AU2011361763B2 - Systems and methods for monitoring operations data for multiple wells in real-time - Google Patents

Systems and methods for monitoring operations data for multiple wells in real-time Download PDF

Info

Publication number
AU2011361763B2
AU2011361763B2 AU2011361763A AU2011361763A AU2011361763B2 AU 2011361763 B2 AU2011361763 B2 AU 2011361763B2 AU 2011361763 A AU2011361763 A AU 2011361763A AU 2011361763 A AU2011361763 A AU 2011361763A AU 2011361763 B2 AU2011361763 B2 AU 2011361763B2
Authority
AU
Australia
Prior art keywords
well
issue
status
real
operations data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2011361763A
Other versions
AU2011361763A1 (en
Inventor
Hamayun Zafar RAJA
Syed Aijaz Rizvi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landmark Graphics Corp
Original Assignee
Landmark Graphics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landmark Graphics Corp filed Critical Landmark Graphics Corp
Publication of AU2011361763A1 publication Critical patent/AU2011361763A1/en
Application granted granted Critical
Publication of AU2011361763B2 publication Critical patent/AU2011361763B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

Systems and methods for simultaneously monitoring operations data for multiple wells in real-time using a graphical user interface.

Description

WO 2012/121731 PCT/US2011/027911 SYSTEMS AND METHODS FOR MONITORING OPERATIONS DATA FOR MULTIPLE WELLS IN REAL-TIME CROSS-RIFERENCE TO RELATED APPLICA IONS [0001] Not applicable. STATEMENT REGARDIN FEDERALLY SPONSORED RESEARCH [0002]1 Not applicable. El L D 1 1 L INVENTION [00031 The present invention generally relates to systems and methods for monitoring operations data for multiple wells in real-time. More particularly, the present invention relates to simultaneously monitoring operations data for multiple wells in real-time using a graphical user intertace. BACKGROUND OF 1E INVENTION [0004] In some fields, the ability to monitor data for activities in real-time is extremely important. Monitoring operations data, for example, in realtime during well construction activities is useful for preventing a catastrophic event and safe completion of the well [000$] Most conventional techniques for monitoring operations data during well Construction activities, however, rely on a display that is often limited to operations data 1 WO 2012/121731 PCT/US2011/027911 for a single activity and/or fails to correlate the relationship between the various operations data. [0006] Referring now to FIG. 1, a conventional display 100 for monitoring operations data during well construction activities is illustrated, The display 100 illustrates a geo mechanical model with a brown line, a light blue line and a dark blue line. The brown line represents pore pressure, which gives an indication of pressure contained inside the wellbore. To maintain this pressure, an equivalent amount of downhole mud weight known as equivalent circulating density or ECD, is necessary to maintain the balance of pore pressure in the wellbore. If the pore pressure is greater than. the ECD, then a kick occurs- The light blue line represents mud weight and the dark blue line represents the feature gradient If the ECD is more than the fracture gradient, then the geological formation will be fractured resulting in mud losses. Rapid mud losses can result in a stuck drillstring within the wellbore. Another line represents sheer failure. which corresponds with pack-off tendencies. Pack-off occurs when cuttings and/or cavings fall into the wellbore and the drillstring becomes stuck, [)007] Referring now to FIG. 2. another conventional display 200 for monitoring operations data during well construction activities is illustrated. The display 200 illustrates the parameters necessary to make sure that the wellbore is properly cleaned, The first log in the display 200 represents the cutting load and transport efficiency. The next log represents the equivalent circulating density (ECD) in the wellbore. The cutting load is the amount of drill cuttings in the wellbore and transport efficiency represents how efficiently drill cuttings are being brought out of the wellbore. 2 [0008] Operations data that is represented in two-dimensional formats often fails to convey other essential data such as, for example, the relationships between different operations data for a well at different times relative to the construction of the well. Two dimensional formats are particularly inefficient when attempting to obtain a global perspective of the construction of multiple wells during different activities. As a result, conventional techniques fail to permit simultaneous monitoring of operations data for multiple wells and often require a high level of oversight among multiple highly-skilled personnel to monitor operations data for multiple wells in real-time and to correlate the relationship between the real-time operations data and an engineering model. These limitations can lead to catastrophic events during well construction activities that might otherwise be prevented using a more intuitive graphical user interface to display and monitor the operations data for multiple wells in real-time. SUMMARY OF THE INVENTION [0009] In one aspect, the present invention provides a method for monitoring operations for multiple wells in real-time, comprising: defining a well issue and its component(s) for each well; assigning a weight to each component; defining one or more operations' parameters for each well issue; reading real-time operations data during construction of each well using a computer processor; comparing an engineering model and the real-time operations data to determine a status of each well issue; and displaying the status of each well issue and a status of each well. [0009a] In another aspect the present invention provides a non-transitory program carrier device tangibly carrying computer executable instructions for monitoring operations for multiple wells in real-time, the instructions being executable to implement: defining a well issue and its component(s) for each well; assigning a weight to each component; defining one or more operations' parameters for each well issue; reading real-time operations data during construction of each well; comparing an engineering model and the real-time operations data to determine a status of each well issue; and displaying the status of each well issue and a status of each well. 3 SUMMARY OF SOME OPTIONAL EMBODIMENTS OF THE INVENTION [0010] In one embodiment the present invention includes a method for monitoring operations data for multiple wells in real-time, comprising: i) defining a well issue and its component(s) for each well; ii) assigning a weight to each component; iii) defining one or more operations' parameters for each well issue; iv) reading real-time operations data 3a WO 2012/121731 PCT/US2011/027911 during construction of each well using a computer processor; ') comparing an engineering model and the real-time operations data to determine a status of each well issue; and vi) displaying the status of each well issue and a status of each well. {'))11] In another embodiment, the present invention includes a non-transitory program carrier device tangibly carrying computer executable instructions for monitoring operations data for multiple wells in real-time, the instructions being executable to implement: i) defining a well issue and its component(s) for each well; ii) assigning a weight to each compnonient; iii) defining one or more operations' parameters for each well issue; iv) reading real-time operations data during construction of each well; v) comparing an engineering model and the real-time operations data to determine a status of each well issue; and vi) displaying the status of each well issue and a status of each well. [001 2] In yet another embodiment, the present invention includes a non-transitory program carrier device tangibly carrying a data structure, the data. structure comprising: i) a first data field comprising a three-dimensional graphical representation of an object and a status of a well issue represented on any face of the olbject; and ii) a second data field comprising a representation of a status of a well during a well construction activity based upon a comparison of the status of the well issue and one or more operations' parameters for the well issue. 4 WO 2012/121731 PCT/US2011/027911 [0013] Additional aspects, advantages and embodiments of the invention will become apparent to those skilled in the an from the following description of the various embodiments and. related. drawings. BRIEF DESCRIPTION OF THE DRAWINGS [0014] The patent application file contains at least one drawing executed in color, Copies of this patent application with color drawing(s) will be provided by the UES Patent and Trademark Office upon request and payment of the necessary fee. [001 5] The present invention is described below with references to the accompanying drawings in which like elements are referenced with like numerals and which: [0016] FIG. 1 illustrates a conventional display for monitoring operations data during well construction activities. [0017] FIG. 2 illustrates another conventional display fbr monitoring operations data during well construction activities. [(O18] FIG. 3 is a flow diagram illustrating one embodiment of a method for implementing the present invention. [0019] FIG. 4A illustrates an exemplary display tbr monitoring operations data during well construction activities according to the present invention. [0020] FIG. 4B illustrates another exemplary display for monitoring operations data during well construction activities according to the present invention.
WO 2012/121731 PCT/US2011/027911 [0021- FIG. 4C illustrates another exenplary display for monitoring operations data during well construction activities according to the present invention. [0022] FIG. 4D illustrates an exemplary display for monitoring well status during well construction activities according to the present invention. [0023] FIG. 5 is a block diagram illustrating one embodiment of a system for implement ing the present invention. DETAl[LED DESCRIPTION OF T HE PREFE RRED EM1BODIMENTS [0024] The subject matter of the present invention is described with specificity, however, the description itself is not intended to limit the scope of the invention. The subject mat ter thus, might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described herein, in conjunction with1 other technologies. Moreover, although the termi "step" may be used herein to describe different elements of methods employed, the term should not be interpreted as implying any particular order among or between various steps herein disclosed unless otherwise expressly limited by the description to a particular order. While the following description refers to the oil and gas industry, the systems and methods of the present invention are not limited thereto and may also be applied to other industries to achieve similar results. [00251 The following systems and methods simultaneously monitor operations data for multiple wells in real-time using an intuitive graphical user interface that correlates 6 WO 2012/121731 PCT/US2011/027911 relationships between the operations data for making fast, efficient and intuitive decisions based upon the operations data for each activity. Method Description [0026] Referring now to FIG. 3, a flow diagram illustrates one embodiment of a method 300 for implementing the present invention. [0027] In step 302, data is selected for an engTineering model of a well using the client interface/video interface described hn reference to FIG. 5. Data such as, for example, depth based well losing data may be selected for the engineering model, which may be displayed in the form of lines and/or logs. [0028 hI step 304, the engineering model is created using the data selected in step 302 and applications well known in the art. The engineering model may he created using Drillworks*. for example, which is a commercial software application marketed by Landmark Graphics Corporation, to model pore press ure and wellbore stability. [00291 In step 306, each well issue and its components are defined using the client inierface/video interface described in reference to FIG. 5. A well issue may be defined, for example, depending upon a particular activity during construction of the well (e.g. drilling, cementing, tripping) and will correspond with the same well issues and components represented in the engineering model During construction of the well, for example, well issues sucl as well control and hole cleaning may be defined for a drilling activity. Furthermore, well issues may be defined for different activities associated with different wells. Components for each well issue may be defined such as kick, mud losses WO 2012/121731 PCT/US2011/027911 and pack-off for a well-control issue or transport efficiency, EDC and cutting load for a hole cleaning issue. Each component may be further defined by its dependency factors that determine when, for example, a kick, a mud loss or a pack-off occurs for a well control issue or when a transport efficiency, EDC or cutting load occurs for a hole cleaning issue. Each well issue may be defined by the same or ditTerent components for each well. [00301 In step 308, a weight is assigned to each component defined in step 306 using the client interface/video interface described in reference to FIG. S. Weights, or percentages, may be assigned to each component for each well issue based on its level of importance relative to the well issue. Well control, for example, may include kick, mud losses and pack-off components with different weights assigned to each component such as.. for example, 50%, 30% and 20%, respectively. Hole cleaning, for example, may include transport efficiency, EDC, and cutting loop components with different weights assigned to each component such as, for example, 10%, 80% and 10%., respectively. The weight assigned to each component may be different than the examples provided depending upon the componentt, the well issue and the well Well control, for example, may be defined by different components for one well than well control for another well and/or the components may be the same. [0031] In step 310, operations' parameters are defined for each well. issue using the client interface/video interface described in reference to FtG. 5, Operations' parameters may include, for example, conditions based on the status of the well issue such as, for example, stop, caution and continue, Well control, for example, may define operations' 8 WO 2012/121731 PCT/US2011/027911 parameters for stop (<90%), caution (90-95%) aid continue (>95%), Hole cleaning, for example, may define operations' parameters for stop (<85%), caution (85-95%) and continue (>% fin this manner, the status of each well issue may be monitored relative to the options' parameters to determine the status of the well, The operations' parameters may be defined in other ways and may include different conditions based on the status of the well issue. [002] In step 312, real-time operations data is read during construction of the well and may include, for example, operations data related to the data selected for the enginerig model in step 302 and the components defmed in step 306. Operations data fbr kick, mud losses and pack-off components may include, for example, pore pressure and mud weight. Operations data for transport efficiency, EDC and cutting load components may include, for ex ample, the amount of drill cuttings in the well, the rate at which drill cuttings are being brought out of the well and the mud weight necessary to maintain the balance of pore pressure and wellbore stability. [0033] In step 314, the engineering model and the real-time operations data are compared using techniques well known in the art to determine a status for each well issue. The status for each well. issue may be expressed as a percentage. For example, the engineering model may be compared to real-time operations data to determine the status for well control based on whether a kick, mud loss and/or a pack-off have occurred. If one or more of these events (components) have occurred, then the status for the well issue (well control) can be determined based upon the weights assigned to each component, In 9 WO 2012/121731 PCT/US2011/027911 the example described in reference to step 308, the status of the well Issue (well control) will be 50% if a kick occurs. [0034l in step 316, each well issue, its components, the component weights, the well issue status and the well status are displayed using the client interface/video interface described in reference to FIG. 5. [0035] In FIG. 4A, an exemplary display for monitoring operations data during well construction activities is illustrated. Well control is the well issue and its components are kick, mud losses and pack-off with weights assigned to each of 50%, 30% and 20%, respectively. The operations' parameters for this well issue are stop (<90%), caution (90 95%) and continue (>95%). Real time operations data including pore pressure and pore pressure represented in the engineering model are compared to determine the status for well control. In this example, the status for well control is 50% because a kick occurred or a mud loss and a pack.off occurred, which may be noted in the display. The well control status is represented as a point 402 between 0% and 100% and may be displayed on the face of any three-dimensional graphical representation of an object such as, for example, a pyramid in order that someone without expertise in the area or field of well control may easily and intuitively recognize the well control status. The remainmg faces of the pyramid may be used to display another well issue., its components, the component weights and the another well issue status for the same well or a different well during the same well construction activity or a different well construction activity, 10 WO 2012/121731 PCT/US2011/027911 [00361 In FIG. 4B, another exemplary display for monitoring operations data during well construction activities is illustrated. Hole cleaning is the well issue and its components are transport efficiency, EDC and cutting load with weights assigned to each of 10%, 80% and 10%, respectively. The operations' parameters for this well issue are stop (<85%), caution (85%-95%) and continue (>95%). Real-time operations data including pore pressure and pore pressure represented in the enrgineering model are compared to determine the status for hole cleaning, ln this example, the status for hole cleaning is 90% because a transport efficiency occurred or a cutting load occurred, which may be noted in the display. The hole cleaning status is represented as a point 404 between 0.% and 100% and may be displayed on the face of any three-dimensional graphical representation of an object such as, for example, a pyramid in order that someone without expertise in the area or field of hole cleaning may easily and intuitively recognize the hole cleaning status. The remaining fices of the pyramid may be used to display another well issue, its components, the component weights and the another well issue status for the same well or a different well during the same well construction activity or a different well construction activitV. [0037] In FIG. 4C, another exemplary display for monitoring operations data. during well construction activities is illustrated. The base of an object such as, for example, the aid illustrated in FIGS. 4A and 4B may be used to optionally niotor another well issue. In this example, the well issue may represent an anticipated depth (2,000 meters) for a granite formation during construction of the well I The components for this well issue may include resistivity and gamma-ray readings. The engineering model would 11 WO 2012/121731 PCT/US2011/027911 therefore, include the resistivity and gamma-ray readings anticipated for granite. In this example, weights are not assigned to each component. When real-time operations data including real-time resistivity and gamma-ray readings are read, they may be compared to the resistivity and. gamma-ray readings in the engineering model to determine the status for the well issue. The well issue status in FIG. 4C is represented by point 406, which could confirm that the well issue has been met during construction of the well. Ift for example, the granite transformation is met at a different depth, earlier or later than anticipated, then the point 406 will be centered at the depth the real-rime resistivity and gamma-ray readings substantially match the resistivity and gamma-ray readings in the engineering model, and the well construction activity may be stopped to determine if the engineering model should be moddied. if, however, the granite tbrmation is met at the anticipated depth, then the point 406 will be centered at 2000 meters. Up to four components (CI-C4) may be displayed in this example for any given well issue. Various additional or alternative components may be utilized depending upon the well issue and the three-dimensional graphical representation of the object. [0038] In step 318, the method 300 determines if the well construction actvity should continue, If the well construction activity should continue, then the method 300 proceeds to step 320. If the method 301 determines that well construction activity should not continue, then the method 300 proceeds to step 322. Determining whether the well construction activity should continue may be based on the operations' parameters defined for each well issue in step 310 and/or other well known factors impacting construction off the well. In FIG. 41,. an exemplary display for monitoring well status during well 12 WO 2012/121731 PCT/US2011/027911 construction activities is illustrated. Well 1, for example, represents a drilling activity, which may he displayed with the drilling activity for well 2 and the tripping activity for well 3 in the same display. In fact, any number of wells and corresponding well construction activities may be displayed at the same time in the same display for siuaneously monitoring operations data for multiple wells in. reaktime. The well status for each well illustrated in FIG. 4D may also be displayed in step 316 with each display in FIGS. 4A-C or separately, If, for example, each display in FIGS. 4A-4C represented a different well, then the status for each respective well may be represented in the display illustrated in. FIG. 4D. The status of the well issue (well control) in FIG. 4A for well 1 confirms that it is 50%, When compared to the operations' parameters defined fbr this well issue in step 310, the status for well I is displayed in FiG. 4D as red, which means stop. The well status may be displayed in text and/Or color coded to correspond with the operations' parameters defined for each well issue in step 310- For example, yellow may be used for caution and green may be used for continue, Further, the status for each well displayed in FIG. 41) may be displayed along a line representing the well construction activity (e.g drilling) at a particular poin time, If the well status for any well in FIG, 4D is red, meaning stop in this example, then all drilling activities for this well would stop either manually or automatically. In this manner, the status for multiple wells may be simultaneously monitored in order that someone with relatively little technical experience may easily and intuitively recognize and react to the status for each well displayed. 13 WO 2012/121731 PCT/US2011/027911 [00391 In step 320, the method 300 determines if the well is completed using techniques well known in the art and the real-time operations data read in step 312. If the method 300 determines that the well is completed (e.g. no more real-time operations data), then the method 300 ends, If the method 300 determines that the well is not completed (e.g. available real-nine operations data), then the method 300 returns to step 312 and continues to read real-tine operations data in the manner described until the method 300 determines that the well is completed in step 320 [0040) In step 322, the well issue causing the well construction activity to stop in step 318 is resolved using techniques well known in the art. After the well issue is resolved, the method 304) returns to step 312 and continues to read real-time operations data in the manner described until the method 300 determines the well is completed in step 320. System Description [0041] The present invention may be implemented through a computer-executable program of instructions, such as program modules, generally retrred to as software applications or application programs executed by a computer. The software may include, for example, routines, programs, objects, components, and data structures that perform particular tasks or implement particular abstract data types. The software forms an interface to allow a computer to react according to a source of input. Dri liworksv may he used to implement the present invention. The software may also cooperate with other code segments to ntiate a variety of tasks in response to data received in conjunction with the source of the received data. The software may be stored and/or carried on any 14 WO 2012/121731 PCT/US2011/027911 variety of memory media such as CD-ROM, magnetic disk, bubble memory and semiconductor memory (eg, various types of RAM or ROM). Furthermore, the software and its results may be transmitted over a variety of carrier media such as optical fiber, metallic wire and/or through any of a variety of networks such as the Internet. [0042] Moreover, those skilled in the art will appreciate that the invention may be practiced wifh a variety of computer-system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable-consumer electronics, miniconiputers, mainframe computers, and the like. Any number of computer-systems and computer networks are acceptable for use with the present invention. The invention may be practiced in distributed-computing environments where tasks are performed by remote-processing devces that are linked through a coimunicaions network. In a distributed-computing environment, program. modules may be located in both local and remote computer-storage media including memory storage devices. The present invention may therefore, be implemented in connection with various hardware, software or a combination thereof, in a computer system or other processing system. [0043] Referring now to FIG. 5, a block diagram illustrates one embodiment of a system for implementing the present invention on a computer. The system includes a computing unit, sometimes referred to a computing system, which contains memory, application programs, a client interface, a video interface and a processing unit. The coniptuting unit is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. 15 WO 2012/121731 PCT/US2011/027911 -0044] The memory primarily stores the application programs, which may also be described as program modules containing computer-executable instructions, executed by the computing unit for implementing the present invention described herein and illus trated in FIGS. 3 and 4A-4D. The memory therefore, includes a real-ime monitoring module, which enables the methods illustrated and described in reference to FIC. 3 and integrates functionality from the remaining application programs illustrated in FIG. 5 in particular, Drillvorkse may be used to execute the functions described in reference to steps 302, 304 and 31.2 in FIG. 3 while the real-tine monitoring module is used to execute the functions described in reference to steps 306, 38, 310, 314, 316, 318, 320 and 322 in FG. 3, [0045] Although the computing unit is shown as having a generalized memory, the computing unit typically includes a variety of computer readable media. By way of example, and not limitation, computer readable media may comprise computer storage media, The computing system memory may include computer storage media in the form of volatile and/or nonvolatile memory such as a read only memory (ROM) and random access memory (RANT). A basic input/output system biosS), containing the basic routines that help to transfer information between elements within the computing unit, such as during start-up, is typically stored in ROM. The RAM typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by the processing unit. By way of example, and not limitation, the computing unit includes an operating system, application programs, other program modules, and program data. 16 WO 2012/121731 PCT/US2011/027911 [00461 The components shown in the memory may also be included in other removablenon-removabke, volatile/nonvolatile computer storage media or they may be implemented in the computing unit through application program interface ("API"), which may reside on a separate computing unit connected through a computer system or network. For example only, a hard disk drive may read from or write to non-removable, nioiniolatile magnetic media, a magnetic disk drive may read from or write to a removable, non-volatile magnetic disk, and an optical disk drive may read from or write to a removable, nonvolatile optical disk such as a CD ROM or other optical media. Other removable/non-removabie, volatile/non-volatile computer storage media that can be used in the exemplary operating environment may include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM., solid state ROM, and the like. The drives and their associated computer storage media discussed above provide storage of computer readable instructions, data structures, program iodules and other data for the computing unit. [0047] A client may enter commands and information into the computing unit through the client interface, hic may be input devices such as a keyboard and pointing device, commonly referred to as a mouse, trackball or touch pad. Input devices may include a microphone, joystick, satellite dish, scanner, or the like. 'Ilhese and other input devices are often connected to the processing unit through a system bus, but may be connected by other interface and bus structures, such as a parallel port or a universal serial bus (U SB) [0048] A monitor or other type of display device may be connected to the system bus via an interface, such as a video interface. A graphical user interface ("GUl") may also be 17 used with the video interface to receive instructions from the client interface and transmit instructions to the processing unit. In addition to the monitor, computers may also include other peripheral output devices such as speakers and printer, which may be connected through an output peripheral interface. [0049] Although many other internal components of the computing unit are not shown, those of ordinary skill in the art will appreciate that such components and their interconnection are well known. [0050] While the present invention has been described in connection with presently preferred embodiments, it will be understood by those skilled in the art that it is not intended to limit the invention to those embodiments. It is therefore, contemplated that various alternative embodiments and modifications may be made to the disclosed embodiments without departing from the spirit and scope of the invention defined by the appended claims and equivalents thereof. [0051] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. [0052] The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that the prior art forms part of the common general knowledge. 18 06/07/15a221056 amended sneci naes 1S

Claims (13)

1. A method for monitoring operations data for multiple wells in real-time, comprising: defining a well issue and its component(s) for each well; assigning a weight to each component; defining one or more operations' parameters for each well issue; reading real-time operations data during construction of each well using a computer processor; comparing an engineering model and the real-time operations data to determine a status of each well issue; displaying the status of each well issue and a status of each well; and determining whether to continue construction of each well based upon the status of each well and the status of each well issue for a respective well.
2. The method of claim 1, further comprising determining whether each well is completed based upon reading real-time operations data during construction of each well.
3. The method of claim 1, further comprising resolving each well issue for a respective well when the construction of the respective well is discontinued.
4. The method of any one of claims 1 to 3, wherein the status of each well is based upon a comparison of the status of each well issue for a respective well and the one or more operations' parameters for each respective well issue.
5. The method of any one of claims 1 to 4, wherein the well issue is well control and its components are kick, mud losses and pack-off.
6. The method of any one of claims 1 to 5, wherein the one or more operations' parameters for each well issue comprise stop, caution and continue. 19
7. A method of constructing multiple wells including monitoring the wells in accordance with any one of claims 1 to 6 and, in relation to each of the wells, continuing the construction subsequent to the determining whether to continue.
8. A non-transitory program carrier device tangibly carrying computer executable instructions for monitoring operations data for multiple wells in real-time, the instructions being executable to implement: defining a well issue and its component(s) for each well; assigning a weight to each component; defining one or more operations' parameters for each well issue; reading real-time operations data during construction of each well; comparing an engineering model and the real-time operations data to determine a status of each well issue; displaying the status of each well issue and a status of each well; and determining whether to continue construction of each well based upon the status of each well and the status of each well issue for a respective well.
9. The program carrier device of claim 8, further comprising determining whether each well is completed based upon reading real-time operations data during construction of each well.
10. The program carrier device of claim 8, further comprising resolving each well issue for a respective well when the construction of the respective well is discontinued.
11. The program carrier device of any one of claims 8 to 10, wherein the status of each well is based upon a comparison of the status of each well issue for a respective well and the one or more operations' parameters for each respective well issue.
12. The program carrier device of any one of claims 8 to 11, wherein the well issue is well control and its components are kick, mud losses and pack-off.
13. The program carrier device of any one of claims 8 to 12, wherein the one or more operations' parameters for each well issue comprise stop, caution and continue. 20
AU2011361763A 2011-03-10 2011-03-10 Systems and methods for monitoring operations data for multiple wells in real-time Ceased AU2011361763B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/027911 WO2012121731A1 (en) 2011-03-10 2011-03-10 Systems and methods for monitoring operations data for multiple wells in real-time

Publications (2)

Publication Number Publication Date
AU2011361763A1 AU2011361763A1 (en) 2013-09-19
AU2011361763B2 true AU2011361763B2 (en) 2015-11-26

Family

ID=46798493

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011361763A Ceased AU2011361763B2 (en) 2011-03-10 2011-03-10 Systems and methods for monitoring operations data for multiple wells in real-time

Country Status (9)

Country Link
US (2) US9933919B2 (en)
EP (1) EP2683916B1 (en)
CN (1) CN103562492A (en)
AU (1) AU2011361763B2 (en)
BR (1) BR112013023134A2 (en)
CA (1) CA2829802C (en)
EA (1) EA201391309A1 (en)
MX (1) MX2013010394A (en)
WO (1) WO2012121731A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116101A1 (en) * 2014-01-30 2015-08-06 Landmark Graphics Corporation Depth range manager for drill string analysis
CA2934451C (en) * 2014-01-30 2020-08-25 Landmark Graphics Corporation Smart grouping legend
WO2016130220A1 (en) * 2015-02-11 2016-08-18 Halliburton Energy Services, Inc. Visualization of wellbore cleaning performance
USD772916S1 (en) * 2015-03-06 2016-11-29 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US11131540B2 (en) 2016-01-26 2021-09-28 Schlumberger Technology Corporation Tubular measurement
AR108578A1 (en) 2016-05-25 2018-09-05 Schlumberger Technology Bv PICTURE-BASED SYSTEM FOR DRILLING OPERATIONS
US10782679B2 (en) 2016-12-15 2020-09-22 Schlumberger Technology Corporation Relationship tagging of data in well construction
US10928786B2 (en) * 2017-05-17 2021-02-23 Baker Hughes, A Ge Company, Llc Integrating contextual information into workflow for wellbore operations
US20190026004A1 (en) * 2017-07-18 2019-01-24 Chicago Labs, LLC Three Dimensional Icons for Computer Applications
CN107989601B (en) * 2017-12-22 2020-12-15 西安石油大学 Magnetic distance measuring method for simultaneously drilling multiple vertical wells
US11035219B2 (en) 2018-05-10 2021-06-15 Schlumberger Technology Corporation System and method for drilling weight-on-bit based on distributed inputs
US10876834B2 (en) 2018-05-11 2020-12-29 Schlumberger Technology Corporation Guidance system for land rig assembly
NO20211413A1 (en) * 2019-09-04 2021-11-22 Landmark Graphics Corp Well construction activity graph builder
US11514383B2 (en) 2019-09-13 2022-11-29 Schlumberger Technology Corporation Method and system for integrated well construction
US11391142B2 (en) 2019-10-11 2022-07-19 Schlumberger Technology Corporation Supervisory control system for a well construction rig

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103630A1 (en) * 2001-01-30 2002-08-01 Aldred Walter D. Interactive method for real-time displaying, querying and forecasting drilling event and hazard information
US7184991B1 (en) * 2002-07-12 2007-02-27 Chroma Energy, Inc. Pattern recognition applied to oil exploration and production
US7857047B2 (en) * 2006-11-02 2010-12-28 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032689B2 (en) 1996-03-25 2006-04-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
US6710788B1 (en) * 1996-12-03 2004-03-23 Texas Instruments Incorporated Graphical user interface
US6282452B1 (en) * 1998-11-19 2001-08-28 Intelligent Inspection Corporation Apparatus and method for well management
AU6359401A (en) * 2000-08-28 2002-03-07 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
US6751555B2 (en) * 2001-10-17 2004-06-15 Schlumberger Technology Corporation Method and system for display of well log data and data ancillary to its recording and interpretation
US7027968B2 (en) * 2002-01-18 2006-04-11 Conocophillips Company Method for simulating subsea mudlift drilling and well control operations
US6907375B2 (en) 2002-11-06 2005-06-14 Varco I/P, Inc. Method and apparatus for dynamic checking and reporting system health
US7730967B2 (en) * 2004-06-22 2010-06-08 Baker Hughes Incorporated Drilling wellbores with optimal physical drill string conditions
US7979240B2 (en) * 2006-03-23 2011-07-12 Schlumberger Technology Corporation System and method for real-time monitoring and failure prediction of electrical submersible pumps
WO2008039523A1 (en) * 2006-09-27 2008-04-03 Halliburton Energy Services, Inc. Monitor and control of directional drilling operations and simulations
US8965817B1 (en) * 2010-09-24 2015-02-24 Wipro Limited System and method for active knowledge management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103630A1 (en) * 2001-01-30 2002-08-01 Aldred Walter D. Interactive method for real-time displaying, querying and forecasting drilling event and hazard information
US7184991B1 (en) * 2002-07-12 2007-02-27 Chroma Energy, Inc. Pattern recognition applied to oil exploration and production
US7857047B2 (en) * 2006-11-02 2010-12-28 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations

Also Published As

Publication number Publication date
CA2829802A1 (en) 2012-09-13
WO2012121731A1 (en) 2012-09-13
EP2683916B1 (en) 2019-01-02
CN103562492A (en) 2014-02-05
AU2011361763A1 (en) 2013-09-19
US20140075359A1 (en) 2014-03-13
MX2013010394A (en) 2015-03-03
US9933919B2 (en) 2018-04-03
US20180314398A1 (en) 2018-11-01
CA2829802C (en) 2016-06-21
EP2683916A1 (en) 2014-01-15
EP2683916A4 (en) 2016-05-11
EA201391309A1 (en) 2014-01-30
BR112013023134A2 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
AU2011361763B2 (en) Systems and methods for monitoring operations data for multiple wells in real-time
Plumb et al. The mechanical earth model concept and its application to high-risk well construction projects
Bradford et al. When rock mechanics met drilling: effective implementation of real-time wellbore stability control
Nauduri et al. MPD: Beyond narrow pressure windows
AU2011374974B2 (en) Systems and methods for the evaluation of passive pressure containment barriers
Muñoz et al. Directional Casing While Drilling (CwD) Reestablished as Viable Technology in Saudi Arabia
Zulkipli Cement Conundrum: Valuable Lessons Learned for Sustaining Production
Russell et al. Improved Drilling Performance in a Troublesome Environment
Rakhmangulov et al. Entering the Arctic gate: high end drilling at the high latitude
CA2923722C (en) Predefining elements of a cemented wellbore
Gao et al. Successful Development of Changbei Marginal Tight Gas Field: Dual Lateral Horizontal Well and Significant Drilling Performance Improvement
Dooply et al. Integrated Well Integrity Cement Evaluation Technique for Shallow Gas Flow Cementing in Eagle Ford Field
Yanez_Banda et al. Working together for Successful Drilling through a Fault: Risk Management, Planning and Execution
Glebov et al. Drilling record ERD wells at Yamal region
Tollefsen et al. Evaluating the True Cost of Losing a Bottomhole Assembly
Campbell et al. Salt Drilling: The State of the Art
Eriksen et al. Development of a Liner Drilling System Incorporating a Retrievable Bottom Hole Assembly
Lambert et al. Benchmarking deep drilling technologies
Kumar et al. Real Time Drilling Geomechanics: Successful Application in an Inclined Well in Ultra-deepwater off East Coast of India
Verås et al. Drill-Bit Design Helps Mitigate Consequences of Well Collision
Kabanov et al. An Integrated Approach to Efficient Drilling through Unstable Coal Intervals Using Different Types of Mud in the Yamal Region
Nwagu Case Study: Planning and Execution of a Subsea Hpht Well in the Niger-Delta
Hawthorn et al. Changing the Game with Real-Time Downhole and along String Data During Managed Pressure Liner Running and Cementing
Webb et al. Successful Coiled-Tubing Cleanout of Heavy Post-Fracturing Proppant in Deepwater Gulf of Mexico: Case History
Hargis et al. Advantages of Integrating Geomechanics Modeling and Hydraulics Modeling in Well Planning and Execution

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired