AU2012200647A1 - System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent - Google Patents

System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent Download PDF

Info

Publication number
AU2012200647A1
AU2012200647A1 AU2012200647A AU2012200647A AU2012200647A1 AU 2012200647 A1 AU2012200647 A1 AU 2012200647A1 AU 2012200647 A AU2012200647 A AU 2012200647A AU 2012200647 A AU2012200647 A AU 2012200647A AU 2012200647 A1 AU2012200647 A1 AU 2012200647A1
Authority
AU
Australia
Prior art keywords
diluent
liquid
metering
duct
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2012200647A
Other versions
AU2012200647B2 (en
Inventor
Naomi Bitmead
Andre Klopfenstein
Elmar Mock
Christoph Rusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nestec SA
Original Assignee
Nestec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2005262036A external-priority patent/AU2005262036B2/en
Application filed by Nestec SA filed Critical Nestec SA
Priority to AU2012200647A priority Critical patent/AU2012200647B2/en
Publication of AU2012200647A1 publication Critical patent/AU2012200647A1/en
Application granted granted Critical
Publication of AU2012200647B2 publication Critical patent/AU2012200647B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

Abstract The invention relates to a system (1) for hygienically reconstituting and delivering food preparations, such 5 as drinks, comprising a metering and mixing device (3) connected to a container (4) containing a base liquid, in the form of a package (2) configured to be connected to a base station (5) . The metering and mixing device comprises a pump for metering the liquid, a diluent 10 intake and a mixing chamber. Coupling means (51) are provided for providing the diluent supply and the means for driving the liquid pump. Figure 1

Description

AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT ORIGINAL Name of Applicant: Nestec S.A. Actual Inventors: Andre Klopfenstein and Elmar Mock and Christoph Rusch and Naomi Bitmead Address for Service is: SHELSTON IP 60 Margaret Street Telephone No: (02) 9777 1111 SYDNEY NSW 2000 Facsimile No. (02) 9241 4666 CCN: 3710000352 Attorney Code: SW Invention Title: System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent Details of Original Application No. 2005262036 dated 13 Jun 2005 The following statement is a full description of this invention, including the best method of performing it known to me/us: File: 52364AUP01 la System .and device-for preparing and delivering food products from a mixture made up of a food liquid and a diluent 5 The. present invention relates to a. system for preparing and delivering a mixture . of A base liquid and a diluent. More particularly, the invention relates to the preparation and delivery of d:rinks,'or other liquid food products, by metering a food liquid and mixing 10 this food liquid with a diluent. The invention finds an application in the delivery of drinks, with or without froth, hot 'or cold, from a liquid concentrate and water, hygienically, easily and quickly, even when the volumes delivered are large. 15 In conventional drinks dispensers, the drinks are reconstituted, from a liquid concentrate or powder contained in reservoirs.- The liquid. concentrate or. the powder is metered then mixed with a diluent, -generally 20 hot or cold water; inside the dispenser, passing through pipes, pumps and mixing bowls. Mixing is generally performed by a mechanical sti-rer contained. within -a chamber. The conventional. preparation of these drinks therefore requires a great deal of maintenance 25' and cleaning in' order to keep those parts that are in contact with the food product constantly clean and avoid the risks of contamination .and bacterial growth. The machines also 'represent 'a significant investment on the part of the operators. Finally, these machines lack 30 versatility in terms.of the choice of drinks delivered, even though the current trend 'is to extend the choice of hot,' cold, frothy or non-frothy 'drinks. Systems do- exist for delivering fruit uices from a 35 disposable or recyclable. package containing concentrate and incorporating, a pump operated by a' dispensing device' external to the package. Such a system is described, for, example, in patent US 5 615 801.
- 2 Before that, the pump formed part of the dispensing machine itself, but in order to alleviate the disadvantages associated with maintaining and cleaning the pump and the elements associated with it, the 5 solution in patent US 5 615 801 is to incorporate the food liquid pump into the package and control the activation of this pump by the machine by connecting the package to the machine and, more particularly, by connecting the pump to the machine. The operator needs 10 merely to replace the package and replace it with a new package or different package in order to proceed with dispensing another drink. Any cleaning is then no longer required. Patent US 5 615 801 provides an improvement to this type of package by providing a 15 Moineau pump which produces a continuous flow of concentrate which spreads out in the form of a fine film through a valve and allows mixing *with the diluent, in that instance water, in a mixing chamber belonging to the package. 20 Such a solution does, however, present several disadvantages. The mixing in such a system is not optimised because of the way in which the diluent and the concentrate meet, in the mixing chamber. In 25 addition, there are risks that the diluent might -rise back up through the concentrate duct. If it did, problems of hygiene may arise. In addition, the concentrate metering is restricted by the design of the system and the viscosity of the concentrate. 30 Specifically, the device is not suited to certain thick concentrates for which it is unable to produce a fine film through the valve and thus perform the mixing. In addition, for correct metering, the concentrate flow rate is reduced because of the nature of the pump which 35 has by itself to overcome the significant pressure drop created by the valve. It is therefore impossible, within a reasonable space of time of the order of 10 to 40 seconds, to produce large-volume drinks from certain types of concentrate such as concentrates based on -3 coffee or on cocoa. A device such as this is also not designed to produce froth when preparing the drink. Now, there is a need to produce frothy drinks such as a black coffee, a caf6 latt6 or a flavoured coffee, or a 5 hot chocolate, which are obtained from liquid concentrates and water. Another disadvantage stems from the complexity of such a system and the large amount of space it occupies because of the great number of parts. Such a system is therefore expensive. 10 Similar devices are described in patents US 5 305 923 and US 5 842 603, which have the same disadvantages as the patent already discussed. 15 Patent US 6 568 565 relates to a method and a device for delivering a drink from a concentrate contained in a disposable multi-portion container. The container comprises an adapter onto which a metering pump, itself disposable, is force-fitted. A mixing chamber is 20 provided, in which a diluent mixes with the metered concentrate. The drink is delivered through a non disposable delivery nozzle. The system is complicated, bulky and expensive because the pump, the mixing chamber and the nozzle constitute numerous separate 25 parts which are connected by numerous couplings. Activation of the pump is via a system which is just as complicated, using a pump operating system equipped with a drive fork. 30 Patent application WO 01/21292 relates to a method and device for production of a beverage wherein concentrate is brought to a joining zone in a mixing chamber; in which joining zone the concentrate is brought together with a diluent. Gas is supplied to a gas zone in the 35 mixing chamber through which the mixture of concentrate and diluent is brought to flow and which is located downstream relative to the joining zone. First of all, this solution is not a compact solution for preparing a liquid food from a concentrate since the device is - 4 associated to a peristaltic pump for metering the concentrate which is separate from the device itself. Secondly, dosing from a peristaltic pump is not accurate enough for food liquid concentrates of 5 relatively high solid concentration. Dosing is also not even from dose to dose due to the non-continuous peristaltic arrangement that delivers product pulses. Thirdly, the device is not a packaging and it cannot be disposed after use. The device must be thus cleaned for 10 being able to be re-used without hygienic risks. Fourthly, there is not a pressure reduction which is sufficient to prevent the risk of the diluent rising back up in the concentrate line and therefore, a valve is needed in the concentrate line to prevent that risk. 15 Despite this valve risk remains high that diluent can enter the concentrate line. Finally, the way air is drawn in the chamber is not optimal due to the lack of pressure difference, the size and the relative position of the conduits. 20 There is therefore a need for a system that is simpler, hygienic, compact and economical and provides solutions to all the aforesaid problems. 25 In a first aspect, the invention relates to a device for metering a base liquid and mixing this base liquid with a diluent to prepare a food product, the device being able to be connected to a container containing the liquid, and 30 the device comprising: - a liquid pump configured to meter a quantity of liquid through a liquid metering duct, - a diluent inlet with a diluent duct, - a mixing chamber for mixing the liquid with the 35 diluent, wherein: the diluent duct is positioned relatively to the liquid metering duct so that the diluent stream intersects the liquid stream before or at the mixing chamber and wherein it comprises a means for accelerating the speed - 5 of the diluent stream where the said diluent and liquid streams meet with respect to the speed of the diluent at the diluent inlet. 5 Thus, the device according to the invention provides an improved solution for metering then correctly mixing a liquid with a diluent. Through the inherent speed of the diluent and the meeting of the ducts the shearing of the fluids and the mixing of the fluids in the 10 mixing chamber are improved. More precisely, the liquid which arrives at a very low speed is carried along with the diluent, arriving at a higher speed, at the point of intersection; this encourages the entrainment of the liquid, thus forced into movement, and thus the 15 creation of turbulence in the mixing chamber to form the mixture. , The resultant accelerating of the diluent makes it possible to create a pressure at the point where the streams meet which is lower than or equal to the pressure in the liquid duct at the pump 20 outlet. The advantages are two-fold: - the shear forces are increased to encourage mixing in the mixing chamber, and 25 - the diluent is prevented from being able to rise back up inside the liquid duct, particularly when the pump is switched off, which could give rise to hygiene problems. 30 According to a preferred embodiment of the invention, the means for accelerating the speed of the diluent comprises a venturi means in the form of at least one restriction situated at the diluent duct before or where the streams meet. Thus, the restriction makes it 35 possible to accelerate the flow of diluent when it meets the liquid, and therefore makes it possible advantageously to lower the pressure. Such a principle is simple to implement because it does not involve any moving parts. The diluent meets the metering liquid at - 6 a relatively high speed, producing shear effects and also preventing the diluent from rising back up inside the liquid metering duct. The speed of the fluid then drops in the mixing chamber which, of larger cross 5 section, encourages the creation of a homogeneous liquid-diluent mixture inside the chamber. The diluent duct is preferably directed toward the outlet of the liquid metering duct or slightly below it 10 to ensure that the diluent and liquid streams collide relatively one another. In a possible mode the diluent and liquid metering ducts are directly positioned in intersection. In alternative modes, the two ducts are positioned to terminate each one separately in an 15 enlarged mixing chamber but still in intersection of their streams. As a preference, the diluent duct comprises at least one terminal portion which, with the restriction and 20 the inlet to the mixing chamber, forms an alignment. The liquid duct at the pump outlet for the passage of the liquid is transversal to the said alignment. This configuration affords a particularly effective venturi effect in which the diluent is displaced more or less 25 linearly to create a sufficiently great pressure reduction. The pressure reduction is also capable of drawing the liquid through the duct at the pump outlet when the pump is switched off without the diluent rising back up inside the said liquid duct. The term 30 "alignment" is to be understood as meaning that there are no elbows or sharp bends likely to break or significantly slow the flow of diluent through the restriction. 35 According to one possible aspect, the device is configured in such a way as to be able to produce a frothy preparation. The device comprises an air intake communicating with at least one of the ducts before the mixing chamber, or in the mixing chamber itself, to -7 carry air into the mixture and cause the preparation to froth. As a preference, the air intake is positioned in communication with the restriction in order to benefit from the suction created and carry in air and froth at 5 least some of the diluted liquid, for example a drink, in the mixing chamber. The air intake is thus sized in such a way as to carry the required quantity of air into the mixing chamber. The air may also be used at the end of the delivery operation to clean the chamber 10 and expel therefrom at the very end of the delivery cycle any amount of drink and/or froth that may still remain in the chamber. In one mode, the air intake is positioned relatively to 15 the diluent duct and the liquid metering duct for the air to be sucked in the diluent stream before the diluent stream intersects or collides with the liquid stream. For instance, the air intake can be placed in intersection of the diluent duct before the point of 20 collision between the diluent stream and the liquid stream. In this arrangement, air bubbles are sucked in the diluent stream before the diluent mixes with the liquid. The point of collision between the aerated diluent and liquid may be placed in the mixing chamber 25 or before the mixing chamber, i.e., at the intersection of diluent and liquid ducts. This arrangement solves a problem of contamination of the air intake. Indeed, one has noticed that product can enter the air channel when the air channel.is positioned after the intersection in 30 the mixing chamber. According to the laws of physics, due to velocity and the pressure difference created, the diluent does not enter the air channel and therefore the air channel cannot be cleaned by a flush cycle of the diluent. As a result, this can cause a 35 problem of bacteria 'growth. By having the air intake at the diluent level only, one ensures that product such as diluted concentrate does not contaminate the air conduit.
-8 The pump may be any pump capable of transporting a liquid in a wide range of viscosities, particularly between 1 and 5000 centipoise. It may be a gear pump, a peristaltic pump or, alternatively, a piston pump. 5 The metering and mixing device according to the invention is intended to be controlled by means of a dispensing base device with which the metering and mixing device is docked in a complementary manner. The 10 second device with which the first docks is known as a "base station" in the remainder of the description, for greater conciseness and clarity. Thus, coupling means are provided and configured in such a way as to connect the metering and mixing device to the base station, 15 which is itself capable of providing the diluent supply and the means for driving the liquid pump. Dissociating the metering and mixing devices from the function of driving the pump and supplying the diluent affords the essential advantage that the metering and mixing device 20 can be interchanged as often as necessary, for example may be replaced by a new device which is assembled with a new container. Such replacement makes it possible to dispense with, or at the very least considerably reduce, the need for maintenance and cleaning of the 25 metering and mixing device. That also allows greater flexibility in the choice of the metering and of the mixing, by interchanging the metering and mixing devices while at the same time keeping a common base station. 30 In a preferred embodiment, however, the pump is a pump of the gear type. Such a pump comprises a chamber in which a series of rotary elements which collaborate in the manner of gearing is housed. The pump comprises an 35 inlet passage for letting the liquid into the pump chamber and a liquid outlet passage connecting the pump chamber to the liquid metering duct, the liquid inlet and outlet passages being more or less in alignment with the gearing formed by the series of rotary - 9 elements. A gear pump in the context of the invention provides a more uniform flow of metered liquid, better precision on the amount of liquid metered and a more compact construction involving a relatively limited 5 number of moving parts. The rotary elements are thus preferably two in number, although the number of pairs of elements is not a limitation in itself. For preference, a first rotary element is extended by a coupling means intended to be connected to a 10 complementary coupling means associated with drive means belonging to the base station. As is known per se, the rotary element comprising the coupling means is usually termed the "master" element while the other rotary element is usually termed the "slave" element. 15 In one possible mode, a non-return valve is positioned in the liquid metering duct to prevent any potential dripping from the pump at the intersection and in the mixing chamber. Indeed, although a gear pump provides a 20 seal function, it is not possible to assure a total liquid tightness with the pump only during the rest period of the device, especially, when low viscosity concentrates are used. 25 As one of the objects of the invention is to limit any possible interaction between the product and part of the machine, the metering and mixing device comprises its own duct for delivering the flow of food liquid, thus diluted and mixed, directly downstream of the 30 mixing chamber into a receptacle. A receptacle is to be understood as meaning, for example, a glass, a bowl or a mug or any other receptacle to serve to the consumer. In a preferred configuration, the metering and mixing 35 device of the invention is in the form of a cap which is connected to the container by appropriate connecting means. Thus, more precisely, the mixing device comprises two half-shells assembled along a parting line passing through the suction means and the pump.
- 10 The construction in the form of a cap with two half shells offers the advantage of requiring fewer assembly parts and also of being more compact by comparison with the known constructions that usually incorporate 5 pumping and mixing means. One or other of the half-shells or, alternatively, both half-shells, defined by being assembled in this way, passing through their parting line: 10 - the chamber of the pump and its metering duct, - the suction means comprising at least the restriction, - the diluent duct, - the mixing chamber, 15 - optionally, the air duct, and - preferably also, the duct for delivering the food preparation, for example the drink. The metering and mixing device, in this configuration 20 as two half-shells is preferably made of plastic, such as an injected or moulded plastic. The device may thus be used for a limited number of metering operations then disposed of or recycled. 25 In the even more preferred embodiment, the device is associated with a container which, together with the metering and mixing device, forms a package that may be disposable or recyclable. The container may be a non collapsible or a collapsible member. It may be, for 30 instance, a bottle, a brick, a pouch, a sachet or the like. It may be made of plastic, cardboard, paper, aluminium or a. mixture and/or laminate of these materials. The container and the device may be connected by permanent or detachable means. Permanent 35 means may be designed to be sealing, welding, bonding, non-reversible clipping means, etc means. Detachable means may mean an assembly formed of a threaded portion or equivalent complementary mechanical engagement means on the cap forming the metering device which - 11 collaborates with a threaded portion or complementary mechanical engagement means belonging to the container. The metering and mixing device fits in a simple and 5 quick way against the base station. For that, the coupling means of the device preferably lie on the same side so as to allow the coupling to be made by manually plugging into a docking panel of the base station itself comprising complementary coupling means. Thus, 10 the user can easily perform the docking operation by hand in a simple movement by taking hold of the mixing and metering device, on which the container is preferably mounted, and pushing it against a panel of the base station. More specifically, the coupling means 15 also comprise means for translational guidance, in at least one direction that encourages plugging-in or docking, of the metering device with complementary guide means on the docking panel of the base station. Obviously, other docking methods are possible which 20 combine several directions of plugging-in, such as a translational direction and a rotational direction, or in several directions combined along/about various axes of translation and/or of rotation. 25 The metering and mixing device according to the invention may also comprise a code that can be read by a reader associated with the base station. The code comprises information referring to the identity and/or the nature of the product and/or to parameters 30 concerned with the activation of the diluent supply and/or liquid pump drive means. The code may, for example, be used to manage the flow rate of the liquid pump and/or of the diluent pump, contained in the base station, so as to control the liquid:diluent ratio. 35 Other uses of the code are possible, such as checking the authenticity of the product contained in the container or alternatively adjusting the means to alter the temperature of the diluent.
- 12 According to another aspect, the invention relates to a package for metering a liquid and mixing this liquid with a diluent to prepare a food product, comprising: a multi-dose container to form a reserve of liquid; 5 a metering and mixing device comprising: - a diluent inlet, - a liquid pump for metering the quantity of liquid, - a mixing chamber for mixing the liquid and the diluent, 10 - coupling means configured to connect the metering and mixing device to a base station capable of providing the diluent supply and the means for driving the concentrate pump, characterized in that the metering and mixing device forms. a cap connected to the 15 container. In effect, there is not, in the prior art, any package that affords both the advantages of hygiene associated with the use of a metering pump incorporated into the 20 package, and the advantages stemming from a simple and inexpensive structure suited to use over a limited period of time or that can be recycled. Hence, the invention satisfies these combined objectives by causing the metering device, ordinarily complicated and 25 made up of several elements assembled by couplings, thus to adopt the form of a cap associated with the container as a closure. More specifically, the cap comprises two half-shells 30 assembled with one another along a substantially longitudinal parting line and configured to delimit at least the contours of the chamber of the pump and the mixing chamber. In other words, the two parts are assembled longitudinally along a parting line running 35 in the direction in which the fluids are transported, in particular in the direction in which the liquid and the mixture consisting of the liquid and the diluent are transported. By contrast, the prior art usually consists in providing several ducts and couplings - 13 following on from one another in the direction in which the fluids are transported, resulting in greater complexity, rapid soiling and hygiene risks that are greater because of the changes in cross section and the 5 numerous parts employed, and resulting in a cost of manufacture which is also higher. According to the invention, the liquid metering duct is positioned to intersect the diluent duct before the 10 mixing chamber. The metering and mixing device comprises, to complement the liquid metering pump, a means for increasing the speed at which the diluent arrives at the point where the streams meet. Such a means is preferably a restriction in communication with 15 the diluent intake situated upstream of the mixing chamber so that the flow of diluent is accelerated through the restriction. The frothing of the preparation, a drink for example, 20 may be obtained when the suction means additionally comprise an air intake allowing air to be carried in to the mixture and to froth the liquid-diluent mixture, for example a drink, in the mixing chamber. An air intake may, however, be omitted or be selectively 25 closed off when the preparation does not need to be frothed. The cross section of the air intake can vary according to the nature of the food liquid contained in the package. Thus, the cross section of the air duct may vary between 0.05 and 2 mm2, preferably 0.1 and 2 30 0.5 mm. The liquid may be a food concentrate intended to reconstitute a hot or cold, frothy or non-frothy drink. For example, the liquid is a concentrate based on 35 coffee, cocoa, milk, tea, fruit juice or a combination of these components. The concentrate may be a liquid for producing a caf6 latts for example, comprising a coffee concentrate and condensed milk or a creamer. The viscosity of the liquid may vary according to the - 14 nature of the concentrate. Typically, this is between 1 and 5000 cPoise, preferably 200 to 1000 cPoise, more preferably still 5 between 300 and 600 cPoise. The invention finally relates to a base station on which a metering and mixing device or a package as previously defined is intended to be docked. 10 The base station comprises: a) a technical area comprising - diluent supply means, - liquid pump drive means, 15 b) an interface area for the user, comprising - coupling means complementing the coupling means belonging to the device, which are configured to receive the metering and mixing device in a predetermined position and which comprise diluent 20 coupling means and means for coupling the pump, - control means for controlling the supply of diluent and driving the liquid pump. Thus, the preferred station comprises two separate 25 areas, including an interface area accessible to the user. Such an area may be protected by protective means such as a cover or the like, but this is not indispensable. By contrast, part of this area may be left visible to allow better interactivity with the 30 user and thus make interchanging the packages easier. More precisely, the diluent supply means comprise a water supply duct connected to a water pump and to a system for controlling the temperature of the water. 35 The temperature control system may be a heating system such as a thermobloc, a heater cartridge, a boiler or any other equivalent means. The control system may also be a refrigeration system able to produce refrigerated drinks or desserts.
- 15 The pump drive means may comprise an electric motor and a drive shaft connected to the complementary coupling means to link with the coupling means of the liquid 5 pump. The coupling means may be formed of a mechanical push-together connection of the male-female type, a magnetized mechanism, a screw-fastening system or bayonet system, or any other equivalent means. 10 The interface area comprises guide means complementing the guide means of the metering and mixing device in order to allow the device to be docked. The complementary guide means are configured in such a way as to guide the metering device in a translational 15 direction during docking or in one or more other directions. Means for securing the metering device in the docked position may be provided. The base station comprises a controller associated with 20 the control means and programmed to control and coordinate the activation of the liquid pump drive means and the activation of the diluent supply means. When the metering and mixing device or the packaging comprises a code, the controller is associated with a 25 reader capable of reading this code and processing the information read. The characteristics and advantages of the invention will be better understood in relation to the figures 30 which follow: Figure 1 depicts an overall perspective view of the preparation system according to the invention comprising a multi-portion package according to the 35 invention in a position separate from the base station; Figure 2 depicts an overall perspective view of the system of Figure 1 with the multi-portion package in a docked position against the base station; - 16 Figure 3 depicts a view of the front half-shell of the metering and mixing device according to the invention; 5 Figure 4 depicts a view of the rear half-shell of the metering and mixing device according to the invention; Figure 5 depicts a view from above of the device of Figures 3 and 4; 10 Figure 6 depicts an internal view of the frontal half shell of the device of Figures 3 to 5, without the gear elements; 15 Figure 7 depicts an internal view of the rear half shell of the device of Figures 3 to 5; Figure 8 depicts a detailed view in part section of the pump of the device of Figures 3 to 7; 20 Figure 9 depicts a perspective part view of the rotary elements of the liquid metering pump; Figure 10 depicts a schematic front view of the rotary 25 elements in a given geared configuration; Figure 11 depicts a schematic view of the inside of the base station; 30 Figure 12 depicts a detailed view of the base station coupling means; Figure 13 depicts a schematic view of the device of the invention according to a different fluidic arrangement; 35 Figure 14 depicts a detail cross sectional view of an embodiment of the device of the invention, in particular, a non-return valve that is positioned at the pump outlet to prevent liquid dripping.
- 17 Detailed description of the figures: Figures 1 and 2 illustrate an overall view of one 5 example of a system for reconstituting and delivering food preparations according to the invention, in particular, of a system for preparing hot or cold drinks 1. 10 The system comprises, on the one hand, at least one functional package 2 formed of a metering and mixing device 3 and of a container 4 and, on the other hand, a base station 5 which serves to anchor the functional package 2 with a view to preparing and delivering the 15 drinks through the metering and mixing device 3. The device 3 is connected to a container 4 which may be of any kind, such as a bottle, a brick, a sachet, a pouch or the like. The container contains a food liquid intended to be diluted with a diluent, generally hot, 20 ambient-temperature or chilled, water, supplied to the metering device 3 via the base station 5. The liquid may be a concentrate of coffee, milk, cocoa, fruit juice or a mixture such as a preparation based on coffee concentrate, an emulsifier, flavourings, sugar 25 or artificial sweetener, preservatives and other components. The liquid may comprise a purely liquid phase with, possibly, solid or pasty inclusions such as grains of sugar, nuts, fruit or the like. The liquid is preferably designed to be stable at ambient temperature 30 for several days, several weeks or even several months. The water activity of the concentrate is thus usually set to a value that allows it to keep at ambient temperature for the desired length of time. 35 The metering and mixing device 3 and the container 4 are preferably designed to be disposed of or recycled once the container has been emptied of its contents. The container is held in an inverted position, its opening facing downwards and its bottom facing upwards, - 18 so as to constantly supply the metering and mixing device 3, particularly the liquid metering pump contained therein, with liquid under gravity. The container 4 and the device 3 are connected by 5 connecting means which may be detachable or permanent as the case may be. It is, however, preferable to provide permanent-connection means in order to avoid excessively prolonged use of the metering and mixing device which, without cleaning after an excessively 10 lengthy period of activity, could end up posing hygiene problems. A permanent connection therefore forces the replacement of the entire package 2 once the container has been emptied, or even before this if the device remains unused for too long and if a hygiene risk 15 exists. However, the inside of the device 3 is also designed to be able to be cleaned and/or rinsed out with diluent, at high temperature for example regularly, for example during rinsing cycles that are programmed or manually activated and controlled from 20 the base station 5. Figures 3 to 9 show the metering and mixing device 3 of the invention in detail according to a preferred embodiment. The device 3 is preferably in the form of a 25 cap which closes the opening of the container in a sealed manner when the container is in the inverted position with its opening facing downwards. The cap has a tubular connecting portion 30 equipped with connecting means such as an internal screw thread 31 30 complementing connecting means 41 belonging to the container, also of the screw thread type for example. Inside the connecting portion there is an end surface and an inlet 32 situated through this end surface, for liquid to enter the device. It should be noted that the 35 inverted position of the container is justified only if the container has an air inlet for equalizing the pressures in the container and does not therefore contract as it empties. If the opposite is true, such as in the case of a bag which contracts without air, - 19 the liquid can be metered when the container is in a position which is not necessarily the inverted one with the cap. 5 The device 3 is preferably made up, amongst other things, of two half-shells 3A, 3B assembled with one another along a parting line P running more or less in the longitudinal direction of the ducts, particularly of the liquid duct and of the mixing chamber, 10 circulating within the device. The construction in the form of two half-shells, namely a frontal part 3A and a rear other part 3B, makes it possible to simplify the device while at the same time defining the succession of ducts. and chambers needed for metering, mixing, 15 possibly frothing, and delivering the mixture. When the container is one that cannot contract, it is necessary to provide an air inlet into the container in order to compensate for the withdrawal of the liquid. 20 Such an inlet may be provided either through the container itself, such as an opening in the bottom of the container, once this container is in the inverted position, or alternatively at least one air channel through the tubular connecting portion 30 of the device 25 which communicates with the inlet to the container. The basic principle of the metering and mixing device 3 will now be described in detail. The device comprises a built-in metering pump 6 for metering the liquid 30 passing through the opening 32. The pump is preferably a gear pump defined by a chamber 60 equipped with bearings 61, 62, 63, 64 present at the bottom of each lateral surface 67, 68 of the chamber and able to guide two rotary elements 65, 66 cooperating in a geared 35 fashion in order to form the moving metering elements of the pump in the chamber. The rotary element 65 is a "master" element equipped with a shaft 650 associated with a coupling means 651 able to engage with a complementary coupling means belonging to the base - 20 station 5 (described later on) . A lip seal is preferably incorporated between the bearing 64 and the shaft 650 to seal the pump chamber with respect to the outside. The internal pressure when the pump is in 5 motion helps with maintaining sealing by stressing the seal. The rotary element 66 is the "slave" element which is driven in the opposite direction of rotation by the master element. The rotary metering elements 65, 66 are driven in directions A, B as illustrated in 10 Figures 8 and 10 in order to be able to meter the liquid through the chamber. The construction in the form of half-shells is such that the chamber is defined by the assembly of the two parts 3A, 3B. The chamber 60 may thus be defined as a hollow in the frontal part 3A 15 with a bottom surface 67 defining one of the lateral surfaces. The other part encloses the chamber via a more or less flat surface portion 68, for example, comprising the bearing 64 that supports the drive shaft 650, which is extended backwards through a passage 78 20 through the shell part 3B. The liquid is thus metered through a liquid outlet duct 69 forming a reduction in section. The diameter is of the order of 0.2 to 4 mm, preferably 0.5 to 2 mm. The 25 duct 69 allows fine control over the flow rate of liquid leaving the pump and makes it possible to form a relatively narrow flow of liquid, thus encouraging fine metering. 30 The device comprises a duct 70 for supplying with diluent which intersects the liquid duct 69. The diluent is conveyed into the device through a diluent intake 71 located through the rear part 3B of the cap. This intake has the form of a connecting tube able to 35 be forcibly fitted with sealing into a tubular coupling and diluent-supply part located on the base station 5. The diluent flow rate is controlled by a diluent pump situated in the base station 5. The diluent duct 70 ends in a restriction 72 beginning more or less - 21 upstream of the point where the liquid and diluent ducts 69, 70 meet and extending at least as far as that point and preferably beyond the meeting point. The restriction makes it possible to accelerate the diluent 5 and this, using a venturi phenomenon, causes a pressure at the meeting point that is lower than or equal to the pressure of the liquid in the liquid outlet duct 69. When the pump is switched off, this equilibrium or differential of pressures, ensures that the diluent 10 crosses the metering point and travels as far as the chamber without rising back up inside the liquid duct. The liquid pump stops while the diluent continues to pass through the device, for example towards the end of the drink preparation cycle in order to obtain the 15 desired dilution of drink. Likewise, the diluent is used to regularly rinse the device. Thus the liquid, for example a coffee or cocoa concentrate, is prevented from being contaminated in the container or the pump by diluent being sucked back through the duct 69. 20 The restriction is thus sized to create a slight depression at the meeting point. However, the depression needs to be controlled so that it does not excessively lower the boiling point and cause the 25 diluent to boil in the duct when hot drinks are being prepared. For preference, the restriction has a diameter of between 0.2 and 5 mm, more preferably between 0.5 and 30 2 mm. After the meeting point, one and the same duct 73 transports the fluids. A widening of the duct is preferably designed to reduce the pressure drop and 35 take account of the increase in volume of the fluids which combine once they have met at the meeting point. The widened duct 73 is extended into a mixing chamber 80 proper, in which the product is homogeneously mixed.
- 22 Of course, the duct portion 73 and the chamber 80 could form one and the same duct or one and the same chamber without there necessarily being an abrupt change. 5 An air intake embodied by an air duct 73 open to the open air is preferably provided when frothing of the liquid-diluent mixture is desired. As a preference, the air duct may be positioned to intersect with the restriction. It is in this region that the venturi 10 effect is felt and therefore that the reduction in pressure is at its maximum because of the acceleration of the fluids. The air duct may thus be positioned to intersect the duct portion 73 for example. The position of the air intake may vary and may also be sited in 15 such a way as to lead to the diluent duct 70 or alternatively to the liquid duct 69. Thus, as a preference, the air intake is positioned such that the air is sucked in by the effect of the diluent accelerating through the restriction. 20 In a possible mode (not illustrated), an air pump can be connected to the air intake. The air pump can be used for creating a positive pressure in the air intake which can force air to mix with the diluent stream. 25 Normally, the restriction of the diluent duct is enough to draw a sufficient amount of air to create bubbles in the mixture but an air pump could prove to be helpful, in particular, at elevated diluent temperatures, where steam may start forming in the device thus resulting in 30 no sufficient air to be able to be drawn. The air pump may also be used to send air in the mixing chamber at the end of the dispensing cycle in order to empty the chamber of the mixture and/or to dry off the mixing chamber for hygiene purpose. The air intake should also 35 be connected to atmospheric pressure at the end of the dispensing cycle to ensure that the mixing chamber can properly empty. Such atmospheric pressure balance can be obtained by an active valve placed at the higher point in the air feed system.
- 23 The mixing chamber 80 has a width of the order of at least five times, preferably at least ten or twenty times, the cross section of the duct portion 73 more or 5 less at the exit from the meeting point. A broad chamber is preferable to a simple duct to encourage mixing and also to prevent any liquid from being sucked back into the venturi system when the device is at rest, as this could detract from the maintaining of 10 good hygiene in the device. However, in principle, the chamber could be replaced by a duct of smaller cross section. The chamber also allows the mixture to be decelerated 15 and therefore avoids the mixture being expelled too abruptly and possibly causing splashing as it is delivered. For that, the chamber preferably has a bowed shape, or even preferably has the shape of a S so as to lengthen the path of the mixture and reduce the speed 20 of the mixture. The chamber is connected mainly to a delivery duct 85 for delivering the mixture. A siphon passage 81 may also be provided in order to completely empty the 25 chamber because of its bowed shape, after each delivered drink cycle. The duct preferably comprises elements 86, 87, 88 for breaking down the kinetic energy of the mixture in the 30 duct. These elements may, for example, be several walls extending transversely to the duct and partially intersecting the flow of mixture and forcing this mixture to follow a sinuous path. These elements may also have a function of homogenizing the mixture before 35 it is let out. Of course, other forms are possible for breaking the flow of the drink. The metering and mixing device according to the invention also preferably comprises guide means - 24 allowing docking with the base station and, in particular, facilitating alignment of the diluent coupling and pump drive means. These guide means may, for example, be portions of surfaces 33, 34, 35, 36 5 through the device, for example, transversely to the parts 3A, 3B. The surfaces may, for example, be partially or completely cylindrical portions. The guide means also perform the function of supporting the weight of the package and ensure firm and stable 10 docking. These means may of course adopt other highly varied shapes. The parts 3A, 3B are assembled by any appropriate means such as welding, bonding or the like. In a preferred 15 embodiment, the two parts are laser welded. The laser welding may be computer controlled and has the advantage of welding the parts together without any movement, unlike vibration welding; this improves the compliance with dimensional tolerances and the 20 precision of the welding. For laser welding, one of the parts may be formed in a material that is more absorbent of laser energy while the other part is made of a plastic transparent to laser energy. However, other welding techniques are possible without departing 25 from the scope of the invention, for example vibration welding. It is preferable to provide a connecting joint 79, such as a weld, which partially or completely borders the 30 ducts and chambers of the device. The joint is preferably perfectly sealed. However, a joint with non welded regions may be provided in order to control the entry of air into the device. 35 Figures 9 and 10 show a detailed depiction of the rotary elements 65, 66 of the liquid pump. In an advantageous construction, the gearing elements each have teeth 652, 660 of complementing shapes, the cross section of which has a rounded shape towards the ends - 25 with an area of restricted cross section 661 at the base of each of the teeth. Such a rounded tooth geometry makes it possible to create a closed volumetric metering region 662 which does not 5 experience compression and transports a volume of liquid that is constant for each revolution. This configuration has the effect of reducing the effects of compression on the metered liquid and this improves the efficiency of the pump and reduces the loads on the 10 pump. As a further preference, the outermost portion 662 of each tooth is flattened with a radius greater than the radius of the sides 663 of each tooth. In particular, the flattening of the most extreme portions 664 allows the teeth to be brought closer to the 15 surface of the pumping chamber, thus reducing clearance and improving sealing. The device may comprise several liquid pumps each comprising a liquid duct which meets the diluent duct. 20 The advantage is then that of being able to mix several different liquids with flow rate ratios determined by each of the pumps. The pumps may be organized either in the same plane or in a parallel plane. The container may comprise several chambers containing different 25 liquids, each chamber communicating with its corresponding pump. Thus, the preparation of a drink may comprise two components which have to be kept separate for reasons of stability, shelf life, or preferably, for example, a base of concentrate on the 30 one hand and a flavouring on the other, thus metered by different pumps to reconstitute a flavoured drink or a drink with a better flavour. It is also possible to provide a separate diluent duct for each liquid duct. 35 It should be noted that the device can meter liquids over a wide range of viscosities. However, when the liquid is too fluid it may be necessary to add a valve to the liquid metering duct 69, or to the inlet 32, to prevent the risks of liquid leaks . The valve is - 26 configured to open under the thrust of the liquid exerted by the pump and to remain closed and sealed when the pump is switched off so as to prevent any liquid from leaking through the device. 5 It should also be noted that the container, if not specifically designed to be collapsible, may require to be returned to a pressure of equilibrium with the external environment by the way of a venting means. If 10 the container is not vented, it may collapse due to pressure reduction inside it and it can break. A venting means may be a valve such a duckbill valve and the like. Another way of venting the container may be to drive the pump for several turns in the direction 15 opposite to the metering direction. With reference to Figures 1-2, 11 and 12 the system according to the invention also comprises a base station 5 forming the machine part, as opposed to the 20 package 2. The base station comprises a technical area 50, generally internal and protected, at least in part, by a cover 55 and an interface area 51 directly accessible to the user. The interface area also offers control means 53 for controlling the delivery of a 25 drink. The control means may be in the form of an electronic control panel (Figures 1 and 2) or a lever (Figure 11). The interface area 51 is configured to allow the 30 docking of at least one package 2, via at least one docking station 52. Several docking stations may be provided, arranged in rows to each accept a package containing a different or the same food liquid, so that a varied choice of drink can be offered or 35 alternatively in order to increase the system's serving capacity. As Figure 12 shows in detail, a docking station comprises a diluent coupling means 520 and a means for. coupling the drive to the metering pump 521. The means 520 may be a portion of a tube fitted with a - 27 non-return valve the diameter of which complements the diameter of the diluent intake 71 of the metering and mixing device so as to engage therewith. Assembly may be achieved using one or more seals. The coupling means 5 521 is, for example, a portion of a shaft ending in a head of smaller cross section and with surfaces that complement the internal surfaces of the coupling means 651 belonging to the metering and mixing device. The head may have a pointed shape of polygonal cross 10 section or may be star shaped, for example, offering both speed of engagement and reliability in the rotational drive of the pump. The docking station may also comprise guide means 522, 523 that complement the guide means 33, 34 of the metering and mixing device. 15 These means 522, 523 may be simple bars or fingers to accept the surfaces of the guide means in sliding. It goes without saying that the shape of the guide means 522, 523, 33, 34 may adopt numerous forms without departing from the scope of the invention. Thus, the 20 guide means 522, 523 of the docking station may be hollow shapes and the guide means 33, 34 may be raised. The base station, as illustrated in Figure 11, has a technical area 50 which combines the essential 25 components for supplying the metering and mixing device 3 with diluent and for driving the liquid pump. For that, the base station comprises a diluent supply source, such as a reservoir of drinking water 90 connected to a water pumping system 91. The water is 30 then transported along pipes (not featured) as far as a water temperature control system 92. Such a system may be a heating system and/or a refrigeration system allowing the water to be raised or lowered to the desired temperature before it is introduced into the 35 metering and mixing device 3. Furthermore, the base station possesses an electric motor 93 controlled by a controller 94. The electric motor 93 comprises a drive shaft 524 which passes through the docking panel 58.
- 28 As a preference, the system according to the invention offers the possibility of varying the metering of the liquid according to the requirements via a control panel 53 featured in the interface area, thanks to a 5 selection of buttons each of which selects a specific drinks dispensing program. In particular, the liquid:diluent dilution ratio can vary by varying the speed at which the pump is driven. When the speed is slower, the diluent flow rate for its part being kept 10 constant by the diluent pump system 91, the liquid:diluent ratio is thus reduced, leading to the delivering of a more dilute drink. Conversely, if the liquid pump speed is higher, the concentration of the drink can be increased. Another controllable parameter 15 may be the volume of the drink by controlling the length of time for which the diluent pump system is activated and the length of time for which the liquid pump is driven. The controller 94 thus contains all the necessary drinks programs corresponding to the choice 20 effected via each button on the control panel 53. The metering and mixing device or the container may also comprise 'a code that can be read by a reader associated with the base station 5. The code comprises 25 information referring to the identity and/or the nature of the product and/or to parameters concerned with the activating of the diluent supply and/or liquid pump drive means. The code may, for example, be used to manage the flow rate of the liquid pump and/or of the 30 diluent pump, contained in the base station, so as to control the liquid:diluent ratio. The code may also control the opening or closing of the air intake in order to obtain a frothy or non-frothy drink. 35 As illustrated in Figure 13, the air intake or channel 74 can be placed to intersect the diluent duct 70. Therefore, it is placed before the intersection of the liquid stream and diluent stream. The problem with air channel placed after the intersection of the liquid and - 29 diluent ducts is that the air channel can become contaminated by diluted liquid which may cause bacterial growth. The problem is mostly caused by geometry and physical factors such as liquid surface 5 tension, phase changes, etc. This air channel cannot be properly cleaned during a flushing cycle with a cleaning liquid (i.e., hot water) as the restriction causes a suction effect from the air channel to the mixing chamber that prevents the cleaning liquid from 10 entering the air channel. Therefore, this new location ensures that no food liquid can enter the air channel. In the present example, the diluent duct 70 and the liquid metering duct 69 are not directly positioned in intersection one another but meet with the mixing 15 chamber 80. The diluent duct 70 is nevertheless positioned in such a way that its stream is directed toward the liquid stream, i.e., in the direction of the liquid outlet or slightly below. An air intake 74 is furthermore provided in the region of the restriction 20 72. The diluent speed is such in that region that air is sucked in the diluent stream before the stream meets the liquid stream. Such an arrangement reduces the risk of the air intake being contaminated with the diluted product coming in the air intake by accident. 25 In an embodiment illustrated by Figure 14, the device comprises a non-return valve for the metered liquid. Indeed, since it is virtually impossible to guarantee total tightness in particular for low viscosity 30 liquids, a valve 690 is added in the liquid metering conduit downstream of the pump. Since traces of water cannot be removed in the intersection area 72 and the mixing chamber, if liquid drips from the pump to these areas, the diluent could contaminate the liquid 35 therefore causing a potentially favourable ground for bacterial growth after several hours of inactivity. The valve prevents this issue by stopping the liquid from dripping during inactivity of the device. The valve can be any sort of non-return valve. In Figure 14, the - 30 valve comprises an elastomeric or silicone slit valve member or layer 691 maintained transversally in the liquid duct 69 by two rigid plies such as two metal plates 692, 693. The valve 690 can be inserted through 5 slots provided through the two half-shells 3A, 3B. The slit valve member is configured so that the slits open downwardly when a fluid pressure has built up upstream the valve as a result of the pump being activated in the pump chamber 60 (pump members not shown) . As soon 10 as the pump is stopped, the valve is resilient enough to close off the outlet. The invention also extends to the field of the preparation of non-food products. For example, the 15 invention may be used in the field of the dispensing of products which come in the form of liquids that can be diluted, such as washing powders, soaps, detergents or other similar products.

Claims (31)

1. Device (3) for metering a base liquid and mixing this base liquid with a diluent to prepare a food 5 product, the device being able to be connected to a container (4) containing the liquid, and the device (3) comprising: - a liquid metering duct (69), - a diluent inlet (71) with a diluent duct (70), 10 - a mixing chamber (80) for mixing the liquid with the diluent; wherein the diluent duct (70) is positioned relatively to the liquid metering duct (69) for the diluent stream to intersect the liquid stream before or at 15 the mixing chamber (80) characterized in that a liquid pump (6) is provided, which is a part of the device, to meter the liquid in the liquid metering duct and in that it comprises a means for accelerating the speed of the diluent stream, 20 relative to the speed of the diluent at the diluent inlet (71), in the region where the said diluent and liquid meet.
2. Device according to Claim 1, characterized in that 25 the means for accelerating the speed of the diluent comprises at least one restriction (72) situated at the diluent duct before said streams meet and/or where the liquid and diluent streams meet. 30
3. Device according to claim 2, characterized in that the restriction has a diameter between 0.2 and 5 mm. 35
4. Device according to Claims 2 or 3, characterized in that the diluent duct (70) comprises at least one terminal portion which, with the restriction (72) and the inlet to the mixing chamber (80), forms an alignment, and - 32 the metering duct (69) for the passage of the liquid comes in a transverse direction to the said alignment.
5 5. Device according to any one of the preceding claims, characterized in that it comprises an air intake (74) before or in the mixing chamber (80) to carry air into the mixture and cause the preparation to froth.
6. Device according to either one of Claims 2, 3 and 4, characterized in that it comprises an air intake (74) communicating with the restriction (72). 15
7. Device according to claim 5 or 6, characterized in that the air intake (74) is positioned relatively to the diluent duct (70) and liquid metering duct (69) for the air to be sucked in the diluent 20 stream before the diluent stream intersects the liquid stream.
8. Device according to any one of the preceding claims, characterized in that diluent coupling 25 means (71) and means for driving the pump (78, 651) are provided and are configured in such a way as to detachably connect the metering and mixing device (3) to a base station (5) capable of providing the diluent supply (520) and the means 30 (521) for driving the liquid pump.
9. Device according to any one of the preceding claims, characterized in that the pump (6) comprises a chamber (60) in which a series of 35 rotary elements (65, 66) which collaborate in gearing engagement is housed.
10. Device according to Claim 9, characterized in that a first rotary element (65) is extended by a - 33 coupling means (651) intended to be connected to a complementary coupling means (521) associated with drive means (93) belonging to the base station (5). 5
11. Device according to any one of the preceding claims, characterized in that it comprises its own duct (85) for delivering the flow of diluted and mixed food liquid directly downstream of the 10 mixing chamber (80) into a receptacle.
12. Device according to any one of the preceding claims, characterized in that it comprises two half-shells (3A, 3B) assembled along a parting 15 line (79) passing through the pump (6) and the mixing chamber (80).
13. Device according to any one of Claims 8 to 10, characterized in that the coupling means (71, 78, 20 651) lie on the same side of the metering device (3) so as to allow the coupling to be made by manually plugging into a docking panel (58) of the base station (5) itself comprising complementary coupling means (520, 521, 524). 25
14. Device according to Claim 13, characterized in that the coupling means also comprise means for translational guidance (33, 34), in a direction that encourages plugging-in, of the metering 30 device with complementary guide means (522, 523) on the docking panel (58) of the base station (5).
15. Device according to any one of Claims 8 to 10, 13 or 14, characterized in that it comprises a code 35 that can be read by a reader associated with the base station, which code comprises information referring to the identity and/or the nature of the product and/or to parameters concerned with the activation of the diluent supply and/or liquid - 34 pump drive means.
16. Device according to any one of the preceding claims, characterized in that it comprises 5 connecting means (31) allowing it to be attached to a container (4), the whole forming a disposable or recyclable package.
17. Base station (5) on which a metering and mixing 10 device (3) set up according to any one of the preceding claims is intended to be docked, characterized in that it comprises: a) a technical area (50) comprising - diluent supply means (90, 91, 92), 15 - liquid pump drive means (93, 524), b) an interface area (51) for the user, comprising - coupling means (520, 521, 522, 523) complementing the coupling means (71, 651, 33, 34) belonging to the metering and mixing 20 device, which are configured to receive the metering and mixing device in a predetermined position and which comprise diluent coupling means (71) and means for coupling the pump (651), 25 - control means (53) for controlling the supply of diluent and driving the liquid pump (6).
18. Station according to Claim 17, characterized in that the diluent supply means comprise a water 30 supply duct connected to a water pump (91) and to a water heating system (92).
19. Station according to Claims 17 or 18, characterized in that the pump drive means 35 comprise an electric motor (93) and a driveshaft (524) connected to the complementary coupling means (521) to link with the coupling means (651) of the liquid pump. - 35
20. Station according to either one of Claims 18 and 19, characterized in that the interface area (50) comprises guide means (522, 523) complementing the guide means (33, 34) of the device in order to 5 allow the metering and mixing device (3) to be docked.
21. Station according to Claim 20, characterized in that the complementary guide means (522, 523) are 10 configured in such a way as to guide the device in a translational direction during docking.
22. Station according to any. one of Claims 17 to 21, characterized in that it further comprises a 15 controller associated with the control means (53) and programmed to control and coordinate the activation of the liquid pump drive means and the activation of the diluent supply means. 20
23. Station according to Claim 22, characterized in that the controller is associated with a reader capable of reading a code associated with the metering and mixing device, which code comprises information referring to the identity or the 25 nature of the product or to parameters concerned with activating the diluent supply and/or liquid pump drive means.
24. Package (2) for metering a liquid and mixing this 30 liquid with a diluent to prepare a food product, comprising: a multi-dose container (4) to form a reserve of liquid; a metering and mixing device (3) comprising: 35 - a diluent inlet, - a liquid pump (6) for metering the quantity of liquid, - a mixing chamber (80) for mixing the liquid and the diluent, - 36 - diluent coupling means (71) and means for driving the pump (650, 651) which are configured to connect the metering and mixing device to a base station (5) capable of providing the 5 diluent supply and the means (93, 524) for driving the liquid pump, characterized in that the metering and mixing device (3) forms a cap connected to the container (4). 10
25. Package according to Claim 24, characterized in that the cap comprises two half-shells (3A, 3B) assembled with one another along a parting line (79) and configured to delimit at least the 15 contours of the chamber of the pump (60) and the mixing chamber (80).
26. Package according to Claim 25, characterized in that the two half-shells (3A, 3B) define, by their 20 assembly, along their parting line (79), a duct (85) of the metering device for delivering the flow of diluted and mixed food liquid directly to a receptacle, the said duct (85) thus extending the mixing chamber (80). 25
27. Package according to Claim 25 or 26, characterized in that the two half-shells (3A, 3B) define, along the parting line (79), the liquid metering duct (69) and, at least partially, the diluent duct 30 (70).
28. Package according to Claims 26 or 27, characterized in that the liquid metering duct (69) is positioned relatively to the liquid 35 metering duct (69) so that the diluent stream intersects the liquid stream before or at the mixing chamber (80).
29. Package according to Claim 27, characterized in - 37 that the metering and mixing device (3) comprises a means for increasing the speed at which the diluent arrives at the point where the streams meet, this means being in the form of a 5 restriction (72) in communication with the diluent intake (71) situated upstream of the mixing chamber (80) so that the flow of diluent is accelerated through the restriction (72). 10
30. Package according to any one of Claims 24 to 29, characterized in that the metering and mixing device (3) comprises an air intake (74) before or in the mixing chamber (80) to carry air into the mixture and cause the preparation to froth. 15
31. Package according to any one of Claims 24 to 30, characterized in that the liquid is a food concentrate intended to reconstitute a hot or cold, frothy or non-frothy drink.
AU2012200647A 2004-07-09 2012-02-03 System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent Ceased AU2012200647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012200647A AU2012200647B2 (en) 2004-07-09 2012-02-03 System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04016210.9 2004-07-09
AU2005262036A AU2005262036B2 (en) 2004-07-09 2005-06-13 System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent
AU2012200647A AU2012200647B2 (en) 2004-07-09 2012-02-03 System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2005262036A Division AU2005262036B2 (en) 2004-07-09 2005-06-13 System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent

Publications (2)

Publication Number Publication Date
AU2012200647A1 true AU2012200647A1 (en) 2012-02-23
AU2012200647B2 AU2012200647B2 (en) 2015-01-15

Family

ID=45812401

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012200647A Ceased AU2012200647B2 (en) 2004-07-09 2012-02-03 System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent

Country Status (1)

Country Link
AU (1) AU2012200647B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166086A (en) * 1963-01-10 1965-01-19 Bela Deutsch Fluid mixing device
US6460734B1 (en) * 1990-06-06 2002-10-08 Lancer Partnership Dispensing apparatus including a pump package system
SE515590C2 (en) * 1999-09-24 2001-09-03 Asept Int Ab Process and apparatus for making beverages on which foam is to be formed
US6568565B1 (en) * 2001-04-04 2003-05-27 Lancer Partnership, Ltd. Method and apparatus for dispensing product

Also Published As

Publication number Publication date
AU2012200647B2 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US9745185B2 (en) System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent
US8371477B2 (en) Device for dispensing a beverage with a controlled air inlet, and method thereof
EP2017219B1 (en) Device for dispensing a liquid
US8820577B2 (en) Device for dispensing a liquid
EP2017221A1 (en) Device for dispensing a liquid
AU2012200647B2 (en) System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired