 are adjusted by manual input only using the user interface 22 and described herein. In the second tier of operation, the system is semi-active and uses user inputs from the user interface 22 combined with vehicle sensors discussed above to control the adjustable shock absorbers 18. In the third tier of operation, input accelerometers 25 located adjacent the ground engaging members 12 and a chassis accelerometer 30 are used along with steering sensor 28 and shock absorber stroke position sensors to provide additional inputs for controller 20 to use when adjusting the adjustable shock absorbers 18. In the forth tier of operation, the controller 20 cooperates with a stability control system to adjust the shock absorbers 18 to provide enhanced stability control for the vehicle 10.
[0045] In another illustrated embodiment, vehicle loading information is provided to the controller 20 and used to adjust the adjustable shock absorbers 18. For instance, the number of passengers may be used or the amount of cargo may be input in order to provide vehicle loading information. Passenger or cargo sensors may also be provided for automatic inputs to the controller 20. In addition, sensors on the vehicle may detect attachments on the front or rear of the vehicle that affect handling of the vehicle. Upon sensing heavy attachments on the front or
- 13 WO 2016/057555
PCT/US2015/054296 rear of the vehicle, controller 20 adjusts the adjustable shock absorbers 18. For example, when a heavy attachment is put on to the front of a vehicle, the compression damping of the front shocks may be increased to help support the additional load.
[0046] In other illustrative embodiments of the present disclosure, methods for actively controlling damping of electronically adjustable shocks using both user selectable modes and a plurality of sensor inputs to actively adjust damping levels are disclosed. A central controller is used to read inputs from the plurality of vehicle sensors continuously and send output signals to control damping characteristics of the electronically adjustable shocks. Illustrative embodiments control damping of the plurality of electronically adjustable shocks based on one or more of the following control strategies:
• Vehicle speed based damping table • Roll control: Vehicle steering angle and rate of steer damping table • Jump control: Detect air time and adjust damping accordingly • Pitch control: Brake, dive, and squat • Use of a lookup table or a multi-variable equation based on sensor inputs • Acceleration sensing: Select damping based on frequency of chassis acceleration • Load sensing: Increase damping based on vehicle/box load • Oversteer / understeer detection • Factory defaults, key-on mode selection • Fail safe defaults to full firm • Time delay that turns solenoid off after a set period of time to conserve power at idle [0047] In illustrative embodiments of the present disclosure, a user selectable mode provides damping control for the electronic shocks. In addition to the methods discussed above, the present disclosure includes modes selectable by the user through a knob, touch screen, push button or other user input. Illustrative user selectable modes and corresponding sensors and controls include:
- 14 WO 2016/057555
PCT/US2015/054296
In addition to damping control, the following bullet point items can also be adjusted in each mode:
1. Factory Default Mode
2. Soft / Comfort Mode • Vehicle speed • Turning • Air bom - jumps • eCVT: Maintain low RPM > quiet • higher assist EPS calibration
3. Auto / Sport Mode • Pitch control • Tied to brake switch • Throttle (CAN) position • Roll control • Lateral acceleration • Steering position (EPS sensor) • Vehicle speed • “Auto” means use damping table or algorithm, which incorporates all these inputs
4. Firm / Race Mode • eCTV: Higher engagement • Aggressive throttle pedal map • Firm (lower assist at speed) EPS calibration • Full firm damping
5. Rock Crawling Mode • Increase ride height - spring preload • Rebound increase to deal with extra preload • Soft stabilizer bar • Speed limit
6. Desert / Dunes Mode • Soft stabilizer bar • Speed based damping • Firmer damping than “Soft”
- 15 WO 2016/057555
PCT/US2015/054296
7. Trail / Cornering Mode • Lower ride height • Stiffer stabilizer bar • Increase damping • Firm EPS calibration
8. Work Mode (Lock-out, full firm) • eC VT: Smooth engagement • eCVT: Maintain low RPM > quiet, dependent on engine load • Load sensing damping & preload
9. Economy Mode • Lower ride height • Engine cal • eCVT cal [0048] In illustrative embodiments of the present disclosure, sensor inputs include one or more of the following:
• Damping mode selection • Vehicle speed • 4WD mode • ADC mode • Transmission mode - CVT and other transmission types • EPS mode • Ambient temp • Steering angle • Chassis Acceleration (lateral, long, vertical) • Steering Wheel Acceleration • Gyroscope • GPS location • Shock position • Shock temperature • Box load/distribution • Engine sensors (rpm, temp, CAN) • Throttle pedal • Brake input / pressure • Passenger Sensor (weight or seatbelt)
- 16WO 2016/057555
PCT/US2015/054296 [0049] In illustrative embodiments of the present disclosure, damping control system is integrated with other vehicle systems as follow:
Vehicle Systems Integration • EPS calibration o Unique calibrations for each driver mode. Full assist in work or comfort mode.
• Automatic preload adjustment setting (electronic and/or hydraulic control) o Load leveling o Smooth trail/on-road mode = lower, Rock crawl = higher o Increase rebound damping for higher preloads o Haul mode= increased preload in rear. Implement mode = increased preload in front • Vehicle speed limits o Increase damping with vehicle speed for control and safety using lookup table or using an algorithm adjusts the minimum damping level in all modes beside “Firm” firm mode would be at max damping independent of vehicle speed lower ride height (preload) with vehicle speed in certain modes • eCVT calibration o Unique calibrations for each driver mode that ties in with electronic damping and preload, (comfort mode = low rpm, soft damping) • Engine/pedal map calibration o Unique calibrations for each driver mode that ties in with electronic damping and preload, (comfort mode = soft pedal map, soft damping) • Steer by wire • Load sensing • Decoupled wheel speed for turning • 4 wheel steer • Active Stabilizer Bar Adjustment • Traction Control • Stability Control • ABS • Active Brake Bias
- 17WO 2016/057555
PCT/US2015/054296 • Preload control [0050] Fig. 6 is a flow chart illustration vehicle mode platform logic for a system and method of the present disclosure. In the illustrated embodiment, a user selects a user mode as illustrated at block 100. The selection may be a rotary knob, a button, a touch screen input, or other user input. A controller 20 uses a look up cable or algorithm to determine preload adjustments for adjustable springs at the front right, front left, rear right and rear left of the vehicle to adjust a target ride height for the vehicle as illustrated at bock 102. Controller 20 receives a ride height and/or load sensor input as illustrated at block 104 so that the controller 20 adjusts the spring preload based on vehicle loads.
[0051] Controller 20 then determines whether a sway bar or stabilizer bar should be connected or disconnected as illustrated at block 106. As discussed in detail below, the stabilizer bar may be connected or disconnected depending upon the selected mode and sensor inputs. [0052] Controller 20 also implements damping control logic as discussed below and illustrated at block 108. Controller 20 uses a damper profile for the front right, front left, rear right, and rear left adjustable shocks as illustrated block 110. A plurality of sensor inputs are provided to the controller 20 as illustrated at block 112 and discussed in detail below to continuously control the damping characteristics of the adjustable shocks.
[0053] Controller 20 uses a stored map for calibration of an electronic power steering (EPS) of the vehicle as illustrated at block 114. Finally, the controller 20 uses a map to calibrate a throttle pedal position of the vehicle as illustrated at block 116. The damping control method of the present discloses uses a plurality of different condition modifiers to control damping characteristics of the electrically adjustable shocks. Exemplary condition modifiers include parameters set by the particular user mode selected as illustrated at block 118, a vehicle speed as
- 18 WO 2016/057555
PCT/US2015/054296 illustrated at block 120, a throttle percentage as illustrated at block 122. Additional condition modifiers include a drive mode sensor such as 4-wheel drive sensor as illustrated at block 124, a steering position sensor as illustrated at block 126, and a steering rate sensor as illustrated at block 128. Drive mode sensor 124 may include locked front, unlocked front, locked rear, unlocked rear, or high and low transmission setting sensors. Condition modifiers further include an x-axis acceleration sensor as illustrated at block 130, a y-axis acceleration sensor as illustrated at block 132, and a z-axis acceleration sensor illustrated at block 134. The x-axis, y-axis, and zaxis for a vehicle such as an ATV are shown in Fig. 14. Another illustrative condition modifier is a yaw rate sensor as illustrated at block 136. The various condition modifiers illustrated in Fig. 7 are labeled 1-10 and correspond to the modifiers which influence operation of the damping control logic under the various drive conditions shown in Figs. 8-10.
[0054] In a passive method for controlling the plurality of electronic shock absorbers, the user selected mode discussed above sets discrete damping levels at all comers of the vehicle. Front and rear compression and rebound are adjusted independently based on the user selected mode of operation without the use of active control based on sensor inputs.
[0055] One illustrated method for active damping control of the plurality of electronic shock absorbers is illustrated in Fig. 8. The method of Fig. 8 uses a throttle sensor 138, a vehicle speed sensor 140, and a brake switch or brake pressure sensor 142 as logic inputs. The controller 20 determines whether the brakes are on as illustrated at block 144. If so, the controller 20 operates the damping control method in a brake condition as illustrated at block 146. In the brake condition, front suspension compression (dive) is detected as a result of longitudinal acceleration from braking input. In the Brake Condition 146, the condition modifiers include the user selected mode 118 and the vehicle speed 120 to adjust damping control. In the vehicle
- 19WO 2016/057555
PCT/US2015/054296 conditions of Figs. 8-10, the selected user mode modifier 118 determines a particular look-up table that defines damping characteristics for adjustable shocks at the front right, front left, rear right, and rear left of the vehicle. In brake condition 146, compression damping of the front shocks and/or rebound damping on the rear shocks is provided based on the brake signal.
[0056] In the Brake Condition 146, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on front and/or rebound damping on the rear shocks based on brake sensor signal. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0057] If the brakes are not on at block 144, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 148. If not, controller 20 operates the vehicle in a Ride Condition as illustrated at block 150. In the ride condition, the vehicle is being operated in generally a straight line where vehicle ride and handling performance while steering and cornering is not detected. In the Ride Condition 150, condition modifiers used to control damping include user mode 118, vehicle speed 120, and a drive mode sensor such as 4-wheel drive sensor 124. In the Ride Condition 150, the controller 20 increases damping based on the vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0058] If the throttle position in greater than the threshold Y at block 148, the controller determines whether a vehicle speed is greater than a threshold value Z at block 152. If so, the controller 20 operates the vehicle in the Ride Condition at block 150 as discussed above. If the vehicle speed is less than the threshold value Z at block 152, the controller 20 operates the vehicle in a Squat Condition as illustrated at block 154. In the Squat Condition 154, condition
-20WO 2016/057555
PCT/US2015/054296 modifiers for controlling damping include the user selected mode 118, the vehicle speed 120, and the throttle percentage 122. During a Squat Condition 154, compression damping on the rear shocks and/or rebound damping on the front shocks is increased based upon the throttle sensor signal and vehicle speed. Rear suspension compression (squat) is a result of longitudinal acceleration from throttle input.
[0059] In the Squat Condition 154, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on rear and/or rebound damping on the front shocks based on the throttle sensor signal and vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0060] Another embodiment of the present disclosure including different sensor input options is illustrated in Fig. 9. In the Fig. 9 embodiment, a throttle sensor 138, vehicle speed sensor 140, and brake sensor 142 are used as inputs as discussed in Fig. 8. In addition, a steering rate sensor 156 and steering position sensor 158 also provide inputs to the controller 20.
Controller 20 determines whether an absolute value of the steering position is greater than a threshold X or an absolute value of the steering rate is greater than a threshold B as illustrated at block 160. If not, controller 20 determines whether the brakes are on as illustrated at block 162. If not, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 164. If the throttle position is greater than the threshold Y at block 164, controller 20 operates the vehicle in the Ride Condition as illustrated at block 150 and discussed above. In the Ride Condition 150, the controller 20 increases damping based on the vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
-21 WO 2016/057555
PCT/US2015/054296 [0061] If the throttle position is greater than the threshold Y at block 164, controller 20 determines whether the vehicle speed is greater than a threshold Z as illustrated at block 166. If so, controller 20 operates the vehicle in the Ride Condition as illustrated at block 150. If the vehicle speed is less than the threshold Z at block 166, controller 20 operates the vehicle in Squat Condition 154 discussed above with reference to Fig. 8. In the Squat Condition 154, the controller 20 increases damping based on increasing vehicle speed. Further controller 20 increases compression damping on rear and/or rebound damping on the front shocks based on the throttle sensor signal and vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0062] If the brakes are on at block 162, controller 20 operates the vehicle in the Brake
Condition 146 as discussed above with reference to Fig. 8. In the Brake Condition 146, the controller 20 increases damping based on increasing vehicle speed. Further controller 20 increases compression damping on front and/or rebound damping on the rear shocks based on brake sensor signal. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0063] If the absolute value of the steering position is greater than the threshold X or the absolute value of the steering rate is greater than the threshold B at block 160, controller 20 determines whether the brakes are on as illustrated at block 168. If so, controller 20 operates the vehicle in a Brake Condition as illustrated at block 170. In the Brake Condition 170, mode modifiers for controlling damping include the user input 118, the vehicle speed 120, and the steering rate 128.
[0064] In the Brake Condition 170, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on the outside
-22 WO 2016/057555
PCT/US2015/054296 front comer shock based on inputs from the steering sensor, brake sensor, and vehicle speed sensor. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0065] If the brakes are not on at block 168, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 172. If not, vehicle controller 20 operates the vehicle in a Roll/Comering Condition as illustrated at block 174. In the Roll/Comering Condition at block 174, the condition modifiers for controlling damping include user mode 118, the steering position 126, and the steering rate 128. In a Roll/Comering Condition, vehicle body roll occurs as a result of lateral acceleration due to steering and cornering inputs.
[0066] In the Roll/Comering Condition 174, the controller 20 increases damping based on increasing vehicle speed. Further controller 20 increases compression damping on the outside comer shocks and/or rebound damping on the inside comer shocks when a turn event is detected via steering sensor. For a left hand turn, the outside shock absorbers are the front right and rear right shock absorbers and the inside shock absorbers are front left and rear left shock absorbers. For a right hand turn, the outside shock absorbers are the front left and rear left shock absorbers and the inside shock absorbers are front right and rear right shock absorbers. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0067] If the throttle position is greater than the threshold Y at block 172, controller 20 operates the vehicle in a Squat Condition as illustrated at block 176. In the Squat Condition 176, controller 20 uses the mode modifiers for user mode 118, vehicle speed 120, throttle percentage 122, steering position 126, and steering rate 128 to control the damping characteristics. Again,
-23 WO 2016/057555
PCT/US2015/054296 damping is increased base on increasing vehicle speed. In addition, compression damping is increased on outside rear comers based upon steering sensor, throttle sensor and vehicle speed. [0068] In the Squat Condition 176, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on the outside rear comer shock based on inputs from the steering sensor, throttle sensor, and vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0069] Fig. 10 illustrates yet another embodiment of a damping control method of the present disclosure including different sensor input options compared to the embodiments of Figs. 8 and 9. In addition to throttle sensor 138, vehicle speed sensor 140, brake sensor 142, steering position sensor 158, and steering rate sensor 156, the embodiment of Fig. 10 also uses a z-axis acceleration sensor 180 and an x-axis acceleration sensor 182 as inputs to the controller 20. [0070] Controller 20 first determines whether acceleration from the z-axis sensor 180 is less than a threshold C for a time greater than a threshold N as illustrated at block 184. If so, controller 20 determines that the vehicle is in a jump and controls the vehicle in a Jump/Pitch condition as illustrated at block 186 where the suspension is allowed to drop out and the tires lose contact with the ground surface. In the Jump/Pitch Condition 186, controller 20 uses condition modifiers for the user input 118, the vehicle speed 120, and the z-axis acceleration sensor 134 to control the damping characteristics.
[0071] In the Jump/Pitch Condition 186, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on shocks at all four comers when an airborne event is detected (and the duration of the airborne event) via negative vertical acceleration detected by the z-axis acceleration sensor 134. The controller 20
-24 WO 2016/057555
PCT/US2015/054296 maintains the damping increase for a predetermined duration after the jump event. If positive vertical acceleration is detected by z-axis acceleration sensor 134 having a magnitude greater than a threshold value and for longer than a threshold duration (such as when contact with the ground is made after an airborne event), whereas greater acceleration reduces the duration threshold required, rebound damping may be increased to the rear and/or front shocks for an amount of time. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0072] If an airborne event is not detected at block 184, controller 20 determines whether an absolute value of the steering position is greater than a threshold X or an absolute value of the steering rate is greater than a threshold B at block 188. If not, controller 20 determines whether the brakes are on and the x-axis acceleration is greater than a threshold value A at block 190. If so, controller 20 operates the vehicle in a Brake Condition as illustrated at block 192.
[0073] In the Brake Condition 192, condition modifiers for the user input 118, the vehicle speed 120, the x-axis accelerometer 130, and the y-axis accelerometer 132 are used as inputs for the damping control. In the Brake Condition 192, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on an outside front comer shock based on inputs from steering sensor 158, brake sensor 142, vehicle speed sensor 140, and/or acceleration sensor 180. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0074] If the determination at block 190 is negative, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 194. If not, controller 20 operates the vehicle in a Ride Condition as illustrated at block 196. In the Ride Condition 196,
-25 WO 2016/057555
PCT/US2015/054296 controller 20 uses condition modifiers for the user-selected mode 118, the vehicle speed 120, a drive mode sensor such as four-wheel drive sensor 124, and the z-axis accelerometer 134 to control damping characteristics. In the Ride Condition 196, the controller 20 increases damping based on the vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0075] If the throttle position is greater than threshold Y at block 194, controller 20 determines whether the vehicle speed is greater than a threshold Z as illustrated at block 198. If so, the controller 20 operates the vehicle and the Ride Condition 196 as discussed above. If not, the controller 20 operates the vehicle in a Squat Condition as illustrated at block 200. In the Squat Condition 200, controller 20 uses condition modifiers for the user mode 118, vehicle speed 120, throttle percentage 122, and y-axis accelerometer 132 for damping control. In the Squat Condition 200, the controller 20 increases damping based on the vehicle speed. Further, the controller 20 increases compression damping on the rear shocks and/or rebound damping on the front shocks based on inputs from throttle sensor 138, vehicle speed sensor 140, and/or acceleration sensor 180. Additional adjustments are made based on time duration and longitudinal acceleration. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0076] If the absolute value of the steering position is greater than the threshold X or the absolute value of the steering rate is greater than the threshold B at block 188, then controller 20 determines whether the brakes are on and whether the x-axis acceleration is greater than a threshold A as illustrated at block 202. If so, controller 20 operates the vehicle in a Brake Condition as illustrated at block 204. In the Brake Condition 204, controller 20 uses condition modifiers for the user mode 118, vehicle speed 120, steering position 126, x-axis acceleration
-26WO 2016/057555
PCT/US2015/054296
130, and y-axis acceleration 132 to adjust the damping control characteristics of the electrically adjustable shocks. In the Brake Condition 204, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on an outside front comer shock based on inputs from steering sensor 158, brake sensor 142, vehicle speed sensor 140, and/or acceleration sensor 180. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs. [0077] If a negative determination is made at block 202, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 206. If not, controller 20 operates the vehicle in a Roll/Comering Condition as illustrated at block 208. In the Roll/Comering Condition 208, controller 20 uses condition modifiers for the user mode 118, the steering position 126, the steering rate 128, the y-axis acceleration 132, and the yaw rate 136 to control the damping characteristics of the adjustable shocks. In the Roll/Comering Condition 208, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on the outside comer shocks and/or rebound damping on the inside comer shocks when a turn event is detected via steering sensor 156 and accelerometer 182. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0078] If the throttle position is greater than the threshold Y at block 206, controller 20 operates the vehicle in a Squat Condition as illustrated at block 210. In the Squat Condition 210, controller 20 uses condition modifiers for the user mode 118, the vehicle speed 120, the throttle percentage 122, steering position 126, the steering rate 128, and the y-axis acceleration 132 to control the damping characteristics of the adjustable shocks. In the Squat Condition 210, the controller 20 increases damping based on the vehicle speed. Further, the controller 20 increases
-27WO 2016/057555
PCT/US2015/054296 compression damping on the outside rear comer shock based on inputs from throttle sensor 138, vehicle speed sensor 140, and/or acceleration sensors 180 or 182. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each comer based on above inputs.
[0079] Another embodiment of the present disclosure is illustrated in Figs. 11-13. As part of the damping control system, a stabilizer bar linkage 220 is selectively locked or unlocked. The linkage 220 includes a movable piston 222 located within a cylinder 224. An end 226 of piston 222 as illustratively coupled to a stabilizer bar of the vehicle. An end 228 of cylinder 224 as illustratively coupled to a suspension arm or component of the vehicle. It is understood that this connection could be reversed.
[0080] A locking mechanism 230 includes a movable solenoid 232 which is biased by a spring 234 in the direction of arrow 236. The controller 20 selectively energizes the solenoid 232 to retract the removable solenoid 232 in the direction of arrow 238 from an extended position shown in Figs. 11 and 12 to a retracted position shown in Fig. 13. In the retracted position, the end of solenoid 232 disengages a window 240 of movable piston 232 to permit free movement between the piston 222 and the cylinder 224. If the solenoid 232 is in the extended position shown in Figs. 11 and 12 engaged with window 240, the piston 222 is locked relative to the cylinder 224.
[0081] When the linkage 220 is unlocked, the telescoping movement of the piston 222 and cylinder 224 removes the function of the stabilizer bar while the solenoid 232 is disengaged as shown in Fig. 13. When the controller 20 removes the signal from the solenoid 232, the solenoid piston 232 moves into the window 240 to lock the piston 222 relative to the cylinder 220. The solenoid 232 also enters the lock position if power is lost due to the
-28 WO 2016/057555
PCT/US2015/054296 spring 234. In other words, the solenoid 232 fails in the locked position. The vehicle is not required to be level in order for the solenoid 232 to lock the piston 222.
[0082] Unlocking the stabilizer bar 220 provides articulation benefits for the suspension system during slow speed operation. Therefore, the stabilizer bar 220 is unlocked in certain low speed conditions. For higher speeds, the stabilizer bar 220 is locked. The controller 20 may also use electronic throttle control (ETC) to limit vehicle speed to a predetermined maximum speed when stabilizer bar 220 is unlocked.
[0083] While embodiments of the present disclosure have been described as having exemplary designs, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims (20)

  1. CLAIMS:
    1. A damping control method for a vehicle having a suspension located between a plurality of wheels and a vehicle frame, a controller, a plurality of vehicle condition sensors, and a user interface, the suspension including a plurality of adjustable shock absorbers including a front right shock absorber, a front left shock absorber, a rear right shock absorber, and a rear left shock absorber, the damping control method comprising:
    receiving with the controller a user input from the user interface to provide a user selected mode of damping operation for the plurality of adjustable shock absorbers during operation of the vehicle;
    receiving with the controller a plurality of inputs from the plurality of vehicle condition sensors including a brake sensor, a throttle sensor, and a vehicle speed sensor;
    determining with the controller whether vehicle brakes are actuated based on an input from the brake sensor;
    determining with the controller a throttle position based on an input from the throttle sensor;
    determining with the controller a speed of the vehicle based on an input from the vehicle speed sensor;
    operating the damping control in a brake condition if the brakes are actuated, wherein in the brake condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and the vehicle speed;
    operating the damping control in a ride condition if the brakes are not actuated and a throttle position is less than a threshold Y, wherein in the ride condition the controller adjusts
    -302015328248 07 Feb 2019 damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and the vehicle speed;
    operating the damping control in the ride condition if the brakes are not actuated, the throttle position is greater than the threshold Y, and the vehicle speed is greater than a threshold 5 value Z; and operating the damping control in a squat condition if the brakes are not actuated, the throttle position is greater than the threshold Y, and the vehicle speed is less than the threshold value Z, wherein in the squat condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected 0 mode, the vehicle speed, and a throttle percentage.
  2. 2. The method of claim 1, wherein in the brake condition the controller increases compression damping on the front right and front left shock absorbers and / or increases rebound damping on the rear right and rear left shock absorbers.
  3. 3. The method of claim 1 or 2, wherein in the squat condition the controller
    5 increases compression damping on rear right and rear left shock absorbers and / or increases rebound damping on the front right and front left shock absorbers.
  4. 4. The method of any one of claims 1-3, further comprising:
    receiving with the controller inputs from additional vehicle condition sensors including a steering rate sensor and a steering position sensor;
    20 determining with the controller a steering rate based on an input from the steering rate sensor;
    -31 2015328248 07 Feb 2019 determining with the controller a steering position based on an input from the steering position sensor; and operating the damping control in a modified brake condition if the brakes and are actuated and either the steering position is greater than a threshold X or the steering rate is 5 greater than a threshold B, in the modified brake condition the controller adjusting damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode, the vehicle speed, and the steering rate.
  5. 5. The method of claim 4, further comprising operating the damping control in a roll/comering condition if either the steering position is greater than a threshold X or the steering
    0 rate is greater than a threshold B, and if the brakes are not actuated and the throttle position is less than the threshold Y, in the roll/comering condition the controller adjusting damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode, the steering position, and the steering rate.
  6. 6. The method of claim 5, wherein in the roll/comering condition the controller
    5 increases compression damping on outside shock absorbers when a turn event is detected via the steering sensor or increases rebound damping on inside shock absorbers when a turn event is detected via the steering sensor.
  7. 7. The method of claim 4, further comprising operating the damping control in a modified squat condition if either the steering position is greater than a threshold X or the
    20 steering rate is greater than a threshold B, and if the brakes are not actuated and the throttle position is greater than the threshold Y, in the modified squat condition the controller adjusting damping characteristics of the plurality of adjustable shock absorbers based on condition
    -322015328248 07 Feb 2019 modifiers including the user selected mode, the vehicle speed, a throttle percentage, the steering position, and the steering rate.
  8. 8. The method of claim 7, wherein in the modified squat condition the controller increases compression damping on an outside rear comer shock absorber based on inputs from
    5 the steering sensor, throttle sensor and vehicle speed sensor.
  9. 9. The method of any one of claims 1-8, further comprising:
    receiving with the controller inputs from additional vehicle condition sensors including a steering rate sensor, a steering position sensor, an x-axis acceleration sensor, and a z-axis acceleration sensor;
    0 determining with the controller a steering rate based on an input from the steering rate sensor;
    determining with the controller a steering position based on an input from the steering position sensor;
    determining with the controller an x-axis acceleration based on an input from the x-axis
    5 acceleration sensor;
    determining with the controller a z-axis acceleration based on an input from the z-axis acceleration sensor; and operating the damping control based on detected conditions, the controller adjusting damping characteristics of the plurality of adjustable shock absorbers based on condition
    20 modifiers including the steering rate, the steering position, the x-axis acceleration, and the z-axis acceleration.
  10. 10. The method of any one of claims 1-9, further comprising:
    2015328248 07 Feb 2019 receiving with the controller inputs from an additional vehicle condition sensor including a z-axis acceleration sensor;
    determining with the controller a z-axis acceleration based on an input from the z-axis acceleration sensor; and
    5 operating the damping control in a jump/pitch condition if the z-axis acceleration is less than a threshold C for a time duration N, in the jump/pitch condition the controller adjusting damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode, the vehicle speed and the z-axis acceleration.
  11. 11. The method of claim 10, wherein in the jump/pitch condition the controller
    0 increases compression damping on the front right shock absorber, front left shock absorber, rear right shock absorber, and rear left shock absorber when an airborne event is detected via negative vertical acceleration detected by the z-axis acceleration sensor.
  12. 12. The method of claim 11, wherein in the jump/pitch condition the controller maintains the damping increase for a predetermined time after the jump event ends.
    .5
  13. 13. The method of claim 10, wherein in the jump/pitch condition the controller increases rebound damping on the front right shock absorber, front left shock absorber, rear right shock absorber, and rear left shock absorber when contact with the ground occurs after an airborne event as detected via a positive vertical acceleration detected by the z-axis acceleration sensor.
    20
  14. 14. The method of any one of claims 1-13, wherein the plurality of springs and the plurality of shock absorbers are coupled between the vehicle frame and the ground engaging members through an A-arm linkage of the suspension.
    -342015328248 07 Feb 2019
  15. 15. The method of any one of claims 1-13, wherein the plurality of springs and the plurality of shock absorbers are coupled between the vehicle frame and the ground engaging members through an trailing arm suspension.
  16. 16. The method of any one of claims 1-15, wherein the user interface is integrated
    5 with a display on a dashboard of vehicle.
  17. 17. The method of any one of claims 1-16, wherein at least one user input of the user interface is located on one of a steering wheel, a handle bar, or a steering control of the vehicle to facilitate adjustment of the damping characteristic of the at least one adjustable shock absorber by a driver of the vehicle.
    0
  18. 18. The method of any one of claims 1-17, wherein a user input of the user interface includes at least one of a touch screen control, a slide control, a rotatable knob and a push button to adjust damping characteristics of the front and rear adjustable shock absorbers.
  19. 19. The method of any one of claims 1-18, further comprising receiving with the controller inputs from a drive mode sensor, and wherein the controller further adjusts damping
    15 characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the drive mode sensor.
  20. 20. The method of any one of claims 1-19, further comprising receiving with the controller inputs from a 4-wheel drive sensor, and determining with the controller whether the vehicle is in 4-wheel drive based on an input from the 4-wheel drive sensor; and wherein in the
    20 ride condition the controller further adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the 4-wheel drive sensor.
AU2015328248A 2014-10-06 2015-10-06 Vehicle having suspension with continuous damping control Expired - Fee Related AU2015328248B9 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/507,355 2014-10-06
US14/507,355 US9205717B2 (en) 2012-11-07 2014-10-06 Vehicle having suspension with continuous damping control
PCT/US2015/054296 WO2016057555A1 (en) 2014-10-06 2015-10-06 Vehicle having suspension with continuous damping control

Publications (3)

Publication Number Publication Date
AU2015328248A1 AU2015328248A1 (en) 2017-05-11
AU2015328248B2 AU2015328248B2 (en) 2019-02-21
AU2015328248B9 true AU2015328248B9 (en) 2019-03-07

Family

ID=54337898

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2015328248A Expired - Fee Related AU2015328248B9 (en) 2014-10-06 2015-10-06 Vehicle having suspension with continuous damping control

Country Status (7)

Country Link
EP (1) EP3204248A1 (en)
CN (2) CN111703267B (en)
AU (1) AU2015328248B9 (en)
BR (1) BR112017006909A2 (en)
CA (1) CA2963790A1 (en)
MX (2) MX2017004100A (en)
WO (1) WO2016057555A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205717B2 (en) 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
CN107406094B (en) 2014-10-31 2020-04-14 北极星工业有限公司 System and method for controlling vehicle
US11110913B2 (en) 2016-11-18 2021-09-07 Polaris Industries Inc. Vehicle having adjustable suspension
CN115431996A (en) 2017-01-20 2022-12-06 北极星工业有限公司 Vehicle diagnostic method for vehicle
US10406884B2 (en) * 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
JP6638703B2 (en) * 2017-07-06 2020-01-29 トヨタ自動車株式会社 Suspension control system
CN107745616B (en) * 2017-09-11 2020-12-01 湖北航天技术研究院特种车辆技术中心 Information control system of off-road vehicle
CN110605946A (en) * 2018-06-15 2019-12-24 蔚来汽车有限公司 Active suspension adjustment system and method and vehicle
US10882582B2 (en) * 2018-07-13 2021-01-05 Shimano Inc. Suspension control device for a human-powered vehicle
US11458796B2 (en) * 2018-09-24 2022-10-04 Zoox, Inc. Controlling vehicle suspension system using pressure set point
US10987987B2 (en) 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
CN111775649B (en) * 2019-04-04 2021-11-09 上海汽车集团股份有限公司 Shock absorber control method, device and system
CN110329030B (en) * 2019-05-10 2021-03-30 爱驰汽车有限公司 Active suspension control method, system, device and storage medium
CN111452579B (en) * 2020-01-16 2021-09-14 吉林大学 Semi-active self-adaptive control system and method for vehicle based on suspension invariant point theory
MX2022015902A (en) 2020-07-17 2023-01-24 Polaris Inc Adjustable suspensions and vehicle operation for off-road recreational vehicles.
CN112339517B (en) * 2020-11-13 2023-10-10 成都九鼎科技(集团)有限公司 Semi-active suspension control method and control system
CN115179706B (en) * 2022-09-06 2022-12-23 万向钱潮股份公司 Control method of active suspension

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199112A (en) * 1987-02-13 1988-08-17 Komatsu Ltd Control method for car body vibration of dump truck for construction machine
US5080392A (en) * 1990-04-26 1992-01-14 Cb Auto Design Inc. Suspension unit
US6148252A (en) * 1992-04-10 2000-11-14 Unisia Jecs Corporation Automotive suspension control system utilizing variable damping force shock absorber
JPH09249016A (en) * 1996-03-15 1997-09-22 Unisia Jecs Corp Vehicle suspension device
US6876909B2 (en) * 2002-08-21 2005-04-05 Mando Corporation Electronically controlled suspension apparatus for use in anti-squat control
CN100447001C (en) * 2005-04-06 2008-12-31 肖国 Car shock-buffering method utilizing vibration between wheel and car body for power supply
US7950486B2 (en) 2008-06-06 2011-05-31 Polaris Industries Inc. Vehicle
DE102009027939A1 (en) * 2009-02-03 2010-08-05 Robert Bosch Gmbh Method for suspension control of a motor vehicle, and device for implementation
JP5855974B2 (en) * 2012-02-27 2016-02-09 本田技研工業株式会社 Vehicle suspension control system
US8918253B2 (en) * 2012-06-25 2014-12-23 Ford Global Technologies, Llc Ride performance optimization in an active suspension system
MX358548B (en) * 2012-11-07 2018-08-24 Polaris Inc Vehicle having suspension with continuous damping control.
CN103303088B (en) * 2013-06-06 2015-11-18 江苏大学 A kind of control method of half active energy regenerative suspension third gear adjustable shock absorber damping value

Also Published As

Publication number Publication date
CN111703267A (en) 2020-09-25
AU2015328248B2 (en) 2019-02-21
BR112017006909A2 (en) 2018-01-09
WO2016057555A1 (en) 2016-04-14
CN111703267B (en) 2024-03-12
AU2015328248A1 (en) 2017-05-11
CN106794736A (en) 2017-05-31
MX2021011905A (en) 2021-10-26
CN106794736B (en) 2020-06-30
CA2963790A1 (en) 2016-04-14
EP3204248A1 (en) 2017-08-16
MX2017004100A (en) 2017-06-19

Similar Documents

Publication Publication Date Title
US11400787B2 (en) Vehicle having suspension with continuous damping control
AU2015328248B9 (en) Vehicle having suspension with continuous damping control
US9662954B2 (en) Vehicle having suspension with continuous damping control
US11878678B2 (en) Vehicle having adjustable suspension
US11975584B2 (en) Vehicle having adjustable compression and rebound damping
Fijalkowski et al. Self-Levelling Suspension

Legal Events

Date Code Title Description
SREP Specification republished
MK25 Application lapsed reg. 22.2i(2) - failure to pay acceptance fee