AU2014250642A1 - Isoindolone derivatives as MEK kinase inhibitors and methods of use - Google Patents

Isoindolone derivatives as MEK kinase inhibitors and methods of use Download PDF

Info

Publication number
AU2014250642A1
AU2014250642A1 AU2014250642A AU2014250642A AU2014250642A1 AU 2014250642 A1 AU2014250642 A1 AU 2014250642A1 AU 2014250642 A AU2014250642 A AU 2014250642A AU 2014250642 A AU2014250642 A AU 2014250642A AU 2014250642 A1 AU2014250642 A1 AU 2014250642A1
Authority
AU
Australia
Prior art keywords
alkyl
compound
nhc
carbocyclyl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2014250642A
Inventor
Emanuela Gancia
Robert Andrew HEALD
Philip Jackson
Stephen Price
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009266953A external-priority patent/AU2009266953A1/en
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to AU2014250642A priority Critical patent/AU2014250642A1/en
Publication of AU2014250642A1 publication Critical patent/AU2014250642A1/en
Assigned to GENENTECH, INC. reassignment GENENTECH, INC. Amend patent request/document other than specification (104) Assignors: Griffith Hack
Abandoned legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to isoindolones of formula (1) shown below (Y, Z'-Z, R4, R', R6 and p are as described in the description), their phannaceutical coipositions and methods of treatment of MEK kinase mediated diseases such as hyperproliferative diseases (for example cancer) and inflammatory diseases using such compounds and compositions. z Formula (I)

Description

AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicant(s) GENENTECH, INC. Invention Title: Isoindolone derivatives as MEK kinase inhibitors and methods of use The following statement is a full description of this invention, including the best method for performing it known to me/us: - la ISOINDOLONE DERIVATIVES AS MEK KINASE INHIBITORS AND METHODS OF USE This application is an international patent application, which claims priority to U.S. 5 provisional application number 61/077,432 filed July 1, 2008, the contents of which are incorporated herein by reference. The invention relates to isoindolones with anti-cancer activity and more specifically with MEK kinase inhibitory activity. The invention provides compositions and methods useful for inhibiting abnormal cell growth, treating hyperproliferative 10 disorders, or treating inflammatory diseases in a mammal. The invention also relates to methods of using the compounds for in vitro, in situ, and in vivo diagnosis or treatment of mammalian cells, or associated pathological conditions. In the quest to understand how Ras transmits extracellular growth signals, the MAP (mitogen-activated protein) kinase (MAPK) pathway has emerged as the crucial route is between membrane-bound Ras and the nucleus. The MAPK pathway encompasses a cascade of phosphorylation events involving three key kinases, namely Raf, MEK (MAP kinase kinase) and ERK (MAP kinase). Active GTP-bound Ras results in the activation and indirect phosphorylation of Raf kinase. Raf then phosphorylates MEKi and 2 on two serine residues (S218 and S222 for MEK1 and S222 and S226 for MEK2) 20 (Ahn et al., Methods in Enzymology 2001, 332, 417-431). Activated MEK then phosphorylates its only known substrates, the MAP kinases, ERKI and 2. ERK phosphorylation by MEK occurs on Y204 and T202 for ERK1 and Y185 and T183 for ERK2 (Ahn et al., Methods in Enzymology 2001, 332, 417-431). Phosphorylated ERK dimerizes and then translocates to the nucleus where it accumulates (Khokhlatchev et 25 al., Cell 1998, 93, 605-615). In the nucleus, ERK is involved in several important cellular functions, including but not limited to nuclear transport, signal transduction, DNA repair, nucleosome assembly and translocation, and mRNA processing and translation (Ahn et al., Molecular Cell 2000, 6, 1343-1354). Overall, treatment of cells with growth factors leads to the activation of ERK1 and 2 which results in proliferation 30 and, in some cases, differentiation (Lewis et al., Adv. Cancer Res. 1998, 74, 49-139). There has been strong evidence that genetic mutations and/or overexpression of protein C:\NRPortbnGHMatters\SONIAM\5860001.docx 15110/14 2 kinases involved in the MAP kinase pathway lead to uncontrolled cell proliferation and, eventually, tumor formation, in proliferative diseases. For example, some cancers contain mutations which result in the continuous activation of this pathway due to continuous production of growth factors. Other mutations can lead to defects in the 5 deactivation of the activated GTP-bound Ras complex, again resulting in activation of the MAP kinase pathway. Mutated, oncogenic forms of Ras are found in 50% of colon and >90% pancreatic cancers as well as many others types of cancers (Kohl et al., Science 1993, 260, 1834-1837). Recently, bRaf mutations have been identified in more than 60% of malignant melanoma (Davies, H. et al., Nature 2002, 417, 949-954). 10 These mutations in bRaf result in a constitutively active MAP kinase cascade. Studies of primary tumor samples and cell lines have also shown constitutive or overactivation of the MAP kinase pathway in cancers of pancreas, colon, lung, ovary and kidney (Hoshino, R. et al., Oncogene 1999, 18, 813-822). MEK has emerged as an attractive therapeutic target in the MAP kinase cascade 15 pathway. MEK, downstream of Ras and Raf, is highly specific for the phosphorylation of MAP kinase; in fact, the only known substrates for MEK phosphorylation are the MAP kinases, ERKI and 2. Inhibition of MEK has been shown to have potential therapeutic benefit in several studies. For example, small molecule MEK inhibitors have been shown to inhibit human tumor growth in nude mouse xenografts, (Sebolt 20 Leopold et al., Nature-Medicine 1999, 5 (7), 810-816); Trachet et al., AACR Apr. 6-10, 2002, Poster #5426; Tecle, H. IBC 2.sup.nd International Conference of Protein Kinases, Sep. 9-10, 2002), block static allodynia in animals (WO 01/05390 published Jan. 25, 2001) and inhibit growth of acute myeloid leukemia cells (Milella et al., J Clin Invest 2001, 108 (6), 851-859). 25 Several small molecule MEK inhibitors have also been discussed in, for example, WO02/06213, WO 03/077855 and W003/077914. There still exists a need for new MEK inhibitors as effective and safe therapeutics for treating a variety of proliferative disease states, such as conditions related to the hyperactivity of MEK, as well as diseases modulated by the MEK cascade. 3 0 The invention relates generally to isoindolones of formula I (and/or solvates, hydrates and/or salts thereof) with anti-cancer and/or anti-inflammatory activity, and more C:\NRPortbl\GHMattersSONIAM\5860000 1.docx 1510/14 3 specifically with MEK kinase inhibitory activity. Certain hyperproliferative and inflammatory disorders are characterized by the modulation of MEK kinase function, for example by mutations or overexpression of the proteins. Accordingly, the compounds of the invention and compositions thereof are useful in the treatment of 5 hyperproliferative disorders such as cancer and/or inflammatory diseases such as rheumatoid arthritis. Y R4 Z )N N H 0 wherein: Z' is CR t R'" or NRA; 10 R' and Ra are independently selected from H, C 1
-C
3 alkyl, CF 3 , CHF 2 , CN or ORA; or R1 and Ria together with the carbon to which they are attached form a 3-5 membered carbocyclic ring; or R 1 and Ra taken together are (=O) or (=CRRA);
Z
2 is CR 2 or N; 15 R2 is H, C -C 3 alkyl, halo, CF 3 , CHF 2 , CN, ORA or NRARA; each RA is independently H or C 1
-C
3 alkyl;
Z
3 is CR 3 or N;
R
3 is selected from H, halo, CN, CF 3 , -OCF 3 , -NO 2 , -(CR14R"),C(=Y')R", -(CR'14 R"5)C(=Y' )OR'', -(CR14R"15)nC(=Y')NR" R 12, -(CR 14Ris5) NR" R 12, 20 -(CR R")nOR11, -(CR1R")nSR", -(CR1R")nNR12C(=Y')R", -(CR 4
R
5 )NR 2
C(=Y')OR'
1 , -(CR1 4 R15)NR 3 C(=Y')NR"R 1 2 , -(CR 14
R
5 )nNR 1SO2R", -(CRR 14 )nOC(=Y')R", -(CR1 4 R")OC(=Y')OR"', -(CR 1 4
R")OC(=Y')NR"R
2 , -(CR1 4 R"5) 1
OS(O)
2 (OR"), -(CR 14R),OP(=Y')(OR")(OR12), -(CR1R),OP(OR")(OR 2 1), 1414 15151 12 25 -(CR R)S(O)R", -(CR Ris)nS(O) 2 R , -(CR 4
R")
1
S(O)
2 NR"R -(CRCR"):S(0)(OR"), -(CR1R")rS(O)OR"), -(CR4R")0 SC(=Y')R" 1, C:\NRPortbl\GHMatiers\SONIAM\5860000_1Adocx 15/114 4
-(CR'
4 R")SC(=Y')OR", -(CR14R5)SC(=Y')NR"R] 2 , CI-C 2 alkyl, C 2 -Cs alkenyl, C 2 -Cs alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl; R4 is H, C -C 6 alkyl or C 3
-C
4 carbocyclyl; Y is W-C(O)- or W'; RS X RN R 5 W is or R5 is H or CI-C 2 alkyl; X1 is selected from R" and -OR"'; when X' is R", X' is optionally taken together with R5 and the nitrogen atom to which they are bound to form a 4-7 membered saturated or unsaturated ring having 0-2 additional heteroatoms selected from 0, S 10 and N, wherein said ring is optionally substituted with one or more groups selected from halo, CN, CF 3 , -OCF 3 , -NO 2 , oxo, -(CRR 2 ),C(=Y')R' , -(CR 19R20 )n
C(=Y')OR
6 , -(CR 9
R
20 )aC(=Y')NR' 6
R
7 , -(CR 9
R
2 0)nNR' 6 R1 7 , -(CR1 9
R
20 )nOR1 6 ,
-(CR'
9
R
2
)
1
-SR
6 , -(CR' R 2 1), NR'C(=Y')R' , -(CR' 9
R
2 ), NR 'C(=Y')OR D,
-(CR'
9
R
2 %). NR"C(=Y')NR' 6 R", -(CR' 9
R
2
)NR'SO
2 R', is -(CRR 2 0
),OC(=Y')R
6 , -(CR 9
R
2 )OC(=Y')OR , -(CR 9
R
2 0 ),OC(=Y')NRR, -(CR' 9
R
2 0)OS(O) 2 (OR 6), -(CR' 9
R
2 ),OP(=Y')(OR 6 )(OR' 7 ),
-(CR'
9
R
2 ),OP(OR' )(OR 7), -(CR'R 20 )S(O)R, -(CR' 9
R
2
),S(O)
2
R'
6 , -(CR'R 20)nS(O) 2 NR6R 7 , -(CR 9
R
2 0 ),S(O)(ORi1), -(CR 9
R
2
)S(O)
2 (OR1 6 ), -(CR1 9
R
20 )njSC(=Y')R 6 , -(CR1 9
R
20 )n SC(=Y')OR 6 , -(CR 9 R2)fSC(=Y')NR' 6
R
7 , 20 and R 21 ; each R"' is independently H, Ci-C, 2 alkyl, C 2
-C
8 alkenyl, C 2
-C
8 alkynyl, carbocyclyl, heterocyclyl, aryl, or heteroaryl; R", R' 2 and R'" are independently H, C,-C 2 alkyl, C2-Cs alkenyl, C 2 -Cs alkynyl, carbocyclyl, heterocyclyl, aryl, or heteroaryl, 25 or R" and R together with the nitrogen to which they are attached form a 3-8 membered saturated, unsaturated or aromatic ring having 0-2 heteroatoms selected from 0, S and N, wherein said ring is optionally substituted with one or more groups selected from halo, CN, CF 3 , -OCF 3 , -NO 2 , CI-C 6 alkyl, -OH, -SH, -O(C,
C
6 alkyl), -S(C-C6 alkyl), -NH 2 , -NH(C-C 6 alkyl), -N(C-C 6 alkyl) 2 , -S02(C-C6 C:\NRPortbl\GHMatters\$ONIAM\SB60000_1.docx 15110/14 5 alkyl), -C02H, -C0 2
(C-C
6 alkyl), -C(O)NH 2 , -C(O)NH(C -C 6 alkyl),
-C(O)N(C-C
6 alkyl) 2 , -N(C -C 6 alkyl)C(O)(C-C 6 alkyl), -NHC(O)(C -C 6 alkyl),
-NHSO
2 (Cj-C 6 alkyl), -N(C-C 6 alkyl)S0 2
(CI-C
6 alkyl), -SO 2
NH
2 , -SO 2
NH(C
C
6 alkyl), -SO 2
N(C-C
6 alkyl) 2 , -OC(O)NH 2 , -OC(O)NH(C-C 6 alkyl), 5 -OC(O)N(CI -C 6 alkyl) 2 , -OC(O)O(CI -C 6 alkyl), -NHC(O)NH(CI -C 6 alkyl), -NHC(O)N(C -C 6 alkyl) 2 , -N(C -C 6 alkyl)C(0)NH(Cj-C 6 alkyl), -N(Cj-C 6 alkyl)C(O)N(C-C 6 alkyl) 2 , -NHC(O)NH(C-C 6 alkyl), -NHC(O)N(C-C 6 alkyl) 2 ,
-NHC(O)O(C-C
6 alkyl), and -N(C-C 6 alkyl)C(O)O(C 1
-C
6 alkyl);
R
1 4 and R 5 are independently selected from H, Ci-C 2 alkyl, aryl, carbocyclyl, 10 heterocyclyl, and heteroaryl; R R O8"---' e NH o NNH W'is OHet wherein is N-N2R-Q RX R7 Nj R 7 X2 RN2 -N L / RR NR Nrft R N N N N/ N N N R 71 7 7 H X N R R N R N R HN ,NR- NN R~T R R7 R0y N N R
X
2 is 0, S, or NR 9 ; 15 R 7 is selected from H, halo, CN, CF 3 , -OCF 3 , -NO 2 , -(CR 4
R'
5 )nC(=Y')R 1, 14 152 14 1 11 12 -(CR4R") 1 C(=Y')OR", -(CR 4 R")C(=Y')NR"R, -(CR R ),NR"R -(CR 14 R" ),OR' 1, -(CR 14 R" )nSR] , -(CR 14R 15)nNR i C(=Y' )R"1, -(CR1 4 R')nNR 2 C(=Y')OR", -(CR1 4
R'
5 )nNR1 3
C(=Y')NR"R'
2 ,
-(CR'
4
R
5 )nNR 2
SO
2
R
1 , -(CR 1 4 R'")nOC(=Y')R", -(CR1 4 R"5)nOC(=Y')OR'', 20 -(CR' 4
R
5 )OC(=Y')NR "R 2, -(CR 14R)nOS(O) 2 (OR"), -(CR14 R )OP(=Y')(OR )(OR 1), -(CR '4R")OP(OR")(OR 2 ), C:\NRPortbl\GHMalters\$ONIAM\58GOO1.docx 15110/14 6 144 1514 1 -(CR R")S(O)R", -(CRR")S(O) 2 R", -(CR R"), S(O) 2 NR"R, -(CR 14R"),,S(O)(OR"), -(CR 14R'5)nS(0)2(OR"), -(CR 14R 15)n SC(=Y')R" ,
-(CR
4
R")SC(=Y')OR
1 , -(CR 4
R
5 )nSC(=Y')NR' R 12 , Ci-C 2 alkyl, C 2
-C
8 alkenyl, C 2
-C
8 alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl; 5 R 8 is selected from CI-C 2 alkyl, aryl, carbocyclyl, heterocyclyl, and heteroaryl;
R
9 is selected from H, -(CR 4 R"),C(=Y')R", -(CR14R)nC(=Y')OR 1 , -(CR 1R )nC(=Y')NR"R 2 , -(CR 1 4
R
5 )qNR"R 1, -(CR R )qOR", -(CR 4R")gSR", -(CR 1R")qNR 12 C(=Y')R", -(CR 1 R)qNR 12
C(=Y')OR
1 , -(CR14R")qNR 3 C(=Y')NR"R 2 , -(CR1 R")qNR 2SO 2 R", 10 -(CR 1
R
5 )qOC(=Y')R 11 , -(CR 14 R1 5 )qOC(=Y')OR", -(CR14R 5 )qOC(=Y')NR 1 R 1 2 , -(CR 1R")qOS(O)2(OR"), -(CR 14
R
15 )OP(=Y')(OR )(OR ), -(CR [R")qOP(OR")(OR 2), -(CR 4
R'
5 )nS(O)R1, -(CR R )nS(O) 2 R", -(CR R 1) S(0) 2
NR"
1
R'
2 , C[-C 12 alkyl, C 2
-C
8 alkenyl, C 2
-C
8 alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl; 15 R'" is H, C-C 6 alkyl or C 3
-C
4 carbocyclyl;
R
6 is H, halo, C-C 6 alkyl, C 2
-C
2 alkenyl, C 2 -Cs alkynyl, carbocyclyl, heteroaryl, heterocyclyl, -OCF 3 , -NO 2 , -Si(C-C 6 alkyl), -(CR' 9
R
2 0),NR' R, -(CR19R20)1OR16, or -(CR 9
R
2 ),-SR 1; R" is H, halo, C 1
-C
6 alkyl, C 2
-C
8 alkenyl, C 2
-C
8 alkynyl, carbocyclyl, heterocyclyl, 20 aryl, heteroaryl CF 3 , -OCF 3 , -NO 2 , -Si(C 1
-C
6 alkyl), -(CR 9
R
2 0 )nNR 'R4,
-(CR'
9
R
2 1 0OR 6, or -(CR 9R2 )X-SR' 6 ; provided that R 6 and R6' are not both H at the same time; p is 0, 1, 2 or 3; n is 0,1, 2 or 3; 25 q is 2 or 3; wherein each said alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl and heteroaryl of R 3 , R 4 , R, R6, R6 , R,8, R9, R1(," ,R 11 , R,R , R and R15 is independently optionally substituted with one or more groups independently selected from halo, CN, CF 3 , -OCF 3 , -NO 2 , oxo, -Si(C 1
-C
6 alkyl), 3 0 -(CR R2) 1
C(=Y')R'
6 , -(CR1 9
R
2 0)nC(=Y')OR 6 , -(CR1 9R20)nC(=Y')NR 6 R 1 7 , -(CRR 20)INR6 R , -(CR1 9
R
2 0)nOR' 6 , -(CR 9
R
20 ),SR 1, C:\NRPortbl\GHMatters\SONIAM\566000D_1.docx 15110/14 7
-(CR
9
R
2 0)nNR' 6 C(=Y')R", -(CR'R 2
),NR'
6 C(=Y')OR'4, -(CR1 9
R
2
)NR'C(=Y')NR'
6
R
7 , -(CR' 9
R
2
),NR'
7
SO
2
R'
6 ,
-(CR
9
R
20 )X0C(=Y')R 6 , -(CR1 9
R
2 0
)OC(=Y')OR
6 , -(CR 9
R
20 )nOC(=Y')NR' 6 R' , -(CR'O2)OS(0)2(OR 16), -(CR1 9
R
20 )nOP(=Y')(OR 6 )(OR' 7), 5 -(CR' 9
R
20 ),OP(OR 6 )(OR 7), -(CR' 9
R
2 0
),S(O)R'
6 , -(CR' 9
R
20 )nS(0) 2 R'6, -(CR'9R2 ),S(O) 2 NR1 R1 7 , -(CR' 9
R
2
)
1 S(O)(OR 6 ), -(CR 9
R
2
)S(O)
2 (OR16),
-(CR'
9
R
2
)
1 SC(=Y')R 6, -(CR' 9
R
20 ),SC(=Y')OR', -(CR' 9
R
2 0)nSC(=Y')NR'R , and R2; each R 6 , R 7 and R1 8 is independently H, CI-CI 2 alkyl, C 2 -Cs alkenyl, C 2
-C
8 alkynyl, 10 carbocyclyl, heterocyclyl, aryl, or heteroaryl, wherein said alkyl, alkenyl, alkynyl,carbocyclyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more groups selected from halo, CN, -OCF 3 , CF 3 , -NO 2 , CI-C 6 alkyl, -OH, -SH, -O(CI-C 6 alkyl), -S(C-C 6 alkyl), -NH 2 , -NH(CI-C 6 alkyl), -N(C-C 6 alkyl) 2 , -SO 2
(C-C
6 alkyl), -CO 2 H, -C0 2
(CI-C
6 alkyl), -C(O)NH 2 , -C(O)NH(C, 15 C 6 alkyl), -C(O)N(C-C 6 alkyl) 2 , -N(C-C 6 alkyl)C(O)(CI-C 6 alkyl), -NHC(O)(C
C
6 alkyl), -NHSO 2
(C-C
6 alkyl), -N(C-C 6 alkyl)S0 2
(CI-C
6 alkyl), -SO 2
NH
2 ,
-SO
2
NH(CI-C
6 alkyl), -SO 2
N(CI-C
6 alkyl) 2 , -OC(O)NH 2 , -OC(O)NH(C,-C 6 alkyl), -OC(O)N(C-C 6 alkyl) 2 , -OC(O)O(CI-C 6 alkyl), -NHC(O)NH(C-C 6 alkyl), -NHC(O)N(C -C 6 alkyl) 2 , -N(C -C 6 alkyl)C(O)NH(C -C 6 alkyl), -N(C-C 6 20 alkyl)C(O)N(C,-C 6 alkyl) 2 , -NHC(O)NH(C-C 6 alkyl), -NHC(O)N(CI-C alkyl) 2 , -NHC(O)O(C -C 6 alkyl), and -N(C -C 6 alkyl)C(O)O(C-C 6 alkyl); or R 1 and R' 7 together with the nitrogen to which they are attached form a 3-8 membered saturated, unsaturated or aromatic ring having 0-2 heteroatoms selected from 0, S and N, wherein said ring is optionally substituted with one or more 25 groups selected from halo, CN, -OCF 3 , CF 3 , -NO 2 , CI-C 6 alkyl, -OH, -SH, -O(C,
C
6 alkyl), -S(C-C 6 alkyl), -NH 2 , -NH(C-C 6 alkyl), -N(C-C 6 alkyl) 2 , -SO 2
(CI-C
6 alkyl), -CO 2 H, -C0 2
(C-C
6 alkyl), -C(O)NH 2 , -C(O)NH(CI-C 6 alkyl), -C(O)N(C -C 6 alkyl) 2 , -N(C -C 6 alkyl)C(O)(C-C 6 alkyl), -NHC(O)(C-C 6 alkyl),
-NHSO
2 (C -C 6 alkyl), -N(C -C 6 alkyl)S0 2 (C -C 6 alkyl), -SO 2
NH
2 , -SO 2
NH(C
30 C 6 alkyl), -SO 2 N(CI-C6 alkyl) 2 , -OC(O)NH 2 , -OC(O)NH(CI-C 6 alkyl), -OC(O)N(C -C 6 alkyl) 2 , -OC(O)O(C-C 6 alkyl), -NHC(O)NH(CI-C 6 alkyl), CA\NRPortbl\GHMatters\SONIAM\5860000_1.docx 15/10/14 8 -NHC(O)N(Ci-C 6 alkyl) 2 , -N(C -C 6 alkyl)C(O)NH(C -C 6 alkyl), -N(CI-C 6 alkyl)C(O)N(C-C 6 alkyl) 2 , -NHC(C)NH(CI-C 6 alkyl), -NHC(O)N(C-C 6 alkyl) 2 ,
-NHC(O)O(CI-C
6 alkyl), and -N(CI-C 6 alkyl)C(O)O(CI-C 6 alkyl); R9 and R are independently selected from H, CI-C 2 alkyl, -(CH 2 )-aryl, -(CH 2
)
5 carbocyclyl, -(CH 2 )-heterocyclyl, and -(CH 2 )-heteroaryl; R is C 1
-C
1 2 alkyl, C2-Cs alkenyl, C 2 -Cs alkynyl, carbocyclyl, heterocyclyl, aryl, or heteroaryl, wherein each member of R 2 1 is optionally substituted with one or more groups selected from halo, oxo, CN, -OCF 3 , CF 3 , -NO 2 , CI-C 6 alkyl, -OH, -SH,
-O(C-C
6 alkyl), -S(CI-C 6 alkyl), -NH 2 , -NH(CI-C 6 alkyl), -N(Ci-C 6 alkyl) 2 , 10 -S0 2
(CI-C
6 alkyl), -C0 2 H, -C0 2
(C-C
6 alkyl), -C(O)NH 2 , -C(O)NH(C-C 6 alkyl), -C(O)N(C-C 6 alkyl) 2 , -N(C -C 6 alkyl)C(O)(Cj-C 6 alkyl), -NHC(O)(C-C 6 alkyl), -NHSO 2 (Ct-C 6 alkyl), -N(CI-C 6 alkyl)SO 2
(CI-C
6 alkyl), -SO 2
NH
2 ,
-SO
2 NH(C -C 6 alkyl), -S0 2
N(CI-C
6 alkyl) 2 , -OC(O)NH 2 , -OC(O)NH(C-C 6 alkyl), -OC(O)N(C-C 6 alkyl) 2 , -OC(O)O(C I-C 6 alkyl), -NHC(O)NH(C i-C 6 alkyl), 15 -NHC(O)N(CI-C 6 alkyl) 2 , -N(Ci-C 6 alkyl)C(O)NH(Cj-C 6 alkyl), -N(CI-C 6 alkyl)C(O)N(Ci-C 6 alkyl) 2 , -NHC(O)NH(Ci-C 6 alkyl), -NHC(O)N(C-C 6 alkyl) 2 , -NHC(O)O(C -C 6 alkyl), and -N(Ci -C 6 alkyl)C(O)O(Ci-C 6 alkyl); 22 each Y' is independently 0, NR , or S; and R2 is H or Ce-C 12 alkyl, 20 The present invention includes a composition (e.g., a pharmaceutical composition) comprising a compound of formula I (and/or solvates, hydrates and/or salts thereof) and a carrier (a pharmaceutically acceptable carrier). The present invention also includes a composition (e.g., a pharmaceutical composition) comprising a compound of formula I (and/or solvates, hydrates and/or salts thereof) and a carrier (a pharmaceutically 25 acceptable carrier), further comprising a second chemotherapeutic and/or a second anti inflammatory agent. The present compositions are useful for inhibiting abnormal cell growth or treating a hyperproliferative disorder in a mammal (e.g., human). The present compositions are also useful for treating inflammatory diseases in a mammal (e.g., human). 30 The present invention includes a method of inhibiting abnormal cell growth or treating C:\NRPorIbl\GHMatters\SONIAM\S860000_1.docx 15110/14 9 a hyperproliferative disorder in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or solvates and salts thereof) or a composition thereof, alone or in combination with a second chemotherapeutic agent. 5 The present invention includes a method of treating an inflammatory disease in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or solvates and salts thereof) or a composition thereof, alone or in combination with a second anti-inflammatory agent. The present invention includes a method of using the present compounds for in vitro, in 10 situ, and in vivo diagnosis or treatment of mammalian cells, organisms, or associated pathological conditions. The present invention includes use of a compound of formula I (and/or solvates and salts thereof) or a composition thereof, alone or in combination with a second chemotherapeutic agent in the manufacture of a medicament for inhibiting abnormal 15 cell growth or treating a hyperproliferative disorder in a mammal (e.g., human). The present invention includes use of a compound of formula I (and/or solvates and salts thereof) or a composition thereof, alone or in combination with a second anti inflammatory agent in the manufacture of a medicament for treating an inflammatory disease in a mammal (e.g., human). 20 Reference will now be made in detail to certain embodiments of the invention, examples of which are illustrated in the accompanying structures and formulae. While the invention will be described in conjunction with the enumerated embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and 25 equivalents which may be included within the scope of the present invention as defined by the claims. One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. The present invention is in no way limited to the methods and materials described. In the event that one or more of the incorporated literature, 30 patents, and similar materials differs from or contradicts this application, including but C:\NRPortbI\GHMaLters\SONIAM\5SBOOC_1.docx 15/10/14 10 not limited to defined terms, term usage, described techniques, or the like, this application controls. The term "alkyl" as used herein refers to a saturated linear or branched-chain monovalent hydrocarbon radical of one to twelve carbon atoms. Examples of alkyl 5 groups include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2
CH
3 ), I propyl (n-Pr, n-propyl, -CH 2
CH
2
CH
3 ), 2-propyl (i-Pr, i-propyl, -CH(CH 3
)
2 ), 1 -butyl (n Bu, n-butyl, -CH 2
CH
2
CH
2
CH
3 ), 2-methyl-1-propyl (i-Bu, i-butyl, -CH2CH(CH 3
)
2 ), 2 butyl (s-Bu, s-butyl, -CH(CH 3
)CH
2
CH
3 ), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH 3
)
3 ), 1 -pentyl (n-pentyl, -CH 2
CH
2
CH
2
CH
2
CH
3 ), 2-pentyl (-CH(CH 3
)CH
2
CH
2
CH
3 ), 3-pentyl 10 (-CH(CH 2
CH
3
)
2 ), 2-methyl-2-butyl (-C(CH 3
)
2
CH
2 CH3), 3-methyl-2-butyl (
CH(CH
3
)CH(CH
3
)
2 ), 3-methyl- 1 -butyl (-CH 2
CH
2 CH(CH3) 2 ), 2-methyl-I -butyl (
CH
2
CH(CH
3
)CH
2
CH
3 ), 1 -hexyl (-CH 2
CH
2
CH
2
CH
2
CH
2
CH
3 ), 2-hexyl (
CH(CH
3
)CH
2
CH
2
CH
2
CH
3 ), 3-hexyl (-CH(CH 2
CH
3
)(CH
2
CH
2
CH
3 )), 2-methyl-2-pentyl
(-C(CH
3
)
2
CH
2
CH
2
CH
3 ), 3-methyl-2-pentyl (-CH(CH 3
)CH(CH
3
)CH
2
CH
3 ), 4-methyl-2 15 pentyl (-CH(CH 3
)CH
2
CH(CH
3
)
2 ), 3-methyl-3-pentyl (-C(CH 3
)(CH
2
CH
3
)
2 ), 2-methyl-3 pentyl (-CH(CH 2
CH
3
)CH(CH
3
)
2 ), 2,3-dimethyl-2-butyl (-C(CH 3
)
2
CH(CH
3
)
2 ), 3,3 dimethyl-2-butyl (-CH(CH 3
)C(CH
3
)
3 , 1 -heptyl, 1 -octyl, and the like. The term "alkenyl" refers to linear or branched-chain monovalent hydrocarbon radical of two to twelve carbon atoms with at least one site of unsaturation, i.e., a carbon 20 carbon, sp 2 double bond, wherein the alkenyl radical includes radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations. Examples include, but are not limited to, ethylenyl or vinyl (-CH=CH 2 ), allyl (-CH 2
CH=CH
2 ), and the like. The term "alkynyl" refers to a linear or branched monovalent hydrocarbon radical of two to twelve carbon atoms with at least one site of unsaturation, i.e., a carbon-carbon, 25 sp triple bond. Examples include, but are not limited to, ethynyl (-C=CH), propynyl (propargyl, -CH 2 C=CH), and the like. The terms "carbocycle", "carbocyclyl", "carbocyclic ring" and "cycloalkyl" refer to a monovalent non-aromatic, saturated or partially unsaturated ring having 3 to 12 carbon atoms as a monocyclic ring or 7 to 12 carbon atoms as a bicyclic ring. Bicyclic 30 carbocycles having 7 to 12 atoms can be arranged, for example, as a bicyclo [4,5], [5,5], C:\NRPortb nGHMatters\SONIAMB51600001.docx 15110/14 11 [5,61 or [6,6] system, and bicyclic carbocycles having 9 or 10 ring atoms can be arranged as a bicyclo [5,6] or [6,6] system, or as bridged systems such as bicyclo[2.2.1]heptane, bicyclo [2.2.2]octane and bicyclo[3.2.2]nonane. Examples of monocyclic carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, 5 cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1 cyclohex- 1 -enyl, 1 -cyclohex-2-enyl, 1 -cyclohex-3-enyl, cyclohexadienyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, and the like. "Aryl" means a monovalent aromatic hydrocarbon radical of 6-18 carbon atoms derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic 10 ring system. Some aryl groups are represented in the exemplary structures as "Ar". Aryl includes bicyclic radicals comprising an aromatic ring fused to a saturated, partially unsaturated ring, or aromatic carbocyclic or heterocyclic ring. Typical aryl groups include, but are not limited to, radicals derived from benzene (phenyl), substituted benzenes, naphthalene, anthracene, indenyl, indanyl, 1,2 15 dihydronaphthalene, 1,2,3,4-tetrahydronaphthyl, and the like. The terms "heterocycle," "heterocyclyl" and "heterocyclic ring" are used interchangeably herein and refer to a saturated or a partially unsaturated (i.e., having one or more double and/or triple bonds within the ring) carbocyclic radical of 3 to 18 ring atoms in which at least one ring atom is a heteroatom selected from nitrogen, 20 oxygen and sulfur, the remaining ring atoms being C, where one or more ring atoms is optionally substituted independently with one or more substituents described below. A heterocycle may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms and I to 4 heteroatoms selected from N, 0, and S) or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 6 heteroatoms selected from N, 0, and S), for example: a 25 bicyclo [4,5], [5,5], [5,6], or [6,6] system. Heterocycles are described in Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and J. Am. Chem. Soc. (1960) 82:5566. 30 "Heterocyclyl" also includes radicals where heterocycle radicals are fused with a saturated, partially unsaturated ring, or aromatic carbocyclic or heterocyclic ring. C:\NRPortbGHMatters\SONIAMt586OO00 docx 15I1014 12 Examples of heterocyclic rings include, but are not limited to, pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidinyl, morpholinyl, thiomorpholinyl, thioxanyl, piperazinyl, homopiperazinyl, azetidinyl, oxetanyl, thietanyl, 5 homopiperidinyl, oxepanyl, thiepanyl, oxazepinyl, diazepinyl, thiazepinyl, 2-pyrrolinyl, 3-pyrrolinyl, indolinyl, 2H-pyranyl, 4H-pyranyl, dioxanyl, 1,3-dioxolanyl, pyrazolinyl, dithianyl, dithiolanyl, dihydropyranyl, dihydrothienyl, dihydrofuranyl, pyrazolidinylimidazolinyl, imidazolidinyl, 3-azabicyco[3.1.0]hexanyl, 3 azabicyclo[4.1.0]heptanyl, and azabicyclo[2.2.2]hexanyl. Spiro moieties are also 10 included within the scope of this definition. Examples of a heterocyclic group wherein ring atoms are substituted with oxo (=0) moieties are pyrimidinonyl and 1,1 -dioxo thiomorpholinyl. The term "heteroaryl" refers to a monovalent aromatic radical of 5- or 6-membered rings, and includes fused ring systems (at least one of which is aromatic) of 5-18 atoms, 15 containing one or more heteroatoms independently selected from nitrogen, oxygen, and sulfur. Examples of heteroaryl groups are pyridinyl (including, for example, 2 hydroxypyridinyl), imidazolyl, imidazopyridinyl, pyrimidinyl (including, for example, 4-hydroxypyrimidinyl), pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, quinolinyl, isoquinolinyl, indolyl, 20 benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, pyridazinyl, triazinyl, isoindolyl, pteridinyl, purinyl, oxadiazolyl, triazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, and furopyridinyl. The heterocycle or heteroaryl groups may be carbon (carbon-linked) or nitrogen 25 (nitrogen-linked) attached where such is possible. By way of example and not limitation, carbon bonded heterocycles or heteroaryls are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an 30 oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, C:\NRPortbl\GHMalters\SONiAM158500O0_1.docx 15110114 13 3, 4, 5, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline. By way of example and not limitation, nitrogen bonded heterocycles or heteroaryls are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3 pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 5 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, 1H-indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or D-carboline. The term "halo" refers to F, Cl, Br or I The heteroatoms present in heteroaryl or heterocyclcyl include the oxidized forms such as N+->O, S(O) and S(0)2. 10 The terms "treat" and "treatment" refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the development or spread of cancer. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, 15 stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the 20 condition or disorder or those in which the condition or disorder is to be prevented. The phrase "therapeutically effective amount" means an amount of a compound of the present invention that (i) treats or prevents the particular disease, condition, or disorder, (ii) attenuates, ameliorates, or eliminates one or more symptoms of the particular disease, condition, or disorder, or (iii) prevents or delays the onset of one or more 25 symptoms of the particular disease, condition, or disorder described herein. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve 30 to some extent one or more of the symptoms associated with the cancer. To the extent C:\NRPortbl\GHMatters\SONIAM\5860000_1,docx 15/10/14 14 the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. For cancer therapy, efficacy can be measured, for example, by assessing the time to disease progression (TTP) and/or determining the response rate (RR). 5 The terms "abnormal cell growth" and "hyperproliferative disorder" are used interchangeably in this application. "Abnormal cell growth", as used herein, unless otherwise indicated, refers to cell growth that is independent of normal regulatory mechanisms (e.g., loss of contact inhibition). This includes, for example, the abnormal growth of: (1) tumor cells (tumors) that proliferate by expressing a mutated tyrosine 10 kinase or overexpression of a receptor tyrosine kinase; (2) benign and malignant cells of other proliferative diseases in which aberrant tyrosine kinase activation occurs; (3) any tumors that proliferate by receptor tyrosine kinases; (4) any tumors that proliferate by aberrant serine/threonine kinase activation; and (5) benign and malignant cells of other proliferative diseases in which aberrant serine/threonine kinase activation occurs. 15 The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. A "tumor" comprises one or more cancerous cells. Examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g., epithelial 20 squamous cell cancer), lung cancer including small- cell lung cancer, non-small cell lung cancer ("NSCLC"), adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, 25 rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, acute leukemia, as well as head/brain and neck cancer. A "chemotherapeutic agent" is a compound useful in the treatment of cancer. Examples 30 of chemotherapeutic agents include Erlotinib (TARCEVA@, Genentech/OSI Pharm.), Bortezomib (VELCADE@, Millennium Pharm.), Fulvestrant (FASLODEX@, C:\NRPortbl\GHMatters\SONIAM\5660DO_1.docx 15/10114 15 AstraZeneca), Sutent (SUl 1248, Pfizer), Letrozole (FEMARA@, Novartis), Imatinib mesylate (GLEEVEC@, Novartis), PTK787/ZK 222584 (Novartis), Oxaliplatin (Eloxatin@, Sanofi), 5-FU (5-fluorouracil), Leucovorin, Rapamycin (Sirolimus, RAPAMUNE@, Wyeth), Lapatinib (TYKERB®, GSK572016, Glaxo Smith Kline), 5 Lonafarnib (SCH 66336), Sorafenib (BAY43-9006, Bayer Labs), and Gefitinib (IRESSA@, AstraZeneca), AG1478, AG1571 (SU 5271; Sugen), alkylating agents such as thiotepa and CYTOXAN@ cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, 10 triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analog topotecan); bryostatin; callystatin; CC 1065 (including its adozelesin, carzelesin and bizelesin synthetic analogs); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; 15 duocarmycin (including the synthetic analogs, KW-2189 and CB1-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, chlorophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, 20 chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gammal I and calicheamicin omegaI (Angew Chem. Intl. Ed. Engl. (1994) 33:183-186); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic 25 chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN@ (doxorubicin), morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, 30 mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, porfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as C:\NRPortbl\GHMatters\SONIAM\5860000_1.docx 15/1014 16 methotrexate and 5-fluorouracil (5-FU); folic acid analogs such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6 mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, 5 enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium 10 acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK@ polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; 15 tenuazonic acid; triaziquone; 2,2',2"-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara C"); cyclophosphamide; thiotepa; taxoids, e.g., TAXOL® (paclitaxel; Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANETM (Cremophor-free), albumin 20 engineered nanoparticle formulations of paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), and TAXOTERE® (doxetaxel; Rh6ne-Poulenc Rorer, Antony, France); chloranmbucil; GEMZAR® (gemcitabine); 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; NAVELBINE@ 25 (vinorelbine); novantrone; teniposide; edatrexate; daunomycin; aminopterin; capecitabine (XELODA®); ibandronate; CPT- 11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; and pharmaceutically acceptable salts, acids and derivatives of any of the above. Also included in the definition of "chemotherapeutic agent" are: (i) anti-hormonal 30 agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX®; tamoxifen citrate), raloxifene, droloxifene, 4 C:\NRPortbIlGHMatters\SONAMSB600O0_1.docx 1S/1 0/14 17 hydroxytamoxifen, trioxifene, keoxifene, LYl 17018, onapristone, and FARESTON@ (toremifine citrate); (ii) aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5) imidazoles, aminoglutethimide, MEGASE@ (megestrol acetate), AROMASIN® 5 (exemestane; Pfizer), formestanie, fadrozole, RIVISOR® (vorozole), FEMARA® (letrozole; Novartis), and ARIMIDEX® (anastrozole; AstraZeneca); (iii) anti androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); (iv) protein kinase inhibitors; (v) lipid kinase inhibitors; (vi) antisense oligonucleotides, particularly those 10 which inhibit expression of genes in signaling pathways implicated in aberrant cell proliferation, such as, for example, PKC-alpha, Ralf and H-Ras; (vii) ribozymes such as VEGF expression inhibitors (e.g., ANGIOZYME®) and HER2 expression inhibitors; (viii) vaccines such as gene therapy vaccines, for example, ALLOVECTIN®, LEUVECTIN@, and VAXID®; PROLEUKIN@ rIL-2; a topoisomerase 1 inhibitor 15 such as LURTOTECAN®; ABARELIX® rmRH; (ix) anti-angiogenic agents such as bevacizumab (AVASTIN®, Genentech); and (x) pharmaceutically acceptable salts, acids and derivatives of any of the above. Other anti-angiogenic agents include MMP-2 (matrix-metalloproteinase 2) inhibitors, MMP-9 (matrix-metalloproteinase 9) inhibitors, COX-II (cyclooxygenase II) inhibitors, and VEGF receptor tyrosine kinase inhibitors. 20 Examples of such useful matrix metalloproteinase inhibitors that can be used in combination with the present compounds/compositions are described in WO 96/33172, WO 96/27583, EP 818442, EP 1004578, WO 98/07697, WO 98/03516, WO 98/34918, WO 98/34915, WO 98/33768, WO 98/30566, EP 606,046, EP 931,788, WO 90/05719, WO 99/52910, WO 99/52889, WO 99/29667, WO 99/07675, EP 945864, U.S. Pat. No. 25 5,863,949, U.S. Pat. No. 5,861,510, and EP 780,386, all of which are incorporated herein in their entireties by reference. Examples of VEGF receptor tyrosine kinase inhibitors include 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-4 ylmethoxy)quinazoline (ZD6474; Example 2 within WO 01/32651), 4-(4-fluoro-2 methylindol-5-yloxy)-6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)- quinazoline 30 (AZD2171; Example 240 within WO 00/47212), vatalanib (PTK787; WO 98/35985) and SUI 1248 (sunitinib; WO 01/60814), and compounds such as those disclosed in PCT Publication Nos. WO 97/22596, WO 97/30035, WO 97/32856, and WO C:\NRPortbl\GHMatters\SONIAM\5860000_1.docx 15/10114 18 98/13354). Other examples of chemotherapeutic agents that can be used in combination with the present compounds include inhibitors of P13K (phosphoinositide-3 kinase), such as those reported in Yaguchi et al (2006) Jour. of the Nat. Cancer Inst. 98(8):545-556; US s 7173029; US 7037915; US 6608056; US 6608053; US 6838457; US 6770641; US 6653320; US 6403588; WO 2006/046031; WO 2006/046035; WO 2006/046040; WO 2007/042806; WO 2007/042810; WO 2004/017950; US 2004/092561; WO 2004/007491; WO 2004/006916; WO 2003/037886; US 2003/149074; WO 2003/035618; WO 2003/034997; US 2003/158212; EP 1417976; US 2004/053946; JP 10 2001247477; JP 08175990; JP 08176070; US 6703414; and WO 97/15658, all of which are incorporated herein in their entireties by reference. Specific examples of such P13K inhibitors include SF-1 126 (P13K inhibitor, Semafore Pharmaceuticals), BEZ-235 (P13K inhibitor, Novartis), XL-147 (P13K inhibitor, Exelixis, Inc.) and GDC-0941 (P13K inhibitor, PIramed and Genenetch). 15 The term "inflammatory diseases" as used in this application includes, but not limited to, rheumatoid arthritis, atherosclerosis, congestive hear failure, inflammatory bowel disease (including, but not limited to, Crohn's disease and ulcerative colitis), chronic obstructive pulmonary disease in the lung, fibrotic disease in the liver and kidney, Crohn's disease, lupus, skin diseases such as psoriasis, eczema and scleroderma, 20 osteoarthritis, multiple sclerosis, asthma, diseases and disorders related to diabetic complications, fibrotic organ failure in organs such as lung, liver, kidney, and inflammatory complications of the cardiovascular system such as acute coronary syndrome. An "anti-inflammatory agent" is a compound useful in the treatment of inflammation. 25 Examples of anti-inflammatory agents include injectable protein therapeutics such as Enbrel@, Remicade@, Humira@ and Kineret@. Other examples of anti-inflammatory agents include non-steroidal anti-inflammatory agents (NSAIDs), such as ibuprofen or aspirin (which reduce swelling and alleviate pain); disease-modifying anti-rheumatic drugs (DMARDs) such as methotrexate; 5-aminosalicylates (sulfasalazine and the 3 0 sulfa-free agents); corticosteroids; immunomodulators such as 6-mercaptoputine ("6 MP"), azathioprine ("AZA"), cyclosporines, and biological response modifiers such as C:\NRPortbl\GHMalters\SONIAM\5860000_idocx 15/10/14 19 Remicade@ (infliximab) and Enbrel@ (etanercept); fibroblast growth factors; platelet derived growth factors; enzyme blockers such as Arava@ (leflunomide); and/or a cartilage protecting agent such as hyaluronic acid, glucosamine, and chondroitin. The term "prodrug" as used in this application refers to a precursor or derivative form of 5 a compound of the invention that is capable of being enzymatically or hydrolytically activated or converted into the more active parent form. See, e.g., Wilman, "Prodrugs in Cancer Chemotherapy" Biochemical Society Transactions, 14, pp. 375-382, 615th Meeting Belfast (1986) and Stella et al., "Prodrugs: A Chemical Approach to Targeted Drug Delivery," Directed Drug Delivery, Borchardt et al., (ed.), pp. 247-267, Humana 10 Press (1985). The prodrugs of this invention include, but are not limited to, ester containing prodrugs, phosphate-containing prodrugs, thiophosphate-containing prodrugs, sulfate-containing prodrugs, peptide-containing prodrugs, D-amino acid modified prodrugs, glycosylated prodrugs, p-lactam-containing prodrugs, optionally substituted phenoxyacetamide-containing prodrugs, optionally substituted 15 phenylacetamide-containing prodrugs, 5-fluorocytosine and other 5-fluorouridine prodrugs which can be converted into the more active cytotoxic free drug. Examples of cytotoxic drugs that can be derivatized into a prodrug form for use in this invention include, but are not limited to, compounds of the invention and chemotherapeutic agents such as described above. 20 A "metabolite" is a product produced through metabolism in the body of a specified compound or salt thereof. Metabolites of a compound may be identified using routine techniques known in the art and their activities determined using tests such as those described herein. Such products may result for example from the oxidation, hydroxylation, reduction, hydrolysis, amidation, deamidation, esterification, 25 deesterification, enzymatic cleavage, and the like, of the administered compound. Accordingly, the invention includes metabolites of compounds of the invention, including compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof 30 A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as the MEK inhibitors C:\NRPortbnGHMatters\SONIAM\5Q60D0_1ocx 15/10/14 20 disclosed herein and, optionally, a chemotherapeutic agent) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. The term "package insert" is used to refer to instructions customarily included in 5 commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. The term "chiral" refers to molecules which have the property of non-superimposability of the mirror image partner, while the term "achiral" refers to molecules which are 10 superimposable on their mirror image partner. The term "stereoisomer" refers to compounds which have identical chemical constitution and connectivity, but different orientations of their atoms in space that cannot be interconverted by rotation about single bonds. "Diastereomer" refers to a stercoisomer with two or more centers of chirality and whose 15 molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as crystallization, electrophoresis and chromatography. "Enantiomers" refer to two stereoisomers of a compound which are non-superimposable 20 mirror images of one another. Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., "Stereochemistry of Organic Compounds", John Wiley & Sons, Inc., New York, 1994. The compounds of the invention may contain 25 asymmetric or chiral centers, and therefore exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds of the invention, including but not limited to, diastereomers, enantiomers and atropisomers, as well as mixtures thereof such as racemic mixtures, form part of the present invention. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane C;\NRPortb1GHMatters\SONIAM\5880000_1.docx 15110/14 21 polarized light. In describing an optically active compound, the prefixes D and L, or R and S, are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and I or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the 5 compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which 10 may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The terms "racemic mixture" and "racemate" refer to an equimolar mixture of two enantiomeric species, devoid of optical activity. The term "tautomer" or "tautomeric form" refers to structural isomers of different energies which are interconvertible via a low energy barrier. For example, proton 15 tautomers (also known as prototropic tautomers) include interconversions via migration of a proton, such as keto-enol and imine-enamine isomerizations. Valence tautomers include interconversions by reorganization of some of the bonding electrons. The phrase "pharmaceutically acceptable salt" as used herein, refers to pharmaceutically acceptable organic or inorganic salts of a compound of the invention. Exemplary salts 20 include, but are not limited, to sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate, glutamate, methanesulfonate "mesylate", ethanesulfonate, benzenesulfonate, p 25 toluenesulfonate, pamoate (i.e., 1,1'-methylene-bis -(2-hydroxy-3-naphthoate)) salts, alkali metal (e.g., sodium and potassium) salts, alkaline earth metal (e.g., magnesium) salts, and ammonium salts. A pharmaceutically acceptable salt may involve the inclusion of another molecule such as an acetate ion, a succinate ion or other counter ion. The counter ion may be any organic or inorganic moiety that stabilizes the charge 30 on the parent compound. Furthermore, a pharmaceutically acceptable salt may have more than one charged atom in its structure. Instances where multiple charged atoms C:\NRPortbl\GHMalters\SONIAM\5860000_1docx 15/10114 22 are part of the pharmaceutically acceptable salt can have multiple counter ions. Hence, a pharmaceutically acceptable salt can have one or more charged atoms and/or one or more counter ion. If the compound of the invention is a base, the desired pharmaceutically acceptable salt 5 may be prepared by any suitable method available in the art, for example, treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, methanesulfonic acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, a pyranosidyl 10 acid, such as glucuronic acid or galacturonic acid, an alpha hydroxy acid, such as citric acid or tartaric acid, an amino acid, such as aspartic acid or glutamic acid, an aromatic acid, such as benzoic acid or cinnamic acid, a sulfonic acid, such as p-toluenesulfonic acid or ethanesulfonic acid, or the like. If the compound of the invention is an acid, the desired pharmaceutically acceptable salt 15 may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), an alkali metal hydroxide or alkaline earth metal hydroxide, or the like. Illustrative examples of suitable salts include, but are not limited to, organic salts derived from amino acids, such as glycine and arginine, ammonia, primary, secondary, and tertiary amines, and 20 cyclic amines, such as piperidine, morpholine and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum and lithium. The phrase "pharmaceutically acceptable" indicates that the substance or composition must be compatible chemically and/or toxicologically, with the other ingredients 25 comprising a formulation, and/or the mammal being treated therewith. A "solvate" refers to an association or complex of one or more solvent molecules and a compound of the invention. Examples of solvents that form solvates include, but are not limited to, water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, and ethanolamine. The term "hydrate" refers to the complex where the solvent 30 molecule is water. C:\NRPortbl\GHMatters\SONIAM\5860000_I.docx 15/10/14 23 The term "protecting group" refers to a substituent that is commonly employed to block or protect a particular functionality while reacting other functional groups on the compound. For example, an "amino-protecting group" is a substituent attached to an amino group that blocks or protects the amino functionality in the compound. Suitable 5 amino-protecting groups include acetyl, trifluoroacetyl, t-butoxycarbonyl (BOC), benzyloxycarbonyl (CBZ) and 9-fluorenylmethylenoxycarbonyl (Fmoc). Similarly, a "hydroxy-protecting group" refers to a substituent of a hydroxy group that blocks or protects the hydroxy functionality. Suitable protecting groups include acetyl and trialkylsilyl. A "carboxy-protecting group" refers to a substituent of the carboxy group 10 that blocks or protects the carboxy functionality. Common carboxy-protecting groups include phenylsulfonylethyl, cyanoethyl, 2-(trimethylsilyl)ethyl, 2 (trimethylsilyl)ethoxymethyl, 2-(p-toluenesulfonyl)ethyl, 2-(p nitrophenylsulfenyl)ethyl, 2-(diphenylphosphino)-ethyl, nitroethyl and the like. For a general description of protecting groups and their use, see T. W. Greene, Protective is Groups in Organic Synthesis, John Wiley & Sons, New York, 1991. The terms "compound of this invention", "compounds of the present invention" "compounds of formula I", "isoindolones" and " isoindolones of formula I", unless otherwise indicated, include compounds/isoindolones of formula I and stereoisomers, geometric isomers, tautomers, solvates, metabolites, salts (e.g., pharmaceutically 20 acceptable salts) and prodrugs thereof Unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds of formula I, wherein one or more hydrogen atoms are replaced deuterium or tritium, or one or more carbon atoms are replaced by a 1C- or "C-enriched carbon are within the scope of this invention. 25 In an embodiment of the present invention, compounds are of formula I-a (i.e., Z' is CR'R'a) or I-b (i.e., Z' is CR 1 R'a) and all other variables are as defined in formula I, or as defined in the embodiment described above. C\NRPortb\GHMaUers\SONIAM\5860000 1,docx 15/10/14 24 N' R 4 4 R 1a N6Rs R R"R __ RR R R R N N H O H 0 I-a I-b In an embodiment of the present invention, Z' is CRIRIa and R 1 is H or C 1
-C
3 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the 5 embodiments described above. In another embodiment, R' is H, and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment, R' is methyl, and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, Z is CRIRIa and Ria is H or CI-C 3 10 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments described above. In another embodiment, Ra is H, and all other variables are as defined in formula 1, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment, Ria is methyl, and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. 15 In another embodiment of the present invention, Z' is CRIRIa and R' and Ria is H or C 1 C 3 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments described above. In another embodiment, R' and R'" is H, and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment, R' and RIa is methyl, and all other 20 variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, Z' is CRLRIa and R' and R'" together with the carbon to which they are attached form a 3-5 membered carbocyclic ring or R' and Ria may be =0; and all other variables are as defined in formula 1, I-a or I-b, or as 25 defined in any one of the embodiments described above. In another embodiment of the present invention, Z is CRIRIa and R' and R'" together C:\NRPortbl\GHMatters\SONIAMSS60000_1.docx 15/i 14 25 with the carbon to which they are attached may form a 3 membered carbocyclic ring; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments described above. In an embodiment of the present invention, Z' is NRA and all other variables are as 5 defined in formula I or I-a or I-b, or as defined in any one of the embodiments described above. In another embodiment of the present invention, Z is NRA and RA is H or CI-C 3 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments described above. In another embodiment, RA is H, and all other 10 variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment, RA is methyl, and all other variables are as defined in formula 1, I-a or I-b, or as defined in any one of the embodiments above. In an embodiment of the present invention, Z2 is R2 and R2 is H, halo, CF 3 , or C -- C3 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any 15 one of the embodiments described above. In another embodiment of the present invention, Z2 is R2 and R2 is H, methyl, F or Cl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments described above. In another embodiment of the present invention, Z 2 is R 2 and R 2 is H, F or Cl; and all 20 other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments described above. In an embodiment of the present invention, Z 3 is R3 and R3 is H, halo, CF 3 , -OCF 3 , -(CR 14R5)nOR" or CI-C 3 alkyl; and all other variables are as defined in formula I or I a, or as defined in any one of the embodiments described above. 25 In another embodiment of the present invention, Z3 is R 3 and R3 is H, -OCF 3 , methyl, OMe, -OCHF 2 , F, or Cl; and all other variables are as defined in formula I or I-a, or as defined in any one of the embodiments described above. In another embodiment of the present invention, Z3 is R3 and R3 is H, methyl, F, or Cl; C:\NRPortbkGHMatters\SONIAM\5860000_1docx 15/10/14 26 and all other variables are as defined in formula I or I-a, or as defined in any one of the embodiments described above. In another embodiment of the present invention, Z 3 is R3 and R3 is H; and all other variables are as defined in formula I or I-a, or as defined in any one of the embodiments 5 described above. In an embodiment of the present invention, Z 3 is N and all other variables are as defined in formula I or I-a, or as defined in any one of the embodiments described above. In an embodiment of the present invention, R4 is H or CI-C 6 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the 10 embodiments above. In another embodiment of the present invention, R4 is H or methyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, R4 is H; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the 15 embodiments above. In an embodiment of the present invention, R5 is H or CI-C 6 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, Rs is H or methyl; and all other 20 variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, Rs is H; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In an embodiment of the present invention, X 1 is OR 1 ' wherein R" is H or CrC12 25 alkyl (e.g., C 1
-C
6 alkyl) substituted with one or more groups independently selected from halo, CN, CF 3 , -OCF 3 , -NO 2 , oxo, -(CRR 2 1)" C(=Y')Ri,
-(CR"R
2 )C(=Y')ORi 6 , -(CR"R2 )nC(=Y')NR R 1, -(CR1 9
R
2 0 )nNR1 R",
-(CRR
20
)LOR
6 , -(CR' 9
R
2 )nSRi 6 , -(CR' 9
R
2
)NR'
6 C(=Y')R4, -(CR 9
R
2 1), C:\NRPortbl\GHMstters\SONIAM\5860000_1.doex 15/10/14 27
NR'
6 C(=Y')OR 1, -(CR 9
R
20 )nNR' 8 C(=Y')NR 6 R' , -(CR1 9
R
2 0)nNR 7
SO
2 R1 6 , -(CR 'R 20 ),OC(=Y')R , -(CR 9
R
2 ),OC(=Y')OR'6, -(CRR 2 0 ),OC(=Y')NR 6
R
7 ,
-(CR'
9 R20)nOS(0) 2
(OR'
6 ), -(CR1 9
R
2 )nOP(=Y')(OR 6 )(OR1 7),
-(CR
9
R
2 0 )nOP(OR )(OR 7 ), -(CR 9
R
20 )nS(O)R, -(CR R2 )nS(O) 2
R'
6 , -(CR 9R 2), 5 S(0) 2 NRR 17 , -(CR1 9
R
2 0)nS(O)(OR16), -(CR' 9
R
2 0 )nS(0) 2
(OR
16 ),
-(CR'
9
R
2
)SC(=Y')R
16 , -(CR 1 9
R
2
),SC(=Y')OR
6 , -(CR 9
R
2 0)SC(=Y')NR' 6
R
7 , and
R
21 ; and all other variables are as defined in formula 1, 1-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, X' is OR" wherein R" is 10 heterocyclyl (e.g., 4- to 6-membered heterocyclyl) optionally substituted with one or more groups independently selected from halo, CN, CF 3 , -OCF 3 , -NO 2 , oxo, -(CR R 2 )nC(=Y')R', -(CRR'R 2 0 )nC(=Y')OR, -(CR 9
R
2 0)nC(=Y')NR 'R4, -(CR R )20)NR 1R , -(CR 9R2 )nOR 1, -(CR R20),SR , -(CR19R 2 0)nNR' 6 C(=Y')R 7 ,
-(CR'
9
R
2
),,NR'
6 C(=Y')OR , -(CR'R 2 ),NR'C(=Y')NR 1
R'
7 , 15 -(CR9R2 )UNR 7 S0 2
R
1 6 , -(CR R 20)nOC(=Y')R 16, -(CR' 9
R
20 ),OC(=Y')OR 6 ,
-(CR
9
R
2 )nOC(=Y')NR' 6
R
17 , -(CR 1 9
R
20
),OS(O)
2 (OR 6),
-(CR'
9
R
2 )nOP(=Y')(OR 16 )(OR 17), -(CR' 9
R
20 )nOP(OR 6)(OR"), -(CR 9
R
2 0
)
1 S(O)R 6 , -(CR 1R20 )S(O) 2 R, -(CR 'R 20
),S(O)
2
NR
16 R , -(CR' 9
R
2 0)S(O)(OR'16), -(CR 9
R
2 %
S(O)
2 (OR 1), -(CR R20),SC(=Y')R 16 , -(CR 1 9 R2 ),SC(=Y')OR 6 , 20 -(CR 9R2 )SC(=Y')NR 6
R
7 , and R2]; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, X 1 is OR' wherein R " is 4- to 6 membered heterocyclyl having 1 nitrogen ring atom wherein said heterocyclyl is optionally substituted with one or more groups independently selected from halo, CN, 25 CF 3 , -OCF 3 , -NO 2 , oxo, -(CR' 9
R
20 ),C(=Y')R 16, -(C 19
R
2 0 ) C(=Y')OR, -(CR"R 20),C(=Y')NR 6 R, -(CR 9
R
2
)NR'
6
R
7 , -(CR19R 20)nOR 6 , -(CR1 9
R
20 )nSR 6 ,
-(CR'
9
R
2 0),NR' 6 C(=Y' )R 17, -(CR1 9
R
2 0)nNR' 6
C(=Y')OR
17 , -(CR' 9
R
2 0)n 16 19 20 1
NR"C(=Y')NR
6 R", -(CR"R20)nNR"SO 2 Ri 6 , -(CRR 20 )nOC(=Y')R 6 ,
-(CR'R
2 )OC(=Y')OR16, -(CR 9
R
20 )nOC(=Y')NR 6
R
7 , -(CR1' 9
R
2 0)nOS(O) 2 (OR 16) 30 -(CR R 2 ),OP(=Y')(OR 6
)(OR
7 ), -(CR"R2 )nOP(OR 1)(OR"), -(CR R2 )nS(O)R 6, C:\NRPortbI\GHMatters\SONIAM\5860000 1ocx 15110/14 28
-(CR
9
R
2 0 )nS(O) 2
R
6 , -(CR'R 20 )nS(O) 2 NR' 6 R 7, -(CR' 9
R
20 )nS(O)(OR 6 ), -(CR 9
R
2 0 ),
S(O)
2 (OR'), -(CR 9
R
2 0
)
1 SC(=Y')R 6, -(CR 19R20 )nSC(=Y')OR1 6 , -(CR19R20 )n
SC(=Y')NR'
6 R17, and R 2 1 ; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. 5 In another embodiment of the present invention, X is: HHOHO,, , >< HO HO02 HO 2 < YO> HO OH OH H H H 0HN- - N N ~N- N 0a 0 N H H H H aN N >' HN 0 0' 00 0' 0 0' HO0 HOX O ;and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. 10 In another embodiment of the present invention, X 1 is HO - > HO O HO O0 HO Y Os H OH
H
2 N O< HON O HO O 0 OH O' O O HO and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In an embodiment of the present invention, W is -OR' wherein R" is H or C,-C1 2 CNRPortb\GHMalters\SONIAM15B60000_1.docx 15/10/14 29 alkyl; and all other variables are as defined in formula 1, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, W is -OR" wherein R" is H; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the 5 embodiments above. In another embodiment of the present invention, W is -OR"' wherein R" is C,-C 6 alkyl; and all other variables are as defined in formula 1, I-a or I-b, or as defined in any one of the embodiments above. In an embodiment of the present invention, W' is -NHSO 2 R8; and all other variables 10 are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In an embodiment of the present invention, R 6 is halo, C 2 -Cs alkynyl, carbocyclyl, or -SR'16; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. 15 In another embodiment of the present invention, R6 is halo, C 2
-C
3 alkynyl, C 3 carbocyclyl, or -SR' 6 ; and all other variables are as defined in formula 1, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, R6 is Br, I, SMe, C 3 -carbocyclyl, or C 2 alkynyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in 20 any one of the embodiments above. In an embodiment of the present invention, R6 is H, halo, or C-C 3 alkyl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In an embodiment of the present invention, R6 is H, F, Cl or methyl; and all other 25 variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments above. In another embodiment of the present invention, R 6 is F or Cl; and all other variables are as defined in formula I, I-a or I-b, or as defined in any one of the embodiments C:\INRPortbl\GHMatters\SONIAM\5860000_1.docx 1510114 30 above. In an embodiment of the present invention, p is 1 or 2; and all other variables are as defined in formula 1, I-a or I-b, or as defined in any one of the embodiments above. Another embodiment of the present invention includes compounds described in 5 EXAMPLE 5 and compounds below: H H H H HO N F F HO,-,, N 0 F HD N F HO,_- 0 F NN HNN H H H H ON O ON O -0,,N 0H HO OF 0. F 0 F N O O NN N N NrNNN HN N BBr B N N N N N H 0 H 0 H 0 H 0 H 0 HHO H H H HH -N 0 H,,,IN 0 HO.-,- N 0 N 0 CO- ON 0H,,,I 0 F F H F NH F2 F H_6 70 H H'6 H' N NN O N N NI N N Or O N N H N H o H a H a H o H HH H H H~ FC:NRor0l\ GH F HOatrs\ NAM586N 0 F 000 o F O10 / F N, N N N N N I1 1 (: I I f:Ir I I( B NI1 6 N N N N N H a H 0 H 0 H 0 H 0 0 N F HO - N-S a F HO N H F H0 S.Q N H F H 0 0 F H HHHH N N N H 0 H o H 0 H 0 00N~rb\H~tesSNAA5600i c 0011000 31 R 0 base or add, HO 0 DNHR (VII), ,N 0 HAH A RA H N N N Oo0 HO HOH (V) (VI) R1= apgopa subtiluenv, n=1 lo4 O LR, LesAdd, R2= Me, Et, lower alk 0, T dvnt ha
A'/A
2 = CR3/N R3= apopriate substituent where DNHR may indude, but Is not limited to, a broad range of (ubVtiuted and funcionalised hydo4anines (\AII) or arrines Compounds of formula (V) may be obtained from compounds of formula (IV) by reductive cyclisation using a reducing agent such as cobalt hydride (formed in-situ from 5 the reaction of sodium borohydride with cobalt (II) chloride) in a solvent such as methanol at a temperature of from -20C to 5'C. Alternatively compounds of formula (V) may be obtained from compounds of formula (IV) by reduction under pressure of hydrogen (1-5 bar) in a solvent such as methanol or ethanol in the presence of a catalyst such as Raney nickel. 10 Compounds of formula (VI) can be obtained from compounds of formula (V) where R2= Me, ethyl, other alkyl by reaction with a base such as sodium hydroxide, in a solvent such as ethanol or methanol, at a temperature of from room temperature up to reflux temperature. When R2='Bu compounds of formula (VI) can be obtained from compounds of formula (V) by treatment with an acid such as TFA, neat, or in the 15 presence of a solvent such as DCM at a temperature of from 0C to reflux. Alternatively, where R2= Me saponification may be effected under non-basic conditions by treatment with a Lewis acid such as bis(tri-n-butyltin)oxide in a solvent such as toluene at a temperature of from room temperature to reflux. Compounds of formula (VI) can be reacted with a functionalised hydroxylamine of 20 formula (VIII) (commercially available or prepared according to Scheme 3) or an amine, and a suitable coupling agent, such as O-(7-aza-benzo-triazol-1-yl)-N,N,N',N' tetra-methyluronium hexafluoro-phosphate, N-(3-dimethylaminopropyl)-N' ethylcarbodiimide hydrochloride or N,N'-dicyclohexylcarbodiimide in the presence of N-hydroxy- 1,2,3 -benzotriazole, in the presence of a suitable base such as 25 diisopropylethylamine or triethylamine in an inert solvent, such as tetrahydrofuran, N,N-dimethylformamide, or dichloromethane at a temperature of about room C:\NRPortbl\GHMatters\SONIAM556000 1.docx 15110/14 32 temperature, to obtain the compounds of formula (VII). Alternatively, compounds of formula (VII) can be obtained directly from compounds of formula (V) by reaction with an amine or hydroxylamine DNHR (VIII) in the presence of a Lewis acid such as trimethyl aluminium in a solvent such as DCM, at a temperature of from room 5 temperature up to reflux temperature. Compounds of formula (IV) may be prepared according to Scheme 2. Scheme 2 R2 0 0 halogenating R2H 0 2 i) NaNO, acid, R2 0 M,(CN) (XIV) al0 y 0 ent, sol catalystvent 2 i2 Catalyst, ligand, N A ,rN NH, sovn A 2 Urea, A NX heat base, solvent 2 N Ri Ivri AA 2.-' " ' I M= anAmta A' 'AArA' A 00 (IX) mon (X) 0 (XI) 0 OXban 0fo c (IV) canl ynst or l a R2( n Nan appropriate s ubstitutent in hepreene o acatalystmr. suc as trisdibnzylden acnialdiu (0),2, or heat 2rutmruoh solvent n 2a t ra
A
1 N H 2 ) MX2 x= 1,2 m= 1, 2 ,A' M= any metal X1, X2= halogen 0 0 (XIII) 10 Compounds of formula (XV) may be obtained from compounds of formula (XII) by reaction with an aniline of formula (XIV) (incorporating appropriate substituents Ri), in the presence of a catalyst such as tris(dibenzylideneacetone)dipalladium (0) or palladium (11) acetate, a base such as potassium phosphate or cesium carbonate, a ligand such as Xantphos or 2-dicyclohexylphosphino-2',6 '-(diisopropoxy)biphenyl, a 15 suitable solvent such as toluene or DME, at a temperature of from room temperature to the reflux temperature of the solvent, or under microwave irradiation at a temperature of from 70'C to 1 50'C. Compounds of formula (XII) may be prepared from compounds of formula (XI) by reaction with an inorganic cyanide such as zinc (11) cyanide in the presence of a catalyst such as tetrakis(triphenylphosphine)palladium (0) in a solvent 20 such as DMF at a temperature of from 50TC to reflux or under microwave irradiation at a temperature of from 1 00C to 190"C. Compounds of formula (XI) may be prepared from compounds of formula (X) by reaction with a diazotizing reagent such as sodium nitrite in a solvent such as acetone in the presence of an acid such as sulfuric acid at a temperature of from -25C to room temperature, followed by treatment of the C:\NRPort1\GHMatters(SONIAM\5860000_1.docx 15/10/14 33 intermediate diazo compound with urea and then a halide salt such as potassium iodide. Compounds of formula (X) may be prepared from compound of formula (IX) using a halogenating reagent such as bromine, in a solvent such as dichloromethane in the presence of a base such as pyridine at a temperature of from 0 0 C to about room 5 temperature. Compounds of formula (IX) may be obtained commercially or prepared using methods described in the literature. Alternatively, compounds of formula (XII) may be prepared from compounds of formula (XIII) using the methods described for the formation of compounds (XI) from compounds of formula (X). Compounds of formula (XIII) may be prepared from compounds of formula (X) using the methods 10 described for the formation of compounds of formula (XII) from compounds of formula (XI). Hydroxylamines of formula (VIII) may be prepared using methods described in the literature or the synthetic route outlined in Scheme 3. Scheme 3 0 Coupling agent, 0 Hydrazine or R _O N+ Phosphine, Solvent methylhydrazinesolvent 'OH + HO-N ./ RN R',H O O (L) (LI) (Vill-a) R'R'CO, Solvent Reducing agent, Acid or H - ,0 N YR' R'R"X R" X= leaving group 15 base, solvent (VIll-b) Primary or secondary alcohols of general formula (L) may be prepared using methods described in the literature. They may be reacted with N-hydroxy phthalimide using a phosphine and coupling reagent such as diethyl azodicarboxylate to provide compounds of general formula (LI). 20 Compounds of general formula (LI) may be deprotected using hydrazine or methyl hydrazine to provide hydroxylamines of general formula (VIII-a). Compounds of formula (VIII-a) may be further modified by reductive amination with aldehydes or ketones using a reducing agent such as sodium triacetoxy borohydride, sodium cyanoborohydride, or borane-pyridine in a solvent such as dichloroethane at a C:\NRPortbnGHMatters\SONIAM\5860000_i.docx 15/10/14 34 temperature of from ambient temperature to reflux. In addition, compounds of formula (VIII-a) may be further modified by alkylation with an alkyl halide in the presence of a base such as triethylamine, in a solvent such as dichloromethane, to provide hydroxylamines of general formula (VIII-b). 5 Anilines of general formula (XIV) used in cross-coupling reactions described above may be prepared by using methods described in the literature or according to Scheme 4. Scheme 4 Catalyst, solvent NO NH R1O RMXn R1 Reduction R1] ' In Rj I------] ---- Ri XR" (LII) R" (XIV) Where RI is an optional substituent group, n= 0-4 R"= alkyl, cycloalkyl, vinyl, SiMe, Substituted I -chloro-4-nitro benzenes may be reacted with a metal RMXn such as 10 cyclopropyl boronic acid or hexamethyldisilazane, in a solvent such as xylene, using a catalyst such as tetrakis(triphenylphosphine)palladium, at a temperature of from room temperature to reflux to give compounds of formula (LII). The nitro group may be reduced using methods described in the literature such as reaction under an atmosphere of hydrogen at a pressure of from 1 to 5 atmospheres, in the presence of a catalyst such 15 as palladium on carbon, and in a solvent such as ethanol or ethyl acetate at room temperature, to give compounds of formula (LIII). Anilines of formula (XIV) may be prepared according to Scheme 5. Scheme 5 NH NH 2 RX= Br, I X (LIV) (LV) 20 4-Bromo or iodo anilines of formula (LIV) may be reacted with 2 equivalents of a strong organometallic base such as n-butyllithium in a solvent such as THF at a temperature of from -1OOC to -20 0 C followed by quench of the intermediate aryl lithium species with an electrophile such as trimethyl silyl chloride to give compounds C0\NRPortblGHMatters\SONIAM\5860000_1,docx 15/10/14 35 of formula (LV). It will be appreciated that where appropriate functional groups exist, compounds of formula (I) or any intermediates used in their preparation may be further derivatised by one or more standard synthetic methods employing substitution, oxidation, reduction, or 5 cleavage reactions. Particular substitution approaches include conventional alkylation, arylation, heteroarylation, acylation, sulfonylation, halogenation, nitration, formylation and coupling procedures. For example, aryl bromide or chloride groups may be converted to aryl iodides using a Finkelstein reaction employing an iodide source such as sodium iodide, a catalyst such 10 as copper iodide and a ligand such as trans-N,N'-dimethyl-1,2-cyclohexane diamine in a solvent such as 1,4-dioxane and heating the reaction mixture at reflux temperature. Aryl trialkylsilanes may be converted to aryl iodides by treating the silane with an iodide source such as iodine monochloride in a solvent such as dichloromethane with or without Lewis acid such as silver tetrafluoroborate at a temperature from -40 0 C to 15 reflux. In a further example primary amine (-NH 2 ) groups may be alkylated using a reductive alkylation process employing an aldehyde or a ketone and a borohydride, for example sodium triacetoxyborohydride or sodium cyanoborohydride, in a solvent such as a halogenated hydrocarbon, for example 1,2-dichloroethane, or an alcohol such as 20 ethanol, where necessary in the presence of an acid such as acetic acid at around ambient temperature. Secondary amine (-NH-) groups may be similarly alkylated employing an aldehyde. In a further example, primary amine or secondary amine groups may be converted into amide groups (-NHCOR' or -NRCOR') by acylation. Acylation may be achieved by 25 reaction with an appropriate acid chloride in the presence of a base, such as triethylamine, in a suitable solvent, such as dichloromethane, or by reaction with an appropriate carboxylic acid in the presence of a suitable coupling agent such HATU (0 (7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate) in a suitable solvent such as dichloromethane. Similarly, amine groups may be converted 30 into sulfonamide groups (-NHSO 2 R' or -NR"S0 2 R') by reaction with an appropriate C:\NRPortbikGHMatters\SONIAM\5880000_1.doex 15/10114 36 sulfonyl chloride in the presence of a suitable base, such as triethylamine, in a suitable solvent such as dichloromethane. Primary or secondary amine groups can be converted into urea groups (-NHCONR'R" or -NRCONR'R") by reaction with an appropriate isocyanate in the presence of a suitable base such as triethylamine, in a suitable solvent, 5 such as dichloromethane. An amine (-NH 2 ) may be obtained by reduction of a nitro (-NO 2 ) group, for example by catalytic hydrogenation, using for example hydrogen in the presence of a metal catalyst, for example palladium on a support such as carbon in a solvent such as ethyl acetate or an alcohol e.g. methanol. Alternatively, the transformation may be carried out by 10 chemical reduction using for example a metal, e.g. tin or iron, in the presence of an acid such as hydrochloric acid. In a further example, amine (-CH 2
NH
2 ) groups may be obtained by reduction of nitriles (-CN), for example by catalytic hydrogenation using for example hydrogen in the presence of a metal catalyst, for example palladium on a support such as carbon, or 15 Raney nickel, in a solvent such as an ether e.g. a cyclic ether such as tetrahydrofuran, at a temperature from -78 0 C to the reflux temperature of the solvent. In a further example, amine (-NH 2 ) groups may be obtained from carboxylic acid groups (-CO 2 H) by conversion to the corresponding acyl azide (-CON 3 ), Curtius rearrangement and hydrolysis of the resultant isocyanate (-N=C=0). 20 Aldehyde groups (-CHO) may be converted to amine groups (-CH 2 NR'R")) by reductive amination employing an amine and a borohydride, for example sodium triacetoxyborohydride or sodium cyanoborohydride, in a solvent such as a halogenated hydrocarbon, for example dichloromethane, or an alcohol such as ethanol, where necessary in the presence of an acid such as acetic acid at around ambient temperature. 25 In a further example, aldehyde groups may be converted into alkenyl groups ( CH=CHR') by the use of a Wittig or Wadsworth-Emmons reaction using an appropriate phosphorane or phosphonate under standard conditions known to those skilled in the art. Aldehyde groups may be obtained by reduction of ester groups (such as -CO 2 Et) or C:\NRPortbl\GHMatters\SONIAM\S860000_1.docx 15/10114 37 nitriles (-CN) using diisobutylaluminium hydride in a suitable solvent such as toluene. Alternatively, aldehyde groups may be obtained by the oxidation of alcohol groups using any suitable oxidising agent known to those skilled in the art. Ester groups (-CO 2 R') may be converted into the corresponding acid group (-CO 2 H) by 5 acid- or base-catalused hydrolysis, depending on the nature of R. If R is t-butyl, acid catalysed hydrolysis can be achieved for example by treatment with an organic acid such as trifluoroacetic acid in an aqueous solvent, or by treatment with an inorganic acid such as hydrochloric acid in an aqueous solvent. Carboxylic acid groups (-C02H) may be converted into amides (CONHR' or 10 CONR'R") by reaction with an appropriate amine in the presence of a suitable coupling agent, such as HATU, in a suitable solvent such as dichloromethane. In a further example, carboxylic acids may be homologated by one carbon (i.e -CO 2 H to -CH 2
CO
2 H) by conversion to the corresponding acid chloride (-COCl) followed by Arndt-Eistert synthesis. 15 In a further example, -OH groups may be generated from the corresponding ester (e.g. CO 2 R'), or aldehyde (-CHO) by reduction, using for example a complex metal hydride such as lithium aluminium hydride in diethyl ether or tetrahydrofuran, or sodium borohydride in a solvent such as methanol. Alternatively, an alcohol may be prepared by reduction of the corresponding acid (-CO 2 H), using for example lithium aluminium 20 hydride in a solvent such as tetrahydrofuran, or by using borane in a solvent such as tetrahydrofuran. Alcohol groups may be converted into leaving groups, such as halogen atoms or sulfonyloxy groups such as an alkylsulfonyloxy, e.g. trifluoromethylsulfonyloxy or arylsulfonyloxy, e.g. p-toluenesulfonyloxy group using conditions known to those 25 skilled in the art. For example, an alcohol may be reacted with thioyl chloride in a halogenated hydrocarbon (e.g. dichloromethane) to yield the corresponding chloride. A base (e.g. triethylamine) may also be used in the reaction. In another example, alcohol, phenol or amide groups may be alkylated by coupling a phenol or amide with an alcohol in a solvent such as tetrahydrofuran in the presence of C\NRPortb\GHMatters\SONIAM\560000_1i.docx 15/10/14 38 a phosphine, e.g. triphenylphosphine and an activator such as diethyl-, diisopropyl, or dimethylazodicarboxylate. Alternatively alkylation may be achieved by deprotonation using a suitable base e.g. sodium hydride followed by subsequent addition of an alkylating agent, such as an alkyl halide. 5 Aromatic halogen substituents in the compounds may be subjected to halogen-metal exchange by treatment with a base, for example a lithium base such as n-butyl or t-butyl lithium, optionally at a low temperature, e.g. around -78 0 C, in a solvent such as tetrahydrofuran, and then quenched with an electrophile to introduce a desired substituent. Thus, for example, a formyl group may be introduced by using N,N 10 dimethylformamide as the electrophile. Aromatic halogen substituents may alternatively be subjected to metal (e.g. palladium or copper) catalysed reactions, to introduce, for example, acid, ester, cyano, amide, aryl, heteraryl, alkenyl, alkynyl, thio or amino substituents. Suitable procedures which may be employed include those described by Heck, Suzuki, Stille, Buchwald or Hartwig. 15 Aromatic halogen substituents may also undergo nucleophilic displacement following reaction with an appropriate nucleophile such as an amine or an alcohol. Advantageously, such a reaction may be carried out at elevated temperature in the presence of microwave irradiation. The compounds of the present invention are tested for their capacity to inhibit MEK 20 activity and activation (primary assays) and for their biological effects on growing cells (secondary assays) as described below. The compounds of the present invention having ICso of less than 5 pM (more preferably less than 0.1 pM, most preferably less than 0.01 vtM) in the MEK activity assay of Example 1, IC 5 0 of less than 5 p±M (more preferably less than 1 pM, even more preferably less than 0.1 jiM, most preferably less 25 than 0.01 jiM) in the MEK activation assay of Example 2, ECsO of less than 10 pLM (more preferably less than 1 pM, even more preferably less than 0.5 pM, most preferably less than 0.1 jM) in the cell proliferation assay of Example 3, and/or ECs 0 of less than 10 piM (more preferably less than 1 jiM, even more preferably less than 0.5 jM, most preferably less than 0.1 pM) in the ERK phosphorylation assay of Example 30 4, are useful as MEK inhibitors. C:\NRPOrtbl\GHMaters\SON$AM\55600001.dcx 1510114 39 The present invention includes a composition (e.g., a pharmaceutical composition) comprising a compound of formula I (and/or solvates and/or salts thereof) and a carrier (a pharmaceutically acceptable carrier). The present invention also includes a composition (e.g., a pharmaceutical composition) comprising a compound of formula I 5 (and/or solvates and/or salts thereof) and a carrier (a pharmaceutically acceptable carrier), further comprising a second chemotherapeutic and/or a second anti inflammatory agent such as those described herein. The present compositions are useful for inhibiting abnormal cell growth or treating a hyperproliferative disorder in a mammal (e.g., human). The present compositions are also useful for treating 10 inflammatory diseases in a mammal (e.g., human). The present compounds and compositions are also useful for treating an autoimmune disease, destructive bone disorder, proliferative disorders, infectious disease, viral disease, fibrotic disease or neurodegenerative disease in a mammal (e.g., human). Examples of such diseases/disorders include, but are not limited to, diabetes and 15 diabetic complications, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, idiopathic pulmonary fibrosis, rhinitis and atopic dermatitis, renal disease and renal failure, polycystic kidney disease, congestive heart failure, neurofibromatosis, organ transplant rejection, cachexia, stroke, septic shock, heart failure, organ transplant rejection, Alzheimer's disease, chronic or neuropathic 20 pain, and viral infections such as HIV, hepatitis (B) virus (HBV), human papilloma virus (HPV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). Chronic pain, for purposes of the present invention includes, but is not limited to, idiopathic pain, and pain associated with chronic alcoholism, vitamin deficiency, uremia, hypothyroidism, inflammation, arthritis, and post-operative pain. Neuropathic pain is associated with 25 numerous conditions which include, but are not limited to, inflammation, postoperative pain, phantom limb pain, burn pain, gout, trigeminal neuralgia, acute herpetic and postherpetic pain, causalgia, diabetic neuropathy, plexus avulsion, neuroma, vasculitis, viral infection, crush injury, constriction injury, tissue injury, limb amputation, arthritis pain, and nerve injury between the peripheral nervous system and the central nervous 30 system. The present compounds and compositions are also useful for treating pancreatitis or C:\NRPortbl\GHMatters\SONIAM\5860000_1.doex 15/10114 40 kidney disease (including proliferative glomerulonephritis and diabetes-induced renal disease) in a mammal (e.g., human). The present compounds and compositions are also useful for the prevention of blastocyte implantation in a mammal (e.g., human). 5 The present invention includes a method of inhibiting abnormal cell growth or treating a hyperproliferative disorder in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or solvates and/or salts thereof) or a composition thereof. Also included in the present invention is a method of treating an inflammatory disease in a mammal (e.g., human) 10 comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or solvates and/or salts thereof) or a composition thereof The present invention includes a method of inhibiting abnormal cell growth or treating a hyperproliferative disorder in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or 15 solvates and/or salts thereof) or a composition thereof, in combination with a second chemotherapeutic agent such as those described herein. The present invention also includes a method of treating an inflammatory disease in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or solvates and/or salts thereof) or a composition thereof, 20 in combination with a second anti-inflammatory agent such as those described herein. The present invention includes a method of treating an autoimmune disease, destructive bone disorder, proliferative disorders, infectious disease, viral disease, fibrotic disease or neurodegenerative disease in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or 25 solvates and salts thereof) or a composition thereof, and optionally further comprising a second therapeutic agent. Examples of such diseases/disorders include, but are not limited to, diabetes and diabetic complications, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, idiopathic pulmonary fibrosis, rhinitis and atopic dermatitis, renal disease and renal failure, polycystic kidney 30 disease, congestive heart failure, neurofibromatosis, organ transplant rejection, C:\NRPortbl\GHMatters\SONIAM\6BO000_1,docx 15110)14 41 cachexia, stroke, septic shock, heart failure, organ transplant rejection, Alzheimer's disease, chronic or neuropathic pain, and viral infections such as HIV, hepatitis (B) virus (HBV), human papilloma virus (HPV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). 5 The present invention includes a method of treating pancreatitis or kidney disease (including proliferative glomerulonephritis and diabetes-induced renal disease) in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or solvates and salts thereof) or a composition thereof, and optionally further comprising a second therapeutic agent. 10 The present invention includes a method for preventing of blastocyte implantation in a mammal (e.g., human) comprising administering to said mammal a therapeutically effective amount of a compound of formula I (and/or solvates and salts thereof) or a composition thereof, and optionally further comprising a second therapeutic agent. The present invention includes a method of using the present compounds for in vitro, in 15 situ, and in vivo diagnosis or treatment of mammalian cells, organisms, or associated pathological conditions. It is also believed that the compounds of the present invention can render abnormal cells more sensitive to treatment with radiation for purposes of killing and/or inhibiting the growth of such cells. Accordingly, this invention further relates to a method for 20 sensitizing abnormal cells in a mammal (e.g., human) to treatment with radiation which comprises administering to said mammal an amount of a compound of formula I (and/or solvates and salts thereof) or a composition thereof, which amount is effective is sensitizing abnormal cells to treatment with radiation. Administration of the compounds of the present invention (hereinafter the "active 25 compound(s)") can be effected by any method that enables delivery of the compounds to the site of action. These methods include oral routes, intraduodenal routes, parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion), topical, inhalation and rectal administration. The amount of the active compound administered will be dependent on the subject C:\NRPortbl\GHMatters\SONIAM\5860000_1.docx 15/10114 42 being treated, the severity of the disorder or condition, the rate of administration, the disposition of the compound and the discretion of the prescribing physician. However, an effective dosage is in the range of about 0.001 to about 100 mg per kg body weight per day, preferably about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 5 kg human, this would amount to about 0.05 to 7 g/day, preferably about 0.05 to about 2.5 g/day. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several small doses for administration throughout the day. 10 The active compound may be applied as a sole therapy or in combination with one or more chemotherapeutic or anti-inflammatory agents, for example those described herein. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of treatment. The pharmaceutical composition may, for example, be in a form suitable for oral 15 administration as a tablet, capsule, pill, powder, sustained release formulations, solution, suspension, for parenteral injection as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository. The pharmaceutical composition may be in unit dosage forms suitable for single administration of precise dosages. The pharmaceutical composition will 20 include a conventional pharmaceutical carrier or excipient and a compound according to the invention as an active ingredient. In addition, it may include other medicinal or pharmaceutical agents, carriers, adjuvants, etc. Exemplary parenteral administration forms include solutions or suspensions of active compounds in sterile aqueous solutions, for example, aqueous propylene glycol or 25 dextrose solutions. Such dosage forms can be suitably buffered, if desired. Suitable pharmaceutical carriers include inert diluents or fillers, water and various organic solvents. The pharmaceutical compositions may, if desired, contain additional ingredients such as flavorings, binders, excipients and the like. Thus for oral administration, tablets containing various excipients, such as citric acid may be 30 employed together with various disintegrants such as starch, alginic acid and certain C:\NRPortbI\GHMauers\SONIAM\5860000_1.docx 15/10114 43 complex silicates and with binding agents such as sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and tale are often useful for tableting purposes. Solid compositions of a similar type may also be employed in soft and hard filled gelatin capsules. Preferred materials, therefore, 5 include lactose or milk sugar and high molecular weight polyethylene glycols. When aqueous suspensions or elixirs are desired for oral administration the active compound therein may be combined with various sweetening or flavoring agents, coloring matters or dyes and, if desired, emulsifying agents or suspending agents, together with diluents such as water, ethanol, propylene glycol, glycerin, or combinations thereof. 10 Methods of preparing various pharmaceutical compositions with a specific amount of active compound are known, or will be apparent, to those skilled in this art. For examples, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Ester, Pa., 15.sup.th Edition (1975). EXAMPLES 15 Abbreviations nBuLi n-Butyllithium CDC1 3 Deuterated chloroform
CD
3 0D Deuterated methanol
CH
2 Cl 2 Dichloromethane 20 DCM Dichloromethane DIPEA Diisopropylethylamine DMF Dimethylformamide DMSO Dimethylsulfoxide Dppf 1,1 '-Bis(diphenylphosphino)ferrocene 25 EDCI 1 -Ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride Et 3 N Triethylamine Et 2 O Diethyl ether HATU O-(7-Azabenzotriazol- 1 -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate 30 HCl Hydrochloric acid HMN Diatomaceous earth C:\NRPortbI\GHMatters\SONIAM\5850000_1docx 15110/14 44 HOBt 1 -Hydroxybenzotriazole H2SO4 Sulfuric acid ICI Iodine monochloride IMS Industrial methylated spirits 5 LHMDS Lithium bis(trimethylsilyl)amide MeOH Methanol MgSO 4 Magnesium sulfate Na 2
SO
4 Sodium sulfate NBS N-Bromosuccinimide 10 Pd(PPh 3 )4 Tetrakis(triphenylphosphine)palladium(0) Pd 2 dba 3 Tris-(dibenzylideneacetone)dipalladium(0) Si-PPC Pre-packed silica flash chromatography cartridge: Isolute@ SPE, Biotage SNAP @ or ISCO Redisep@ SCX-2 Isolute @ silica-based sorbent with a chemically bonded 15 propylsulfonic acid functional group. THF Tetrahydrofuran General Experimental Conditions 'H NMR spectra were recorded at ambient temperature using a Varian Unity Inova (400MHz) spectrometer with a triple resonance 5mm probe. Chemical shifts are 20 expressed in ppm relative to tetramethylsilane. The following abbreviations have been used: br = broad signal, s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet. High Pressure Liquid Chromatography - Mass Spectrometry (LCMS) experiments to determine retention times (RT) and associated mass ions were performed using one of 25 the following methods. Method A: Experiments performed on a Waters Micromass ZQ quadrupole mass spectrometer linked to a Hewlett Packard HP 1100 LC system with diode array detector. This system uses a Higgins Clipeus micron C18 100 x 3.0mm column and a 1 ml / minute flow rate. The initial solvent system was 95% water containing 0.1% formic 3 0 acid (solvent A) and 5% acetonitrile containing 0.1% formic acid (solvent B) for the C:\NRPorIblkGHMatters\SONIAM\5860000_tdocx 15/10/4 45 first minute followed by a gradient up to 5% solvent A and 95% solvent B over the next 14 minutes. The final solvent system was held constant for a further 5 minutes. Method B: Experiments performed on a Waters Platform LC quadrupole mass spectrometer linked to a Hewlett Packard HP 1100 LC system with diode array detector 5 and 100 position autosampler using a Phenomenex Luna C18(2) 30 x 4.6mm column and a 2 ml / minute flow rate. The solvent system was 95% water containing 0.1% formic acid (solvent A) and 5% acetonitrile containing 0.1% formic acid (solvent B) for the first 0.50 minutes followed by a gradient up to 5% solvent A and 95% solvent B over the next 4 minutes. The final solvent system was held constant for a further 0.50 10 minutes. Method C: Experiments performed on a PE Sciex API 150 EX quadrupole mass spectrometer linked to a Shimadzu LC- OAD LC system with diode array detector and 225 position autosampler using a Kromasil Cl 8 50 x 4.6mm column and a 3 ml / minute flow rate. The solvent system was a gradient starting with 100% water with 15 0.05% TFA (solvent A) and 0% acetonitrile with 0.0375% TFA (solvent B), ramping up to 10% solvent A and 90% solvent B over 4 minutes. The final solvent system was held constant for a further 0.50 minutes. Method D: Experiments performed on an Agilent Technologies liquid chromatography mass spectrometer linked to an Agilent Technologies Series 1200 LC system with diode 20 array detector using a Zorbax 1.8 micron SB-C18 30 x 2.1 mm column with a 1.5 ml / minute flow rate. The initial solvent system was 95% water containing 0.05% trifluoroacetic acid (solvent A) and 5% acetonitrile containing 0.05% trifluoroacetic acid (solvent B), followed by a gradient up to 5% solvent A and 95% solvent B over 1.5 minutes. The final solvent system was held constant for a further 1 minute. 25 Method E: Experiments performed on an Agilent Technologies liquid chromatography mass spectrometer linked to an Agilent Technologies Series 1200 LC system with diode array detector using a Zorbax 1.8 micron SB-C18 30 x 2.1 mm column with a 0.6 ml / minute flow rate. The initial solvent system was 95% water containing 0.05% trifluoroacetic acid (solvent A) and 5% acetonitrile containing 0.05% trifluoroacetic 30 acid (solvent B), followed by a gradient up to 5% solvent A and 95% solvent B over 9.0 CXNRPortblGHMatters\SONIAM\5860000_1docx 15/I/14 46 minutes. The final solvent system was held constant for a further 1 minute. Microwave experiments were carried out using a Personal Chemistry Emrys InitiatorTM or Optimizer T M , which uses a single-mode resonator and dynamic field tuning, both of which give reproducibility and control. Temperature from 40-250*C can be achieved, 5 and pressures of up to 20bar can be reached. EXAMPLE I MEK Assay (MEK activity assay) Constitutively activated human mutant MEKi expressed in insect cells is used as source of enzymatic activity at a final concentration in the kinase assay of 15nM. The assay is carried out for 30 minutes in the presence of 50pM ATP using 10 recombinant GST-ERK1 produced in E.Coli as substrate. Phosphorylation of the substrate is detected and quantified using HTRF reagents supplied by Cisbio. These consist of an anti-GST antibody conjugated to allophycocyanin (XL665) and an anti phospho (Thr202/Tyr2O4) ERK antibody conjugated to europium-cryptate. These are used at a final concentration of 4gg/ml and 0.84ptg/ml respectively. The anti-phospho 15 antibody recognises ERKI dually phosphorylated on Thr202 and Tyr204. When both antibodies are bound to ERKI (i.e. when the substrate is phosphorylated), energy transfer from the cryptate to the allophycocyanin occurs following excitation at 340nm, resulting in fluorescence being emitted that is proportional to the amount of phosphorylated substrate produced. Fluorescence is detected using a multiwell 20 fluorimeter. Compounds are diluted in DMSO prior to addition to assay buffer and the final DMSO concentration in the assay is 1%. The IC 5 0 is defined as the concentration at which a given compound achieves 50% inhibition of control. ICSO values are calculated using the XLfit software package 25 (version 2.0.5). The title compound of Example 5 exhibited an IC 50 of less than 0.1 gM in the assay described in Example 1. EXAMPLE 2 bRaf Assay (MEK activation assay) C:\NRPortbl\GHMatters\SONIAM\580000_1.docx 15/10/14 47 Constitutively activated bRaf mutant expressed in insect cells is used as source of enzymatic activity. The assay is carried out for 30 minutes in the presence of 200tM ATP using recombinant GST-MEKi produced in E Coli as substrate. Phosphorylation of the 5 substrate is detected and quantified using HTRF, and reagents are supplied by Cisbio. These consist of an anti-GST antibody conjugated to allophycocyanin (XL665) and an anti-phospho (Ser2l7/Ser221) MEK antibody conjugated to europium-cryptate. The anti-phospho antibody recognises MEK dually phosphorylated on Ser217 and Ser221 or singly phosphorylated on Ser217. When both antibodies are bound to MEK (i.e. when 10 the substrate is phosphorylated), energy transfer from the cryptate to the allophycocyanin occurs following excitation at 340nm, resulting in fluorescence being emitted that is proportional to the amount of phosphorylated substrate produced. Fluorescence is detected using a multi-well fluorimeter. Compounds are diluted in DMSO prior to addition to assay buffer and the final DMSO 15 concentration in the assay is 1%. The IC 50 is defined as the concentration at which a given compound achieves 50% inhibition of control. IC 50 values are calculated using the XLfit software package (version 2.0.5). EXAMPLE 3 Cell Proliferation Assay 20 Compounds are tested in a cell proliferation assay using the following cell lines: HCT 116 human colorectal carcinoma (ATCC) A375 human malignant melanoma (ATCC) Both cell lines are maintained in DMEM/F12 (1:1) media (Gibco) supplemented with 10% FCS at 37 0 C in a 5% CO 2 humidified incubator. 25 Cells are seeded in 96-well plates at 2,000 cells/well and after 24 hours they are exposed to different concentrations of compounds in 0.83% DMSO, Cells are grown for a further 72h, and an equal volume of CellTiter-Glo reagent (Promega) is added to each well. This lyses the cells and generates a luminescent signal proportional to the C:NRPonbl\GHMalters\SONIAM\5860000_1doox 15/10114 48 amount of ATP released (and therefore proportional to the number of cells in the well) that can be detected using a multi-well luminometer. The EC 50 is defined as the concentration at which a given compound achieves 50% inhibition of control. IC50 values are calculated using the XLfit software package 5 (version 2.0.5). In this assay, the title compound of Example 5 exhibited an EC 50 of less than 0.5 PM in both cell lines. EXAMPLE 4 Phospho-ERK Cell-Based Assay Compounds are tested in a cell-based phospho-ERK ELISA using the following cell 10 lines: 1CTI 16 human colorectal carcinoma (ATCC) A375 human malignant melanoma (ATCC) Both cell lines are maintained in DMEM/F12 (1:1) media (Gibco) supplemented with 10% FCS at 37 0 C in a 5% CO 2 humidified incubator. is Cells are seeded in 96-well plates at 2,000 cells/well and after 24h they are exposed to different concentrations of compounds in 0.83% DMSO. Cells are grown for a further 2h or 24h, fixed with formaldehyde (2% final) and permeabilised with methanol. Following blocking with TBST-3% BSA, fixed cells are incubated with primary antibody (anti-phospho ERK from rabbit) over-night at 4 0 C. Cells are incubated with 20 Propidium Iodide (DNA fluorescent dye) and detection of cellular p-ERK is performed using an anti-rabbit secondary antibody conjugated to the fluorescent Alexa Fluor 488 dye (Molecular probes). The fluorescence is analysed using the Acumen Explorer (TTP Labtech), a laser-scanning microplate cytometer, and the Alexa Fluor 488 signal is normalised to the PI signal (proportional to cell number). 25 The EC 50 is defined as the concentration at which a given compound achieves a signal half way between the baseline and the maximum response. EC 50 values are calculated using the XLfit software package (version 2.0.5). C:\NRPortbIGHMauers\SONIAM\860000 tdocx 1610/14 49 In this assay, the title compound of Example 5 exhibited an EC 50 of less than 0.5 jsM in HCTI 16 cell line. SYNTHESIS OF ISOINDOLONES 2-Fluoro-4-trimethylsilanyl-phenylamine 5 Method A, Step 1: (3-Fluoro-4-nitro-phenyl)-trimethylsilane F 0 2 N S 4-Chloro-2-fluoro-1-nitro-benzene (97.2 g, 0.55 mol) was dissolved in xylenes (208 ml) and hexamethyldisilane (306 g, 2.78 mol) was added. Argon was bubbled through the mixture for 20 minutes, then Pd(PPh 3
)
4 (16.2 g, 14 mmol) was added and the mixture 10 was heated under continuous flow of argon at 150'C for 1 hour. A balloon filled with argon was then fitted and the mixture was heated at 150*C for a further 60 hours. After cooling the mixture was diluted with Et 2 0 and filtered through a 4 cm silica pad. The filter cake was washed with further Et 2 0, and the combined organic residues were concentrated in vacuo. Purification of the resultant residue by flash chromatography 15 (Si0 2 , eluent 98:1:1 pentane:CH 2 Cl 2 :Et 2 O) gave 76.7 g of the title compound as an orange oil and also mixed fractions. The mixed fractions were combined and concentrated, then distilled (1 10 C, 6 mbar) to give a further 7.2 g of the title compound (overall 83.9g, 71%). 'H NMR (DMSO-d 6 ) 0.30 (9H, s), 7.56 (1H, d, J = 8.02 Hz), 7.67 (1H, dd, J = 11.49, 1.14 Hz), 8.10 (1H, t, J = 7.66 Hz). 20 Method A, Step 2: 2-Fluoro-4-trimethylsilanyl-phenylamine F
H
2 N 6 , A slurry of 10% wt. palladium on carbon (4.0 g) in IMS (25 mL) was added to a solution of (3-fluoro-4-nitro-phenyl)-trimethylsilane (62.0 g, 0.29 mol) in IMS (250 mL) and the reaction mixture flushed with nitrogen five times then hydrogen three 25 times. The reaction mixture was then stirred under 3 bar pressure of hydrogen at room C:\NRPortbi\GHMatters\SONIAM\58600001.doex 1510/14 50 temperature for 4 hours. The reaction mixture was then purged with nitrogen again before filtering through a pad of Celite ® with ethyl acetate washings. The filtrate was concentrated under reduced pressure to give the title compound as a light brown oil (53.0 g, quantitative). 1H NMR (CDCl 3 , 400 MHz) 7.16-7.09 (1H, m), 7.10 (1H, d, J 5 7.75 Hz), 6.81 (1H, t, J = 8.16 Hz), 3.78 (2H, s), 0.26 (9H, s). Method B, 2-Fluoro-4-trimethylsilanyl-phenylamine To a solution of 4-bromo-2-fluoro-phenylamine (114 g, 0.6 mol) in anhydrous THF (750 mL) under inert atmosphere at -78*C was added a 1.6M solution of nBuLi in hexanes (1500 mL, 2.4 mol) dropwise keeping the internal temperature below -60*C. 10 The reaction mixture was treated dropwise with TMSCl (256 mL, 2.0 mol), keeping the internal temperature below -604C. The reaction mixture was allowed to warm to 0 0 C over a 1 hour period and poured into ice-cold 2M HC (ca 1 L). The mixture was vigorously stirred for 10 min, then the organic layer was separated, washed with water followed by a saturated solution of potassium carbonate, dried (Na 2
SO
4 ), filtered and 15 concentrated to give the title compound as a light brown oil (89 g, 81%). 2-Amino-5-evano-terephthalic acid dimethyl ester MeO 0
NH
2 NC 0 OMe 2-Amino-5-bromo-terephthalic acid dimethyl ester (15.0 g, 52.1 imol), zinc (II) cyanide (6.11 g, 52.1 mmol) and tetrakis(triphenylphosphine)palladium (0) (3.0 g, 2.6 20 mmol) were suspended in DMF (50 ml) and the resultant reaction mixture degassed was purged with argon. The reaction mixture was heated at 1204C for 30 minutes then concentrated in vacuo. The resultant residue was triturated with hot water (100 ml) and the product collected by filtration to yield the title compound as a dark grey solid (12.0 g, 98%). 'iH NMR (d 6 -DMSO, 400MHz) 8.11 (1H, s), 7.62 (2H, br s), 7.52 (1H, s), 25 3.89 (3H, s), 3.85 (3H, s). 2-Bromo-5-cyano-terephthalic acid dimethyl ester C:\NRPortbIhGHMalters\SONIAM\5860000_1.docx 15/10/14 51 MeO 0 Br NC 0 OMe To a suspension of 2-amino-5-cyano-terephthalic acid dimethyl ester (11.6 g, 49.5 mmol) in hydrobromic acid (20 ml, 48%) at 0 0 C was added an aqueous solution of sodium nitrite (55 mmol, 11 ml, 5M). The reaction mixture was stirred at 0*C for 30 5 minutes. Copper (I) bromide (7.1 g, 49.5 mmol) was added as a solution in hydrobromic acid (10 ml, 48%) and the reaction mixture stirred at 0 0 C for 10 min before heating at 65*C for 1 hour. The reaction mixture was cooled to room temperature, diluted with water (50 ml) and the resultant mixture extracted with ethyl acetate (3 x 20 mL). The aqueous fraction was filtered to recover un-reacted 2-amino 10 5-cyano-terephthalic acid dimethyl ester (7.1 g). The combined organic fractions were washed with brine (20 ml), dried (MgSO 4 ) and concentrated in vacuo. The resultant residue was subjected to flash chromatography (SiO 2 , gradient 0-50% ethyl acetate in cyclohexane) to yield the title compound as a brown solid (1.0 g, 7%). 1 H NMR (CDCl 3 , 400MHz) 8.43 (1H, s), 8.19 (1H, s), 4.04 (3H, s), 4.00 (3H, s). 15 2-Cyano-5-(2-fluoro-4-trimethylsilanylphenylamino)-terephthalic acid dimethyl ester MeO 0 H F NN N NC Si 0 OMe 2-Bromo-5-cyano-terephthalic acid dimethyl ester (620 mg, 2.1 mmol), 2-fluoro-4 trimethylsilanyl-phenylamine (419 mg, 2.3 mmol), 4,5-bis(diphenylphosphino)-9,9 20 dimethylxanthene (62 mg, 0.10 mmol), potassium phosphate (486 mg, 2.30 mmol) and tris(dibenzylideneacetone)dipalladium (0) (29 mg, 0.05 mmol) were suspended in dioxane (20 ml) and the resultant mixture purged with argon. The reaction mixture was heated at reflux for 16 hours. The reaction was quenched by the addition of saturated aqueous ammonium chloride solution (20 ml) and the resultant mixture extracted with 25 ethyl acetate (3 x 20 mL), The combined organic fractions were washed with brine (20 ml), dried (MgSO 4 ) and concentrated in vacuo. The resultant residue was subjected to C:NRPortbl\GHMatters\SONIAM\5860D00_1.docx 1510/14 52 flash chromatography (SiO2, gradient 0-40% ethyl acetate in cyclohexane) to yield the title compound as a brown solid (0.5 g, 60%). LCMS (Method B): RT = 4.74 min, M+H*= 401. 6-(2-Fluoro-4-trimethylsilanyl-phenylamino)-1-oxo-2,3-dihydro-1H-isoindole-5 5 carboxylic acid methyl ester MeO 0 H F N N H O To a solution of 2-cyano-5-(2-fluoro-4-trimethylsilanylphenylamino)-terephthalic acid dimethyl ester (300 mg, 0.75 mmol) in methanol (15 ml) and DCM (2 ml) at 0 0 C was added silica (1 g) and cobalt (II) chloride hexahydrate (357 mg, 1.50 mmol) followed 10 by sodium borohydride (285 mg, 7.50 mmol). During the addition of the sodium borohydride large amounts of effervescence were observed and the reaction turned black. The reaction mixture was stirred at 0*C for 1 hour. The reaction was filtered and the filtrate concentrated in vacuo to provide a residu that was subjected to flash chromatography (Si0 2 , gradient 0-20% methanol in DCM) to yield the title compound 15 as a brown solid (138 mg, 49%). LCMS (Method B): Rr = 4.18 min, 2M+H* = 745 (100%), M+H*= 373 (25%). 6-(2-Fluoro-4-iodo-phenylamino)-1-oxo-2,3-dihydro-1H-isoindole-5-carboxylic acid methyl ester MeO 0 F N N HO0 20 To a solution of 6-(2-fluoro-4-trimethylsilanyl-phenylamino)- I -oxo-2,3-dihydro- 1 H isoindole-5-carboxylic acid methyl ester (284 mg, 0.76 mmol) in DCM (5 ml) at 0 0 C was added a solution of iodine monochloride (246 mg, 1.52 mmol) in DCM (1.5 mL). The reaction mixture was stirred at 0*C for 4 hours. The reaction was quenched by the addition of water (10 mL) then diluted with saturated aqueous sodium thiosulfate 25 solution (10 mL). The resultant mixture was extracted with ethyl acetate (3 x 20 mL). C:\NRPortbAGHMatters\SONIAM\5860000_1 cocx 15110114 53 The combined organic fractions were washed with brine (20 mL), dried (MgSO 4 ) and concentrated in vacuo. The resultant residue was subjected to flash chromatography (SiO 2 , gradient 0-7% methanol in DCM) to yield the title compound as a brown solid (220 mg, 68%). LCMS (Method B): RT = 3.65 min, 2M+H* = 853. 5 6-(2-Fluoro-4-iodo-phenylamino)-1-oxo-2,3-dihydro-1H-isoindole-5-carboxylic acid HO 0 F NN N N HO0 To a suspension of 6-(2-fluoro-4-iodo-phenylamino)-1-oxo-2,3-dihydro-1H-isoindole 5-carboxylic acid methyl ester (220 mg, 0.52 mmol) in IMS (7 mL) was added aqueous 10 sodium hydroxide solution (1.3 mL, IM, 1.30 mmol). The reaction mixture was heated at 60'C for 3 hours, during which the solids dissolved. The reaction mixture was concentrated in vacuo to remove the IMS and the resultant solution was acidified to pH -5 by addition of aqueous hydrochloric acid (IM) causing a precipitate to form. The product was collected by filtration and dried under vacuum at 45 0 C to yield the title 15 compound as a brown solid (250 mg, >100%). LCMS (Method B): RT = 3.07 min, M+MeCN+H* = 454. C:\NRPortbl\GHMattersiSONIAM\5860000_1,docx 15/10/14 54 6-(2-Fluoro-4-iodo-phenylamino)-1-oxo-2,3-dihydro-1H-isoindole-5-carboxylic acid (2-vinvloxy-ethoxy)-amide H 0 O'N O F N N HO0 6-(2-Fluoro-4-iodo-phenylamino)- 1 -oxo-2,3-dihydro- I H-isoindole-5-carboxylic acid 5 (209 mg, 0.52 mmol), O-(2-vinyloxy-ethyl)-hydroxylamine (58 mg, 0.56 mmol), HOBt (77 mg, 0.56 mmol), EDCI hydrochloride (109 mg, 0.56 mmol) and DIPEA (96 gL, 0.56 mmol) were dissolved in DMF (10 mL), The reaction mixture was stirred at room temperature for 16 hours then concentrated in vacuo. The resultant residue was dissolved in ethyl acetate (10 mL), washed with aqueous saturated sodium bicarbonate 10 solution (10 mL) and the aqueous fraction extracted twice with ethyl acetate (2 x 10 mL). The combined organic fractions were washed with brine (20 mL), dried (MgSO 4 ) and concentrated in vacuo. The resultant residue was subjected to flash chromatography (Si0 2 , gradient 0-10% methanol in DCM) to yield the title compound as a brown solid (100 mg, 40%). LCMS (Method B): RT = 3.32 min, 2M+H* = 995. 15 EXAMPLE 5: 6-(2-Fluoro-4-iodo-phenylamino)- 1 -oxo-2,3-dihydro-1 H-isoindole-5 carboxylic acid (2-hydroxy-ethoxy)-amide H HO,,--,O 'N 0 F H F N N HO0 To a solution of 6-(2-fluoro-4-iodo-phenylamino)- 1 -oxo-2,3 -dihydro- 1 H-isoindole-5 carboxylic acid (2-vinyloxy-ethoxy)-amide (100 mg, 0.20 mmol) in methanol (7 mL) 20 was added hydrochloric acid (1 mL, 1M, 1 mmol). The reaction mixture was stirred at room temperature for 30 minutes. The reaction mixture was concentrated in vacuo and the resultant residue triturated with hot ethyl acetate. The product was collected by filtration to give the title compound as a pale beige solid (58 mg, 61%). LCMS (Method A): RI = 7.64, M+H* = 472. 'H NMR (DMSO-d 6 ) 11.89 (1 H, s), 9.00 (1 H, s), 8.68 (1 25 H, s), 7.68-7.62 (2 H, m), 7.49-7.45 (1 H, m), 7.24 (1 H, s), 7.17 (1 H, t, J = 8.63 Hz), C:\NRPortbl\GHMatters\SONIAM\5860000_1 .ocx 15/10/14 55 4.69 (1 H, s), 4.28 (2 H, s), 3.89 (2 H, t, J = 4.82 Hz), 3.58 (2 H, t, J = 4.73 Hz). It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country. 5 In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention. 10 C\NRPortbilGHMatters\SONIAM\5860000 1.docx 15/10/14

Claims (11)

10- 4.. X 2 is 0, S, or NR 9 ; R' is selected from 1-, halo, CN, CF 3 . -0CF 3 , -N0- , -(WR)C(Y)' -(CR"R"')NC(=Y')OR , -(CR1 4 R' 5 C2)CNR R(=' 14 )R 1 RNR2 -(CRR")>NR SO2R , -(CR 4 R)OC(Y')R" , -(CR R")OC(=Y')OR " -(CR 14 R'),OC(=Y')NR "R ', -(CR. 4 R")OS()0(OR, -(CR"R"),OP(=Y')(OR")(OR"), -(CR 4 R'"),0P(OR")(OR2), -(CR R")a(O)R, -(R' %RMS(O)2R ", -(CR'R ),I S(O)2NR '" 20 -(CR "R")S(O)(OR"), -(CR "R"),S(O) 2 (OR'), -(CR 4 R"), SC(=Y')R' CBNRotbGN~uerAGORM186000_ Agcx 15i01 0/1 59 -(CR"R'5),SC(=Y')OR, (CR"R %SC(=Y')NR"R' 2 , CrC,2 alkyl, Cr-C 8 aIkenyl, Cr-Cs alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl; R 8 is selected from C-C 2 alky), aryl, carbocyclyl, heterocyclyl, and heteroaryl; R9 is selected from H, -(CR'tR),C(=Y')R , -(CR 1 R 5 C(=Y')OR", 5 -(CR'R'),C(=Y')NR'R't,-(CR't iR" iN" 1,2(C uO" RqN P. CR 4 R'5qOR", -(CR R )SR, -(CR"R")qNR'2C(=T)R , --- (CR'R')NR )CY)OR", -(CR 4 R' 5 ),NR 3 C(=Y')NR 1 Rl", -(CR 4R )qNR 1 2 SO 2 R" , -(CR'R") 0 OC(=Y')R", -(CR 4 R")OC(=Y')OR", (CR"R'5)OC(=Y')NR"RP 2 , -(CR R 5 )qOS(O)2(OR"), -(CR"R"))OP=Y)(OR ')(OR') 10 -(CR 'R M),OP(OR")(OR ),-(CRR)S(R"-CRR)SO2R" -(CR 1R4 ) S(0) 2 NR"R ', C -Cl, alkyl, C2-Ca alkenyl, C2-CS alkynyl, carbocyclyl, heterocyclyl, aryl., and heteroaryl; RI is H, CjC 6 alkyl or C 3 -C 4 carbocyclyl; RP. is H, halo, CrC 6 alkyl, C 2 Ck alkenyl, C 2 Cs alkynyl, carbocyclyl, heteroaryl, 15 heterocyclyl, -OCF 3 , -NO2, -Si(C-C 6 alkyl), -(CR 'R 2 ),NR 6 R ", -(CR' 9 R2)OR 6 , or (CR R2)H-SR R 6 is H, halo, C-C 6 alkyl, C2-CS alkenyl, C2-Ca alkynyl, carbocyclyl, heterocyclyl, aryti heteroaryl CF 3 , -OCF 3 , -NO 2 , -Si(C-C 6 alkyl), -(CR 9 R 2 %)INR'(R -(CR' 9 R 2 )POR' 6 , or -(CRTh -- SR 6 ; provided that R 6 and R 6 are not both H at 20 the same time; p is 0, 1, 2 or 3; n is 0,1. 2 or 3; q is 2 or 3; wherein each said alkyl, alkenyl, alkynyl, carbocyclyl heterocyclyl, aryl and heteroaryl 25 of R' R , R R , R , R R R R ", R E,, R 3, R, and R" is independently optionally substituted with one or more groups independently selected from halo, CN, CF 3 , -OCF 3 , -NO 2 , oxo, -Si(C,-C alkyl), -(CR 1 R 0 C(=Y')R, -(CR 9 R),C(=Y')OR" 6 , -(CR 9 R 2 )rC(=Y')NR 6 R 7 . -(CR 9 R 2 >NR'R' -(CR 1 9 R)nOR'6, -(CRNRtSR 0 -(CRR 2 O)NR6C(=Y')R4, --(CR 19 R 2 )nNR C(=Y')OR!, -(CR 9 R)NR "C(=Y')NR' 6 R ', -(CRR%NRSO 2 R C-NRP R0 MaitONAM1588000 . 1500h4 60 (CR R 2 )nOC(=Y )R 1 , -(CR 9 R 2 ),OC(=Y')OR", -(CR 9 R 2 r),OC(YQ)NRi6R" -(CR 1 Rt)O(OOR' ),-( R )OP(=Y)(OR'(OR 7 ), -(CR 9 R 2 ),OP(OR t)(OR"7), -(CR 9 R 2 nS(O)R (CR N& 9 )aS(O)R (CR 9 R 2 %nS(O)2NR' R", -(C 'R 2 % S(O)(OR 6) -(CR 'R 9 W%.S(O) 2 (OR 6), 5 -(CR 0 RtSC(=Y')R 6 , -(CR RtSC(=Y)OR't -(CR NR 2 %)$C(=Y' )NR' 6 1R and R 2 ; each R", R' 7 and R" is independently H, C-C 2 alkyl, C 2 -Cs alkenyl, C-C alkyny1, carbocyclyl heterocyclyL, aryl, or heteroary], wherein said alkyl, alkenyl, akynyL carbocyclyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with 10 one or more groups selected from halo, CN, -OCF 3 , CF 3 , -NO 2 , C-C6 alkyl -OH, -SH, -O(Cj-C 5 alky), -S(C4C 6 alkyl), -NH 2 . -NH(C-C 6 alkyl), -N(C-C 6 . alkyl) 2 , -SO2(C-C6 alkyl), -C0 2 H, -CO2(C-C 6 alkyl), -C(O)NH 2 , -C(O)NH(Cj C 6 alkyl), -C(O)N(C 1 Cs alkyl) 2 , -N(C -C 6 alkyl)C(O)(C -C 6 alkyl), -NHC(O)(CI C 6 alkyl), -NHSO 2 (C-C 6 alkyl), -N(CICs alkyl)SO 2 (C 1 -Cs alkyl), -SO 2 NH 2 , is -SO 2 NH(CI-C6 alkyl), -SO 2 N(Cj-C 5 alkyl) 2 , -OC(O)NH 2 , -OC(O)NH(C-C 6 alky), -OC(O)N(C, -C 6 alkyl) 2 , -OC(O)O(C -C 6 alkyl), -NHC(O)NH(C,-Cs alky -NHC(O)N(Cj-C6 alkyl)2, -N(Cj-C6 alkyl)C(O)NH(Cr-C5 alkyl), -N(C-C 6 alkyl)C(O)N(C C alky) 2 , -NHC(O)NH(C -C 5 alkyl), -NHC(O)N(C-C 6 alkyl)2, -NHC(O)O(CCegalkyl, and -N(CeC 6 alkyl)C(O)O(C 1 -C alkyL; 20 or Ri1 and R together with the nitrogen to which they are attached form a 3-8 membered saturated, unsaturated or aromatic ring having 0-2 heteroatoms selected from C, S and N, wherein said ring is optionally substituted with one or more groups selected from halo, CN, -OCF 3 , CF 3 , -NO 2 , C,-C 5 alkyl, -OH, -SH, -O(C C 6 alkyl), -S(C 1 -C alkyl), N1 2 , -NH(C-C 6 alkyl), -N(C-C 6 alkyl) 2 , -SO 2 (C-C 6 25 alkyl), -CO 2 H, -C0 2 (CrCs alkyl), C()NH 2 , -C(O)NH(C-Cs alkyl), -C(O)N(C -C 6 alkyl)2. -N(C C26 alkyl)C(O)(C-C 6 C alkyl), -NHC(O)(-C 5 alkyl), -NHSO 2 (C -C 6 alkyl), -N(C -C 6 aikyi)SO 2 (C -C 6 akyI), -SO 2 NH 2 , -SO2NH(CI C6 alkyl), -SO 2 N(C-C. alkyl)2, -OC(O)NH 2 , -OC(O)NH(CrCs alkyl), -OC(O)N(Cr ~C alkyl) 2 , -OC(O)O(CC 6 alkyl), -NH C(O)NH(C-C 6 alkyi), 30 -NHG(O)N(CI-Cs alkyl) 2 , -N(C-Cs alkyl)C(O)NH(C,-C 6 alkyl), -N(C-C6 alkyl)C(O)N(C 1 -C 6 alkyt) 2 , -NHC(O)NH(CIC6 alkyl), -NHC(O)N(C-C6 aikylt, R b a N 0 e, l5f10t4 61 -NHC(O)O(C-C alkyl), and -N(CC alkyl)C(O)O(CI-C alkyl); RW and R- are independently selected from H, CjrC2 alkyl, -(CH 2 ),-aryl, -(CH) carbocycll, -- (CH 2 )rheterocyclvl, and -(CH-2)heteroaryl; R' is C-C2 alkyl, C2-C alkenfl, C2--Cg alkynyl; carbocyclyl, heterocyclyl, aryl, or 5 heteroaryl, wherein each member of R 2 ; is optionally substituted with one or more groups selected from halo, oxo, CN, -OCF 3 , CF 3 , -NO 2 , C-C alkyl, -OH, -SH, -O(CrCs alkyl), -S(CNC 6 alkyl), -NH2, -NH(CI-C alkyl, -N(Ci-Cs alkyl)2, S02(C-CS alkyl). -CO 2 H, -CO2(CPCS alkyl), -C(O)NH 2 , -C(O)NH(CC alkyl), --- C(O)N(C, -Cc aikyl)2, -N(C -C 6 alkyl)C(O)(Cj,4Cs aikyl), -NHC(O)(C -C 10 alkyl), -NHS0 2 (C-C alkyl), -N(CI-C 6 alkyl)SO2(CeC 6 alkyl), -SO 2 NH 2 , -SO 2 NH(CI -C alkyl), -SO 2 N(CrCs akyi) 2 , -OC(O)NH 2 , -OC(O)NH(C -C6 alkyl), -OC(O)N(C,-C 6 alkyl)2, -OC(O)O(C, -C alkyl), -NHC(O)NH(C -C 6 alkyl), -NHC(O)N(C,-C6 alkyl) 2 , -N(CI-C- alkyl)C(O)NH(C-Cs alkyl), -N(Cr-C 6 alkyl)C(O)N(C-C 6 alkyl) 2 , -NHC(O)NH(C-C 6 alkyl), -NHC(O)N(C-C 6 alkyl) 2 , 15 -NHC(O)O(Cs,-C alkyl), and -N(C-C 6 alkyl)C(O)O(CrC 6 alkyl); each Y' is independently 0, NR 22 . or S; and R 2 T is H or CrC1 alkyl. 2. The compound of claimI wherein Z' is CRIP'R 3. The compound of claim 2 wherein Z 2 is CR2 and Z' is CR'. 20 4. The compound of claim 2 wherein Z 2 is CR 2 and ZI is N. 5. The compound of claim 3 or 4 wherein R' and R'" are selected from a group consisting of H and methyl. 6. The cotmpound of claim 3 or 4 wherein R1. and Ria together with the carbon to which they are attached form a 3 membered carbocyclic ring. 25 7. The compound of claim 5 or 6 wherein R 2 is H, methyl, CF 3 , Cl, or F 8. The compound of claim 3 wherein R 3 is H, -OCF, -OMe, -OCHF 2 , F, or Cl. 9. The compound of claim 3 or 4 wherein Y is W-C(O), W is X'-N(R%-, and X' is selected from: 62 HO HOH HO O HO SNOH HN NH O HO Oy OH H H H 0 HN N N O O N H H H HN xx 10. The compound of claim 9 wherein R 4 is H
11. The compound of claim 10 wherein R 6 is selected from halo, C 2 -C3 alkynyl, SCr-C 4 carbocyclyl, or -SR' 6 wherein R 1 6 is C-C 2 alkyl.
12. The compound of claims I wherein R 6 is selected from I, Br, -SMe, C 3 carbocyclyl or C 2 alkynyl.
13. The compound of claim 1I wherein R 6 is selected from H, halo or C 1 -C 3 alkyl. 10 14. The compound of claim 13 wherein R 6 is selected from F or CL
15. A pharmaceutical composition comprising a compound of any one of claims l-14, and a pharmaceutically acceptable carrier.
16. The pharmaceutical composition of claim 15, further comprising an additional chemotherapeutic agent. 15 17. The pharmaceutical composition of claim 15, further comprising an additional anti-inflammatory agent. C:WR~ AGH~tmeSN!AM660C j 1cccx 1 0/-4 63
18. A method of inhibiting abnormal cell growth or treating a hyperproiferative disorder in a mammal comprising administering to said mammal a therapeuically effective amount of a pharmaceutical composition of claim 15 or 16. 19, A method of treating an inflammatory disease in a mammal comprising 5 administering to said mammal a therapeutically effective amount of a pharmaceutical composition of claim 15 or 17,
20. The method of claim 18 or 19, further comprising administering to said mammal said additional agent sequentially or consecutively,
21. Use of a compound of any one of claims 1-14 in the manufacture of a 10 medicament for inhibiting abnormal cell growth, treating a hyperproliferative disorder or treating an inflammatory disease in a mammal.
22. Use of a pharmaceutical composition of claim 15 or 16 in the manufacture of a medicament for inhibiting abnormal cell growth or treating a hyperproliferative disorder in a mammal. 15 23. Use of a pharmaceutical composition of claim 15 or 17 in the manufacture of a medicament for treating an inflammatory disease in a mammal.
24. Compounds of formula I, processes for their preparation, pharmaceutical compositions containing them or methods or uses involving them, substantially as herein described with reference to the examples. 20 C\NRPo3nGMaerSONRM1R5e.0000 dc':x 15 Y 14
AU2014250642A 2008-07-01 2014-10-15 Isoindolone derivatives as MEK kinase inhibitors and methods of use Abandoned AU2014250642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2014250642A AU2014250642A1 (en) 2008-07-01 2014-10-15 Isoindolone derivatives as MEK kinase inhibitors and methods of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61/077,432 2008-07-01
AU2009266953A AU2009266953A1 (en) 2008-07-01 2009-07-01 Isoindolone derivatives as MEK kinase inhibitors and methods of use
AU2014250642A AU2014250642A1 (en) 2008-07-01 2014-10-15 Isoindolone derivatives as MEK kinase inhibitors and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009266953A Division AU2009266953A1 (en) 2008-07-01 2009-07-01 Isoindolone derivatives as MEK kinase inhibitors and methods of use

Publications (1)

Publication Number Publication Date
AU2014250642A1 true AU2014250642A1 (en) 2014-12-04

Family

ID=51987731

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014250642A Abandoned AU2014250642A1 (en) 2008-07-01 2014-10-15 Isoindolone derivatives as MEK kinase inhibitors and methods of use

Country Status (1)

Country Link
AU (1) AU2014250642A1 (en)

Similar Documents

Publication Publication Date Title
EP2307364B1 (en) Isoindolone derivatives as mek kinase inhibitors and methods of use
EP2231662B1 (en) 8-anilinoimidazopyridines and their use as anti-cancer and/or anti-inflammatory agents
AU2008343065B2 (en) 5-anilinoimidazopyridines and methods of use
AU2009266956B2 (en) Bicyclic heterocycles as MEK kinase inhibitors
AU2007286807B2 (en) Aza-benzothiophenyl compounds and methods of use
EP2220092B1 (en) Azaindolizines and methods of use
AU2014250642A1 (en) Isoindolone derivatives as MEK kinase inhibitors and methods of use

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted